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Abstract. We consider a nonlocal reaction-diffusion equation with mass con-

servation, which was originally proposed by Rubinstein and Sternberg as a
model for phase separation in a binary mixture. We study the large time be-
havior of the solution and show that it converges to a stationary solution as
t tends to infinity. We also evaluate the rate of convergence. In some special
case, we show that the limit solution is constant.

1. Introduction. We consider the nonlocal initial value problem

(P )





ut = ∆u+ f(u) −
∫
−

Ω

f(u) in Ω × IR+,

∂νu = 0 on ∂Ω × IR+,

u(x, 0) = u0(x) x ∈ Ω,

where Ω ⊂ IRN (N ≥ 1) is a connected bounded open set with smooth boundary
∂Ω; ∂ν is the outer normal derivative to ∂Ω and∫

−
Ω

f(u) :=
1

|Ω|

∫

Ω

f(u(x)) dx.

This model is mass conserved, namely∫

Ω

u(x, t) dx =

∫

Ω

u0(x) dx for all t > 0,

and it possesses a free energy functional which coincides with the usual Allen-Cahn
functional

E(u) =
1

2

∫

Ω

|∇u|2 dx−
∫

Ω

F (u) dx,
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where F (u) :=

∫ u

0

f(s)ds.

Problem (P ) was introduced by Rubinstein and Sternberg [30] as a model for
phase separation in a binary mixture. Although this problem is a nonlocal prob-
lem, we can prove the existence of an invariant set. The main result of this paper
concerns the large time behavior. We show that the solution converges to a sta-
tionary solution as t tends to infinity and evaluate the rate of convergence. In some
special case, we show that the limit solution is constant.

In the general case, the main tool to study the large time behavior is a  Lojasiewicz
inequality that was first proposed by Lojasiewicz himself [25], [27]. He showed that

all bounded solutions of gradient systems in IRN , which are systems of ordinary
differential equations, converge to a stationary solution. This idea was subsequently
developed in infinite-dimensional spaces for proving the convergence to steady state
for bounded solutions of several local equations such as reaction-diffusion equations,
wave equations and degenerate parabolic equations [11], [12], [13], [14], [20], [21] [31],
[32]; let us also mention some results on nonlocal phase-field models [10], [24], and
the book on gradient inequalities by Huang [18].

In the case where f is supposed to be nonincreasing on an interval containing the
range of the initial function, instead of applying  Lojasiewicz inequality, we show that
the ω-limit set only contains a unique element. This follows from the monotony of f
and the mass conservation property. This result is related to [4, Theorem 3.9, page
88] where the author studies the asymptotic behavior of solutions for parabolic
equations with a monotone operator. In our case, although the operator is not
monotone because of the nonlocal term, we overcome this difficulty by using the
mass conservation property.

In [30], the authors consider Problem (P ) with f of bistable type; a typical
example is f(s) = s − s3. In this paper, we assume that the function f is of the
form

f(s) =
n∑

i=0

ais
i, where n ≥ 1 is an odd number, an < 0. (1.1)

Constants s1, s2: We suppose that s1 < s2 are two constants such that

f(s2) < f(s) < f(s1) for all s ∈ (s1, s2). (1.2)

Note that we can choose s1, s2 such that s1 is negative with large absolute value
and s2 is arbitrarily large.

Assumption on initial data: We will make the following hypotheses on the initial
data:

(H0) : u0 ∈ L2(Ω) and s1 ≤ u0(x) ≤ s2 for a.e x ∈ Ω.

This paper is organized as follows: in Section 2, a result on existence, uniqueness
and boundedness of solutions is presented. Section 3 is devoted to prove a version
of the  Lojasiewicz inequality. In Section 4, we apply the  Lojasiewicz inequality to
prove that as t → +∞, u(t) converges to a stationary solution, which we precisely
compute in the case of one space dimension. The convergence rate is established in
Section 5.

2. Existence, uniqueness and boundedness of solutions. We first prove some
properties of solutions of Problem (P ). To begin with, we set

QT := Ω × (0, T ), T > 0.
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Lemma 2.1 (Mass conservation). Let u be a solution of Problem (P ) such that

u ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) and ut ∈ L2(0, T ; (H1(Ω))∗).

Then ∫

Ω

u(x, t)dx =

∫

Ω

u0(x) dx for all t > 0. (2.1)

Proof. We take the duality product of the equation for u by 1 to obtain

d

dt

∫

Ω

u+

∫

Ω

∇u∇1 =

∫

Ω

f(u)1 −
∫
−

Ω

f(u)

∫

Ω

1.

Therefore
d

dt

∫

Ω

u(x, t) dx = 0,

which implies (2.1).

Proposition 1 (Invariant set). Let T > 0. Assume that u ∈ C2,1(Ω × (0, T ]) ∩
C(QT ) is a solution of Problem (P ) and that

s1 < u0(x) < s2 for all x ∈ Ω.

Then
s1 < u(x, t) < s2 for all x ∈ Ω, 0 < t ≤ T.

Proof. For the purpose of contradiction, we suppose that there exists a first time
t0 > 0 such that u(x0, t0) = s1 or u(x0, t0) = s2 for some x0 ∈ Ω. Without loss of
generality, assume that u(x0, t0) = s2. By the continuity of u and the definition of
t0, we have

s1 ≤ u(x, t0) ≤ s2 for all x ∈ Ω, and u(x, t) < s2 for all x ∈ Ω and 0 ≤ t < t0.
(2.2)

Since ∂νu = 0, we deduce from Hopf’s maximum principle that x0 ∈ Ω. Therefore
the function u(·, t0) attains its maximum at x0 ∈ Ω, which implies that ∆u(x0, t0) ≤
0. By (2.2), we have

ut(x0, t0) = lim
∆t→0+

u(x0, t0 − ∆t) − u(x0, t0)

−∆t
≥ 0,

which we substitute in Problem (P ) to obtain

∫
−

Ω

(f(s2)−f(u(x, t0))) dx ≥ 0. Since

s1 ≤ u(x, t0) ≤ s2 for all x ∈ Ω, it follows from (1.2) that f(s2) ≤ f(u(x, t0)) for all
x ∈ Ω so that f(s2) = f(u(x, t0)). Using (1.2) again, we obtain u(x, t0) = s2 for all
x in Ω. As a consequence, we have

∫

Ω

u(x, t0) dx = s2|Ω| >
∫

Ω

u0(x) dx,

which contradicts the integral preserving property in Lemma 2.1.

Theorem 2.2. Assume that Hypothesis (H0) holds. Then Problem (P ) possesses
a unique solution u ∈ C([0,∞);L2(Ω)) which satisfies for every T > 0,

u ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) and ut ∈ L2(0, T ; (H1(Ω))∗).

Moreover,

u ∈ C1+α, 1+α
2 (Ω × [ε,∞)) for all α ∈ (0, 1), ε > 0,

s1 ≤ u(x, t) ≤ s2 for all x ∈ Ω, t > 0, (2.3)
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and
{u(t) : t ≥ 1} is relatively compact in C1(Ω). (2.4)

In order to prove Theorem 2.2, we need some technical lemmas.

Lemma 2.3. Let u0 ∈ L2(Ω), g ∈ Lp(QT ) for some p ∈ (1,∞) and let u be the
solution of the time evolution problem




ut − ∆u = g in QT ,
∂νu = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) x ∈ Ω.

Then for each 0 < ε < T , there exists a positive constant C0(ε,Ω, T ) such that

‖u‖W 2,1
p (QT

ε ) ≤ C0(‖u0‖L2(Ω) + ‖g‖Lp(QT )),

where QT
ε = Ω × (ε, T ).

Remark 1. If T = 1, then the constant C0 depends only on ε and Ω.

Lemma 2.4. One has the following embedding

W 2,1
p (QT ) ⊂ Cλ,λ/2(QT ) with λ = 2 − N + 2

p
if p >

N + 2

2
and p 6= N + 2.

Lemma 2.3 and Lemma 2.4 follow from [23, chapter 4, section 3 and chapter 2,
section 3] which are stated in [5, page 206].

Proof of Theorem 2.2. One can prove in a standard way (see also Proposition 1)
the existence and uniqueness of the solution of Problem (P ) as well as (2.3). Next

we prove (2.4). Let α ∈ (0, 1), p :=
N + 2

1 − α
. Since s1 ≤ u(t) ≤ s2 for all t ≥ 0, it

follows that∥∥∥∥f(u) −
∫
−

Ω

f( u)

∥∥∥∥
Lp(Q1

0)

≤ |Ω|1/p
∥∥∥∥f(u) −

∫
−

Ω

f( u)

∥∥∥∥
L∞(Q1

0)

≤ 2|Ω|1/p sup
s1≤s≤s2

|f(s)|.

We apply Lemma 2.3 and the embedding in Lemma 2.4 on domain Q1
0 to obtain

‖u‖
C1+α,(1+α)/2(Q

1
ε)

≤ C

(
‖u0‖L2(Ω) +

∥∥∥∥f(u) −
∫
−

Ω

f( u)

∥∥∥∥
Lp(Q1

0)

)

≤ C

(
|Ω|1/2‖u0‖L∞(Ω) + 2|Ω|1/p sup

s1≤s≤s2

|f(s)|
)

≤ C

(
|Ω|1/2(|s1| + |s2|) + 2|Ω|1/p sup

s1≤s≤s2

|f(s)|
)
.

Similarly, we apply Lemma 2.3 and the embedding in Lemma 2.4 on the domains

Qk+1
k and Q

k+3/2
k+1/2 to obtain

‖u‖
C1+α,(1+α)/2(Q

k+1
k+ε)

≤ C

(
|Ω|1/2(|s1| + |s2|) + 2|Ω|1/p sup

s1≤s≤s2

|f(s)|
)
.

and a similar one on the domain Q
k+3/2
k+1/2. Finally, we deduce from the fact that k

can be chosen arbitrarily large that

‖u‖C1+α,(1+α)/2(Q
∞

ε ) ≤ C

(
|Ω|1/2(|s1| + |s2|) + 2|Ω|1/p sup

s1≤s≤s2

|f(s)|
)
,
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which yields (2.4).

As in the proof of Theorem 2.2, we apply Lemma 2.3 to deduce that u ∈
W 2,1

2 (QT
ε ). This implies the following result

Corollary 1. The solution u of Problem (P ) satisfies

u ∈ L2(ε, T ;H2(Ω)) and ut ∈ L2(ε, T ;L2(Ω)) for all ε ∈ (0, T ).

As a consequence, u ∈ C((0, T ];H1(Ω)).

3. A version of  Lojasiewicz inequality. The main result of this section is the
 Lojasiewicz inequality stated in Theorem 3.7 below. More precisely, we prove a
version of  Lojasiewicz inequality for the functional E which coincides with the
functional E on the solution orbits. We set

E(u) :=
1

2

∫

Ω

|∇u|2 dx−
∫

Ω

F̄ (u)dx,

where F̄ ∈ C∞
c (IR) is such that

F̄ (s) =





F (s) if s ∈ [s1 − 1, s2 + 1]

0 if s ∈ (−∞, s1 − 2) ∪ (s2 + 2,+∞).

Then
E(u(t)) = E(u(t)) for all t > 0.

We define f̄ = F̄ ′, then

f̄(s) = f(s) for all s ∈ [s1 − 1, s2 + 1].

This section is organized as follows: In Section 3.1, as a preparation for the proof
of Theorem 3.7, we prove the differentiability of E and compute its derivative.
The definition and some equivalent conditions of a critical point are given. The
 Lojasiewicz inequality is proved in Section 3.2.

3.1. Some preparations. We define the spaces

H = {u ∈ L2(Ω) :

∫

Ω

u(x)dx = 0}, equipped with the norm ‖ · ‖H := ‖ · ‖L2(Ω),

V =
{
u ∈ H1(Ω) :

∫

Ω

u(x)dx = 0
}
, equipped with the norm ‖ · ‖V := ‖ · ‖H1(Ω).

Let V ∗ be the dual space of V . We identify H with its dual to obtain:

V →֒ H →֒ V ∗,

where the embeddings V →֒ H, H →֒ V ∗ are continuous, dense and compact (see
e.g. [22, p. 677]). We use 〈·, ·〉 to denote the duality product between V ∗ and V .
We denote by L(X,Y ) the space of bounded linear operators from a Banach space
X to a second Banach space Y , and we write L(X) := L(X,X).

We also define the spaces

L
p(Ω) := {u ∈ Lp(Ω) :

∫

Ω

u(x) dx = 0}, (3.1)

equipped with the norm ‖ · ‖L p(Ω) := ‖ · ‖Lp(Ω) and

Xp := {u ∈W 2,p(Ω) : ∂νu = 0,

∫

Ω

u(x)dx = 0}, (3.2)
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equipped with the norm ‖ · ‖Xp := ‖ · ‖W 2,p(Ω). Throughout the sequel, we denote
by C ≥ 0 a generic constant which may vary from line to line. We start with the
following result.

Lemma 3.1. Let u, h ∈ L1(Ω), p ∈ [1,∞) be arbitrary and let g be a continuously
differentiable function from IR to IR such that

|g(s)|, |g′(s)| ≤ C for all s ∈ IR. (3.3)

Then ∫ 1

0

g(u+ τh)dτ → g(u) in Lp(Ω) as ‖h‖L1(Ω) → 0.

Proof. By Jensen’s inequality and (3.3),
∣∣∣∣
∫ 1

0

(g(u+ τh) − g(u))dτ

∣∣∣∣
p

≤
∫ 1

0

|g(u+ τh)dτ − g(u)|pdτ

≤ C

∫ 1

0

|g(u+ τh)dτ − g(u)|dτ

≤ C|h|.
Thus (∫

Ω

∣∣∣∣
∫ 1

0

(g(u+ τh) − g(u))dτ

∣∣∣∣
p
) 1

p

≤ C

(∫

Ω

|h|
) 1

p

.

This completes the proof of Lemma 3.1.

Lemma 3.2. The functional E is twice continuously Fréchet differentiable on V .
We denote by E′ and L the first and second derivatives of E, respectively. Then

(i) The first derivative

E′ : V −→ V ∗ is given by

〈E′(u), h〉V ∗,V =

∫

Ω

∇u∇h−
∫

Ω

f̄(u)h for all u, h ∈ V. (3.4)

(ii) The second derivative

L : V −→ L(V, V ∗) is given by

〈L(u)h, k〉V ∗,V =

∫

Ω

∇h∇k −
∫

Ω

f̄ ′(u)hk for all u, h, k ∈ V. (3.5)

As a consequence,

〈L(u)h, k〉V ∗,V = 〈h, L(u)k〉V,V ∗ . (3.6)

Proof. We write E as the difference of E1 and E2, where

E1(u) =
1

2

∫

Ω

|∇u|2 dx and E2(u) =

∫

Ω

F̄ (u) dx. (3.7)

Obviously, E1 is twice continuously Fréchet differentiable. Its derivatives are easily
identified in the formulas (3.4) and (3.5). We now compute the first and second
derivative of E2.

(i) By Taylor formula,

F̄ (u+ h) − F̄ (u) = h

∫ 1

0

f̄(u+ τh)dτ =: hζ for all u, h ∈ V,
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where

ζ(x) :=

∫ 1

0

f̄(u(x) + τh(x))dτ.

It follows that∣∣∣∣E2(u+ h) − E2(u) −
∫

Ω

f̄(u)h dx

∣∣∣∣ ≤
∫

Ω

|ζ − f̄(u)| |h| dx

≤ C‖ζ − f̄(u)‖L2(Ω)‖h‖L2(Ω)

≤ C‖ζ − f̄(u)‖L2(Ω)‖h‖V .
We deduce from Lemma 3.1 that

ζ =

∫ 1

0

f̄(u+ τh)dτ → f̄(u) in L2(Ω) as ‖h‖V → 0.

Therefore ∣∣∣∣E2(u+ h) − E2(u) −
∫

Ω

f̄(u)h dx

∣∣∣∣ = o(‖h‖V ) as ‖h‖V → 0.

This implies that the first derivative E′
2 exists and

〈E′
2(u), h〉V ∗,V =

∫

Ω

f̄(u)h dx.

(ii) The Fréchet differentiability of E′
2 is shown in a similar way. Choose p ∈ (2,+∞)

such that V is continuously embedded in Lp(Ω). Let T be the linear mapping from
V to V ∗ given by

〈T h, k〉V ∗,V =

∫

Ω

f̄ ′(u)h k dx.

We will use below a generalized Hölder inequality based on the identity

1

p
+

1

p
+
p− 2

p
= 1.

For every u, h, k ∈ V and for

η(x) :=

∫ 1

0

f̄ ′(u(x) + τh(x))dτ

we have ∣∣∣∣〈E
′
2(u+ h) − E′

2(u) − Th, k〉V ∗,V

∣∣∣∣

≤
∫

Ω

|η − f̄ ′(u)| |h| |k| dx

≤ ‖η − f̄ ′(u)‖Lp/(p−2)(Ω)‖h‖Lp(Ω)‖k‖Lp(Ω)

≤ C‖η − f̄ ′(u)‖Lp/(p−2)(Ω)‖h‖V ‖k‖V . (3.8)

Consequently, we have

‖E′
2(u+ h) − E′

2(u) − T h‖V ∗ ≤ C‖η − f̄ ′(u)‖Lp/(p−2)(Ω)‖h‖V . (3.9)

Since 1 < p/(p− 2) < +∞, we deduce from Lemma 3.1 that

‖η − f̄ ′(u)‖Lp/(p−2)(Ω) → 0 as ‖h‖V → 0,

which together with (3.9) follows that

‖E′
2(u+ h) − E′

2(u) − Th‖V ∗ = o(‖h‖V ).
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Therefore,

〈E′′
2 (u)h, k〉V ∗,V =

∫

Ω

f̄ ′(u)h k for all u, h, k ∈ V.

We also note that

|〈(E′′
2 (u) − E′′

2 (v))h, k〉V ∗,V | ≤
∫

Ω

|f̄ ′(u) − f̄ ′(v)| |h| |k| dx

≤ C‖f̄ ′(u) − f̄ ′(v)‖Lp/(p−2)(Ω)‖h‖V ‖k‖V .
Hence

‖E′′
2 (u) − E′′

2 (v)‖L(V,V ∗) ≤ C‖f̄ ′(u) − f̄ ′(v)‖Lp/p−2(Ω),

which implies the continuity of E′′
2 . Finally, (3.6) is an immediate consequence of

(3.5).

We define a continuous bilinear form from V × V → IR by

a(u, v) =

∫

Ω

∇u∇v dx.

The following lemma is an immediate consequence of the Lax-Milgram theorem (cf.
[3, Corollary 5.8]). We omit its proof.

Lemma 3.3. There exists an isomorphism A from V onto V ∗ such that

a(u, v) = 〈Au, v〉V ∗,V for all u, v ∈ V. (3.10)

Corollary 2. The first and second derivatives of E can be represented in V ∗ as:

E′(u) = Au− f̄(u) +

∫
−

Ω

f̄(u), (3.11)

L(u)h = Ah− f̄ ′(u)h+

∫
−

Ω

f̄ ′(u)h, (3.12)

for all u, h ∈ V .

Proof. Since f̄ is bounded, f̄(u) −
∫
−

Ω

f̄(u) ∈ H →֒ V ∗. Therefore

Au− f̄(u) +

∫
−

Ω

f̄(u) ∈ V ∗.

We also note that
∫

Ω

(∫
−

Ω

f̄(u)

)
h =

∫
−

Ω

f̄(u)

∫

Ω

h = 0 for all h ∈ V,

thus

〈Au− f̄(u) +

∫
−

Ω

f̄(u), h〉V ∗,V =

∫

Ω

∇u∇h−
∫

Ω

f̄(u)h.

This together with (3.4) implies that

E′(u) = Au− f̄(u) +

∫
−

Ω

f̄(u).

Identity (3.12) may be proved in a similar way.
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Lemma 3.4. Let Lp(Ω), Xp be the Banach spaces as in (3.1) and (3.2). Assume
that p ≥ 2. Then, for any g ∈ L p(Ω), there exists a unique solution u ∈ Xp of the
equation

Au = g in V ∗.

Moreover,

〈Aw, v〉 = 〈−∆w, v〉 for all w ∈ Xp, v ∈ V. (3.13)

Proof. It follows from Lemma 3.3 that the equation

Au = g in V ∗ (3.14)

has a unique solution u ∈ V so that it is enough to prove that u ∈ Xp. For this
purpose, we consider the elliptic problem

{
−∆ũ = g in Ω,
∂ν ũ = 0 on ∂Ω.

Since g ∈ H, we apply the Fredholm alternative to deduce that this problem pos-
sesses a unique solution ũ ∈ V . Note that g ∈ L p(Ω), so that we deduce from [2]
that ũ ∈W 2,p(Ω) so that also ũ ∈ Xp. On the other hand, for all v ∈ V , we have

〈Aũ, v〉V ∗,V = a(ũ, v) =

∫

Ω

∇ũ∇v dx = 〈−∆ũ, v〉V ∗,V = 〈g, v〉V ∗,V .

Therefore, ũ coincides with the unique solution of equation (3.14). In other words,

u = ũ ∈ Xp.

Moreover, for all w ∈ Xp, v ∈ V ,

〈−∆w, v〉V ∗,V =

∫

Ω

∇w∇v dx = 〈Aw, v〉V ∗,V .

Then (3.13) follows.

Definition 3.5. We say that ϕ ∈ V is a critical point of E if

E′(ϕ) = 0 in V ∗.

Lemma 3.6. For every ϕ ∈ V , the following assertions are equivalent:

(i) ϕ is a critical point of E,
(ii) ϕ ∈ X2 and ϕ satisfies the equations

(S)




−∆ϕ = f̄(ϕ) −

∫
−

Ω

f̄(ϕ) in Ω,

∂νϕ = 0 on ∂Ω.

Proof. (i) ⇒ (ii) Assume that ϕ ∈ V is a critical point of E. We deduce from (3.11)
that

A(ϕ) = f̄(ϕ) −
∫
−

Ω

f̄(ϕ) in V ∗.

Since f̄(ϕ) −
∫
−

Ω

f̄(ϕ) ∈ H, it follows from Lemma 3.4 that ϕ ∈ X2 satisfies the

equations 


−∆ϕ = f̄(ϕ) −

∫
−

Ω

f̄(ϕ) in Ω,

∂νϕ = 0 on ∂Ω.
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(ii) ⇒ (i) It follows from (3.11) that

E′(ϕ) = Aϕ− f̄(ϕ) +

∫
−

Ω

f̄(ϕ),

which together with (3.13) implies that

E′(ϕ) = −∆ϕ− f̄(ϕ) +

∫
−

Ω

f̄(ϕ) = 0,

where the last identity follows from the fact that ϕ is a solution of Problem (S).
Thus ϕ is a critical point of E.

3.2.  Lojasiewicz inequality.

Theorem 3.7 ( Lojasiewicz inequality). Let ϕ ∈ V be a critical point of the func-
tional E such that s1 ≤ ϕ ≤ s2. Then there exist constants θ ∈ (0, 12 ] and C, σ > 0
such that

|E(u) − E(ϕ)|1−θ ≤ C‖E′(u)‖V ∗ , (3.15)

for all ‖u−ϕ‖V ≤ σ. In this case, we say that E satisfies the  Lojasiewicz inequality
in ϕ. The number θ will be called the Lojasiewicz exponent.

We check below that all hypotheses in [8, Corollary 3.11] are satisfied so that the
result of Theorem 3.7 will follow from [8, Corollary 3.11]. We need the following
result.

Lemma 3.8. Let ϕ be a critical point of E. Then, L(ϕ) is a Fredholm operator
from V to V ∗ of index 0 i.e. RgL(ϕ) is closed in V ∗ and

dim kerL(ϕ) = codim(RgL(ϕ)) < +∞,

where codim RgL(ϕ) := dim(V ∗/RgL(ϕ)). As a consequence, V ∗ is the direct sum
of RgL(ϕ) and kerL(ϕ).

Proof. We first prove that the linear operator

T : V −→ V ∗

h 7−→ −f̄ ′(ϕ)h+

∫
−

Ω

f̄ ′(ϕ)h

is compact. Indeed, note that we have for all h ∈ V

‖Th‖H ≤ ‖f̄ ′(ϕ)h‖L2(Ω) +

∥∥∥∥
∫
−

Ω

f̄ ′(ϕ)h

∥∥∥∥
L2(Ω)

≤ C‖h‖L2(Ω) ≤ C‖h‖V .
Therefore T is continuous from V to H, which together with the compactness of
the embedding H →֒ V ∗ implies that T is compact from V to V ∗.

Next, since A is an isomorphism from V onto V ∗, it is also a Fredholm operator
of index

indA := dim kerA− codim RgA = 0.

It follows that L(ϕ) = A + T , as a sum of a Fredholm operator and a compact
operator, is also a Fredholm operator with the same index (cf. [3, p. 168]). This
completes the proof of Lemma 3.8.
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Before proving Theorem 3.7, we recall the definition of an analytic map on a
neighborhood of a point (cf. [33, Definition 8.8, p. 362]). A map T from a Banach
space X into a Banach space Y is called analytic on a neighborhood of z ∈ X if
there exists ε > 0 such that for all h ∈ X, ‖h‖X ≤ ε,

T (z + h) − T (z) =
∑

i≥1

Ti(z)[h, . . . , h] in Y,

where Ti(z) is a symmetric i-linear form on X with values in Y and
∑

i≥1

‖Ti(z)‖Li(X,Y )‖h‖iX <∞.

Here, Li(X,Y ) is the space of bounded i-linear operators from Xi to Y .

Proof of Theorem 3.7. In order prove Theorem 3.7, we apply [8, Corollary 3.11]
for

X := Xp, Y := L
p(Ω),

where p > N . In this case, there holds the embedding W 2,p(Ω) ⊂ C1,λ(Ω) with

λ = 1 − n

p
. Note that

E′(u) = −∆u− f̄(u) +

∫
−

Ω

f̄(u) ∈ L
p(Ω),

for all u ∈ Xp. In view of Lemma 3.8, it is sufficient to prove that E′ is analytic in
a neighborhood of ϕ. Indeed, let ε be small enough such that for all h ∈ Xp with
‖h‖Xp

≤ ε, we have

‖h‖C(Ω) ≤ C‖h‖Xp < 1.

Since

f̄(s) = f(s) =

n∑

i=0

ais
i for all s ∈ (s1 − 1, s2 + 1),

we perform a Taylor’s expansion to deduce for all h ∈ Xp with ‖h‖Xp
≤ ε that

f̄(ϕ(x) + h(x)) − f̄(ϕ(x)) =

n∑

i=1

f̄ (i)(ϕ(x))

i!
hi(x).

It follows that

E′(ϕ+ h) − E′(ϕ) = −∆h+

n∑

i=1

f̄ (i)(ϕ)

i!
hi −

n∑

i=1

∫
−

Ω

f̄ (i)(ϕ)

i!
hi dx

=

n∑

i=1

Ti[h, . . . , h],

where

T1[h] := −∆h+ f̄ ′(ϕ)h−
∫
−

Ω

f̄ ′(ϕ)h

and

Ti[h, . . . , h] :=
f̄ (i)(ϕ)

i!
hi −

∫
−

Ω

f̄ (i)(ϕ)

i!
hi for all 1 < i ≤ n.
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We now prove that Ti ∈ Li(Xp,L
p(Ω)). For all h1, . . . , hi ∈ Xp, and 1 < i ≤ n, we

have∥∥∥∥Ti[h1, .., hi]
∥∥∥∥

L p(Ω)

≤ C

∥∥∥∥Ti[h1, .., hi]
∥∥∥∥
L∞(Ω)

≤ C

∥∥∥∥
f̄ (i)(ϕ)

i!
h1 . . . hi

∥∥∥∥
L∞(Ω)

+ C

∥∥∥∥
∫
−

Ω

f̄ (i)(ϕ)

i!
h1 . . . hi

∥∥∥∥
L∞(Ω)

≤ C

i∏

j=1

‖hj‖L∞(Ω) ≤ C

i∏

j=1

‖hj‖Xp ,

which implies that Ti ∈ Li(Xp,L
p(Ω)) for all 1 < i ≤ n. In the case i = 1, since −∆

is linear, continuous from Xp to L p(Ω), we easily deduce that T1 ∈ L(Xp,L
p(Ω)).

Therefore E′ is analytic on a neighborhood of ϕ. This completes the proof of
Theorem 3.7.

4. Large time behavior.

Theorem 4.1. Let (H0) hold and let u be the unique solution of Problem (P ).
Then there exists a function ϕ such that

lim
t→∞

‖u(t) − ϕ‖C1(Ω) = 0 as t→ ∞.

Moreover, s1 ≤ ϕ ≤ s2, ∫

Ω

ϕ =

∫

Ω

u0,

and ϕ is a solution of the stationary problem

(S)





∆ϕ = −f(ϕ) +

∫
−

Ω

f(ϕ) in Ω,

∂νϕ = 0 on ∂Ω.

This section is devoted to the proof of Theorem 4.1 by applying the  Lojasiewicz
inequality. In some case we also compute the limit stationary solution (see Theorem
4.5 below).

Lemma 4.2. Suppose that (H0) is satisfied and let u be the solution of Problem
(P ). Then

(i) For all 0 < s ≤ t <∞,

E(u(s)) = E(u(t)) +

∫ t

s

∫

Ω

|ut|2 dx. (4.1)

(ii) Further, E(u(·)) is continuous, nonincreasing on (0,+∞), and there exists e
such that

lim
t→∞

E(u(t)) = e.

Proof. (i) In view of Corollary 1, for t > 0 we have

d

dt
E(u(t)) =

∫

Ω

(
− ∆u− f̄(u)

)
ut

=

∫

Ω

(
− ∆u− f̄(u) +

∫
−

Ω

f̄(u)
)
ut

= −
∫

Ω

u2t (x, t) dx ≤ 0.
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As a consequence, for all 0 < s ≤ t <∞

E(u(s)) = E(u(t)) +

∫ t

s

∫

Ω

|ut|2 dx.

(ii) We recall that the function F̄ is bounded on IR. Therefore the function t 7→
E(u(t)), which is nonincreasing and bounded from below, converges to a limit as
t→ ∞.

Definition 4.3. We define the ω-limit set of u0 by

ω(u0) := {ϕ ∈ H1(Ω) : ∃tn → ∞, u(tn) → ϕ in H1(Ω) as n→ ∞}.
Lemma 4.4. Suppose that (H0) is satisfied and let u be the solution of Problem
(P ). Then

(i) ω(u0) is a non-empty, compact set of H1(Ω).
(ii) For all ϕ ∈ ω(u0)

E(ϕ) = e,

where e is defined as in Lemma 4.2(ii).
(iii) Let ϕ ∈ ω(u0) then s1 ≤ ϕ ≤ s2 and is a stationary solution of Problem (P ),

which implies that



−∆ϕ = f(ϕ) −

∫
−

Ω

f(ϕ) in Ω,

∂νϕ = 0 on ∂Ω.

(iv) d(u(t), ω(u0)) → 0 as t→ ∞, where

d(u(t), ω(u0)) := inf
ϕ∈ω(u0)

‖u(t) − ϕ‖H1(Ω).

Proof. (i) This is an immediate consequence of the relative compactness of solution
orbits in H1(Ω) which is a consequence of Theorem 2.2.

(ii) Let ϕ ∈ ω(u0) and let {u(tn)} be such that

u(tn) → ϕ in H1(Ω) as n→ +∞.

We deduce from the continuity of E on H1(Ω) that

E(ϕ) = lim
n→∞

E(u(tn) = e,

where e is as in Lemma 4.2.

(iii) Since

s1 ≤ u(x, t) ≤ s2 for all x ∈ Ω, t > 0,

It follows that

s1 ≤ ϕ(x) ≤ s2 for all x ∈ Ω. (4.2)

Next, we prove that ϕ is a stationary solution. We denote here by u(t;w) the
solution of Problem (P ) corresponding to initial function w. Let {tn} be such that

u(tn;u0) → ϕ in H1(Ω) as n→ ∞.

This implies in particular that

u(tn;u0) → ϕ in L2(Ω) as n→ ∞.

It follows that for all t ≥ 0,

u(t;u(tn;u0)) → u(t;ϕ) in L2(Ω) as n→ ∞.
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In other words,

u(t+ tn;u0) → u(t;ϕ) in L2(Ω) as n→ ∞.

Since {u(τ ;u0) : τ ≥ 1} is relatively compact in H1(Ω), so that

u(tn + t;u0) → u(t;ϕ) in H1(Ω) as n→ ∞.

It follows that u(t;ϕ) ∈ ω(u0). This together with (ii) implies that for all t ≥ s ≥ 0.

E(u(t;ϕ)) = E(u(s;ϕ)) = e.

In view of Lemma 4.2 , we have t ≥ s > 0.

0 = E(u(t;ϕ)) − E(u(s;ϕ)) = −
∫ t

s

∫

Ω

|ut(ϕ)|2 dxdt.

As a consequence, for all t > 0, ut(t;ϕ) = 0. In other words, u(t;ϕ) the solution
of Problem (P ) with the initial function ϕ is independent of time. Therefore ϕ is a
stationary solution of Problem (P ), which implies that




−∆ϕ = f(ϕ) −

∫
−

Ω

f(ϕ) in Ω,

∂νϕ = 0 on ∂Ω.

The identity ∫

Ω

ϕ =

∫

Ω

u0,

follows from the mass conservation property.

(iv) For the purpose of contradiction, we assume that there exists a sequence tn → ∞
and ε0 > 0 such that

d(u(tn), ω(u0)) ≥ ε0 for all n > 0. (4.3)

Note that there exists a subsequence tnk
→ ∞ and w ∈ H1(Ω) such that

u(tnk
) → w ∈ ω(u0) in H1(Ω) as k → ∞,

Therefore, d(u(tnk
), ω(u0)) = 0 as k → ∞, which is in contradiction with (4.3).

Proof of Theorem 4.1. We will first prove Theorem 4.1 in the case
∫

Ω

u0(x) = 0.

By the mass conservation property, we have
∫

Ω

u(x, t) = 0.

As a consequence, u(t) ∈ V for all t > 0. Recall from Lemma 4.4(ii) that

E∣∣ω(u0)
= e. (4.4)

It follows from Lemma 4.4(iii) and Lemma 3.6 that for all ϕ ∈ ω(u0),

s1 ≤ ϕ ≤ s2
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and that ϕ is a critical point of E. We apply Theorem 3.7 to deduce that E satisfies
the  Lojasiewicz inequality in the neighborhood of every ϕ ∈ ω(u0). In other words,
for every ϕ ∈ ω(u0) there exist constants θ ∈ (0, 12 ], C ≥ 0 and δ > 0 such that

|E(v) − E(ϕ)|1−θ ≤ C‖E′(v)‖V ∗ whenever ‖v − ϕ‖V ≤ δ. (4.5)

Since E is continuous on V , we may choose δ small enough so that

|E(v) − E(ϕ)| < 1 whenever ‖v − ϕ‖V ≤ δ. (4.6)

It follows from the compactness of ω(u0) in V that there exists a neighborhood
U of ω(u0) composed of finitely many balls Bj , j = 1, ..., J , with center ϕj and
radius δj . In each of the ball Bj , inequality (4.6) and the  Lojasiewicz inequality
(4.5) hold for some constants θj and Cj . We define θ̄ = min {θj , j = 1, ..., J} and
C̄ = max {Cj , j = 1, ..., J} to deduce from (4.4), (4.5) and (4.6) that

|E(v) − e|1−θ̄ ≤ C̄‖E′(v)‖V ∗ for v ∈ U .
It follows from Lemma 4.4(iv) that there exists t0 ≥ 0 such that u(t) ∈ U for all
t ≥ t0. Hence, for every t ≥ t0, there holds

− d

dt
|E(u(t)) − e|θ̄ = θ̄|E(u(t)) − e|θ̄−1

(
− dE

dt
(u(t))

)

≥ θ̄

C̄

‖ut‖2L2(Ω)

‖E′(u(t))‖V ∗

, (4.7)

where we have also used (4.1). Note that for all t ≥ t0, E′(u(t)) ∈ H and it can be
written of the form

E′(u(t)) = −∆u− f̄(u) +

∫
−

Ω

f̄(u) = −ut.

Applying the continuous embedding H →֒ V ∗, we have

‖E′(u(t))‖V ∗ ≤ Ĉ‖E′(u(t))‖L2(Ω) = Ĉ‖ut‖L2(Ω) for all t ≥ t0, (4.8)

where Ĉ is a positive constant. Combining (4.7) and (4.8) we obtain

− d

dt
|E(u(t)) − e|θ̄ ≥ C̃‖ut‖L2(Ω).

Here C̃ =
θ̄

C̄Ĉ
. Thus

‖u(t1) − u(t2)‖L2(Ω) ≤
∫ t2

t1

‖ut‖L2(Ω) ≤
1

C̃
(|E(u(t1)) − e|θ̄ − |E(u(t2)) − e|θ̄)

for all t0 ≤ t1 ≤ t2. Therefore ‖u(t1) − u(t2)‖L2(Ω) tends to zero as t1 → ∞ so that
{u(t)} is a Cauchy sequence in H. As a consequence, there exists ϕ ∈ H such that
limt→∞ u(t) = ϕ exists in H, hence by the relative compactness of solution orbits
in C1(Ω) we have

lim
t→∞

‖u(t) − ϕ‖C1(Ω) = 0.

In the general case, when ∫

Ω

u0(x) dx 6= 0,
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instead of considering Problem (P ), we consider the Problem (P̂ ):

(P̂ )





ût = ∆û+ f̂(û) −
∫
−

Ω

f̂(û) in Ω × IR+,

∂ν û = 0 on ∂Ω × IR+,

û(x, 0) = u0(x) −m0, x ∈ Ω.

where m0 :=

∫
−

Ω

u0, and f̂(s) := f̄(s+m0). We note that

s1 −m0 ≤ û(x, 0) ≤ s2 −m0,

∫

Ω

û(x, 0) = 0.

Moreover,

u = û+m0

and f̂ is analytic on (s1 − 1 − m0, s2 + 1 − m0). Repeating the above arguments

for Problem (P̂ ), we deduce that there exists a smooth stationary solution ψ of

Problem (P̂ ) such that

lim
t→∞

‖û(t) − ψ‖C1(Ω) = 0.

It follows that for ϕ := ψ +m0, we have

lim
t→∞

‖u(t) − ϕ‖C1(Ω) = 0.

The proof of Theorem 4.1 is complete.

Theorem 4.5. We suppose that the hypothesis (H0) is satisfied. We assume further
that

f ′(s) ≤ 0 for all s ∈ [s1, s2].

Then

u(t) →
∫
−

Ω

u0 in C1(Ω) as t→ ∞.

Proof. Let ϕ ∈ ω(u0); it is sufficient to show that

ϕ(x) ≡
∫
−

Ω

u0 =: m0. (4.9)

First we note that ϕ satisfies

∫
−

Ω

ϕ = m0 and

(S)




−∆ϕ = f(ϕ) −

∫
−

Ω

f(ϕ) in Ω,

∂νϕ = 0 on ∂Ω.

Then we multiply the partial differential equation in (S) by ϕ and integrate over Ω
to obtain ∫

Ω

|∇ϕ|2 =

∫

Ω

f(ϕ)ϕ− 1

|Ω|

∫

Ω

f(ϕ)

∫

Ω

ϕ

=

∫

Ω

f(ϕ)(ϕ−m0)

=

∫

Ω

(f(ϕ) − f(m0))(ϕ−m0) ≤ 0.



NONLOCAL REACTION-DIFFUSION EQUATION 17

Thus by Poincaré inequality
∫

Ω

|ϕ−m0|2 ≤ 0,

which yields (4.9).

5. Convergence rate. In this section, we evaluate the rate of the convergence
of the solution to the stationary solution. The proof is based once more on the
 Lojasiewicz inequality. We consider two cases: the Lojasiewicz exponent θ = 1

2 and

θ ∈ (0, 12 ). These cases were studied by Haraux and Jendoubi [14] and Haraux,
Jendoubi and Kavian [15].

5.1. The case θ = 1
2 . We will apply the following result.

Lemma 5.1 (see [14], Lemma 2.2). Let t0 ≥ 0 be arbitrary. Assume that there
exist positive constants γ and a such that

∫ +∞

t

‖ut‖2L2(Ω) ds ≤ a exp(−γt) for all t ≥ t0.

Then for all τ ≥ t ≥ t0,

‖u(t) − u(τ)‖L2(Ω) ≤
√
ab exp(−γt

2
),

where b :=
exp(γ

2 )

exp(γ
2 ) − 1

.

Theorem 5.2. Let (H0) hold. Assume further that Theorem 3.7 holds for θ = 1
2 ;

then there exist positive constants K, δ such that

‖u(t) − ϕ‖L∞(Ω) ≤ K exp(−δt) for all t ≥ 0.

Proof. As in the proof of Theorem 4.1, it is sufficient to prove this result for the
function u with the assumption that

∫

Ω

u0 = 0.

We have

d

dt
(E(u) − E(ϕ)) = 〈E′(u), ut〉 = −〈E′(u), E′(u)〉 = −‖E′(u)‖2H . (5.1)

Note that

u(t) → ϕ in V as t→ ∞,

we deduce that for σ as in Theorem 3.7 there exists T0 > 0 such that for all t ≥ T0

‖u(t) − ϕ‖V ≤ σ.

Therefore, by Theorem 3.7, we have for all t ≥ T0

(E(u(t)) − E(ϕ))
1
2 = |E(u(t)) − E(ϕ)| 12 ≤ C‖E′(u(t))‖V ∗ .

By using the continuous embedding H →֒ V ∗, we obtain

(E(u(t)) − E(ϕ))
1
2 ≤ C1‖E′(u(t))‖H ,

which implies that

(E(u(t)) − E(ϕ)) ≤ C2
1‖E′(u(t))‖2H ,
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or equivalently,

−‖E′(u(t))‖2H ≤ − 1

C2
1

(E(u(t)) − E(ϕ)).

This together with (5.1) implies that

d

dt
(E(u(t)) − E(ϕ)) ≤ −C2(E(u(t)) − E(ϕ)) for all t ≥ T0, (5.2)

where C2 := 1/C2
1 . We also note that

y(t) :=

(
E(u(T0)) − E(ϕ)

)
exp(−C2(t− T0))

is the unique solution of the differential equation




d

dt
y(t) = −C2y for t ≥ T0,

y(T0) = E(u(T0)) − E(ϕ).

Therefore, by [16, Theorem 6.1, page 31] and the differential inequality (5.2), we
deduce that for all t ≥ T0

E(u(t)) − E(ϕ) ≤
(
E(u(T0)) − E(ϕ)

)
exp(−C2(t− T0)).

In view of (4.1), this implies that for all t ≥ T0

∫ ∞

t

‖ut(s)‖2H ds ≤
(
E(u(T0) − E(ϕ)

)
exp(−C2(t− T0)).

Setting a :=

(
E(u(T0) − E(ϕ)

)
exp(C2T0) > 0, we obtain the inequality

∫ ∞

t

‖ut(s)‖2L2(Ω) =

∫ ∞

t

‖ut(s)‖2H ds ≤ a exp(−C2t) for all t ≥ T0.

We deduce from Lemma 5.1 that

‖u(t) − ϕ‖L2(Ω) ≤
√
a

exp(C2

2 )

exp(C2

2 ) − 1
exp(−C2t

2
) for all t ≥ T0. (5.3)

Note that for a function w ∈ C1(Ω), we can apply the Gagliardo-Nirenberg inequal-
ity (e.g. see [3, page 314])

‖w‖L∞(Ω) ≤ C‖w‖1−β
L2(Ω)‖w‖

β
W 1,r(Ω),

where

β =
1

2
(
1

2
+

1

N
− 1

r
), r > N ;

to obtain

‖w‖L∞(Ω) ≤ C‖w‖1−β
L2(Ω)‖w‖

β

C1(Ω)
. (5.4)

Thus the conclusion of Theorem 5.2 follows from (5.3), (5.4) and (2.4).
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5.2. The case θ ∈ (0, 12 ). We will apply the following lemma.

Lemma 5.3 (see [15], Lemma 3.3). Let t0 > 0 be arbitrary. Assume that there
exist two positive constants α and K such that

∫ ∞

t

‖ut‖2L2(Ω) ≤ Kt−2α−1 for all t ≥ t0.

Then

‖u(t) − u(τ)‖L2(Ω) ≤
√
K

1 − 2−α
t−α for all τ ≥ t ≥ t0.

Theorem 5.4. Let (H0) hold. Assume further that Theorem 3.7 holds for θ ∈ (0, 12 )

and set α :=
θ

1 − 2θ
> 0. Then there exists a positive constant M such that

‖u(t) − ϕ‖L∞(Ω) ≤Mt−α for all t > 0.

Proof. As in the proof of Theorem 4.1, it is sufficient to prove this result for the
function u in the case ∫

Ω

u0 = 0.

We have

d

dt
(E(u) − E(ϕ)) = 〈E′(u), ut〉 = −〈E′(u), E′(u)〉 = −‖E′(u)‖2H . (5.5)

Note that

u(t) → ϕ in V as t→ ∞,

we deduce that for σ as in Theorem 3.7 there exists T0 > 0 such that for all t ≥ T0

‖u(t) − ϕ‖V ≤ σ.

Therefore, by Theorem 3.7, we have for all t ≥ T0

|E(u(t)) − E(ϕ)|1−θ ≤ C‖E′(u(t))‖V ∗ .

By applying the continuous embedding H →֒ V ∗, we obtain

(E(u(t)) − E(ϕ))1−θ = |E(u(t)) − E(ϕ)|1−θ ≤ C1‖E′(u(t))‖H ,
which implies that

(E(u(t)) − E(ϕ))2(1−θ) ≤ C2
1‖E′(u(t))‖2H ,

or equivalently,

−‖E′(u)‖2H ≤ − 1

C2
1

(E(u) − E(ϕ))2(1−θ).

This together with (5.5) implies that

d

dt
(E(u) − E(ϕ)) ≤ −C2(E(u) − E(ϕ))2(1−θ) for all t ≥ T0, (5.6)

where C2 := 1/C2
1 . We also note that

y(t) :=

(
(E(u(T0) − E(ϕ))2θ−1 + C2(1 − 2θ)(t− T0)

)−1/(1−2θ)
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is the unique solution of the differential equation




d

dt
y(t) = −C2y

2(1−θ) for t ≥ T0,

y(T0) = E(u(T0) − E(ϕ)).

Therefore, by [16, Theorem 6.1, page 31] and the differential inequality (5.6), we
deduce that

E(u(t))− E(ϕ) ≤

(

(E(u(T0)− E(ϕ))2θ−1 + C2(1− 2θ)(t− T0)

)

−1/(1−2θ)

=

(

(E(u(T0)− E(ϕ))2θ−1
− C2(1− 2θ)T0 + C2(1− 2θ)t

)

−1/(1−2θ)

=

(

(E(u(T0)− E(ϕ))2θ−1
− C2(1− 2θ)T0 + C2(1− 2θ)

t

2
+ C2(1− 2θ)

t

2

)

−1/(1−2θ)

≤

(

C2(1− 2θ)
t

2

)

−1/(1−2θ)

for all t ≥ 2T0.

It follows that for all t ≥ 2T0

∫ ∞

t

‖ut(s)‖2 ≤
(
C2(1 − 2θ)

t

2

)−1/(1−2θ)

.

We set K :=

(
C2(1 − 2θ)

2

)−1/(1−2θ)

and α :=
θ

1 − 2θ
> 0, then

∫ ∞

t

‖ut(s)‖2 ds ≤ Kt−2α−1,

which by Lemma 5.3 implies that

‖u(t) − ϕ‖H ≤
√
K

1 − 2−α
t−α for all t ≥ 2T0.

This together with (5.4) and (2.4) completes the proof of Theorem 5.4.
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[3] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Spinger,
2010.
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