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Abstract – This paper presents multiphase permanent magnet 
machines with concentrated non-overlapped winding as a good 
candidate for automotive low voltage mild-hybrid applications. 
These machines often require a trade-off between low speed 
performances such as high torque density and high speed 
performances like flux weakening capabilities. This paper 
describes how to choose a key design parameter to ease this 
compromise, the slots/poles combination, according to three 
parameters: winding factor including harmonics factor, rotor 
losses amount thanks to a comparison factor, and radial forces 
balancing. The comparison criterions are based on both 
analytical formula and Finite Element Analysis. 
 

I. INTRODUCTION 
For mild-hybrid automotive, in order to achieve a smooth 

and cheap transition between classical automotive 12V low 
voltage and industrial DC voltage of a few hundred Volts, 
medium voltage of 60 V can appear as an interesting solution 
because of easier and cheaper battery management and also 
use of family of low-voltage MOSFET transistors with very 
low RDSON resistance and no threshold for the voltage drop. 

For a  given power, the drawback of low voltage is a 
higher current per phase. As consequence, it can be necessary 
to use several transistors in parallel in order to ensure the 
required current per phase. A better solution for global sizing 
can be to use a machine with more than three phases [1]-[2]. 
The use of a single transistor can be interesting for reliability 
of a Voltage Source Inverter (VSI) leg. Moreover, if one 
phase is open-circuited it is still possible to work in fault 
mode but with a lower power [3]-[6]. Other interest of 
multiphase traction drives with wide speed range [7] appears 
when square-wave VSI control is used at high speeds, 
because of harmonics properties, there are lower pulsating 
torques and as consequence a lower pulsating current in DC-
bus [8]. 

Besides, numerous studies have been done on concentrated 
windings machines [9]  when compactness and high 
efficiency are requested as it is for traction [7] and 
starter/generator [1] applications of hybrid automotive. 
Generally, in those applications, the high ratio power/volume 
is the most important condition especially when the machine 
should replace the classical clawpole generator of the vehicle 
in motor/generator case. If winding factors and torque quality 
[10]-[12] must be considered  as it is with distributed 
windings, other  effects, usually less important and 
considered as parasitic for machines with distributed 
windings, can become unacceptable for machines with 

concentrated windings at high speeds (16000 RPM) such as 
rotor losses and noise. Furthermore, large flux weakening 
region which allows reaching high speeds and keeping a 
constant power is needed. Numerous analysis have been done 
[13]-[20], considering these effects and leading finally to a 
reduced number of interesting solutions if the number of 
phases is kept to three. As consequence, considering the 
number of phases as a parameter of design [21] is a way to 
increase the number of potential solutions. A few elements of 
analysis have been given in [22] taking MMF harmonics into 
account. 

This paper presents a comparison which takes into account 
simultaneously the main effects that influence the final 
choice for a multiphase machine with concentrated windings. 
The comparison is based on analytical and numerical 
analysis. A methodology of design for this family of multi-
phase machines is thus implicitly proposed.  

In the first section we present the results of winding factor 
calculation of many interesting slots/poles combinations both 
for the first and third harmonics. Those calculations are done 
for 5 and 7-phase machines and the case of 3-phase machines 
is reminded.   

In a second part, analytical study is done to investigate the 
effect of MMF and its harmonics distribution on rotor losses. 
Analytic losses indicator is identified and calculated to 
compare between combinations. 

The third section considers cogging torque and mechanical 
balancing. 

In the last section, Finite Element Method program is used 
to study four structures considered as interesting thanks to 
the analytical analysis. The results confirm the previous 
comparisons. 

   
II. WINDING FACTOR 

In this paragraph the winding factor for many feasible 
combinations of multiphase machine is calculated. 

The winding factor is calculated for concentrating and 
non-overlapped winding. For a given poles/slots 
combination, the double layer solution is favoured except if 
the single layer solution has a higher winding factor. It is due 
to its advantages in rotor losses and mechanical balancing 
[11], [16], [18]-[19].  

The calculation principle depends on the distribution of the 
slots windings in the electrical space [22]. Every winding is 
presented by one vector or phasor, whereas the winding 
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factor is identified from the sum of vectors which belong to 
one phase, as we can see in equation (1). 
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    There are many possibilities to distribute the phasors in the 
electrical space, but in our study we search and consider the 
phasors distribution which produce maximum winding 
factor. In case of 5 and 7-phase machines, the third harmonic 
can be used to produce additional constant torque. Therefore, 
the winding factor of the third harmonic has been calculated 
also.  
 The TABLE I represents the winding factor(s) of many 
combinations for 3, 5 and 7-phase machines. Three families 
have been distinguished by colors, depending on the value of 
the winding factor. 

In TABLE I , it appears that in order to get combinations 
with high winding factor (in yellow) then a higher pole 
number is needed with a corresponding increase of the 
number of slots. Moreover high winding factor is achieved 
when the relation ” 2slotsor1slotsnumber pole  ” is 

verified. It is due to the almost opposite distribution of every 
two successive slots phasors in the electrical space [10]. 

 
TABLE I 

WINDING FACTOR CALCULATIONS 

Poles 
Slots 

4 6 8 10 12 14 16 

6      0.866  0.866 0.5  0.5 0.866 
9       0.866 0.9452 0.9452 0.866   

12      0.866 0.966  0.966 0.866 

15       0.866  0.9514 0.951 
18        0.866 0.902 0.945 
21         0.866 0.773 
24          0.866 

Three-Phase Combinations 

Poles 
Slots 

2 4 6 8 12 14 16 18 

5 0.588  
0.951 

0.951  
0.588 

0.951   
0.588 

0.588   
0.951 

0.588   
0.951 

0.951  
0.588 

0.951  
0.588 

0.588 
0.951 

10      0.588  
0.951 

0.809 
0.309 

0.951   
0.588 

0.951  
0.588 

0.809 
0.309 

0.588  
0.951 

 

15     harm1   
harm3 

 0.588   
0.951 

0.7 
0.318 

0.951 
0.588 

0.980  
0.830 

0.980   
0.830 

0.951  
0.588 

20      0.588   
0.951 

0.809 
0.309 

0.891 
0.156 

0.951  
0.588 

0.988 
0.891 

Five-Phase Combinations 

Poles 
Slots 

4 6 8 10 12 16 18 

7     0.7818   
0.4339 

0.9749   
0.7818 

0.9749   
0.7818 

0.7818   
0.4339 

  0.7818   
0.4339 

14   harm1    
harm3 

0.623 
0.901 

0.7818   
0.4339 

0.901 
0.223 

0.9749   
0.7818 

0.9749   
0.7818 

0.901 
0.223 

21     0.5466 
0.7302 

0.6684 
0.6641 

0.7818   
0.4339 

0.9147 
0.3686 

0.9749   
0.7818 

Seven-Phase Combinations 

High winding 
factor (first 
harmonic) 

Not bad winding 
factor (first 
harmonic) 

High winding 
factor (third 
harmonic) 

Single layer 
winding 

    
 

 
 

III. ROTOR LOSSES COMPARISON 
   

In synchronous permanent magnet machines, eddy current 
rotor losses in both magnets and iron are the result of the 
asynchronous movement of the MMF harmonics. In contrary 
to the fundamental harmonic of MMF whose order is equal 
to the pole pair number p,  the MMF harmonics  advance in 
the air gap in certain speeds different from the rotor one, 
inducing thus currents in both magnets and rotor iron. 

In classical machines with integral slot winding, the MMF 
harmonics distribution is generally of the type f1)h(2k   

where fh the spatial fundamental harmonic which has the 

frequency p in the air gap. However, it is not the case in 

machines made with fractional slot winding [23]. In those 
machines, the MMF spectrum may have both even and odd 
harmonics, far and close to the fundamental. Moreover those 
harmonics may be lower than the fundamental. In this last 
case, they are called sub-harmonics. 

As example, Fig 1 presents the MMF spectrum of 15 slots 
14 poles 5-phase machine. 

 

It can be noticed that the spatial fundamental harmonic which 
has the spatial frequency 7 pf  in the air gap and just 

above we can find the harmonic with 8f  or in another 

word the 7/8  harmonic according to the first fundamental 
one. Moreover, in Fig 1 it can be noted the existence of sub-
harmonics which have the frequency of 2 and 3 in the air gap 
or 7/2 and 7/3  harmonics according to the fundamental. 

Every asynchronous harmonic or sub harmonic of MMF 
forms an advancing wave in the air gap. The sub harmonics 
which have the lowest frequency in the air gap move faster 
than the rotor, while the normal higher harmonics move 
slower than the rotor. Consequently for each harmonic or sub 
harmonic, there are three important factors which decide of 
the effect of this harmonic on eddy current rotor losses. 
Those factors are: amplitude; moving direction and speed.  

The harmonic speed and direction are necessary to 
calculate the relative speed of this harmonic according to 
rotor which is the source of induced eddy currents. 

This relative speed of every harmonic   can be 
calculating using the equation (2) [16], [23]: 

Fig 1. MMF spectrum of 15/14 5-phase combination
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where r is the relative pulsation of the harmonic  , is 

the electric pulsation, and sgn is the sign of the harmonic 

movement (+1 in the same direction as the rotor -1 in the 
opposite direction). The last equation can be rewritten, 
considering the mechanical rotation frequency rotorf : 

)3()1
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p
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where rf  the relative frequency of harmonic  . 

It can be noted that the fundamental harmonic p  has a 

zero relative frequency, while there are two types of 
harmonics which have a high relative frequency and could be 
a possible source of eddy currents losses in the rotor: 

- Sub harmonics which are far behind the 
fundamental )( p   

- Harmonics )( p  and sub-harmonics )( p  

close to the fundamental )toclose( p  and 

moving in the opposite of rotor direction. In this 
case, the relative frequency is almost twice the rotor 
mechanical frequency. 

The other harmonics, far ahead the fundamental, have a 
relative frequency almost equal to rotor mechanical 
frequency due to their slow spatial speeds.  

In order to compare the rotor eddy current losses between 
different combinations, an indicator is developed using the 
equation (4) on an estimation of the losses induced by a 
magnetic flux density B  which varies with the frequency f  

[22]: 

  )4(constantwithLossesCurrentEddy 22
ee kfBk  

Considering a given level of magnetic flux density Bfund in 
the air gap, a global indicator EddyLossesI is calculated:  
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where BB fund , are respectively the magnetic flux density 

amplitude of the fundamental and of the    harmonic 
resulting from the MMF stator currents. In (5), it is supposed 
that the eddy current losses for each harmonic  can be 
added to give the total eddy losses.  

Supposing that all examined machines have the same 
magnetic flux density of the fundamental harmonic fundB , we 

can use this indicator to compare, for a given rotor frequency 

rotorf , the amount of eddy current losses between different 

combinations. 
TABLE II represents the ranges of calculated indicator 

LossesEddyI  for different previous combinations considering 

the winding topology which leads to the same winding 
factors in TABLE I. Green combinations in which the indicator 
value is lower than 1 have the minimum rotor losses, while 
red combinations with indicator is higher than 4 produce high 

eddy current rotor losses. 
It can be easily noticed that there is a family of 

combination which have the lowest indicator, it is the family 
which has the number of slots per pole and per phase equal to 
0.5 ( 5.0q ).To analyse this result the MMF generation in 

this family is studied.  
The periodicity t  in fractional slot winding machine is 

identified as [24]: 

.slotsofnumber:andivisorcommongreatest:

)6(),(

s

s

QdGCD

pQGCDt 
 

If the periodicity of the machine is equal to p, the winding 
pattern could be distributed and repeated p times around the 
air gap. Consequently the most important harmonic in the 
produced MMF is the fundamental harmonic of order p, and 
moreover the spectrum is clean from sub-harmonics either 
from harmonics close to fundamental.   

This means that to get such MMF it is enough to verify: 
)7(),( ppQGCDt s   

Then it can be written: 

numberphase:,
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It can be proved that the only solutions which lead towards 
a feasible symmetric structure with (q<1) are when mk   
with q=0.5 as consequence. 

If the winding factor is high for q=0.5 then the 
configuration is interesting: it is the case for 3-phase 
machines but not for 5 and 7-phase machines (see TABLE II). 

 
TABLE II 

CLASSIFICATION BY EDDY CURRENT LOSSES INDICATOR VALUES  
 

Poles 
Slots 

4 6 8 10 12 14 16 

6        

9        

12        
15        

18        

21 3-Phase     

24        

Poles 
Slots 

2 4 6 8 12 14 16 18 

5         
10         
15         
20 5-Phase      

Poles 
Slots 

4 6 8 10 12 16 18 

7        

14        

21 7-Phase      
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III. MECHANICAL BEHAVIOUR 
A. Cogging torque  

In fractional slot winding machine the combination 
slots/poles plays the main role in deciding the cogging torque 
amplitude. The frequency of this cogging torque in an 
internal mechanical turn can be calculated by the equation (9) 
[12]. 

slotsofnumber:,multiplecommonLeast:

)9().2,(

s

scogging

QLCM

pQLCMf 
 

When the frequency of the cogging torque increases, the 
amplitude of oscillation decreases owing to the fact that 
magnetic power is changing more smoothly around the air 
gap, therefore it is better to get a combination with the higher 
possible )2,( pQLCM s . On the other hand, it can be noticed 

in TABLE II that the combinations with high )2,( pQLCM s  

and low cogging torque amplitudes have a low periodicity 
1),(  pQGCDt s . As consequence, their MMF contains 

sub-harmonics and harmonics which are close to the 
fundamental harmonics. Hence they produce high eddy 
current rotor losses compared with other combinations. 

 

B. Unbalanced Radial forces  
One of the parasitic effects in fractional slot winding 

machine is the unbalanced radial forces because of irregular 
MMF distribution. In fact, the configuration of coils which 
belong to the same phase in the slots decides the distribution 
of radial forces around the rotor. Consequently the 
combinations in which every phase is located in one side of 
the stator are mechanically unbalanced, while we get more 
balanced combinations when the phase coils are regularly 
distributed along the slots. 

The rotor or stator under unbalanced radial forces can be 
mechanically considered as a metal ring with different radial 
vibration mode shapes, as illustrated in Fig 2. 

 

 In Fig 2, it can   be noticed that the frequency and the 
amplitude of the radial vibrations (because of rotor or stator 
deflection) depend on the vibration mode shape [12]. 
Consequently, combinations with phase coils well distributed 
around the stator have a high order vibration mode with 
lower amplitude and higher frequency, which is generally 
better because relatively low frequency vibration can cause a 
resonance with the machine natural frequency.  

TABLE III presents the order of vibration mode shape for 
the previous slots/poles combinations considering the same 
winding topology which leads to winding factors represented 
in TABLE II. 

The vibration modes presented in TABLE III are deduced 
from the distribution of a single phase coils in every 
combination which is equivalent to the instantaneous radial 
forces configuration around the rotor. 

TABLE III 
VIBRATION MODE SHAPE ORDER  

 

Poles 
Slots 

4 6 8 10 12 14 16 

6 2  2 2  2 2 
9  3 1 1 3   
12   HO 2  2 HO 
15    HO  1 1 
18 3-Phase  HO 2 2 
21      HO Irreg 
24 HO: High Order Mode >3   HO 

 

Poles 
Slots 

2 4 6 8 10 12 14 16 18 

5 1 1 1 1  1 1 1 1 
10  2 2 2  2 2 2  
15   3   3 1 1 3 
20 5-Phase  HO  HO 2 HO 2 

Poles 
Slots 

4 6 8 10 12 16 18 

7 1 1 1 1   1 
14  2 2 2 2 2 2 
21 7-Phase Irregular Irregular 3 Irregular 3 

 
IV. FINITE ELEMENTS COMPARISON  

In this paragraph, four combinations are chosen from the 
previous tables to be compared with, using a commercial 
software (“Maxwell”) based on the Finite Element Method. 

- 18 slots/12 poles 3-phase machine 
- 15 slots/12 poles and 20 slots/12 poles 5-phase 

machines 
- 14 slots/12 poles 7-phase machine 
The combinations are chosen with the same p, with high 

winding factor (higher than 0.8), and for three different rotor 
losses indicators (TABLE II.) 

For comparison, four magnetic 2D-models are built 
considering the following assumptions:     

A. All machines have the same linear current density, 
the same magnetic flux density in the air gap, and 
the same rotor.  

B. All machines are designed to produce the same 
average torque (50 N.m.), considering sinusoidal 
flux density model, and a winding factor equal to 1 
in all the models.   

Then the only difference between the models is the slots 
number and the winding topology. 

Fig 3 presents the structures of the four machines, with the 
winding topologies. All machines are provided with a double 
layer concentrated non overlapped winding, while the rotor is 
the same with internal radial permanent magnets. Fig 5 
illustrates the average torque of these four machines 
calculated by the FEM program during one electrical period 
in full load case. The torque is the result of shifted sinusoidal 
currents (fundamental harmonic) that have the same phase as 
the Back-EMF in order  to consider only the maximum 
electromagnetic torque whose reluctance effect are 
negligible. 

It can be seen that the generated torques are arranged 
according to the winding factors of the models, where higher 
winding factor implies higher torque thanks to the 
assumption B.  

Fig 2. Different vibration modes shape order 
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 phase n°1   phase n°2   phase n°3   phase n°4 

 phase n°5   phase n°6 phase n°7 
3-phase 18-12 machine 

q=1/2 

 

5-phase 15-12 machine 
q=1/4 

5-phase 20-12 machine 
q=1/3 

 

7-phase 14-12 machine 
q=1/6 
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5p 15-12
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7p 14-12

 

  Fig 4 shows the cogging torque of the machines during 
two electrical periods. The simulation is done in no load case 
at the speed 1800 RPM. It can be noticed that the amplitude 
and the frequency of cogging torque is almost the same as the 
torque ripples in Fig 5 which shows the important of cogging 
torque as the first source of torque oscillations in these 4 
structures.  

The next point to be compared using Maxwell program is 
the eddy current magnet losses. Using magnets with bulk 
conductivity equal to 625000 S/m losses are calculated the 
losses at different rotor speeds. Fig 6 illustrates the 
normalised calculated eddy current magnet losses in the 
previous structures at different speeds. 

It can be seen how the calculated losses indicator in 
paragraph 2 gives a good estimation of eddy losses level in 
each combination. 18/12 three-phase and 20/12 five-phase 
machines have the lowest magnet losses at all speeds, while 
14/12 seven-phase machine has the highest losses, which are 
in accordance with the colours of losses indicator in TABLE II. 

The combination 18/12 three-phase belongs to the family 
which archives 5.0q with, therefore, low magnet losses. 

On the other hand, the combination 20/12 can be considered 

as a good choice in case of 5-phase machine with low eddy 
current rotor losses but with a lower winding factor of 0.809. 

 

0 2 4 6 8 10
-4

-2
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Lastly, and in order to investigate the unbalanced radial 
forces and the vibration modes of the machines, the 
mechanical deformation in the rotor is calculated by a 
coupling between two software, Maxwell and ANSYS, in 
full load case. The results are illustrated in figure (7). It can 
be seen that the repetition of calculated mechanical 
deformation around the rotor corresponds to the expected 
vibration mode in TABLE III. The combination 18/12 three-
phase machine shows a well-balanced high order mode with 
the lowest amplitude of mechanical deformation, while the 
combination 14/12 seven-phase machine represents the 
worse mode among the four structures (second mode) with 
only two opposite forces and the highest mechanical 
deformation. 

 
V. CONCLUSION 

This paper helps to choose the suitable slots/poles 
combination for 3, 5, and 7-phase fractional slot concentrated 
winding machines.  

The maximum winding factor that could be obtained from 
each combination is calculated. The effect of MMF spectrum 
on eddy current rotor losses is investigated. Moreover using 
the winding topology and MMF spectrum a comparison 
indicator of rotor losses is identified. Generally the results 
show that combinations with high winding factor 

Fig 3. Examined Machines structures 

Fig 4. Cogging Torque 

Fig 5. Average torque 

Fig 6. Normalized magnet losses versus mechanical speed 
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(factor>0.9) produce much more rotor losses comparing to 
those with lower winding factor (0.9>factor>0.75). 

18-12 
High order mode 

 
 

15-12 
Third mode 

 

20-12 
         High order mode 

 

14-12 
Second mode 

 
 

This means that for high speed traction applications where 
rotor losses can reach high inacceptable levels (causing 
magnets damage) it is preferable to use combinations of 
lower winding factor which cause lower rotor losses like 3-
phase 18/12, 5-phase 20/12, and 7-phase 14/10.  

Besides that, cogging torque and mechanical radial forces 
of different combinations are studied. Here it is found that 
combinations which produce relatively low cogging torque 
generally have high winding factor but at the same time high 
rotor losses like in the case of 7-phase 14/12. On the other 
hand, machines with lower rotor losses are mechanically 
more balanced like in the case of 3-phase 18/12. In summary 
this table shows the existence of two families of 
combinations. 

 Winding Factor Rotor Losses Cogging Torque 
Family 1 ++ -- ++ 
Family 2 + ++ -- 
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