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1 Introduction

We consider a reaction-diffusion equation with mass conservation

(P )


ut = ∆u+ f(u)−

∫
−

Ω

f(u) in Ω× R+,

∂νu = 0 on ∂Ω× R+,

u(x, 0) = g0(x) x ∈ Ω,

where Ω ⊂ RN(N ≥ 1) is a smooth bounded domain, ∂ν is the outer normal
derivative to ∂Ω and ∫

−
Ω

f(u) :=
1

|Ω|

∫
Ω

f(u(x)) dx.

Problem (P ) was introduced by Rubinstein and Sternberg [24] as a model
for phase separation in a binary mixture. Our goal is to study of the large
time behavior of the solutions of Problem (P). More precisely, we show that
any solution of (P) converges to a steady state. We also evaluate the rate of
this convergence and compute the limit steady state in one dimension. The
main tool is a Lojasiewicz inequality that was first proposed by Lojasiewicz
himself [18], [20]. He showed that any bounded solution to gradient systems
in Rn, (which is an ODE system), converges to a stationary point. This idea
was subsequently developed for infinite-dimensional gradient systems by L.
Simon, who showed a version of this inequality and applied it to prove the
stabilization in the Allen-Cahn equation see [26].

This model is mass preserving, namely∫
Ω

u(x, t) dx =

∫
Ω

g0(x) dx for all t > 0,

and it possesses a free energy functional which coincides with the usual Allen-
Cahn functional

E(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (u) dx,

where F (u) :=

∫ u

0

f(s)ds.
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In [24], the authors consider the model in which f is bistable type, typical
example f(s) = s − s3. In this paper, we assume that the function f is of
the following form

f(s) =
n∑
i=1

ais
i where n ≥ 3 is an odd number, an < 0. (1)

Note that there exists a constant c1 > 0 satisfying

f ′(s) ≤ c1 for all s ∈ R. (2)

Definition 1.1. Two constants s1 < s2 are said to satisfy Property (C) with
respect to f , if

(C) : f(s2) < f(s) < f(s1) for all s ∈ (s1, s2).

We have two following theorems.

Theorem 1.2. Let g0 ∈ L∞(Ω). Problem (P ) possesses a unique solution
u ∈ C([0,∞);L2(Ω))) which satisfies for every T > 0

u ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) and ut ∈ L2(0, T ; (H1(Ω))′),

where QT := Ω× (0, T ). Moreover u ∈ C∞(Ω× (0,+∞)) and

{u(t), t ≥ 1} is relatively compact in Cm(Ω) for all m ∈ IN.

Theorem 1.3. Let g0 ∈ L∞(Ω) and let u be the unique solution of Problem
(P ). Then

lim
t→∞
‖u(t)− ϕ‖Cm(Ω) = 0 as t→∞, for all m ∈ IN,

where ϕ is a smooth solution of the stationary problem

(S)

 ∆ϕ+ f(ϕ)−
∫
−

Ω

f(ϕ) = 0 in Ω,

∂νϕ = 0 on ∂Ω.

Moreover ∫
Ω

ϕ =

∫
Ω

g0.
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The proofs of Theorem 1.2 and Theorem 1.3 are based on following aux-
iliary problem.
Problem (P̄): In order to prove the main theorems, we first study Problem
(P ) when f is replaced by a smooth bounded function f̄ . More precisely, we
consider the following problem

(P̂ )


ūt = ∆ū+ f̄(ū)−

∫
−

Ω

f̄(ū) in Ω× R+,

∂ν ū = 0 on ∂Ω× R+,

ū(x, 0) = g0(x) x ∈ Ω,

and f̄ is supposed to be smooth and satisfy

|F̄ (s)|, |f̄(s)|, |f̄(s)s|, |f̄ ′(s)| < c2 for all s ∈ R and a constant c2 > 0. (3)

Here, F̄ (s) =
∫ s

0
f̄(τ)dτ is a primitive of f̄ . The corresponding Lyapunov

functional is given by

E(ū) :=
1

2

∫
Ω

|∇ū|2 dx−
∫

Ω

F̄ (ū)dx.

The choice of f̄ will be given in the proof of Theorem 1.2 (section 2). We
shall show with such f̄ that the solution of Problem (P̄ ) coincides with the
solution of Problem (P ) and deduce the result for Problem (P ).

The paper is organized as follows: in section 2 we prove Theorem 1.2.
In section 3, first we give a version of Lojasiewicz inequality for the energy
functional E (Theorem 3.11), then apply it to prove Theorem 1.3 and to
establish rate of this convergence. Section 4 is devoted to compute the limit
stationary solution in one dimension.

2 The existence and uniqueness of solution

We first prove the uniqueness of the solutions of the Problem (P ) and
(P̄ ).

Lemma 2.1. (i) For any g0 ∈ L∞(Ω), Problem (P ) possesses at most one
solution u such that

u ∈ L∞(QT ) ∩ L2(0, T,H1(Ω)) and ut ∈ L2(0, T ;H1(Ω)′).
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Moreover, ∫
Ω

u(x, t)dx =

∫
Ω

g0(x) dx for all t > 0. (4)

(ii) For any g0 ∈ L2(Ω), Problem (P̄ ) possesses at most one solution ū such
that

ū ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T,H1(Ω)) and ūt ∈ L2(0, T ;H1(Ω)′).

Moreover, ∫
Ω

ū(x, t)dx =

∫
Ω

g0(x)dx for all t > 0. (5)

Proof. (ii) The identity (5) follows from

d

dt

∫
Ω

ū(x, t) dx = 0.

Let g′0 ∈ L2(Ω) be another initial condition and let ū′ be a corresponding
solution. We first set w := ū − ū′, multiply the difference of the equations
for ū and ū′ by w, then integrate over Ω to obtain

1

2

d

dt

∫
Ω

w2(t) +

∫
Ω

|∇w(t)|2 =

∫
Ω

[
f̄(ū)− f̄(ū′)

]
w −

∫
Ω

w

∫
−

Ω

[
f̄(ū)− f̄(ū′)

]
.

It follows from (3) that

1

2

d

dt

∫
Ω

w2(t) +

∫
Ω

|∇w(t)|2 ≤ c2

∫
Ω

w2 +
c2

|Ω|

(∫
Ω

|w|
)2

≤ c3

∫
Ω

w2.

Using Gronwall’s lemma, we have∫
Ω

|ū(t)− ū′(t)|2 ≤ exp(2c3t)

∫
Ω

| g0 − g′0|2, (6)

which implies the uniqueness.
(i) The proof of part (i) is similar to the one of part (ii). Let g̃0 ∈ L∞(Ω)
such that

∫
Ω
g̃0 =

∫
Ω
g0 and let ũ be a solution corresponding with the initial

condition g̃0. Note that∫
Ω

u(t)−
∫

Ω

ũ(t) =

∫
Ω

g0 −
∫

Ω

g̃0 = 0. (7)
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We use (2) and the method developed in the proof of part (ii) to obtain∫
Ω

|u(t)− ũ(t)|2 ≤ exp(2c1t)

∫
Ω

|g0 − g̃0|2. (8)

The uniqueness then follows from this estimate.

Lemma 2.2. Let g0 ∈ L2(Ω). Then for any T > 0 arbitrary

(i) Problem (P̂ ) possesses a unique solution ū which satisfies

ū ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)); ūt ∈ L2(0, T ; (H1(Ω))′). (9)

Moreover, ū ∈ C([0,∞);L2(Ω)).

(ii) If, in addition, g0 ∈ H1(Ω) then

ū ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) and ūt ∈ L2(QT ). (10)

So that also ū ∈ C([0,∞);H1(Ω)).

The mapping
T (t) : g0 7−→ ū(t)

is Lipschitz continuous on L2(Ω) for all t > 0 and T (t)t≥0 is a semigroup on
L2(Ω).

Remark 2.3. Consider the operator−∆ with homogeneous Neumann bound-
ary conditions. Denote by

0 = λ1 < λ2 ≤ · · · ≤ λi ≤ · · ·

the eigenvalues of the Laplacian operator, and wi, i = 1, . . . the corresponding
unit eigenfunctions. Remark that w1 = 1

|Ω|1/2 ,
∫

Ω
wi = 0 for i ≥ 2 and that the

wi’s are smooth functions up to boundary . They constitute an orthonormal
basis of L2(Ω) and also an orthogonal basis of H1(Ω).

Proof of Lemma 2.2
We look for an approximate solution of the form

ūm(t) =
m∑
i=1

gmi(t)wi
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satisfying∫
Ω

ūmtwj +

∫
Ω

∇ūm∇wj =

∫
Ω

f̄(ūm)wj −
∫
−

Ω

f̄(ūm)

∫
Ω

wj (11)

for j = 1, . . . ,m and

ūm(0) = ūm0 :=
m∑
i=1

g0
miwi → g0 in L2(Ω) as m→∞. (12)

Note that
∫

Ω
wj = 0 for 2 ≤ j ≤ m, we deduce that the equations (11) form

a nonlinear differential system for the functions gm1, . . . , gmm:

g′m1(t) = 0, (13)

g′mj − λjgmj =

∫
Ω

f̄
( m∑
i=1

gmi(t)wi
)
wj for 2 ≤ j ≤ m. (14)

The condition (12) is equivalent to the m scalar initial conditions

gm1(0) = g0
m1, (15)

gmj(0) = g0
mj for 2 ≤ j ≤ m. (16)

It follows from (13) and (15) that

gm1(t) = g0
m1 for all t ≥ 0. (17)

Substituting (17) in (14), we obtain a nonlinear differential system of m− 1
variables. Then the nonlinear differential system (14) with the initial con-
dition (16) has a maximal solution defined on some interval (0, Tm). In fact
Tm =∞ because of the following a priori estimates.

A priori estimates for the proof of Lemma 2.2(i): First, by (12) and
(17), we have∫

Ω

ūm(t) dx =

∫
Ω

ūm0(x) dx→
∫

Ω

g0(x) dx as m→∞ (18)

for all 0 ≤ t < Tm. Consequently, there exists a constant c4 independent of
m such that ∣∣∣∣ ∫

Ω

ūm(t) dx

∣∣∣∣ ≤ c4 for all 0 ≤ t < Tm. (19)
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Multiplying (11) by gmj and summing on j = 1, . . . ,m we obtain

1

2

d

dt

∫
Ω

|ūm|2 +

∫
Ω

|∇ūm|2 =

∫
Ω

f̄(ūm)ūm −
∫
−

Ω

f̄(ūm)

∫
Ω

ūm.

We use (3) and (19) to deduce that

1

2

d

dt

∫
Ω

|ūm|2 +

∫
Ω

|∇ūm|2 ≤ c2(|Ω|+ c4).

Therefore we integrate this inequality from 0 to t with t arbitrary, and then
take t = T to deduce that

‖ūm‖L∞(0,T ;L2(Ω)), ‖ūm‖L2(0,T ;H1(Ω)) ≤ K1(‖g0‖L2(Ω)) + T ), (20)

where K1 is a constant independent of m.
Now we will give an estimate for ūmt. Fix any η ∈ H1(Ω), with ‖η‖H1(Ω) ≤

1, and write η = η1 + η2 where η1 ∈ span{wi}mi=1 and
∫

Ω
η2wi = 0 for all

i = 1, . . . ,m. Note that η2 ∈ H1(Ω) and that∫
Ω

∇η2∇wi = −λi
∫

Ω

η2wi = 0 for all 1 ≤ i ≤ m

so that η2 is also orthogonal to span{wi}mi=1 with respect to the scalar product
in H1(Ω). In particular, η2 is orthogonal to η1 in H1(Ω), hence

‖η1‖H1(Ω) ≤ ‖η‖H1(Ω) ≤ 1.

We deduce from (11) that∫
Ω

ūmtη =

∫
Ω

ūmtη1 = −
∫

Ω

∇ūm∇η1 +

∫
Ω

f̄(ūm)η1 −
∫
−

Ω

f̄(ūm)

∫
Ω

η1.

Therefore,∣∣∣∣ ∫
Ω

ūmtη

∣∣∣∣ ≤ ( N∑
i=1

‖∂ūm
∂xi
‖L2(Ω)

)( N∑
i=1

‖∂η1

∂xi
‖L2(Ω)

)
+ 2c2‖η1‖L1(Ω)

≤ ‖∇ūm‖L2(Ω)‖∇η1‖L2(Ω) + c5‖η1‖L2(Ω)

≤ ‖∇ūm‖L2(Ω) + c5,
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where c5 is a constant independent of m. Since η ∈ H1(Ω) is an arbitrary
function such that ‖η‖H1(Ω) ≤ 1, it follows that

‖ūmt‖(H1(Ω))′ ≤ ‖∇ūm‖L2(Ω) + c5.

This together with (20) implies that there exists a positive constant K2 in-
dependent of m such that

‖ūmt‖L2(0,T ;(H1(Ω))′) ≤ K2. (21)

The estimates (20) and (21) will be necessary for the proof (i).

A priori estimates for the proof of Lemma 2.2(ii): We suppose that
ū0m =

∑m
i=1 g

0
miwi → g0 in H1(Ω). First, note that∫

Ω

∆ūm dx = 0, and

∫
Ω

ūmt dx = 0.

Multiplying Equation (11) by −λjgmj, summing on j = 1, . . . ,m yields

1

2

d

dt

∫
Ω

|∇ūm|2 +

∫
Ω

|∆ūm|2 = −
∫

Ω

f̄(ūm)∆ūm +

∫
−

Ω

f̄(ūm)

∫
Ω

∆ūm

=

∫
Ω

f̄ ′(ūm)|∇ūm|2

≤ c2

∫
Ω

|∇ūm|2.

Integrating this inequality from 0 to T (T > 0 is arbitrary), we deduce that
there exists a constant K3 independent of m such that

‖ūm‖L∞(0,T ;H1(Ω)), ‖ūm‖L2(0,T ;H2(Ω)) ≤ K3. (22)

Finally, we multiply (11) by g′mj(t) and sum on j = 1, . . . ,m to obtain

∫
Ω

ū2
mt +

∫
Ω

∇ūm∇ūmt =

∫
Ω

f̄(ūm)ūmt −
∫
−

Ω

f̄(ūm)

∫
Ω

ūmt =
d

dt

∫
Ω

F̄ (ūm).

So that∫ T

0

∫
Ω

ū2
mt+

1

2

∫
Ω

|∇ūm(T )|2 =

∫
Ω

F̄ (ūm(T ))−
∫

Ω

F̄ (ūm(0))+
1

2

∫
Ω

|∇ūm(0)|2,
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which implies that
‖ūmt‖L2(QT ) ≤ K4, (23)

where K4 is independent of m.

Passing to the limit: It follows from (20) and (21) that there exists a
subsequence of ūm, still denoted by ūm, such that

ūm ⇀ ū weakly in L2(0, T ;H1(Ω)), weak-star in L∞(0, T ;L2(Ω)),

ūm → ū strongly in L2(0, T ;L2(Ω)),

ūmt ⇀ ūt weakly in L2(0, T ; (H1(Ω))′).

Moreover, since f̄ is Lipschitz continuous on R,

f̄(ūm)→ f̄(ū) strongly in L2(0, T ;L2(Ω)).

Passing to the limit in (11) we deduce that

ūt = ∆ū+ f̄(ū)−
∫
−

Ω

f̄(ū) in L2(0, T ; (H1(Ω))′).

Since ū ∈ L2(0, T ;H1(Ω)) and since ūt ∈ L2(0, T ; (H1(Ω))′), one can
shows that ū ∈ C([0, T ];L2(Ω)). Moreover ū(0, x) = g0(x) by classical argu-
ments.

If g0 ∈ H1(Ω), it follows from (22) and (23) that ū satisfies (10). By [10,
Theorem 4, p. 288] it follows ū ∈ C([0,∞);H1(Ω)).

The uniqueness is proved in Lemma 2.1. The Lipstchitz continuity of
T (t) on L2(Ω) follows from (6). �

The following corollary follows directly from Lemma 2.2.

Corollary 2.4. For any g0 ∈ L2(Ω) and δ > 0, we have

ū ∈ C([δ,∞);H1(Ω)).

We now prove more regularity properties of the solution. For this, we
recall some technical lemmas which will be used in what follows. Denote by
Qb
a = Ω× (a, b) for a ∈ R and b ∈ R ∪ {+∞}.
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Lemma 2.5. Let u0 ∈ L2(Ω), g ∈ Lp(QT ) for some p ∈ (1,∞) and let u be
the solution of the time evolution problem

ut −∆u = f in QT ,
∂νu = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) x ∈ Ω.

Then

(i) for each 0 < δ < 1, there exists a positive constant C such that

‖u‖W 2,1
p (QTδ ) ≤ C(‖u0‖L2(Ω) + ‖f‖Lp(QT )).

(ii) If we suppose that u0 ∈ W 2,p(Ω) then we obtain the estimate

‖u‖W 2,1
p (QT ) ≤ C(‖u0‖W 2,p(Ω) + ‖f‖Lp(QT )).

Lemma 2.6. One has the following embedding

W 2,1
p (QT ) ⊂ Cλ,λ/2(Q̄T ) with λ = 2− N + 2

p
if p >

N + 2

2
and p 6= N + 2.

Lemma 2.5 and Lemma 2.6 follow from [17, chapter 4, section 3 and chapter
2, section 3] which are stated in [4, p. 206].

Proposition 2.7. Let ū ∈ C2,1(Ω× (0, T ])∩C(Ω× [0, T ]) be the solution of
Problem (P̄ ) with the initial condition g0. Assume that s1 < g0 < s2 then

s1 < ū(x, t) < s2

for x ∈ Ω and 0 < t ≤ T .

Proof. For the purpose of contradiction, we suppose that there exists a first
time 0 < t0 ≤ T such that ū(x0, t0) = s1 or ū(x0, t0) = s2 for some x0 ∈ Ω.
Without loss of generality, assume that ū(x0, t0) = s2. By the continuity of
ū and the definition of t0, we have

s1 ≤ ū(x, t0) ≤ s2 for all x ∈ Ω, and ū(x, t) < s2 for all x ∈ Ω and 0 ≤ t < t0.
(24)
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Since ∂ν ū = 0, we deduce from Hopf’s maximum principle that x0 ∈ Ω.
Therefore the function ū(·, t0) attains its maximum at x0 ∈ Ω, which implies
that ∆ū(x0, t0) ≤ 0. By (24), we have

ūt(x0, t0) = lim
∆t→0+

ū(x0, t0 −∆t)− ū(x0, t0)

−∆t0
≥ 0,

which we substitute in Problem (P̄ ) to obtain

∫
−

Ω

(f̄(s2)−f̄(ū(x, t0))) dx ≥ 0.

Since s1 ≤ ū(x, t0) ≤ s2 for all x ∈ Ω, it follows that f̄(s2) ≤ f̄(ū(x, t0)) for
all x ∈ Ω so that f̄(s2) = f̄(ū(x, t0)) and hence ū(x, t0) = s2 for all x in Ω.
But the inequality ū(x, t0

2
) < s2 = ū(x, t0) for all x ∈ Ω implies that∫

Ω

ū(x,
t0
2

) dx <

∫
Ω

ū(x, t0) dx,

which contradicts the mass preserving property.

Lemma 2.8. Let 0 < δ < 1
2
, α ∈ (0, 1) be arbitrary. Let s1, s2 be two

constants which satisfy Property (C) with respect to f̄ . We assume that s1 <
g0 < s2 then

(i) s1 ≤ ū(x, t) ≤ s2 for all x ∈ Ω, t > 0,

(ii) ‖ū‖
C2m+1+α,m+1+α

2 (Q∞δ )
≤ C(m, δ, s1, s2,Ω) for any m ∈ IN.

Proof. (i) The main idea of the proof is to approximate the initial function
g0 by a sequence of smooth functions and to first obtain uniform a priori
estimates for the corresponding solutions of Problem (P̄ ). To begin with,
we choose a sequence g0n ∈ C∞(Ω) such that s1 < g0n < s2 converges to
g0 in L2(Ω) as n → ∞ (cf. [1, Lemma 2.18, p. 29]). We denote by ūn
the corresponding solutions of Problem (P̄ ). Since |f̄ | ≤ c2, we deduce
from Lemma 2.5(ii) that ūn ∈ W 2,1

p (QT ) for all p > 1, which by the Sobolev

embedding in Lemma 2.6 implies that ūn ∈ C1+α,(1+α)/2(QT ) for all α ∈ (0, 1).
Applying a standard bootstrap argument (cf. [17, Theorem 10.1, p, 351]),

we deduce that ūn ∈ C3+α,1+ 1+α
2 (Q̄T ), which by Proposition 2.7 is such that

s1 < ūn < s2.
In view of Lemma 2.5(i) we also deduce that ū ∈ W 2,1

p (QT
δ ) for all δ ∈

(0, 1
2
) and p > 1, which in turn implies that ū ∈ C(Ω× (0, T ]). Since by (6),∫

Ω

|ū(t)− ūn(t)|2 ≤ exp(2c3t)

∫
Ω

|g0 − g0n|2
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it follows that
ūn(t)→ ū(t) in L2(Ω) for all t > 0.

Thus s1 ≤ ū ≤ s2 in Ω× (0, T ]. Finally, since T is arbitrary,

s1 ≤ ū(x, t) ≤ s2 for all x ∈ Ω, t > 0.

(ii) Reasoning in the same way as for the function ūn on the domains Qk+1
k

and Q
k+3/2
k+1/2, we deduce that

‖ū‖C1+α,(1+α)/2(Qk+1
k+δ)
≤ C

(
‖ū(k)‖L2(Ω)+

∥∥∥∥f̄(ū)−
∫
−

Ω

f̄(ū)

∥∥∥∥
Lp(Qk+1

k )

)
≤ C(δ, s1, s2,Ω)

and a similar one on the domain Q
k+3/2
k+1/2. Therefore, we have

‖ū‖C1+α,(1+α)/2(Q∞δ ) ≤ C(δ, s1, s2,Ω).

By standard bootstrap arguments [17, Theorem 10.1, p. 351], Lemma 2.8(ii)
holds.

Corollary 2.9. Let s1, s2 be two constants which satisfy Property (C) with
respect to f̄ . Assume that s1 < g0 < s2 then {ū(t) : t ≥ 1} is relatively
compact in Cm(Ω) for all m ∈ IN.

In particular, {ū(t) : t ≥ 1} is relatively compact in H1(Ω).

Proof of Theorem 1.2
Construction function f̄ : first, choose two constants s1, s2 (such that

|s1|, |s2| large enough) which satisfy Property (C) and satisfy

s1 < g0(x) < s2 for almost x ∈ Ω.

It is easy to see that such s1, s2 exist. Now, let f̄ ∈ C∞c (R) be given by

f̄(s) =


0 if s ≤ s1 − 2,

f(s) if s ∈ [s1 − 1, s2 + 1],

0 if s ≥ s2 + 2.

Obviously, this function satisfy (3).
Note that s1, s2 satisfy Property (C) with respect to f̄ . According to

Lemma 2.7, we have ū(t) ∈ [s1, s2]. On the other hand, f̄(s) = f(s) for all
s ∈ [s1, s2], so that f̄(ū) = f(u). It follows that ū coincides with the unique
solution of Problem (P ). Now, the assertions of the theorem follow from
Lemma 2.2, Lemma 2.8(ii) and Corollary 2.9. �
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Remark 2.10. We can extend all results in this section to f being a smooth
function in R. We summarize two important results.

(i) Theorem 1.2 holds provided that f is smooth.

(ii) A comparison result: let f be a smooth function and let s1 < s2 be
two constants which satisfy Property (C) with respect to f . Assume
that s1 < g0 < s2 then s1 ≤ u(x, t) ≤ s2.

3 Large time behavior

In this section, we first give some modifications for Problem (P ), which
bright out a slight view for this problem. Lojasiewicz inequality is proven
in section 3.2, then we apply the inequality to prove the convergence of the
solution to a steady state. A result of velocity of the convegernce is also
established in this section.

3.1 Modification setting

In the following, by mass conservation property, we may without loss of
generality assume that u satisfies the condition∫

Ω

u(x, t) dx = 0 for all t ≥ 0.

In fact, it suffices to replace the solution u by u−m0 withm0 := 1
|Ω|

∫
Ω
g0(x) dx

to note that u−m0 satisfies Problem (P ) with f replaced by f1(s) := f(s+
m0). The question, whether u converges as t → ∞ is not affected by this
normalization.

Next, we fix two constants s1, s2 (such that |s1|, |s2| large enough) which
satisfy Property (C) and satisfy

s1 < g0(x) < s2 for almost x ∈ Ω.

Function f̄ is given as in the proof of Theorem 1.2. More precisely, f̄ ∈
C∞c (R) and

f̄(s) =


0 if s ≤ s1 − 2,

f(s) if s ∈ [s1 − 1, s2 + 1],

0 if s ≥ s2 + 2.

14



By using the fact that the solution of Problem (P̄ ) coincides with the
unique solution of Problem (P ), we shall study the large time behavior for
Problem (P̄ ) and deduce the result for Problem (P ).

3.2 A version of Lojasiewicz inequality

We define the spaces

H = {u ∈ L2(Ω),

∫
Ω

u(x)dx = 0}, equipped with the norm ‖·‖H := ‖·‖L2(Ω),

V =
{
u ∈ H1(Ω) :

∫
Ω

u(x)dx = 0
}
, equipped with the norm ‖·‖V := ‖·‖H1(Ω).

Let V ∗ be the dual space of V and . We identify H with its dual to obtain:

V ↪→ H ↪→ V ∗,

where the embeddings V ↪→ H, H ↪→ V ∗ are continuous, dense and compact
(see e.g. [15, p. 677]). We use 〈·, ·〉 to denote the scalar product in H and
the scalar product for the duality V ∗, V. We denote by L(X, Y ) the space of
bounded linear operators from a Banach space X to a second Banach space
Y , and we write L(X) := L(X,X).

Throughout the following, we denote by C ≥ 0 a generic constant which
may vary from line to line. We start with the following result.

Lemma 3.1. Let 1 ≤ p <∞ and let g be a continuous, bounded function on
R. We define an operator B : H1(Ω)→ Lp(Ω) by B(u)(x) := f̄(u(x)). Then
B is continuous from H1(Ω) to Lp(Ω).

Proof. It follows from [16, Lemma 16.1, p. 60] that B is continuous from
L2(Ω) to Lp(Ω). The result holds because of the continuous embedding
H1(Ω) ↪→ L2(Ω).

Lemma 3.2. The functional E is twice continuously Fréchet differentiable
on V . We denote by E ′, L be the first and second derivative of E, respectively.
Then

(i) The first derivative

E ′ : V −→ V ∗ is given by

〈E ′(u), h〉V ∗,V =

∫
Ω

∇u∇h−
∫

Ω

f̄(u)h for all u, h ∈ V. (25)
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(ii) The second derivative

L : V −→ L(V, V ∗) is given by

〈L(u)h, k〉V ∗,V =

∫
Ω

∇h∇k −
∫

Ω

f̄ ′(u)hk for all u, h, k ∈ V. (26)

Proof. We write E as the difference of E1 and E2, where

E1(u) =
1

2

∫
Ω

|∇u|2 dx and E2(u) =

∫
Ω

F̄ (u) dx. (27)

Obviously, E1 is twice continuously Fréchet differentiable. Its derivatives are
easily identified in the formula (25) and (26). We now prove the differentia-
bility of E2.

By Taylor’s formula, there exists θ(x) ∈ (0, 1) such that

F̄ (u+ h)− F̄ (u) = f̄(u+ θh)h for all u, h ∈ V.

Il follows that∣∣∣∣E2(u+ h)− E2(u)−
∫

Ω

f̄(u)h dx

∣∣∣∣
≤
∫

Ω

|f̄(u+ θh)− f̄(u)| |h| dx ≤ C‖f̄(u+ θh)− f̄(u)‖L2(Ω)‖h‖V .

Note that u+ θh tends to u in H1(Ω) as h→ 0 in V ; it follows from Lemma
3.1 that ‖f̄(u+ θh)− f̄(u)‖L2(Ω) tends to 0 as h→ 0 in V . Thus∣∣∣∣E2(u+ h)− E2(u)−

∫
Ω

f̄(u)h dx

∣∣∣∣ = o(‖h‖V ) as h→ 0.

This implies that the first derivative E ′2 exists and

〈E ′2(u), h〉V ∗,V =

∫
Ω

f̄(u)h dx.

The Fréchet differentiability of E ′2 is shown in a similar way. Choose p > 2
such that V is continuously embedded in Lp(Ω). Let T be a linear mapping
from V to V ∗ given by

〈T h, k〉V ∗,V =

∫
Ω

f̄ ′(u)h k dx.
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We will use below a generalized Holder inequality based on the identity

1

p
+

1

p
+
p− 2

p
= 1.

For every u, h, k ∈ V , there exist η(x) ∈ (0, 1) such that∣∣∣∣〈E ′2(u+ h)− E ′2(u)− Th, k〉V ∗,V
∣∣∣∣

≤
∫

Ω

|f̄ ′(u+ ηh)− f̄ ′(u)| |h| |k| dx

≤ ‖f̄ ′(u+ ηh)− f̄ ′(u)‖Lp/(p−2)(Ω)‖h‖Lp(Ω)‖k‖Lp(Ω)

≤ C‖f̄ ′(u+ ηh)− f̄ ′(u)‖Lp/(p−2)(Ω)‖h‖V ‖k‖V , (28)

It follows from (28) that

‖E ′2(u+ h)− E ′2(u)− T h‖V ∗ ≤ C‖f̄ ′(u+ ηh)− f̄ ′(u)‖Lp/(p−2)(Ω)‖h‖V .

Since p/(p−2) < +∞ and since f̄ ′ is bounded, ‖f̄ ′(u+ηh)− f̄ ′(u)‖Lp/(p−2)(Ω)

tends to 0 as h→ 0. Thus

‖E ′2(u+ h)− E ′2(u)− Th‖V ∗ = o(‖h‖V )

which implies that

〈E ′′2 (u)h, k〉V ∗,V =

∫
Ω

f̄ ′(u)h k for all u, h, k ∈ V.

On the other hand,

|〈(E ′′2 (u)− E ′′2 (v))h, k〉V ∗,V | ≤
∫

Ω

|f̄ ′(u)− f̄ ′(v)| |h| |k| dx

≤ C‖f̄ ′(u)− f̄ ′(v)‖Lp/(p−2)(Ω)‖h‖V ‖k‖V ,

so that
‖E ′′2 (u)− E ′′2 (v)‖L(V,V ∗) ≤ C‖f̄ ′(u)− f̄ ′(v)‖Lp/p−2(Ω).

This estimate implies the continuity of E ′′2 .

We define a continuous bilinear form from V × V → R by

a(u, v) =

∫
Ω

∇u∇v dx.
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Lemma 3.3. There exists an isomorphism A from V onto V ∗ such that

a(u, v) = 〈Au, v〉V ∗,V for all u, v ∈ V. (29)

Proof. For each u ∈ V we define the functional Tu on V by Tu(v) = a(u, v).
By continuity of the bilinear form a, |Tu(v)| ≤ C‖u‖V ‖v‖V . Thus, Tu ∈ V ∗
and

‖Tu‖V ∗ ≤ C‖u‖V . (30)

We define the operator A : V → V ∗ by A(u) = Tu. It follows from (30) that
A is continuous.

Next, we prove that A is injective. Let u ∈ V such that Au = 0. Then
a(u, v) = 0 for all v ∈ V . In particular, a(u, u) = 0. Recall that with
Poincaré-Wirtinger inequality for all w ∈ V ,∫

Ω

w2dx =

∫
Ω

(w −
∫
−

Ω

w)2dx ≤ C(Ω)

∫
Ω

|∇w|2dx, (31)

we deduce that
∫

Ω
u2 dx = 0, hence u = 0.

We now claim that A is surjective. First, note that a is coercive because
of Poincaré-Wirtinger inequality (31). It follows from Lax-Milgram theorem
that for all T ∈ V ∗ there exists a unique element u ∈ V such that

a(u, v) = 〈T, v〉V ∗,V for all v ∈ V.

This follows 〈T, v〉V ∗,V = 〈Tu, v〉V ∗,V , hence T = Tu = Au so that A is
surjective. By a consequence of the open mapping theorem [3, Corollary 2.7,
p. 35] theorem, we conclude that A is an isomorphism from V onto V ∗.

Corollary 3.4. The first and second derivatives of E can be represented in
V ∗ as:

E ′(u) = Au− f̄(u) +

∫
−

Ω

f̄(u), (32)

L(u)h = Ah− f̄ ′(u)h+

∫
−

Ω

f̄ ′(u)h, (33)

for all u, h ∈ V .

Proof. Since f̄ is bounded, f̄(u)−
∫
−

Ω

f̄(u) ∈ H ↪→ V ∗. Therefore,

Au− f̄(u) +

∫
−

Ω

f̄(u) ∈ V ∗.
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Since ∫
Ω

(∫
−

Ω

f̄(u)

)
h =

∫
−

Ω

f̄(u)

∫
Ω

h = 0 for all h ∈ V,

it follows that

〈Au− f̄(u) +

∫
−

Ω

f̄(u), h〉V ∗,V =

∫
Ω

∇u∇h−
∫

Ω

f̄(u)h.

This togother with (25) implies that

E ′(u) = Au− f̄(u) +

∫
−

Ω

f̄(u).

Identity (33) may be proved in a similar way.

We define

Lp(Ω) := {u ∈ Lp(Ω),

∫
Ω

u(x) dx = 0},

equipped with the norm ‖ · ‖Lp(Ω) := ‖ · ‖Lp(Ω) and

Xp := {u ∈ W 2,p(Ω), ∂νu = 0,

∫
Ω

u(x)dx = 0}.

Lemma 3.5. Let p ≥ 2, then for any g ∈ Lp(Ω), there exists a unique
solution u ∈ Xp of the equation

Au = g in V ∗. (34)

Moreover, A = −∆ on Xp.

Proof. It follows from Lemma 3.3 that Equation (34) has a unique solution
u ∈ V . We now claim that u ∈ Xp . Consider the elliptic problem{

−∆ũ = g in Ω,
∂ν ũ = 0 on ∂Ω.

First, since g ∈ H, it follows from the Fredholm alternative that this problem
possesses a unique solution ũ ∈ V . Next, since g ∈ Lp(Ω), we deduce from
[2] that ũ ∈ W 2,p(Ω) so that also ũ ∈ Xp. In fact, ũ satisfies Equation (34)
since

〈g, v〉V ∗,V = 〈−∆ũ, v〉V ∗,V =

∫
Ω

∇ũ∇v dx = a(ũ, v) = 〈Aũ, v〉V ∗,V
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for all v ∈ V . By the uniqueness of the solution of Equation (34), u = ũ ∈ Xp.
On the other hand, for all w ∈ Xp, v ∈ V

〈−∆w, v〉V ∗,V =

∫
Ω

∇w∇v dx = 〈Aw, v〉V ∗,V ,

so that A = −∆ on Xp.

Definition 3.6. We say that ϕ ∈ V is a critical point of E if E ′(ϕ) = 0.

Lemma 3.7. For every ϕ ∈ V , the following assertions are equivalent:

(i) ϕ is a critical point of E,

(ii) ϕ ∈ X2 and ϕ satisfies the equations

−∆ϕ− f̄(ϕ) +

∫
−

Ω

f̄(ϕ) = 0 in Ω, (35)

∂νϕ = 0 on ∂Ω. (36)

Moreover, ϕ is C∞(Ω).

Proof. (ii)⇒ (i). It follows directly from Lemma 3.5 and the formula (32).
(i)⇒ (ii). Assume that ϕ ∈ V is a critical point of E. We deduce from (32)
that

A(ϕ) = f̄(ϕ)−
∫
−

Ω

f̄(ϕ) in V ∗.

Since f̄(ϕ)−
∫
−

Ω

f̄(ϕ) ∈ H, then A(ϕ) ∈ H. It follows from Lemma 3.5 that

ϕ ∈ X2 and A = −∆. Therefore ϕ satisfies (35).
Finally, we deduce that ϕ ∈ C∞(Ω) from the boundedness of f̄(ϕ) −∫

−
Ω

f̄(ϕ), Sobolev embedding theorem and a standard bootstrap argument.

Lemma 3.8. Let ϕ be a critical point of E. Then operator L(ϕ) is Fredholm
from V to V ∗. Moreover,

(i) kerL(ϕ) is finite-dimensional and contained in C∞(Ω).

(ii) 〈u, v〉V,V ∗ = 0 for all u ∈ kerL(ϕ) and v ∈ RgL(ϕ),
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(iii) V ∗ is the topological direct sum of kerL(ϕ) ⊂ V ↪→ V ∗ and RgL(ϕ),

(iv) if g ∈ Lp(Ω) ∩ RgL(ϕ) for p ≥ 2 and u ∈ V solves the equation

L(ϕ)u = g in V ∗

then u ∈ Xp. Consequently,

Rg (L(ϕ)|Xp) = RgL(ϕ) ∩ Lp(Ω).

Proof. We first prove that the linear operator

T : V −→ V ∗

h 7−→ −f̄ ′(ϕ)h+

∫
−

Ω

f̄ ′(ϕ)h.

is compact. Indeed, it follows from the compact embedding H ↪→ V ∗ and
the following estimate

‖Th‖H ≤ ‖f̄ ′(ϕ)h‖L2(Ω) +

∥∥∥∥∫−
Ω

f̄ ′(ϕ)h

∥∥∥∥
L2(Ω)

≤ C(‖h‖L2(Ω) + ‖h‖L1(Ω))

≤ C‖h‖V .

Recall that since A is an isomorphism from V onto V ∗, it is also a Fredholm
operator of index

indA := dim kerA− codim RgA = 0.

It follows that L(ϕ) = A + T , as a sum of a Fredholm operator and a
compact operator, is also a Fredholm operator with the same index [3, p.
168]. Therefore,

RgL(ϕ) is closed in V ∗ and dim kerL(ϕ) = codim RgL(ϕ) <∞. (37)

(i) Using similar arguments as the proof in Lemma 3.7, we deduce that if
h ∈ kerL(ϕ) then h ∈ X2 and satisfies the equation:

−∆h− f̄ ′(ϕ)h+

∫
−

Ω

f̄ ′(ϕ)h = 0 in Ω,

∂νh = 0 on ∂Ω.
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Note that f̄ ′(ϕ) ∈ C∞(Ω); we deduce that h ∈ C∞(Ω) from a Sobolev
embedding theorem and a bootstrap argument.
(ii) We may identify the linear operator L(ϕ) with a bilinear symmetric form
on V ×V (e.g see [29, Section 10.5.3 p. 82]). Thus, for every u ∈ kerL(ϕ), v =
L(ϕ)w,w ∈ V ,

〈u, v〉V,V ∗ = 〈u, L(ϕ)w〉V,V ∗ = 〈L(ϕ)u,w〉V ∗,V = 0,

which implies (ii).
(iii) Using part (ii), we deduce that for every u ∈ kerL(ϕ) ∩ RgL(ϕ),
〈u, u〉V ∗,V = 0, hence u = 0. It follows that kerL(ϕ) ∩ RgL(ϕ) = {0}. On
the other hand, dim kerL(ϕ) = codim RgL(ϕ) so that V ∗ is the algebraic
direct sum of kerL(ϕ) and RgL(ϕ).

Since kerL(ϕ) is finite-dimensional, it is closed in V ∗. It follows from
(37) that RgL(ϕ) is closed in V ∗, thus V ∗ is the topological direct sum of
kerL(ϕ) and RgL(ϕ).
(iv) Since g ∈ RgL(ϕ), there exists u ∈ V satisfying

Au = f̄ ′(ϕ)u−
∫
−

Ω

f̄ ′(ϕ)u+ g.

We write

Au = f̄ ′(ϕ)u−
∫
−

Ω

f̄ ′(ϕ)u+ g ∈ H,

thus u ∈ X2 and A = −∆. We have

−∆u− f̄ ′(ϕ)u = −
∫
−

Ω

f̄ ′(ϕ)u+ g ∈ Lp(Ω),

note that f̄ ′(ϕ) ∈ C∞(Ω) and use elliptic regularity theory to deduce that
u ∈ Xp. From this we obtain (iv).

We equip the norm ‖ · ‖Xp := ‖ · ‖W 2,p(Ω) on Xp.

Lemma 3.9. Assume that ϕ ∈ Xp, p > max{N, 2} then we can consider E ′

as a mapping from Xp to Lp(Ω) and it may be represented of the following
form

E ′(ϕ) = −∆ϕ− f̄(ϕ) +

∫
−

Ω

f̄(ϕ).
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If, in addition s1 ≤ ϕ ≤ s2 then there exists a neighborhood U(ϕ) of ϕ in Xp

such that
E ′
∣∣
U(ϕ)
7→ Lp(Ω)

is analytic.

Remark 3.10. We consider here the standard definition of analyticity (see
[28, Definition 8.8, p. 362]):

A mapping T from a Banach space X into a Banach space Y is called
analytic on a neighborhood of z ∈ X if it may be represented as

T (z + h)− T (z) =
∑
k≥1

Tk(z)[h, . . . , h] in Y,

for any h ∈ X, ‖h‖X ≤ ε, ε small enough,

where Tk(z) is a symmetric k−linear form on X with values in Y and∑
k≥1

‖Tk(z)‖Lk(X,Y )‖h‖k <∞.

Here, Lk(X, Y ) is the space of bounded k-linear operators Xk → Y .

Proof. If ϕ ∈ Xp, then we can see easily that

E ′(ϕ) = −∆ϕ− f̄(ϕ) +

∫
−

Ω

f̄(ϕ),

and obviously, E ′(ϕ) ∈ Lp(Ω).
Since f̄ is a polynomial on (s1 − 1, s2 + 1), using Taylor’s expansion we

have

f̄(ϕ(x) + h(x))− f̄(ϕ(x)) =
n∑
k=1

f̄ (k)(u(x))

k!
hk(x),

for all h ∈ Xp such that ‖h‖C(Ω) ≤ C‖h‖Xp < 1. It follows that

E ′(ϕ+ h)− E ′(ϕ) = −∆h+
n∑
k=1

f̄ (k)(ϕ)

k!
hk −

n∑
k=1

∫
−

Ω

f̄ (k)(ϕ)

k!
hk dx

=
n∑
k=1

Tk[h, . . . , h],
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where

T1[h] = −∆h+ f̄ ′(ϕ)h−
∫
−

Ω

f̄ ′(ϕ)h and

Tk[h, . . . , h] =
f̄ (k)(ϕ)

k!
hk −

∫
−

Ω

f̄ (k)(ϕ)

k!
hk for all 1 < k ≤ n.

Note that for all 1 < k ≤ n and for all h1, . . . , hk ∈ Xp∣∣∣∣Tk[h1, .., hk]

∣∣∣∣ ≤ ∣∣∣∣ f̄ (k)(ϕ)

k!
h1 . . . hk

∣∣∣∣+

∣∣∣∣∫−
Ω

f̄ (k)(ϕ)

k!
h1 . . . hk

∣∣∣∣
≤ C

k∏
i=1

‖hi‖L∞(Ω) ≤ C
k∏
i=1

‖hi‖Xp ,

so that ∥∥∥∥Tk[h1, .., hk]

∥∥∥∥
Lp(Ω)

≤ C
k∏
i=1

‖hi‖Xp .

This estimate implies that Tk ∈ Lk(Xp,L
p(Ω)) for all 1 < k ≤ n. It is easy to

see that T1 ∈ L(Xp,L
p(Ω)). It follows that E ′ is analytic in a neighborhood

of ϕ.

Theorem 3.11. (Lojasiewicz inequality). Let ϕ ∈ V be a critical point of
the functional E such that s1 ≤ ϕ ≤ s2. Then there exist constants θ ∈ (0, 1

2
]

and C, σ > 0 such that

|E(u)− E(ϕ)|1−θ ≤ C‖E ′(u)‖V ∗

for all ‖u− ϕ‖V ≤ σ.

In order to study Lojasiewicz inequality of a functional E ∈ C2(V ) near
a critical point ϕ, Chill gives the following conditions:
(C1) The kernel V0 := kerL(ϕ) is a complemented subspace of V, that means
there exists a projection P ∈ L(V ) such that V0 = RgP . We denote by
P ′ ∈ L(V ∗) the adjoint projection of P .
(C2) There exists a Banach space W with the following properties

(i) W is continuously embedded in V ∗ and invariant under P ′ (i.e. P ′(W ) ⊂
W ),
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(ii) E ′ ∈ C1(V,W ),

(iii) RgL(ϕ) = kerP ′ ∩W .

(C3) There exists Banach spaces X ⊂ V and Y ⊂ W such that

(i) the spaces X and Y are invariant under projection P and P ′, respec-
tively,

(ii) the restriction of the derivative E ′ in X is analytic in a neighborhood
of ϕ with value in Y ,

(iii) kerL(ϕ) is contained in X and finite dimesional,

(iv) RgL(ϕ)
∣∣
X

= kerP ′ ∩ Y .

It follow form [8, Corollary 3.11] that if the conditions (C1), (C2), (C3)
hold then there exist σ > 0, θ ∈ (0, 1

2
], C ≥ 0 such that

|E(u)− E(ϕ)|1−θ ≤ C‖E ′(u)‖W for all ‖u− ϕ‖V ≤ σ.

We say that the functional E satisfies the Lojasiewicz inequality near ϕ and
the constant θ will be called the Lojasiewicz exponent.

Our task is to verify the conditions (C1), (C2) (C3). We need the fol-
lowing lemma

Lemma 3.12. The conditions (C1), (C2) hold with W = V ∗ and P the pro-
jection onto kerL(ϕ) along RgL(ϕ)∩ V . In this case, the adjoint projection
P ′ is an extension of P to V ∗.

Remark 3.13. Before giving the proof of Lemma 3.12, we recall a useful
property in linear algebra. Let T be a linear mapping from a vector space to
X into itself. Assume that T 2 = T , then

X = kerT ⊕ Rg T.

Proof. Because of Lemma 3.8(iii), there exists a projection Q ∈ L(V ∗) onto
kerL(ϕ) along RgL(ϕ). Since V and H are invariant under the projection
Q, V and H can be represented as

V = kerL(ϕ)⊕ (RgL(ϕ) ∩ V ) and H = kerL(ϕ)⊕ (RgL(ϕ) ∩H) (38)
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where the sums are algebraic direct sums. Moreover, the identities (38)
are also topological direct sums since their components are closed in the
corresponding spaces.

Let P, PH be the restriction of Q to V , H, respectively. Then, P ∈
L(V ), PH ∈ L(H). We shall prove that P ′ = Q.

By Lemma 3.8(ii), kerL(ϕ) is orthogonal to RgL(ϕ)∩H with respect to
the scalar product in H. Thus, PH is an orthogonal projection in H. As a
consequence PH is an auto-adjoint operator of H.

Let P ′ ∈ L(V ∗) be the adjoint projection of P . For all u ∈ V, v ∈ H,

〈u, P ′v〉V,V ∗ = 〈Pu, v〉V,V ∗ = 〈PHu, v〉H,H = 〈u, PHv〉H,H = 〈u,Qv〉V,V ∗

It follows that P ′ = Q on H. On the other hand, H is dense in V ∗ we deduce
that P ′ = Q. Put W = V ∗ then it is easy to see that the conditions (C1)
and (C2) hold with the above projections P and P ′.

Proof of Theorem 3.11
It remain to verify the condition (C3). Let p > max{N, 2}, choose X = Xp

and Y = Lp(Ω).

(i) It follows from Lemma 3.8(i) that kerL(ϕ) ⊂ C∞(Ω), thus P (V ), P (H),P ′(V ), P ′(H)
are contained in kerL(ϕ) ⊂ C∞(Ω), which is a subspace of Xp,L

p(Ω).

(ii) Condition C3(ii) follows from Lemma 3.9(i).

(iii) Condition C3(iii) follows from Lemma 3.8(i).

(iv) Condition C3(iv) follows from Lemma 3.8(iv).

These prove theorem. �

3.3 Application of Lojasiewicz inequality

Lemma 3.14. Let ū be the solution of Problem (P̄ ) corresponding with the
initial condition g0. Then

(i) For all 0 < s ≤ t <∞,

E(ū(s)) = E(ū(t)) +

∫ t

s

∫
Ω

|ūt|2 dx. (39)

Moreover if g0 ∈ V we can take s = 0 in (39).
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(ii) Further, e := limt→∞E(ū(t)) exists.

Proof. (i) By Lemma 2.8, ū is a smooth function on Ω× (0,∞) so that

d

dt
E(ū(t)) =

∫
Ω

(
−∆ū− f(ū)

)
ūt

=

∫
Ω

(
−∆ū− f(ū) +

∫
−

Ω

f(ū)
)
ūt

= −
∫

Ω

ū2
t (x, t) dx ≤ 0.

As a consequence, for all 0 < s ≤ t <∞

E(ū(s)) = E(ū(t)) +

∫ t

s

∫
Ω

|ūt|2 dx.

If g0 ∈ V , using the continuity of E in V , noting that ūt ∈ L2(Ω× (0, T )) we
deduce that (39) also holds for s = 0.
(ii) We recall that the function F̄ is bounded on R. Therefore the function
t → E(ū(t)), which is nonincreasing and bounded from below, converges to
a limit as t→∞.

We denote by S(t) the semigroup on H that corresponding with problem (P̄ )
and define the ω-limit set of g0 by

ω(g0) := {ϕ ∈ V : there exists {tn} such that S(tn)v0 → ϕ in V as tn →∞}.

We have the following result

Lemma 3.15. (i) ω(g0) is non-empty, compact of V . Furthermore, ω(g0)
is positive invariant under S(t), i.e., S(t)(ω(g0)) ⊂ ω(g0).

(ii) The functional E is constant on ω(g0). If ϕ ∈ ω(g0) then s1 ≤ ϕ ≤ s2

and ϕ is a critical points of E, i.e., E ′(ϕ) = 0.

(iii) d(S(t)v0, ω(g0))→ 0 as t→∞.

Proof. (i) Since {ū(t), t ≥ 1} is compact in V , we can easily show that ω(g0)
is non-empty, compact of V . Next, note that if ψ ∈ ω(g0), then there exists
a sequence tn →∞ such that ψ = limn→∞ S(tn)g0. For all t ≥ 0, we have

S(t)ψ = lim
n→∞

S(t+ tn)g0 ∈ ω(g0).
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This shows that ω(g0) is positive invariant.
(ii) First, we prove that E is constant on ω(g0). Let e = limt→∞E(S(t)g0)
as in Lemma 3.14. For any ϕ ∈ ω(g0), we have ϕ = limn→∞ S(tn)g0 for some
sequence tn →∞. Since E is continuous in V ,

E(ϕ) = lim
n→∞

E(S(tn)g0) = e.

i.e., E is constant on ω(g0).
Note that S(tn)v0 → ϕ in also L2(Ω) so that we can extract a subsequence

of S(tn)v0 which converges almost everywhere on Ω. On the other hand
s1 ≤ S(tn)v0 ≤ s2 for all n ≥ 0, therefore

s1 ≤ ϕ ≤ s2.

We now prove that ϕ is a critical of E. Since ω(g0) is positive invariance,
E(S(t)ϕ) = E(ϕ) for all t ≥ 0. It follows from Lemma 3.14 that∫ t

0

∫
Ω

|ϕt|2 dxdt = 0 for all t ≥ 0,

so that ϕt = 0 for all t ≥ 0. Hence, ϕ satisfies the equation

−∆ϕ− f̄(ϕ) +

∫
−

Ω

f̄(ϕ) = 0 in Ω,

∂νϕ = 0 on ∂Ω.

Therefore, ϕ is a critical point of the functional E by Lemma 3.7.
(iii) Assume by contradiction that there exists a sequence tn →∞ and ε > 0
such that d(S(tn)g0, ω(g0)) ≥ ε. By compactness, there exists a subsequence
tnk →∞ such that S(tnk)g0 → w ∈ ω(g0). Therefore, d(S(tnk)g0, ω(g0)) = 0
as k →∞, which is absurd.

Proof of Theorem 1.3
We will first apply Lojasiewicz inequality for Problem P̄ . Recall that since
E is constant on ω(g0), as in Lemma 3.15 we can write

e = E(v) for all v ∈ ω(g0). (40)

It follows from Theorem 3.11 that E satisfies the Lojasiewicz inequality in
the neighborhood of every ϕ ∈ ω(g0); in other words, we have that for every
ϕ ∈ ω(g0) there exist constants θ ∈ (0, 1

2
], C ≥ 0 and δ > 0 such that

|E(v)− E(ϕ)|1−θ ≤ C‖E ′(v)‖V ∗ whenever ‖v − ϕ‖V ≤ δ. (41)
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Since the functional E is continuous on V , we may choose δ small enough so
that

|E(v)− E(ϕ)| < 1 whenever ‖v − ϕ‖V ≤ δ. (42)

It follows from the compactness of ω(g0) in V that there exists a neigh-
borhood U of ω(g0) composed of finitely many balls Bj, j = 1, ..., J , with
center ϕj and radius δj. In each of the ball Bj, inequality (42) and the
Lojasiewicz inequality (41) hold for some constants θj and Cj. We define
θ̄ = min {θj, j = 1, ..., J} and C̄ = max {Cj, j = 1, ..., J} to deduce from
(40), (41) and (42) that

|E(v)− e|1−θ̄ ≤ C̄‖E ′(v)‖V ∗ for v ∈ U .

Using Lemma 3.15(iii), there exists t0 ≥ 0 such that ū(t) ∈ U for all t ≥ t0.
Hence, for every t ≥ t0, there holds

− d

dt
|E(ū(t))− e|θ̄ = θ̄|E(ū(t))− e|θ̄−1

(
− dE

dt
(ū(t))

)
≥ θ̄

C̄

‖ūt‖2
L2(Ω)

‖E ′(ū(t))‖V ∗
. (43)

Note that for all t ≥ t0, ū(t) ∈ C∞(Ω), so that E ′(ū(t)) ∈ H and it can be
written of the form

E ′(ū(t)) = −∆ū− f̄(ū) +

∫
−

Ω

f̄(ū) = −ūt.

Applying continuous embedding H ↪→ V ∗, we have

‖E ′(ū(t))‖V ∗ ≤ ¯̄C‖E ′(ū(t))‖L2(Ω) = ¯̄C‖ūt‖L2(Ω) for all t ≥ t0, (44)

where ¯̄C is a positive constant. Combining (43) and (44) we obtain

− d

dt
|E(ū(t))− e|θ̄ ≥ C0‖ūt‖L2(Ω).

Here, C0 =
θ̄

C̄ ¯̄C
. Thus

‖ū(t1)− ū(t2)‖L2 ≤
∫ t2

t1

‖ūt‖L2 ≤ 1

C0

(|E(ū(t1))− e|θ̄ − |E(ū(t2))− e|θ̄)
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for all t0 ≤ t1 ≤ t2. Therefore, ‖ū(t1)− ū(t2)‖L2(Ω) tends to zero as t1 → ∞
so that {ū(t)} is a Cauchy sequence in H. Consequently, there exists ϕ ∈ H
such that limt→∞ ū(t) = ϕ exists in H. It follows from Corollary 2.9(ii) that
ϕ ∈ C∞(Ω) and that ū(t)→ ϕ in Cm(Ω) for all m ∈ IN. We conclude that

lim
t→∞
‖u(t)− ϕ‖Cm(Ω) = 0,

and ϕ is a solution of the stationary problem (S). Moreover, by consered
mass property ∫

Ω

ϕdx =

∫
Ω

g0 dx,

which completes the proof of Theorem 1.3. �

3.4 Rate of the convergence

In this section, we estimate the rate of the convergence of u(t) to ϕ.
The proof is based on Lojasiewicz inequality. We consider two cases, when
Lojasiewicz exponent θ = 1

2
and θ ∈ (0, 1

2
).

3.4.1 When Lojasiewicz exponent θ ∈ (0, 1
2
)

We need the following lemma.

Lemma 3.16 (see [13], Lemma 3.3). Asume that for all t ≥ t0, some α > 0
and a constant K > 0 ∫ ∞

t

‖ut‖2
H ≤ Kt−2α−1.

Then, we have

‖u(t)− u(τ)‖H ≤
√
K

1− 2−α
t−α for all τ ≥ t ≥ t0.

Consequently,

‖u(t)− ϕ‖H ≤
√
K

1− 2−α
t−α for all t ≥ t0.

Proof.
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Theorem 3.17. Assume that Theorem 3.11 holds for θ ∈ (0, 1
2
), then for

α :=
θ

1− 2θ
> 0 and a constant K > 0, we have

‖u(t)− ϕ‖H ≤
√
K

1− 2−α
t−α for all t > 0.

Proof. By the modification on section 3.1, we only need to prove this theorem
for function ū. Since ū(x, t) is smooth for all t > 0, we have

d

dt
(E(ū)− E(ϕ)) = 〈E ′(ū), ūt〉 = −〈E ′(ū), E ′(ū)〉 = −‖E ′(ū)‖2

H . (45)

Since ū(t) tends to ϕ as t→∞. Therefore there exists T0 > 0 such that for
all t ≥ T0

‖ū(t)− ϕ‖ ≤ σ (σ in Theorem 3.11).

It follows that for all t ≥ T0

C‖E ′(ū)‖V ∗ ≥ |E(ū)− E(ϕ)|1−θ.

Therefore, by using the continuous embedding H ↪→ V ∗, we obtain

C1‖E ′(ū)‖H ≥ |E(ū)− E(ϕ)|1−θ = (E(ū)− E(ϕ))1−θ. (46)

Combining (47) and (48), we get

d

dt
(E(ū)− E(ϕ)) ≤ −C2(E(ū)− E(ϕ))2(1−θ) for all t ≥ T0,

where C2 := 1/C2
1 .

Note that y(t) :=

(
(E(ū(T0)−E(ϕ))2θ−1 + C2(1− 2θ)(t− T0)

)−1/(1−2θ)

is the unique solution of the differential equation
d

dt
y(t) = −C2y

2(1−θ) for t ≥ T0,

y(T0) = E(ū(T0)− E(ϕ)).

31



We use a differential inequality in [22, Lemma 2.7, p.53] to deduce for all
t ≥ T0 that

E(ū(t))− E(ϕ) ≤

(
(E(ū(T0)− E(ϕ))2θ−1 + C2(1− 2θ)(t− T0)

)−1/(1−2θ)

=

(
(E(ū(T0)− E(ϕ))2θ−1 − C2(1− 2θ)T0 + C2(1− 2θ)t

)−1/(1−2θ)

=

(
(E(ū(T0)− E(ϕ))2θ−1 − C2(1− 2θ)T0 + C2(1− 2θ)

t

2
+ C2(1− 2θ)

t

2

)−1/(1−2θ)

≤

(
C2(1− 2θ)

t

2

)−1/(1−2θ)

for all t ≥ T0, with some T0 > T0 large enough.

It follows that for all t ≥ T0∫ ∞
t

‖ūt(s)‖2 ds ≤ Kt−2α−1

Here, K :=

(
C2(1− 2θ)

2

)−1/(1−2θ)

and α :=
θ

1− 2θ
> 0. Now, according to

Lemma 3.16, we obtain

‖ū(t)− ϕ‖H ≤
√
K

1− 2−α
t−α for all t ≥ T0.

3.4.2 When Lojasiewicz exponent θ = 1
2

Lemma 3.18 (see [12], Lemma 2.2). Assume that there exists two constants
γ > 0 and a > 0 such that for all t ∈ [0, T ],∫ +∞

t

‖ut‖2
H ds ≤ a exp(−γt).

Then for all τ ≥ t ≥ 0, we have

‖u(t)− u(τ)‖H ≤
√
ab exp(−γt

2
).
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Theorem 3.19. Assume that Theorem 3.11 holds for θ ∈ (0, 1
2
), then for

constants K, δ > 0, we have

‖u(t)− ϕ‖H ≤ K exp(−δt) for all t > 0.

Proof. By the modification on section 3.1, we only need to prove this theorem
for function ū. Since ū(x, t) is smooth for all t > 0, we have

d

dt
(E(ū)− E(ϕ)) = 〈E ′(ū), ūt〉 = −〈E ′(ū), E ′(ū)〉 = −‖E ′(ū)‖2

H . (47)

Since ū(t) tends to ϕ as t→∞. Therefore there exists T0 > 0 such that for
all t ≥ T0

‖ū(t)− ϕ‖ ≤ σ (σ in Theorem 3.11).

It follows that for all t ≥ T0

C‖E ′(ū)‖V ∗ ≥ |E(ū)− E(ϕ)|
1
2 .

Therefore, by using the continuous embedding H ↪→ V ∗, we obtain

C1‖E ′(ū)‖H ≥ |E(ū)− E(ϕ)|
1
2 = (E(ū)− E(ϕ))

1
2 . (48)

Combining (47) and (48), we get

d

dt
(E(ū)− E(ϕ)) ≤ −C2(E(ū)− E(ϕ)) for all t ≥ T0,

where C2 := 1/C2
1 .

Note that y(t) :=

(
E(ū(T0) − E(ϕ)

)
exp(−C2(t − T0)) is the unique

solution of the differential equation
d

dt
y(t) = −C2y for t ≥ T0,

y(T0) = E(ū(T0)− E(ϕ)).

We use a differential inequality in [22, Lemma 2.7, p.53] to deduce for all
t ≥ T0 that

E(ū(t))− E(ϕ) ≤

(
E(ū(T0)− E(ϕ)

)
exp(−C2(t− T0)).
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In particular for all t ≥ T0,∫ ∞
t

‖ūt(s)‖2
H ds ≤

(
E(ū(T0)− E(ϕ)

)
exp(−C2(t− T0)).

Now, Using Lemma 3.18, we deduce the result of the theorem.

4 Stationary solution in one dimension

We consider Problem (P ) in one dimension.

(P )


ut = uxx + f(u)−

∫
−

Ω

f(u) in Ω× R+,

ux(x, t) = 0 on ∂Ω× R+,

u(x, 0) = g0(x) x ∈ Ω.

Theorem 4.1. Set N = 1. Let a < b be such that satisfy Property (C) with
respect to f . We also assume that f ′(s) ≤ 0 for all s ∈ [a, b]. Assume that
a < g0(x) < b for almost x ∈ Ω, then

ϕ =

∫
−

Ω

g0.

Proof. Firs, note that we have

a ≤ u(x, t) ≤ b for all x ∈ Ω, t ≥ 0.

It follows that a ≤ ϕ ≤ b. Set w := ϕx, diferentiating the equations of ϕ in
stationary problem (S) with respect to x, we obtain

(P1)

{
wxx + f ′(ϕ)w = 0 in Ω,
w = 0 on ∂Ω.

Since c(x) := f ′(ϕ) ≤ 0, we apply maximum principle to deduce that w ≡ 0
is the unique solution of Problem (P1). Consequently, ϕ is constant. This
together mass conservation property implies that

ϕ =

∫
−

Ω

g0.
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5 Appendix

Lemma 5.1. Let T be a linear mapping from V to V such that T 2 = T .
then

(i)
V = kerT ⊕ Rg T.

(ii) Let W be a subspace of V . Assume that W is invariant i.e. T (W ) ⊂ W .
Then

W = (kerT ∩W )⊕ (Rg T ∩W ).

Proof. (ii) First, note that we have

T|W : W −→ W

satisfies (T|W )2 = T|W . It follows that

W = ker (T|W )⊕ Rg (T|W ).

Since

ker (T|W ) = {y ∈ W : T (x) = 0} = {x ∈ W and x ∈ kerT}
= kerT ∩W,

and since
Rg (T|W ) = T (W ) ⊂ Rg T ∩W,

then
W = ker (T|W )⊕ Rg (T|W ) ⊂ (kerT ∩W )⊕ (Rg T ∩W ).

But,
W ⊃ (kerT ∩W )⊕ (Rg T ∩W ).

It follows that
W = (kerT ∩W )⊕ (Rg T ∩W ).
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