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1. Introduction. We consider the nonlocal initial value problem (P )

         u t = ∆u + f (u) -- Ω f (u) in Ω × IR + , ∂ ν u = 0 on ∂Ω × IR + , u(x, 0) = u 0 (x) x ∈ Ω,
where Ω ⊂ IR N (N ≥ 1) is a connected bounded open set with smooth boundary ∂Ω; ∂ ν is the outer normal derivative to ∂Ω and

- Ω f (u) := 1 |Ω| Ω f (u(x)) dx.
This model is mass conserved, namely Problem (P ) was introduced by Rubinstein and Sternberg [START_REF] Rubinstein | Nonlocal reaction-diffusion equations and nucleation[END_REF] as a model for phase separation in a binary mixture. Although this problem is a nonlocal problem, we can prove the existence of an invariant set. The main result of this paper concerns the large time behavior. We show that the solution converges to a stationary solution as t tends to infinity and evaluate the rate of convergence. In some special case, we show that the limit solution is constant.

In the general case, the main tool to study the large time behavior is a Lojasiewicz inequality that was first proposed by Lojasiewicz himself [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF], [START_REF] Lojasiewicz | Sur la géométrie semi-et sous-analytique[END_REF]. He showed that all bounded solutions of gradient systems in IR N , which are systems of ordinary differential equations, converge to a stationary solution. This idea was subsequently developed in infinite-dimensional spaces for proving the convergence to steady state for bounded solutions of several local equations such as reaction-diffusion equations, wave equations and degenerate parabolic equations [START_REF] Feireisl | Convergence for semilinear degenerate parabolic equations in several space dimensions[END_REF], [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF], [START_REF] Haraux | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF], [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF], [START_REF] Jendoubi | A simple unified approach to some convergence theorems of L. Simon[END_REF], [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF] [31], [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF]; let us also mention some results on nonlocal phase-field models [START_REF] Feireisl | A non-smooth version of the Lojasiewicz-Simon theorem with applications to non-local phase-field systems[END_REF], [START_REF] Londen | Convergence of solutions of a non-local phase-field system[END_REF], and the book on gradient inequalities by Huang [START_REF] Huang | Gradient inequalities. With application to asymptotic behavior and stability of gradient-like[END_REF].

In the case where f is supposed to be nonincreasing on an interval containing the range of the initial function, instead of applying Lojasiewicz inequality, we show that the ω-limit set only contains a unique element. This follows from the monotony of f and the mass conservation property. This result is related to [4, Theorem 3.9, page 88] where the author studies the asymptotic behavior of solutions for parabolic equations with a monotone operator. In our case, although the operator is not monotone because of the nonlocal term, we overcome this difficulty by using the mass conservation property.

In [START_REF] Rubinstein | Nonlocal reaction-diffusion equations and nucleation[END_REF], the authors consider Problem (P ) with f of bistable type; a typical example is f (s) = s -s 3 . In this paper, we assume that the function f is of the form

f (s) = n i=0
a i s i , where n ≥ 1 is an odd number, a n < 0.

(1.1)

Constants s 1 , s 2 : We suppose that s 1 < s 2 are two constants such that

f (s 2 ) < f (s) < f (s 1 ) for all s ∈ (s 1 , s 2 ). (1.2)
Note that we can choose s 1 , s 2 such that s 1 is negative with large absolute value and s 2 is arbitrarily large.

Assumption on initial data: We will make the following hypotheses on the initial data:

(H 0 ) : u 0 ∈ L 2 (Ω) and s 1 ≤ u 0 (x) ≤ s 2 for a.e x ∈ Ω.
This paper is organized as follows: in Section 2, a result on existence, uniqueness and boundedness of solutions is presented. Section 3 is devoted to prove a version of the Lojasiewicz inequality. In Section 4, we apply the Lojasiewicz inequality to prove that as t → +∞, u(t) converges to a stationary solution, which we precisely compute in the case of one space dimension. The convergence rate is established in Section 5.

2.

Existence, uniqueness and boundedness of solutions. We first prove some properties of solutions of Problem (P ). To begin with, we set

Q T := Ω × (0, T ), T > 0. NONLOCAL REACTION-DIFFUSION EQUATION 3 Lemma 2.1 (Mass conservation). Let u be a solution of Problem (P ) such that u ∈ L ∞ (Q T ) ∩ L 2 (0, T ; H 1 (Ω)) and u t ∈ L 2 (0, T ; (H 1 (Ω)) * ).
Then Ω u(x, t)dx = Ω u 0 (x) dx for all t > 0.

(2.1)

Proof. We take the duality product of the equation for u by 1 to obtain

d dt Ω u + Ω ∇u ∇1 = Ω f (u)1 -- Ω f (u) Ω 1. Therefore d dt Ω u(x, t) dx = 0, which implies (2.1). Proposition 1 (Invariant set). Let T > 0. Assume that u ∈ C 2,1 (Ω × (0, T ]) ∩ C(Q T )
is a solution of Problem (P ) and that

s 1 < u 0 (x) < s 2 for all x ∈ Ω. Then s 1 < u(x, t) < s 2 for all x ∈ Ω, 0 < t ≤ T.
Proof. For the purpose of contradiction, we suppose that there exists a first time t 0 > 0 such that u(x 0 , t 0 ) = s 1 or u(x 0 , t 0 ) = s 2 for some x 0 ∈ Ω. Without loss of generality, assume that u(x 0 , t 0 ) = s 2 . By the continuity of u and the definition of t 0 , we have s 1 ≤ u(x, t 0 ) ≤ s 2 for all x ∈ Ω, and u(x, t) < s 2 for all x ∈ Ω and 0 ≤ t < t 0 .

(2.2) Since ∂ ν u = 0, we deduce from Hopf's maximum principle that x 0 ∈ Ω. Therefore the function u(•, t 0 ) attains its maximum at x 0 ∈ Ω, which implies that ∆u(x 0 , t 0 ) ≤ 0. By (2.2), we have

u t (x 0 , t 0 ) = lim ∆t→0 + u(x 0 , t 0 -∆t) -u(x 0 , t 0 ) -∆t ≥ 0,
which we substitute in Problem (P ) to obtain -

Ω (f (s 2 )-f (u(x, t 0 ))) dx ≥ 0. Since s 1 ≤ u(x, t 0 ) ≤ s 2 for all x ∈ Ω, it follows from (1.2) that f (s 2 ) ≤ f (u(x, t 0 )) for all x ∈ Ω so that f (s 2 ) = f (u(x, t 0 )). Using (1.
2) again, we obtain u(x, t 0 ) = s 2 for all x in Ω. As a consequence, we have

Ω u(x, t 0 ) dx = s 2 |Ω| > Ω u 0 (x) dx,
which contradicts the integral preserving property in Lemma 2.1.

Theorem 2.2. Assume that Hypothesis (H 0 ) holds. Then Problem (P ) possesses a unique solution u ∈ C([0, ∞); L 2 (Ω)) which satisfies for every T > 0,

u ∈ L ∞ (Q T ) ∩ L 2 (0, T ; H 1 (Ω)) and u t ∈ L 2 (0, T ; (H 1 (Ω)) * ).
Moreover,

u ∈ C 1+α, 1+α 2 (Ω × [ε, ∞)) for all α ∈ (0, 1), ε > 0, s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0, (2.3) 
and {u(t) : t ≥ 1} is relatively compact in C 1 (Ω).

(2.4)

In order to prove Theorem 2.2, we need some technical lemmas.

Lemma 2.3. Let u 0 ∈ L 2 (Ω), g ∈ L p (Q T ) for some p ∈ (1, ∞) and let u be the solution of the time evolution problem

   u t -∆u = g in Q T , ∂ ν u = 0 on ∂Ω × (0, T ), u(x, 0) = u 0 (x) x ∈ Ω.
Then for each 0 < ε < T , there exists a positive constant C 0 (ε, Ω, T ) such that

u W 2,1 p (Q T ε ) ≤ C 0 ( u 0 L 2 (Ω) + g L p (Q T ) ), where Q T ε = Ω × (ε, T ). Remark 1. If T = 1,
then the constant C 0 depends only on ε and Ω.

Lemma 2.4. One has the following embedding 

W 2,1 p (Q T ) ⊂ C λ,λ/2 (Q T ) with λ = 2 - N + 2 p if p > N +
f (u) -- Ω f ( u) L p (Q 1 0 ) ≤ |Ω| 1/p f (u) -- Ω f ( u) L ∞ (Q 1 0 ) ≤ 2|Ω| 1/p sup s1≤s≤s2 |f (s)|.
We apply Lemma 2.3 and the embedding in Lemma 2.4 on domain Q 1 0 to obtain

u C 1+α,(1+α)/2 (Q 1 ε ) ≤ C u 0 L 2 (Ω) + f (u) -- Ω f ( u) L p (Q 1 0 ) ≤ C |Ω| 1/2 u 0 L ∞ (Ω) + 2|Ω| 1/p sup s1≤s≤s2 |f (s)| ≤ C |Ω| 1/2 (|s 1 | + |s 2 |) + 2|Ω| 1/p sup s1≤s≤s2 |f (s)| .
Similarly, we apply Lemma 2.3 and the embedding in Lemma 2.4 on the domains

Q k+1 k and Q k+3/2 k+1/2 to obtain u C 1+α,(1+α)/2 (Q k+1 k+ε ) ≤ C |Ω| 1/2 (|s 1 | + |s 2 |) + 2|Ω| 1/p sup s1≤s≤s2 |f (s)| .
and a similar one on the domain Q k+3/2 k+1/2 . Finally, we deduce from the fact that k can be chosen arbitrarily large that

u C 1+α,(1+α)/2 (Q ∞ ε ) ≤ C |Ω| 1/2 (|s 1 | + |s 2 |) + 2|Ω| 1/p sup s1≤s≤s2 |f (s)| , which yields (2.4).
As in the proof of Theorem 2.2, we apply Lemma 2.3 to deduce that u ∈ W 2,1 2 (Q T ε ). This implies the following result Corollary 1. The solution u of Problem (P ) satisfies

u ∈ L 2 (ε, T ; H 2 (Ω)) and u t ∈ L 2 (ε, T ; L 2 (Ω)) for all ε ∈ (0, T ).
As a consequence, u ∈ C((0, T ]; H 1 (Ω)).

A version of Lojasiewicz inequality.

The main result of this section is the Lojasiewicz inequality stated in Theorem 3.7 below. More precisely, we prove a version of Lojasiewicz inequality for the functional E which coincides with the functional E on the solution orbits. We set

E(u) := 1 2 Ω |∇u| 2 dx - Ω F (u)dx, where F ∈ C ∞ c (IR) is such that F (s) =      F (s) if s ∈ [s 1 -1, s 2 + 1] 0 if s ∈ (-∞, s 1 -2) ∪ (s 2 + 2, +∞). Then E(u(t)) = E(u(t)) for all t > 0. We define f = F ′ , then f (s) = f (s) for all s ∈ [s 1 -1, s 2 + 1].
This section is organized as follows: In Section 3.1, as a preparation for the proof of Theorem 3.7, we prove the differentiability of E and compute its derivative. The definition and some equivalent conditions of a critical point are given. The Lojasiewicz inequality is proved in Section 3.2.

3.1. Some preparations. We define the spaces

H = {u ∈ L 2 (Ω) : Ω u(x)dx = 0}, equipped with the norm • H := • L 2 (Ω) , V = u ∈ H 1 (Ω) : Ω u(x)dx = 0 , equipped with the norm • V := • H 1 (Ω) .
Let V * be the dual space of V . We identify H with its dual to obtain:

V ֒→ H ֒→ V * ,
where the embeddings V ֒→ H, H ֒→ V * are continuous, dense and compact (see e.g. [22, p. 677]). We use •, • to denote the duality product between V * and V . We denote by L(X, Y ) the space of bounded linear operators from a Banach space X to a second Banach space Y , and we write L(X) := L(X, X).

We also define the spaces

L p (Ω) := {u ∈ L p (Ω) : Ω u(x) dx = 0}, ( 3.1) 
equipped with the norm

• L p (Ω) := • L p (Ω)
and

X p := {u ∈ W 2,p (Ω) : ∂ ν u = 0, Ω u(x)dx = 0}, (3.2) 
equipped with the norm

• Xp := • W 2,p (Ω)
. Throughout the sequel, we denote by C ≥ 0 a generic constant which may vary from line to line. We start with the following result.

Lemma 3.1. Let u, h ∈ L 1 (Ω), p ∈ [1, ∞)
be arbitrary and let g be a continuously differentiable function from IR to IR such that

|g(s)|, |g ′ (s)| ≤ C for all s ∈ IR. (3.3) Then 1 0 g(u + τ h)dτ → g(u) in L p (Ω) as h L 1 (Ω) → 0.
Proof. By Jensen's inequality and (3.3),

1 0 (g(u + τ h) -g(u))dτ p ≤ 1 0 |g(u + τ h)dτ -g(u)| p dτ ≤ C 1 0 |g(u + τ h)dτ -g(u)|dτ ≤ C|h|.
Thus

Ω 1 0 (g(u + τ h) -g(u))dτ p 1 p ≤ C Ω |h| 1 p .
This completes the proof of Lemma 3.1.

Lemma 3.2. The functional E is twice continuously Fréchet differentiable on V . We denote by E ′ and L the first and second derivatives of E, respectively. Then (i) The first derivative

E ′ : V -→ V * is given by E ′ (u), h V * ,V = Ω ∇u∇h - Ω f (u)h for all u, h ∈ V. (3.4) 
(ii) The second derivative

L : V -→ L(V, V * ) is given by L(u)h, k V * ,V = Ω ∇h∇k - Ω f ′ (u)hk for all u, h, k ∈ V. (3.5)
As a consequence,

L(u)h, k V * ,V = h, L(u)k V,V * . (3.6)
Proof. We write E as the difference of E 1 and E 2 , where

E 1 (u) = 1 2 Ω |∇u| 2 dx and E 2 (u) = Ω F (u) dx. (3.7)
Obviously, E 1 is twice continuously Fréchet differentiable. Its derivatives are easily identified in the formulas (3.4) and (3.5). We now compute the first and second derivative of E 2 .

(i) By Taylor formula,

F (u + h) -F (u) = h 1 0 f (u + τ h)dτ =: hζ for all u, h ∈ V, where ζ(x) := 1 0 f (u(x) + τ h(x))dτ.
It follows that

E 2 (u + h) -E 2 (u) - Ω f (u)h dx ≤ Ω |ζ -f (u)| |h| dx ≤ C ζ -f (u) L 2 (Ω) h L 2 (Ω) ≤ C ζ -f (u) L 2 (Ω) h V .
We deduce from Lemma 3.1 that

ζ = 1 0 f (u + τ h)dτ → f (u) in L 2 (Ω) as h V → 0.
Therefore

E 2 (u + h) -E 2 (u) - Ω f (u)h dx = o( h V ) as h V → 0.
This implies that the first derivative E ′ 2 exists and

E ′ 2 (u), h V * ,V = Ω f (u)h dx.
(ii) The Fréchet differentiability of E ′ 2 is shown in a similar way. Choose p ∈ (2, +∞) such that V is continuously embedded in L p (Ω). Let T be the linear mapping from V to V * given by

T h, k V * ,V = Ω f ′ (u)h k dx.
We will use below a generalized Hölder inequality based on the identity

1 p + 1 p + p -2 p = 1.
For every u, h, k ∈ V and for

η(x) := 1 0 f ′ (u(x) + τ h(x))dτ
we have

E ′ 2 (u + h) -E ′ 2 (u) -T h, k V * ,V ≤ Ω |η -f ′ (u)| |h| |k| dx ≤ η -f ′ (u) L p/(p-2) (Ω) h L p (Ω) k L p (Ω) ≤ C η -f ′ (u) L p/(p-2) (Ω) h V k V . (3.8)
Consequently, we have

E ′ 2 (u + h) -E ′ 2 (u) -T h V * ≤ C η -f ′ (u) L p/(p-2) (Ω) h V . (3.9) 
Since 1 < p/(p -2) < +∞, we deduce from Lemma 3.1 that

η -f ′ (u) L p/(p-2) (Ω) → 0 as h V → 0,
which together with (3.9) follows that

E ′ 2 (u + h) -E ′ 2 (u) -T h V * = o( h V ).
Therefore,

E ′′ 2 (u)h, k V * ,V = Ω f ′ (u)h k for all u, h, k ∈ V.
We also note that

| (E ′′ 2 (u) -E ′′ 2 (v))h, k V * ,V | ≤ Ω | f ′ (u) -f ′ (v)| |h| |k| dx ≤ C f ′ (u) -f ′ (v) L p/(p-2) (Ω) h V k V . Hence E ′′ 2 (u) -E ′′ 2 (v) L(V,V * ) ≤ C f ′ (u) -f ′ (v) L p/p-2 (Ω)
, which implies the continuity of E ′′ 2 . Finally, (3.6) is an immediate consequence of (3.5).

We define a continuous bilinear form from V × V → IR by

a(u, v) = Ω ∇u∇v dx.
The following lemma is an immediate consequence of the Lax-Milgram theorem (cf. [START_REF] Brézis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Corollary 5.8]). We omit its proof.

Lemma 3.3. There exists an isomorphism

A from V onto V * such that a(u, v) = Au, v V * ,V for all u, v ∈ V. (3.10) 
Corollary 2. The first and second derivatives of E can be represented in V * as:

E ′ (u) = Au -f (u) + - Ω f (u), (3.11) 
L(u)h = Ah -f ′ (u)h + - Ω f ′ (u)h, (3.12 
)

for all u, h ∈ V . Proof. Since f is bounded, f (u) -- Ω f (u) ∈ H ֒→ V * . Therefore Au -f (u) + - Ω f (u) ∈ V * .
We also note that

Ω - Ω f (u) h = - Ω f (u) Ω h = 0 for all h ∈ V, thus Au -f (u) + - Ω f (u), h V * ,V = Ω ∇u∇h - Ω f (u)h.
This together with (3.4) implies that

E ′ (u) = Au -f (u) + - Ω f (u).
Identity (3.12) may be proved in a similar way.

Lemma 3.4. Let L p (Ω), X p be the Banach spaces as in (3.1) and (3.2). Assume that p ≥ 2. Then, for any g ∈ L p (Ω), there exists a unique solution u ∈ X p of the equation

Au = g in V * . Moreover, Aw, v = -∆w, v for all w ∈ X p , v ∈ V. (3.13) 
Proof. It follows from Lemma 3.3 that the equation

Au = g in V * (3.14)
has a unique solution u ∈ V so that it is enough to prove that u ∈ X p . For this purpose, we consider the elliptic problem

-∆ũ = g in Ω, ∂ ν ũ = 0 on ∂Ω.
Since g ∈ H, we apply the Fredholm alternative to deduce that this problem possesses a unique solution ũ ∈ V . Note that g ∈ L p (Ω), so that we deduce from [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF] that ũ ∈ W 2,p (Ω) so that also ũ ∈ X p . On the other hand, for all v ∈ V , we have

Aũ, v V * ,V = a(ũ, v) = Ω ∇ũ∇v dx = -∆ũ, v V * ,V = g, v V * ,V .
Therefore, ũ coincides with the unique solution of equation (3.14). In other words,

u = ũ ∈ X p .
Moreover, for all w ∈ X p , v ∈ V ,

-∆w, v V * ,V = Ω ∇w∇v dx = Aw, v V * ,V .
Then (3.13) follows.

Definition 3.5. We say that ϕ ∈ V is a critical point of E if

E ′ (ϕ) = 0 in V * .
Lemma 3.6. For every ϕ ∈ V , the following assertions are equivalent: (i) ϕ is a critical point of E, (ii) ϕ ∈ X 2 and ϕ satisfies the equations

(S)    -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω.
Proof. (i) ⇒ (ii) Assume that ϕ ∈ V is a critical point of E. We deduce from (3.11) that

A(ϕ) = f (ϕ) -- Ω f (ϕ) in V * . Since f (ϕ) -- Ω f (ϕ) ∈ H, it follows from Lemma 3.4 that ϕ ∈ X 2 satisfies the equations    -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω. (ii) ⇒ (i) It follows from (3.11) that E ′ (ϕ) = Aϕ -f (ϕ) + - Ω f (ϕ),
which together with (3.13) implies that

E ′ (ϕ) = -∆ϕ -f (ϕ) + - Ω f (ϕ) = 0,
where the last identity follows from the fact that ϕ is a solution of Problem (S). Thus ϕ is a critical point of E.

Lojasiewicz inequality.

Theorem 3.7 ( Lojasiewicz inequality). Let ϕ ∈ V be a critical point of the functional E such that s 1 ≤ ϕ ≤ s 2 . Then there exist constants θ ∈ (0, 1 2 ] and C, σ > 0 such that

|E(u) -E(ϕ)| 1-θ ≤ C E ′ (u) V * , (3.15) 
for all u -ϕ V ≤ σ. In this case, we say that E satisfies the Lojasiewicz inequality in ϕ. The number θ will be called the Lojasiewicz exponent.

We check below that all hypotheses in [8, Corollary 3.11] are satisfied so that the result of Theorem 3.7 will follow from [START_REF] Chill | On the Lojasiewicz-Simon gradient inequality[END_REF]Corollary 3.11]. We need the following result. Proof. We first prove that the linear operator

T : V -→ V * h -→ -f ′ (ϕ)h + - Ω f ′ (ϕ)h is compact. Indeed, note that we have for all h ∈ V T h H ≤ f ′ (ϕ)h L 2 (Ω) + - Ω f ′ (ϕ)h L 2 (Ω) ≤ C h L 2 (Ω) ≤ C h V .
Therefore T is continuous from V to H, which together with the compactness of the embedding H ֒→ V * implies that T is compact from V to V * . Next, since A is an isomorphism from V onto V * , it is also a Fredholm operator of index ind A := dim ker A -codim Rg A = 0.

It follows that L(ϕ) = A + T , as a sum of a Fredholm operator and a compact operator, is also a Fredholm operator with the same index (cf. [3, p. 168]). This completes the proof of Lemma 3.8.

Before proving Theorem 3.7, we recall the definition of an analytic map on a neighborhood of a point (cf. [START_REF] Zeidler | Nonlinear functional analysis and its applications[END_REF]Definition 8.8,p. 362]). A map T from a Banach space X into a Banach space Y is called analytic on a neighborhood of z ∈ X if there exists ε > 0 such that for all h ∈ X, h X ≤ ε,

T (z + h) -T (z) = i≥1 T i (z)[h, . . . , h] in Y,
where T i (z) is a symmetric i-linear form on X with values in Y and

i≥1 T i (z) Li(X,Y ) h i X < ∞.
Here, L i (X, Y ) is the space of bounded i-linear operators from X i to Y .

Proof of Theorem 3.7. In order prove Theorem 3.7, we apply [START_REF] Chill | On the Lojasiewicz-Simon gradient inequality[END_REF]Corollary 3.11] for

X := X p , Y := L p (Ω),
where p > N . In this case, there holds the embedding

W 2,p (Ω) ⊂ C 1,λ (Ω) with λ = 1 - n p . Note that E ′ (u) = -∆u -f (u) + - Ω f (u) ∈ L p (Ω),
for all u ∈ X p . In view of Lemma 3.8, it is sufficient to prove that E ′ is analytic in a neighborhood of ϕ. Indeed, let ε be small enough such that for all h ∈ X p with h Xp ≤ ε, we have

h C(Ω) ≤ C h Xp < 1. Since f (s) = f (s) = n i=0 a i s i for all s ∈ (s 1 -1, s 2 + 1),
we perform a Taylor's expansion to deduce for all h ∈ X p with h Xp ≤ ε that

f (ϕ(x) + h(x)) -f (ϕ(x)) = n i=1 f (i) (ϕ(x)) i! h i (x).
It follows that

E ′ (ϕ + h) -E ′ (ϕ) = -∆h + n i=1 f (i) (ϕ) i! h i - n i=1 - Ω f (i) (ϕ) i! h i dx = n i=1 T i [h, . . . , h],
where

T 1 [h] := -∆h + f ′ (ϕ)h -- Ω f ′ (ϕ)h
and

T i [h, . . . , h] := f (i) (ϕ) i! h i -- Ω f (i) (ϕ) i! h i for all 1 < i ≤ n.
We now prove that T i ∈ L i (X p , L p (Ω)). For all h 1 , . . . , h i ∈ X p , and 1 < i ≤ n, we have

T i [h 1 , .., h i ] L p (Ω) ≤ C T i [h 1 , .., h i ] L ∞ (Ω) ≤ C f (i) (ϕ) i! h 1 . . . h i L ∞ (Ω) + C - Ω f (i) (ϕ) i! h 1 . . . h i L ∞ (Ω) ≤ C i j=1 h j L ∞ (Ω) ≤ C i j=1 h j Xp ,
which implies that T i ∈ L i (X p , L p (Ω)) for all 1 < i ≤ n. In the case i = 1, since -∆ is linear, continuous from X p to L p (Ω), we easily deduce that T 1 ∈ L(X p , L p (Ω)). Therefore E ′ is analytic on a neighborhood of ϕ. This completes the proof of Theorem 3.7.

4. Large time behavior.

Theorem 4.1. Let (H 0 ) hold and let u be the unique solution of Problem (P ).

Then there exists a function ϕ such that

lim t→∞ u(t) -ϕ C 1 (Ω) = 0 as t → ∞. Moreover, s 1 ≤ ϕ ≤ s 2 , Ω ϕ = Ω u 0 ,
and ϕ is a solution of the stationary problem

(S)    ∆ϕ = -f (ϕ) + - Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω.
This section is devoted to the proof of Theorem 4.1 by applying the Lojasiewicz inequality. In some case we also compute the limit stationary solution (see Theorem 4.5 below).

Lemma 4.2. Suppose that (H 0 ) is satisfied and let u be the solution of Problem (P ). Then (i) For all 0 < s ≤ t < ∞,

E(u(s)) = E(u(t)) + t s Ω |u t | 2 dx. (4.1) 
(ii) Further, E(u(•)) is continuous, nonincreasing on (0, +∞), and there exists e such that lim t→∞ E(u(t)) = e.

Proof. (i) In view of Corollary 1, for t > 0 we have

d dt E(u(t)) = Ω -∆u -f (u) u t = Ω -∆u -f (u) + - Ω f (u) u t = - Ω u 2 t (x, t) dx ≤ 0.
As a consequence, for all 0 < s ≤ t < ∞

E(u(s)) = E(u(t)) + t s Ω |u t | 2 dx.
(ii) We recall that the function F is bounded on IR. Therefore the function t → E(u(t)), which is nonincreasing and bounded from below, converges to a limit as t → ∞.

Definition 4.3. We define the ω-limit set of u 0 by

ω(u 0 ) := {ϕ ∈ H 1 (Ω) : ∃t n → ∞, u(t n ) → ϕ in H 1 (Ω) as n → ∞}.
Lemma 4.4. Suppose that (H 0 ) is satisfied and let u be the solution of Problem (P ).

Then (i) ω(u 0 ) is a non-empty, compact set of H 1 (Ω). (ii) For all ϕ ∈ ω(u 0 ) E(ϕ) = e
, where e is defined as in Lemma 4.2(ii). (iii) Let ϕ ∈ ω(u 0 ) then s 1 ≤ ϕ ≤ s 2 and is a stationary solution of Problem (P ), which implies that

   -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω. (iv) d(u(t), ω(u 0 )) → 0 as t → ∞, where d(u(t), ω(u 0 )) := inf ϕ∈ω(u0) u(t) -ϕ H 1 (Ω) .
Proof. (i) This is an immediate consequence of the relative compactness of solution orbits in H 1 (Ω) which is a consequence of Theorem 2.2.

(ii) Let ϕ ∈ ω(u 0 ) and let {u(t n )} be such that

u(t n ) → ϕ in H 1 (Ω) as n → +∞.
We deduce from the continuity of E on H 1 (Ω) that

E(ϕ) = lim n→∞ E(u(t n ) = e,
where e is as in Lemma 4.2.

(iii) Since

s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0, It follows that s 1 ≤ ϕ(x) ≤ s 2 for all x ∈ Ω. (4.
2) Next, we prove that ϕ is a stationary solution. We denote here by u(t; w) the solution of Problem (P ) corresponding to initial function w. Let {t n } be such that

u(t n ; u 0 ) → ϕ in H 1 (Ω) as n → ∞.
This implies in particular that

u(t n ; u 0 ) → ϕ in L 2 (Ω) as n → ∞.
It follows that for all t ≥ 0,

u(t; u(t n ; u 0 )) → u(t; ϕ) in L 2 (Ω) as n → ∞.
In other words,

u(t + t n ; u 0 ) → u(t; ϕ) in L 2 (Ω) as n → ∞. Since {u(τ ; u 0 ) : τ ≥ 1} is relatively compact in H 1 (Ω), so that u(t n + t; u 0 ) → u(t; ϕ) in H 1 (Ω) as n → ∞.
It follows that u(t; ϕ) ∈ ω(u 0 ). This together with (ii) implies that for all t ≥ s ≥ 0.

E(u(t; ϕ)) = E(u(s; ϕ)) = e.
In view of Lemma 4.2 , we have t ≥ s > 0.

0 = E(u(t; ϕ)) -E(u(s; ϕ)) = - t s Ω |u t (ϕ)| 2 dxdt.
As a consequence, for all t > 0, u t (t; ϕ) = 0. In other words, u(t; ϕ) the solution of Problem (P ) with the initial function ϕ is independent of time. Therefore ϕ is a stationary solution of Problem (P ), which implies that

   -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω.
The identity

Ω ϕ = Ω u 0 ,
follows from the mass conservation property.

(iv) For the purpose of contradiction, we assume that there exists a sequence t n → ∞ and ε 0 > 0 such that d(u(t n ), ω(u 0 )) ≥ ε 0 for all n > 0. (4.3)

Note that there exists a subsequence t n k → ∞ and w ∈ H 1 (Ω) such that

u(t n k ) → w ∈ ω(u 0 ) in H 1 (Ω) as k → ∞,
Therefore, d(u(t n k ), ω(u 0 )) = 0 as k → ∞, which is in contradiction with (4.3).

Proof of Theorem 4.1. We will first prove Theorem 4.1 in the case

Ω u 0 (x) = 0.
By the mass conservation property, we have

Ω u(x, t) = 0.
As a consequence, u(t) ∈ V for all t > 0. Recall from Lemma 4.4(ii) that

E ω(u0) = e. (4.4) 
It follows from Lemma 4.4(iii) and Lemma 3.6 that for all ϕ ∈ ω(u 0 ),

s 1 ≤ ϕ ≤ s 2
and that ϕ is a critical point of E. We apply Theorem 3.7 to deduce that E satisfies the Lojasiewicz inequality in the neighborhood of every ϕ ∈ ω(u 0 ). In other words, for every ϕ ∈ ω(u 0 ) there exist constants θ ∈ (0, 1 2 ], C ≥ 0 and δ > 0 such that

|E(v) -E(ϕ)| 1-θ ≤ C E ′ (v) V * whenever v -ϕ V ≤ δ. (4.5)
Since E is continuous on V , we may choose δ small enough so that

|E(v) -E(ϕ)| < 1 whenever v -ϕ V ≤ δ. (4.6) 
It follows from the compactness of ω(u 0 ) in V that there exists a neighborhood U of ω(u 0 ) composed of finitely many balls B j , j = 1, ..., J, with center ϕ j and radius δ j . In each of the ball B j , inequality (4.6) and the Lojasiewicz inequality (4.5) hold for some constants θ j and C j . We define θ = min {θ j , j = 1, ..., J} and C = max {C j , j = 1, ..., J} to deduce from (4.4), (4.5) and (4.6) that

|E(v) -e| 1-θ ≤ C E ′ (v) V * for v ∈ U.
It follows from Lemma 4.4(iv) that there exists t 0 ≥ 0 such that u(t) ∈ U for all t ≥ t 0 . Hence, for every t ≥ t 0 , there holds

- d dt |E(u(t)) -e| θ = θ|E(u(t)) -e| θ-1 - dE dt (u(t)) ≥ θ C u t 2 L 2 (Ω) E ′ (u(t)) V * , (4.7) 
where we have also used (4.1). Note that for all t ≥ t 0 , E ′ (u(t)) ∈ H and it can be written of the form

E ′ (u(t)) = -∆u -f (u) + - Ω f (u) = -u t .
Applying the continuous embedding H ֒→ V * , we have

E ′ (u(t)) V * ≤ Ĉ E ′ (u(t)) L 2 (Ω) = Ĉ u t L 2 (Ω) for all t ≥ t 0 , (4.8) 
where Ĉ is a positive constant. Combining (4.7) and (4.8) we obtain

- d dt |E(u(t)) -e| θ ≥ C u t L 2 (Ω) .
Here

C = θ C Ĉ . Thus u(t 1 ) -u(t 2 ) L 2 (Ω) ≤ t2 t1 u t L 2 (Ω) ≤ 1 
C (|E(u(t 1 )) -e| θ -|E(u(t 2 )) -e| θ )
for all t 0 ≤ t 1 ≤ t 2 . Therefore u(t 1 ) -u(t 2 ) L 2 (Ω) tends to zero as t 1 → ∞ so that {u(t)} is a Cauchy sequence in H. As a consequence, there exists ϕ ∈ H such that lim t→∞ u(t) = ϕ exists in H, hence by the relative compactness of solution orbits in C 1 (Ω) we have lim

t→∞ u(t) -ϕ C 1 (Ω) = 0.
In the general case, when Ω u 0 (x) dx = 0, instead of considering Problem (P ), we consider the Problem ( P ):

( P )          u t = ∆ u + f ( u) -- Ω f ( u) in Ω × IR + , ∂ ν u = 0 on ∂Ω × IR + , u(x, 0) = u 0 (x) -m 0 , x ∈ Ω.
where m 0 := -Ω u 0 , and f (s) := f (s + m 0 ). We note that

s 1 -m 0 ≤ û(x, 0) ≤ s 2 -m 0 , Ω û(x, 0) = 0.
Moreover, u = u + m 0 and f is analytic on (s 1 -1 -m 0 , s 2 + 1 -m 0 ). Repeating the above arguments for Problem ( P ), we deduce that there exists a smooth stationary solution ψ of Problem ( P ) such that lim

t→∞ u(t) -ψ C 1 (Ω) = 0.
It follows that for ϕ := ψ + m 0 , we have

lim t→∞ u(t) -ϕ C 1 (Ω) = 0.
The proof of Theorem 4.1 is complete.

Theorem 4.5. We suppose that the hypothesis (H 0 ) is satisfied. We assume further that f ′ (s) ≤ 0 for all s ∈ [s 1 , s 2 ].

Then

u(t) → - Ω u 0 in C 1 (Ω) as t → ∞. Proof. Let ϕ ∈ ω(u 0 ); it is sufficient to show that ϕ(x) ≡ - Ω u 0 =: m 0 . (4.9) 
First we note that ϕ satisfies -

Ω ϕ = m 0 and (S)    -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω.
Then we multiply the partial differential equation in (S) by ϕ and integrate over Ω to obtain

Ω |∇ϕ| 2 = Ω f (ϕ)ϕ - 1 |Ω| Ω f (ϕ) Ω ϕ = Ω f (ϕ)(ϕ -m 0 ) = Ω (f (ϕ) -f (m 0 ))(ϕ -m 0 ) ≤ 0.
or equivalently,

-E ′ (u(t)) 2 H ≤ - 1 C 2 1 (E(u(t)) -E(ϕ)).
This together with (5.1) implies that

d dt (E(u(t)) -E(ϕ)) ≤ -C 2 (E(u(t)) -E(ϕ)) for all t ≥ T 0 , (5.2) 
where C 2 := 1/C 2 1 . We also note that

y(t) := E(u(T 0 )) -E(ϕ) exp(-C 2 (t -T 0 ))
is the unique solution of the differential equation Therefore, by [16, Theorem 6.1, page 31] and the differential inequality (5.2), we deduce that for all t ≥ T 0 E(u(t)) -E(ϕ) ≤ E(u(T 0 )) -E(ϕ) exp(-C 2 (t -T 0 )).

In view of (4.1), this implies that for all t ≥ T 0 ∞ t u t (s) 2 H ds ≤ E(u(T 0 ) -E(ϕ) exp(-C 2 (t -T 0 )).

Setting a := E(u(T 0 ) -E(ϕ) exp(C 2 T 0 ) > 0, we obtain the inequality

∞ t u t (s) 2 L 2 (Ω) = ∞ t u t (s) 2
H ds ≤ a exp(-C 2 t) for all t ≥ T 0 .

We deduce from Lemma 5.1 that

u(t) -ϕ L 2 (Ω) ≤ √ a exp( C2 2 ) exp( C2 2 ) -1 exp(- C 2 t 2
) for all t ≥ T 0 .

(5.3)

Note that for a function w ∈ C 1 (Ω), we can apply the Gagliardo-Nirenberg inequality (e.g. see [3, page 314])

w L ∞ (Ω) ≤ C w 1-β L 2 (Ω) w β W 1,r (Ω)
, where

β = 1 2 ( 1 2 + 1 N - 1 r ), r > N ;
to obtain w L ∞ (Ω) ≤ C w 1-β L 2 (Ω) w β C 1 (Ω) .

(5.4)

Thus the conclusion of Theorem 5.2 follows from (5.3), (5.4) and (2.4).

5.2.

The case θ ∈ (0, 1 2 ). We will apply the following lemma. Lemma 5.3 (see [START_REF] Haraux | Rate of decay to equilibrium in some semilinear parabolic equations[END_REF], Lemma 3.3). Let t 0 > 0 be arbitrary. Assume that there exist two positive constants α and K such that ∞ t u t 2 L 2 (Ω) ≤ Kt -2α-1 for all t ≥ t 0 .

Then u(t) -u(τ ) L 2 (Ω) ≤ √ K 1 -2 -α t -α for all τ ≥ t ≥ t 0 .

Theorem 5.4. Let (H 0 ) hold. Assume further that Theorem 3.7 holds for θ ∈ (0, 1 2 ) and set α := θ 1 -2θ > 0. Then there exists a positive constant M such that u(t) -ϕ L ∞ (Ω) ≤ M t -α for all t > 0.

Proof. As in the proof of Theorem 4.1, it is sufficient to prove this result for the function u in the case

Ω u 0 = 0.
We have

d dt (E(u) -E(ϕ)) = E ′ (u), u t = -E ′ (u), E ′ (u) = -E ′ (u) 2 H . (5.5) 
Note that u(t) → ϕ in V as t → ∞, we deduce that for σ as in Theorem 3.7 there exists T 0 > 0 such that for all t ≥ T 0 u(t) -ϕ V ≤ σ.

Therefore, by Theorem 3.7, we have for all t ≥ T 0 |E(u(t)) -E(ϕ)| 1-θ ≤ C E ′ (u(t)) V * .

By applying the continuous embedding H ֒→ V * , we obtain (E(u(t)) -E(ϕ)) (E(u) -E(ϕ)) 2 (1-θ) .

This together with (5.5) implies that d dt (E(u) -E(ϕ)) ≤ -C 2 (E(u) -E(ϕ)) 2(1-θ) for all t ≥ T 0 , (

where C 2 := 1/C 2 1 . We also note that y(t) := (E(u(T 0 ) -E(ϕ)) 2θ-1 + C 2 (1 -2θ)(t -T 0 )

-1/(1-2θ)

Ω

  u(x, t) dx = Ω u 0 (x) dx for all t > 0, and it possesses a free energy functional which coincides with the usual Allen-Cahn functional E

Lemma 3 . 8 .

 38 Let ϕ be a critical point of E. Then, L(ϕ) is a Fredholm operator from V to V * of index 0 i.e. Rg L(ϕ) is closed in V * and dim ker L(ϕ) = codim(Rg L(ϕ)) < +∞, where codim Rg L(ϕ) := dim(V * / Rg L(ϕ)). As a consequence, V * is the direct sum of Rg L(ϕ) and ker L(ϕ).

  ) = -C 2 y for t ≥ T 0 , y(T 0 ) = E(u(T 0 )) -E(ϕ).
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Thus by Poincaré inequality

Ω |ϕ -m 0 | 2 ≤ 0, which yields (4.9). 5. Convergence rate. In this section, we evaluate the rate of the convergence of the solution to the stationary solution. The proof is based once more on the Lojasiewicz inequality. We consider two cases: the Lojasiewicz exponent θ = 1 2 and θ ∈ (0, 1 2 ). These cases were studied by Haraux and Jendoubi [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF] and Haraux, Jendoubi and Kavian [START_REF] Haraux | Rate of decay to equilibrium in some semilinear parabolic equations[END_REF]. 5.1. The case θ = 1 2 . We will apply the following result. Lemma 5.1 (see [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF], Lemma 2.2). Let t 0 ≥ 0 be arbitrary. Assume that there exist positive constants γ and a such that

,

Theorem 5.2. Let (H 0 ) hold. Assume further that Theorem 3.7 holds for θ = 1 2 ; then there exist positive constants K, δ such that

Proof. As in the proof of Theorem 4.1, it is sufficient to prove this result for the function u with the assumption that

Note that u(t) → ϕ in V as t → ∞, we deduce that for σ as in Theorem 3.7 there exists T 0 > 0 such that for all t ≥ T 0

Therefore, by Theorem 3.7, we have for all t ≥ T 0 (E(u(t)) -E(ϕ))

By using the continuous embedding H ֒→ V * , we obtain (E(u(t)) -E(ϕ))

is the unique solution of the differential equation

Therefore, by [16, Theorem 6.1, page 31] and the differential inequality (5.6), we deduce that

for all t ≥ 2T0.

It follows that for all

.

We set

and α := θ 1 -2θ > 0, then ∞ t u t (s) 2 ds ≤ Kt -2α-1 , which by Lemma 5.3 implies that u(t) -ϕ H ≤ √ K 1 -2 -α t -α for all t ≥ 2T 0 . This together with (5.4) and (2.4) completes the proof of Theorem 5.4.