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Abstract
Modal observations of a piano soundboard are com-

pared with results predicted by a model consisting
of weakly coupled homogeneous sub-structures. The
model is entirely determined by the coarse geometry
of the soundboard (main plate, ribs, bridges, cut-off
corners) and by the elastic parameters of the wood
species. It can also be used to predict the point-
mobility at the bridge (where strings are attached)
or far from it. The agreement between observations
and model predictions is excellent, both in the low-
and high-frequency regimes (respectively below and
above ≈ 1 kHz). Applications include a comparison
between the characteristics of different pianos as well
as the influence of the wood properties on the point-
mobility. Some consequences in terms of acoustical
radiation will also be presented.

Introduction
In a piano, the soundboard is the plate-like struc-

ture on which the strings are attached. It radiates
sound (the strings are too thin to radiate efficiently)
and rules the sound-decay which is an essential part
of the piano sound. Coupling between the string and
the soundboard is described by the point-mobility
YQ(ω) = V (ω)/F (ω) where, ω is the angular fre-
quency, F the force applied by the string(s) at point
Q and V the resulting velocity of the soundboard at
that point. YQ(ω) can be written as the sum of the
mobilities of the modes of the soundboard at a given
point. We consider that modal shapes are sinusoids
along the bridge and products of sinusoids across the
soundboard (see § 1 for experimental observations
and FEM results). Modal frequencies are obtained
in average by a model presented in § 2. Modal damp-
ings are given by observation. Ignoring fine geomet-
rical details and local pecularities, these ingredients
are sufficient to predict YQ(ω) at any point, accord-
ing to Skudrzyk’s theory of the mean-value of the
point mobility [1]. Results pertaining to modal den-
sity and to the reciprocal of the frequency-averaged
point-mobility are given in § 3, for different pianos.

1 Experimental and numerical observations

The following observations (see [2] for a complete
report) have been made on an upright piano sound-
board (Atlas, .91 m × 1.39 m) and result from a
high-resolution modal analysis technique [3]. For re-
sults below 350 Hz, the soundboard was excited lo-
cally by a impact hammer and above that limit, the
soundboard was excited globally by a strong acous-
tical field. The vibration was observed locally with
accelerometers. The modal analysis also yielded the
modal dampings with an excellent precision in a fre-
quency range not accessible with Fourier-based tech-
niques (modal overlap approaching 100%). It appears
that above ≈1 kHz, not all the modes are observed at
any given observation point, hence the use of the con-
cept of apparent modal density, defined as the recip-
rocal of the average modal spacing and represented
in Fig. 1. Below 1 kHz, the apparent modal den-
sity does not depend on the point of observation and
looks similar to that of a plate (or a combination of
plates). Above that limit, the apparent modal density
decreases and depends on the point of observation.

A typical modal shape for the so-called low-
frequency regime (below 1 kHz) is represented in
the top of Fig. 2. The vibration extends over the
whole soundboard except, eventually, in one or an-
other cut-off corner. In the high-frequency regime
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Figure 1: Modal density of the Atlas soundboard.
Dots: observed values at various points of the

soundboard. Lines: prediction of the model (§ 2).



(above 1 kHz), modal shapes have been obtained by
finite-element modeling of the soundboard [2]. It ap-
pears (Fig. 2) that the vibration is both confined be-
tween ribs and, most often, localised in one or a very
few areas of the ribbed parts of the soundboard, due
presumably to the slightly irregular spacing of ribs
across the soundboard.

Figure 2: Typical modal shapes. Top: observed in
the low-frequency regime (mode 10, 303 Hz).

Bottom: numerically obtained in the high-frequency
regime (mode 167, 2733 Hz).

2 Model
The different parts (cut-off corners, if any, the two

main parts of the soundboard, as limited by the main
bridge, the rim and the cut-off bars, the main bridge)
are conidered as weakly coupled homogeneous sub-
structures. The bass bridge is described as a simple
mass added to the corresponding part of the sound-
board. Each plate-like structure is considered with
clamped boundary conditions. The main bridge is
described as a bar, the cut-off corners as orthotropic
plates, as well as the the ribbed parts of the sound-
board in the low-frequency regime, following the ho-
mogenisation proposed by [4].

In the high frequency domain (where the apparent
modal density depends on the point of observation),
we consider that the two main parts of the sound-
board (ribbed areas, extending on each side of the
main bridge) vibrate only in the vicinity of the ob-

servation points, namely within three inter-rib spaces.
Each inter-rib space of width p is seen as a structural
wave-guide where the wave-number in the direction
orthogonal to the ribs is kx = nπ/p, with n ∈ N∗. A
transition has been devised between the two regimes.

Under the weak-coupling hypothesis, the modal
density is the sum of the modal densities of the sub-
structures. The agreement between observations and
the results given by the model (Fig. 1) is striking.

3 Applications
The model has been used to to analyse the influ-

ence of wood parameters (not shown here) and to
characterise different pianos (Fig. 3).
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Figure 3: Comparison of three upright pianos and
two grand pianos. Top: apparent modal density in
low-frequency. Bottom: characteristic impedances

(model artefact at 200 Hz for the Schimmel upright).
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