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Abstract. In this paper, some results obtained on the asymptotic behavior of

hard, thin curvilinear interfaces i.e., in cases where the interphase and adher-

ents have comparable rigidities, are presented. The case of hard interfaces is
investigated in terms of cylindrical coordinates and some analytical examples

are presented.

1. Introduction. In this paper, the terms “interphase” and “interface” will be
used in line with the following definition: an interphase is a thin volumic zone
where exchanges occur between two materials or structures; and an interface is a
contact surface, as well as being a mathematical expression for an interphase. In the
fields of mechanical and civil engineering, interphases are known to play a crucial
role in structure assemblies. However, since they are so thin, it is difficult to account
directly for them in a complete analysis (the number of degrees of freedom is liable
to be very large in a computational model). The strategy used here to overcome this
problem consists in performing an asymptotic analysis. In this case, the adhesive is
eliminated geometrically and a simpler equivalent interface model is obtained. If a
relationship is obtained between the stress vector and the jump in the displacement,
we have what we call an imperfect interface; otherwise it will be a perfect interface.
It has been established in previous studies that if the stiffness of the interphase
is similar to that of the adherents, various mathematical approaches (matching
asymptotic expansions, energy methods, Γ-convergence, etc.), can be used, which
yield a perfect interface model at the first order in the expansion procedure and
an imperfect interface mode at the second order. The model obtained here is non-
local, due to the presence of tangential derivatives. The aim of the present study
was to obtain an interface law in terms of cylindrical coordinates in the context of
elasticity, by performing a micro-mechanical analysis.

This paper consists of three parts. In section 2, some elementary examples are
presented. In section 3, some general mathematical results are recalled. Section 4
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is devoted to drawing up the interface law in terms of polar coordinates, in order
to model the gluing along some particular surfaces.

2. Some elementary examples.

2.1. A simple one-dimensional example in one dimension: A bar sub-
jected to traction. We take the example of the equilibrium of an elastic bar AC
divided into two parts, AB with stiffness E1 and BC with stiffness E2 (see Fig. 1).
The bar is fixed at point A, a constant load f = a is imposed on BC and a given
load F is imposed at point C. We have AB = ε; BC = L− ε.

By simply integrating the equilibrium equations, we have

0 ≤ x ≤ ε u(x) =
F + a(L− ε)

E1
x;

σ = F + a(L− ε)

ε ≤ x ≤ L = u(x) = − 1

2E2
(x− ε)2 +

F + a(L− ε)
E2

(x− ε) +
F + a(L− ε)

E1
ε;

σ = F + a(L− x)
(1)

where u is the displacement field, and σ is the stress field. These two fields depend
on ε.

At this stage, it is therefore possible to expand the displacement field in BC and
the stress into powers of ε :

u(x) = u0(x) + εu1(x) + ...

σ(x) = σ0(x) + εσ1(x) + ...
(2)

where

u0(x) = − 1

2E2
x2 +

F + aL

E2
x+

F + aL

E1

u1(x) =
1

E2
x− F + a(L− x)

E2
+
F + aL

E1

σ0(x) = −ax+ F + aL

σ1(x) = 0

(3)

where the jump in the displacement between points C and A is given by[
u0
]

= 0

[
u1
]

= −F + aL

E1
+
F + aL

E2
.

(4)

If we expand the second order equation (the second equation in (4)), it emerges
that the jump in the displacement is not equal to zero and an imperfect interface
law is obtained.
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Figure 1. The example of a composite bar subjected to traction loading.

Figure 2. The case of a composite block.

2.2. A two-dimensional example: A composite block subjected to a shear
load. In this section, we recall an example previously presented by the authors
in [15]: that of the equilibrium of an elastic composite structure comprising two
adherents, with shear modulus µ and height h, cemented together by a central
adhesive with shear modulus µ̄ and thickness ε (see Fig. 2). The adhesion between
the adhesive and the adherents is perfect. The lower base of the block is kept fixed.
The upper base and the lateral surfaces are subjected to a given constant tangential
load τ . Using standard notations, the displacement field is given by

u1 =
τ

µ
(x2 + h+ ε/2) in the lower adherent

u1 =
τ

µ
h+

τ

µ̄
(x2 + ε/2) in the glue

u1 =
τ

µ
(x2 + h− ε/2) +

τ

µ̄
ε in the upper adherent

u2 = 0 in the composite

(5)
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Figure 3. The case of a composite tube.

Based on the expansion presented in the previous section, we observe that

u0
1 =

τ

µ
(x2 + h) in the lower adherent

u0
1 =

τ

µ
h+

τ

µ̄
x2 in the glue

u0
1 =

τ

µ
(x2 + h) in the upper adherent

(6)

and

u1
1 =

τ

2µ
in the lower adherent

u1
1 = − τ

2µ
+
τ

µ̄
in the upper adherent

(7)

and hence, [
u0
]

= 0[
u1

1

]
= − τ

µ
+
τ

µ̄[
u1

2

]
= 0

(8)

As in the previous section, the jump in the displacement is not equal to zero at
the second order, and an imperfect interface law is therefore obtained.

2.3. An example in terms of curvilinear coordinates: A composite tube.
In this section, a two-dimensional case is analyzed and an analytical example is
presented. We use the cylindrical coordinates (r, θ, z). The composite consists
of three tubes which are indexed by (1),(2), and (3), as shown in figure 3. The
adhesion at the interfaces between the tubes is perfect. A pressure pa is applied to
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the internal surface r = a and a pressure pd is applied to the external surface r = d.
We let OA = a, OB = b, OC = c and OD = d. It is assumed that c = b + ε. The
value of the parameter ε is assumed to be small (the internal tube is thin). The
Lamé’s coefficients are indexed depending on the number of tubes.

We take pa, pb, pc and pd to denote the pressures at points A, B, C and D
respectively. The values of pa and pd are given, whereas the values of pb and pc are
unknown.

The problem is assumed to be axially symmetric. The displacement fields in the
radial direction are:

u1(r) =
(paa

2 − pbb2)

(b2 − a2)

r

2(λ1 + µ1)
+
b2a2(pa − pb)
2µ1(b2 − a2)r

u2(r) =
(pbb

2 − pcc2)

(c2 − b2)

r

2(λ2 + µ2)
+
c2b2(pb − pc)
2µ2(c2 − b2)r

u3(r) =
(pcc

2 − pdd2)

(d2 − c2)

r

2(λ3 + µ3)
+
d2c2(pc − pd)
2µ3(d2 − c2)r

(9)

To find the pressures pb and pc, we write the continuity of the displacement fields
at points B and C [10]. A simple linear system is obtained: (Ma +M21)pb −N21pc = Kapa

−N22pb + (Md +M22)pb = Kdpd

(10)

where 

Ka =
a2b

b2 − a2

λ1 + 2µ1

µ1(λ1 + µ1)

Kd =
d2c

d2 − c2
λ3 + 2µ3

µ3(λ3 + µ3)

N21 =
c2b

c2 − b2
λ2 + 2µ2

µ2(λ2 + µ2)

N22 =
b2c

c2 − b2
λ2 + 2µ2

µ2(λ2 + µ2)

Ma =
µ1b

3 + (λ1 + µ1)ba2

(b2 − a2)µ1(λ1 + µ1)

Md =
µ3c

3 + (λ3 + µ3)cd2

(d2 − c2)µ3(λ3 + µ3)

M21 =
µ2b

3 + (λ2 + µ2)bc2

(c2 − b2)µ2(λ2 + µ2)

M22 =
µ2c

3 + (λ2 + µ2)cb2

(c2 − b2)µ2(λ2 + µ2)

(11)

The solution of this system is:
pb =

1

∆
(Kapa(Md +M22) +KdpdN21)

pc =
1

∆
(Kdpd(Ma +M21) +KapaN22)

(12)

where ∆ = (Ma +M21)(Md +M22)−N21N22.
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We study pb and pc when ε tends to zero. We observe that pb and pc tend to the
same value, and hence

pc − pb → [p0]

= 0
(13)

In the same way, we study u3(c)− u1(b) when ε tends to zero.

This gives:

u3(c)− u1(b)→ [u0]

= 0
(14)

We note that the interface law in the radial direction is a perfect interface law.
[
u0
]

= 0[
p0
]

= 0
(15)

It is observed that pb/ε and pc/ε do not tend to the same value, and we therefore
study (u3(c)−u1(b))/ε when ε goes to zero. In conclusion, at order one, an imperfect
interface law is obtained. We have:

(pc − pb)/ε→ [p1]

6= 0
(16)

(u3(c)− u1(b))→ [u1]

6= 0
(17)

3. Recalling mathematical results.

3.1. Recalling Γ-convergence. Let X be a topological space and let F ε : X →
[0,∞] be a sequence of functionals on X. Then F ε are said to Γ-converge to the
Γ-limit F 0 : X → [0,∞] if the following two conditions hold:

• For every sequence uε in X such that uε → u0 as ε→ 0, F 0(u0)
≤ lim infε→0 F

ε(uε) (lower bound inequality).
• For every u0 ∈ X, there is a sequence uε converging to u0 such that F (u0) ≥

lim supε→0 F
ε(uε) (upper bound inequality).

Note that the minimizers converge to the minimizers, i.e. if F ε → F 0, and uε is
a minimizer for F ε, then every cluster point in the sequence uε is a minimizer of
F 0. This theory will be applied in section 3.3.

3.2. The mechanical problem. Let us consider a body occupying an open bounded
set Ω of R3, with a smooth boundary ∂Ω, where the three dimensional space is re-
ferred to the orthonormal frame (O, e1, e2, e3). This set Ω is assumed to form a
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Figure 4. Initial configuration and geometrical limit of thin interfaces

non-empty intersection S with the plane {x3 = 0}. We write x̂ = (x1, x2). Let
ε > 0 be a parameter tending to zero. We introduce the following domains:

Bε = {(x1, x2, x3) ∈ Ω : |x3| <
ε

2
},

Ωε = {(x1, x2, x3) ∈ Ω : |x3| >
ε

2
},

Ωε± = {(x1, x2, x3) ∈ Ω : ±x3 >
ε

2
},

Sε± = {(x1, x2, x3) ∈ Ω : ±x3 =
ε

2
},

Ω± = {(x1, x2, x3) ∈ Ω : ±x3 > 0},
S = {(x1, x2, x3) ∈ Ω : x3 = 0},

Ω0 = Ω+ ∪ Ω−.

(18)

The sets Bε and Ωε are the domains occupied by the adhesive and the adherents,
respectively (see fig. 4). The structure is subjected to a body force density ϕ and
a surface force density g on part Γ1 of the boundary, whereas it is clamped on the
remaining part Γ0 of the boundary. The two bodies and the joint are assumed to be
linearly elastic. We take σε and uε to denote the stress tensor and the displacement
field, respectively, assuming the occurrence of small perturbations, and the strain
tensor is written as follows:

eij(u
ε) =

1

2
(
∂uεi
∂xj

+
∂uεj
∂xi

). (19)

We take a±ijkl to denote the elasticity coefficients of the adherents, and amijkl to
denote the elastic coefficients of the glue.

If f : Ω 7→ R3 is a given function, we take f±ε to denote the restrictions of f to
the adherents. We also take fmε . to denote the restriction applying to the glue. We
also denote the jumps of f , as follows:

[f ]
+
ε := f+

ε (x1, x2, (
ε

2
)+)− fmε (x1, x2, (

ε

2
)−) , (20)

[f ]
−
ε := f−ε (x1, x2, (−

ε

2
)−)− fmε (x1, x2, (−

ε

2
)+) , (21)

[f ]ε := fmε (x1, x2, (
ε

2
)−)− fmε (x1, x2, (−

ε

2
)+) . (22)
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If f : Ω0 7→ R3 is a given function, we denote the restrictions of f to Ω± by f± and
we also denote the following jump of f in S

[f ] := f+(x1, x2, 0
+)− f−(x1, x2, 0

−) . (23)

We therefore have to solve the following problem:

(Pε)



Find (uε, σε) such that :
σεij,j = −φi in Ω

σεij = a±ijkhekh(uε) in Ωε±
σεij = amijkhekh(uε) in Bε

uε = 0 on Γ0

σεn = g on Γ1

[uε]±ε = 0, [σεe3]±ε = 0 on Sε±

We make the following assumptions

H1)


a±,mijkl ∈ L∞(Ω) ,

a±,mijkl = a±,mklij = a±,mjilk

∃η±,m > 0 : a±,mijkl eijekl ≥ η±,meijeij ∀eij = eji ,

H2) ∃ε0 : Bε ∩ (Γ1 ∪ supp(φ)) = ∅ , ∀ ε < ε0 .

H3) φ ∈ (L2(Ω))3, g ∈ (L2(Γ1))3.

and introduce the space of kinematically admissible displacements

V ε = {u ∈ (W 1,2(Ω))3 : u = 0 on Γ0} . (24)

Note that (Pε) is equivalent to the minimization V ε of the energy:

F ε(vε) =
1

2

∫
Ωε

a±e(vε).e(vε)dV +
1

2

∫
Bε

ame(vε).e(vε)dV −
∫
Ωε

φ.vεdV −
∫
Γ1

g.vεdS

(25)
Using the Lax-Milgram lemma, it is clearly established that these two problems

have a unique solution in V ε.

3.3. Results at first order. In this section, it is assumed that the elastic coeffi-
cients of the glue amijkl do not depend on the thickness of the glue ε, i.e., that the
adhesive and the adherents show a similar rigidity. Here we study the behavior of
the solutions to the problem Pε when the thickness ε tends to zero.

Adopting the same hypotheses as above and using Γ-convergence theory, it can
be proved [15] that the unique solution uε to problem Pε tends in L2(Ω0) to u0,
which is the minimum value of the energy defined in V 0

F 0(v) =
1

2

∫
Ω0

a±e(v).e(v)dV +

∫
Ω0

φ.vdV −
∫
Γ1

g.vdS (26)

where

V 0 = {u ∈ (W 1,2(Ω+))3 ∪ (W 1,2(Ω−))3 : u = 0 on Γ0 [u] = 0 on S} . (27)
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Note that the minimizer u0 is the unique solution of problem P0 where

(P0)



Find (u0, σ0) such that :
σ0
ij,j = −ϕi in Ω0

σ0
ij = a±ijkhekh(u0) in Ω±

u0 = 0 on Γ0

σ0n = g on Γ1

[u0]= 0 on S
[σ0n]= 0 on S.

In particular, we observe that perfect adhesion is obtained at the interface be-
tween the two adhesives. This result is proved rigourously in [15]. Other possible
methods have been presented in [16].

3.4. Results at the second order. In the previous section, we have recalled that

uε → u0 in L2(Ω0) . (28)

We can therefore extract a subsequence, which is not relabeled, such that

uε − u0

ε
⇀ u1 in L2(Ω0) . (29)

In this section, we recall some properties of this weak limit u1.
Under the previous hypotheses and using some analytical arguments it is possible

to show [15] that the weak limit u1 is the solution (in the distributional sense) to
problem P1, where

(P1)



Find (u1, σ1) such that :
σ1
ij,j = 0 in Ω0

σ1
ij = a±ijkhekh(u1) in Ω±

u1 = 0 on Γ0

σ1n = 0 on Γ1

[u1]= AuuDαu
0 +Auσσ

0n on S
[σ1n] = AσuD

2
αu

0 +AσσDασ
0n on S

where A.. are four fourth order tensors and Dα are tangential derivatives in the
plane of S. In particular, if the glue is isotropic and if we take λ and µ to denote
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the Lamé’s coefficients of the glue, the coefficients of these tensors are given by

[u1
α] =

1

µ
σ0
α3 − u0

3α −
1

2
(u0
α,3(0+) + u0

α,3(0−)) , α = 1, 2 ,

[u1
3] =

1

λ+ 2µ
σ0

33 −
λ

λ+ 2µ
(u0

1,1 + u0
2,2)− 1

2
(u0

3,3(0+) + u0
3,3(0−)) ,

[σ1
13] = −

(
4µ(λ+ µ)

λ+ 2µ
u0

1,11 + µu0
1,22 +

µ(3λ+ 2µ)

λ+ 2µ
u0

2,21 +
λ

λ+ 2µ
σ0

33,1

)

−1

2
(σ0

13,3(0+) + σ0
13,3(0−))

[σ1
23] = −

(
4µ(λ+ µ)

λ+ 2µ
u0

2,22 + µu0
2,11 +

µ(3λ+ 2µ)

λ+ 2µ
u0

1,12 +
λ

λ+ 2µ
σ0

33,2

)

−1

2
(σ0

23,3(0+) + σ0
23,3(0−))

[σ1
33] = −σ0

13,1 − σ0
23,2 −

1

2
(σ0

33,3(0+) + σ0
33,3(0−)) .

3.5. A comment about elasto-dynamics. In [20], under specific conditions as
regards the volumic mass of the glue, similar results are obtained in elastodynamic
terms, i.e., the last equation in the solution to problem P̄0 corresponds to a con-
stitutive equation. In fact, it emerges that the elastodynamic problem involving a
thin adhesive layer can be approximated, with a convergence result, by another ex-
pression in which the layer is changed into a mechanical constraint, which is exactly
the same as that occurring in the equilibrium case.

4. Asymptotic analysis in terms of cylindrical coordinates.

4.1. Recalling the equations giving the problem. We take (er, eθ, ez) to de-
note the orthonormal cylindrical basis and (r, θ, z) to denote the three coordinates
of a particle. Without any volume forces, the equilibrium equations for a deformable
body can be written in terms of cylindrical coordinates as follows:

∂σrr
∂r

+
1

r

σrθ
∂θ

+
1

r
(σrr − σθθ) +

∂σrz
∂z

= 0

∂σrθ
∂R

+
1

r

∂σθθ
∂θ

+
2

r
σrθ +

∂σθz
∂z

= 0

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
1

r
σrz +

∂σzz
∂z

= 0

(30)

where σrr, σθθ, σzz, σrθ, σrz and σθz are the components of the stress field. In the
same way, the components of the strain tensor e(u) are written:
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err =
∂ur
∂r

eθθ =
1

r

(
ur +

∂uθ
∂θ

)

ezz =
∂uz
∂z

erθ =
1

2r

(
∂ur
∂θ
− uθ

)
+
∂uθ
∂r

erz =
1

2
(
∂ur
∂z

+
∂uz
∂r

)

eθz =
1

2
(
∂uθ
∂z

+
1

r

∂uz
∂θ

)

(31)

where ur, uθ and uz are the three components of the displacement field expressed
in terms of cylindrical coordinates.

ε

Figure 5. Gluing in normal direction.

4.2. A first analysis: Radial gluing. The gluing between the two adherents is
assumed to be orthogonal to the radial direction. The thickness of the glue is also
assumed to be constant and equal to ε. The glue lies in the interval [r0−ε/2, r0+ε/2].
A change of variable is introduced into the glue in the radial direction. We write

R = r0 +
r − r0

ε
. Some expansions of the displacement uε and the stress σε are

performed to the power of ε:

σ(r, θ, z) = τ0(R, θ, z) + ετ1(R, θ, z) + ...

u(r, θ, z) = v0(R, θ, z) + εv1(R, θ, z) + ...
(32)

It can be seen here that
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∂R =
1

ε
∂r

1

r
=

1

r0 + (R− r0)ε

1

r
≈ 1

r0
(1− R− r0

r0
ε+

(R− r0)2

r2
0

ε2 + ...)

(33)

The balance equation gives:

1

ε

∂τ0
rr

∂R
+
∂τ1
rr

∂R
+

1

r0
(τ0
rr − τ0

θθ) +
∂τ0
rz

∂z
+

1

r0

∂τ0
rθ

∂θ
... = 0

1

ε

∂τ0
rθ

∂R
+
∂τ1
rθ

∂R
+

1

r0

∂τ0
θθ

∂θ
+

2

r0
τ0
rθ +

∂τ0
θz

∂z
+ ... = 0

1

ε

∂τ0
rz

∂R
+
∂τ1
rz

∂R
+

1

r0

∂τ0
θz

∂θ
+

1

r0
τ0
rz +

∂τ0
zz

∂z
+ ... = 0

(34)

We now focus on the term occurring in ε−1 in eq. (34). We obtain:

∂τ0
rr

∂R
≈ 0

∂τ0
rθ

∂R
≈ 0

∂τ0
rz

∂R
≈ 0

(35)

In conclusion,
∂τ0
r.

∂R
≈ 0 i.e.

[[
τ0
r.

]]
= 0, where [[.]] is the jump of a function

between
1

2
and −1

2
.

The coefficients of the strain tensor are now developed:
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err =
1

ε

∂v0
r

∂R
+
∂v1

r

∂R
+ ...

eθθ =
1

r0
(v0
r +

∂v0
θ

∂θ
) +

ε

r0
(−R− r0

r0
(v0
r +

∂v0
θ

∂θ
) + v1

r +
∂v1

θ

∂θ
) + ...

ezz =
∂v0

z

∂z
+ ε

∂v1
z

∂z
+ ...

erθ =
1

2
(

1

εr0

∂v0
θ

∂R
+

1

r0
(
∂v0

r

∂θ
− vθ +

∂v1
θ

∂R
)) + ...

erz =
1

2
(
1

ε

∂v0
z

∂R
+
∂v0

r

∂z
+
∂v1

z

∂R
) + ...

eθz =
1

2
(
∂v0

θ

∂z
+
∂v0

z

∂θ
) +

ε

2
(
∂v1

θ

∂z
+
∂v1

z

∂θ
) + ...

(36)

Since the glue is assumed to be elastic, the constitutive equation becomes:

σ = λ(err + eθθ + ezz)Id+ 2µe(u) (37)

where λ and µ are the Lamé coefficients of the glue.
Equations (36) and (37) are now combined. The following term in ε−1 is obtained:

∂v0
r

∂R
= 0

∂v0
θ

∂R
= 0

∂v0
z

∂R
= 0

(38)

In conclusion,
∂v0

∂R
≈ 0 i.e.

[[
v0
]]

= 0.

In the adherents, the material is assumed to be elastic and a change of variable

is made in the radial direction. We write R = r +
1

2
± ε

2
. Some expansions of the

displacement uε and the stress σε are now performed to the power of ε:

σ(r, θ, z) = σ0(R, θ, z) + εσ1(R, θ, z) + ...

u(r, θ, z) = u0(R, θ, z) + εu1(R, θ, z) + ...
(39)

At level zero, the stress σ0 satisfies the equilibrium conditions in the adherents
and due to the continuity of the stress vector and the displacement along the inter-
face glue/adherents, we have:
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σ0(0±, θ, z) ≈ τ0(±1

2
, θ, z)

u0(0±, θ, z) ≈ v0(±1

2
, θ, z)

(40)

At level 0, we therefore obtain a perfect interface law:

[
σ0
]

= 0[
u0
]

= 0
(41)

Now we deal with the term occurring in ε0 in eqs. (36) and (37). This gives:

τ0
rr = (λ+ 2µ)

∂v1
r

∂R
+ λ(

1

r0
(v0
r +

∂v0
θ

∂θ
) +

∂v0
z

∂z
)

τ0
θθ =

λ+ 2µ

r0
(v0
r +

∂v0
θ

∂θ
) + λ(

∂v1
r

∂R
+
∂v0

z

∂z
)

τ0
zz = (λ+ 2µ)

∂v0
z

∂z
+ λ(

∂v1
r

∂R
+

1

r0
(v0
r +

∂v0
θ

∂θ
))

τ0
rθ = µ(

1

r0
(
∂v0

r

∂θ
− v0

θ) +
∂v1

θ

∂R
)

τ0
rz = µ(

∂v0
r

∂z
+
∂v1

z

∂R
)

τ0
θz = µ(

∂v0
θ

∂z
+

1

r0

∂v0
z

∂θ
)

(42)

We thus obtain:

[[
v1
r

]]
=

τ0
rr

λ+ 2µ
− λ

λ+ 2µ
(

1

r0
(v0
r +

∂v0
θ

∂θ
) +

∂v0
z

∂z
)

[[
v1
θ

]]
=

τ0
rθ

µ
− 1

r0
(
∂v0

r

∂θ
− v0

θ)

[[
v1
z

]]
=

τ0
rz

µ
− ∂v0

r

∂z

(43)

Note that equation (43) introduces some tangential derivatives (i.e. in the z
direction): the interface law will therefore be non local.

The equilibrium equation at order one gives:
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∂τ1
rr

∂R
+

1

r0
(
∂τ0
rθ

∂θ
+ τ0

rr − τ0
θθ) +

∂τ0
rz

∂z
= 0

∂τ1
rθ

∂R
+

1

r0

∂τ0
θθ

∂θ
+

2

r0
τ0
rθ +

∂τ0
θz

∂z
= 0

∂τ1
rz

∂R
+

1

r0

∂τ0
θz

∂θ
+

1

r0
τ0
rz +

∂τ0
zz

∂z
= 0

(44)

Based on the constitutive equation, we obtain:

τ0
θθ =

λ+ 2µ

r0
(v0
r +

∂v0
θ

∂θ
) + λ(

τ0
rr

λ+ 2µ
− λ

λ+ 2µ
(

1

r0
(v0
r +

∂v0
θ

∂θ
) +

∂v0
z

∂z
) +

∂v0
z

∂z
)

τ0
zz = (λ+ 2µ)

∂v0
z

∂z

+λ(
τ0
rr

λ+ 2µ
− λ

λ+ 2µ
(

1

r0
(v0
r +

∂v0
θ

∂θ
) +

∂v0
z

∂z
) +

1

r0
(v0
r +

∂v0
θ

∂θ
))

τ0
θz = µ(

∂v0
θ

∂z
+

1

r0

∂v0
z

∂θ
)

(45)
and

[[
τ1
rr

]]
= − 1

r0
(
∂τ0
rθ

∂θ
− 2µ

λ+ 2µ
τ0
rr)−

∂τ0
rz

∂z

+
1

r0
(
4µ(λ+ µ)

λ+ 2µ
(
v0
r

r0
+

1

r0

∂v0
θ

∂θ
) +

2λµ

λ+ 2µ

∂v0
z

∂z
)[[

τ1
rθ

]]
− 1

r0
(

λ

λ+ 2µ

∂τ0
rr

∂θ
+ 2τ0

rθ)

− 1

r0
(
4µ(λ+ µ)

λ+ 2µ
(

1

r0

∂v0
r

∂θ
+

1

r0

∂2v0
θ

∂θ2
) +

µ(3λ+ 2µ)

λ+ 2µ

∂2v0
z

∂z∂θ
)− µ∂

2v0
θ

∂z2[[
τ1
rz

]]
− λ

λ+ 2µ

∂τ0
rr

∂z
− 1

r0
τ0
rz

− 1

r0
(µ(

∂2v0
θ

∂z∂θ
+

1

r0

∂2v0
z

∂θ2
)− 4µ(λ+ µ)

λ+ 2µ

∂2v0
z

∂z2
− 2λµ

λ+ 2µ

1

r0

∂v0
r

∂z
(46)

The stress σ1 can be seen to meet the equilibrium conditions in the adherents at
level one, and due to the continuity of the stress vector and the displacement along
the glue/adherents interface:

σ1(0±, θ, z) +
1

2

∂σ0

∂r
(0±, θ, z) ≈ τ1(±1

2
, θ, z)

u1(0±, θ, z) +
1

2

∂u0

∂r
(0±, θ, z) ≈ v1(±1

2
, θ, z)

(47)

The interface law is therefore written:
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[
σ1
rr

]
= − 1

r0
(
∂σ0

rθ

∂θ
− 2µ

λ+ 2µ
σ0
rr)−

∂σ0
rz

∂z

+
1

r0
(
4µ(λ+ µ)

λ+ 2µ
(
u0
r

r0
+

1

r0

∂u0
θ

∂θ
) +

2λµ

λ+ 2µ

∂u0
z

∂z
)− S(σ1

rr)[
τ1
rθ

]
− 1

r0
(

λ

λ+ 2µ

∂σ0
rr

∂θ
+ 2σ0

rθ)

− 1

r0
(
4µ(λ+ µ)

λ+ 2µ
(

1

r0

∂u0
r

∂θ
+

1

r0

∂2u0
θ

∂θ2
) +

µ(3λ+ 2µ)

λ+ 2µ

∂2u0
z

∂z∂θ
)− µ∂

2u0
θ

∂z2

−S(σ1
rθ)[

σ1
rz

]
− λ

λ+ 2µ

∂σ0
rr

∂z
− 1

r0
σ0
rz

− 1

r0
(µ(

∂2u0
θ

∂z∂θ
+

1

r0

∂2u0
z

∂θ2
)− 4µ(λ+ µ)

λ+ 2µ

∂2u0
z

∂z2
− 2λµ

λ+ 2µ

1

r0

∂u0
r

∂z
−S(σ1

rz)
(48)

and

[
u1
r

]
=

σ0
rr

λ+ 2µ
− λ

λ+ 2µ
(

1

r0
(u0
r +

∂u0
θ

∂θ
) +

∂u0
z

∂z
)− S(u0

r)

[
u1
θ

]
=

σ0
rθ

µ
− 1

r0
(
∂u0

r

∂θ
− u0

θ)− S(u0
θ)

[
u1
z

]
=

σ0
rz

µ
− ∂u0

r

∂z
− S(u0

z)

(49)

where S(f) =
1

2
(
∂f

∂r
(0+, θ, z) +

∂f

∂r
(0−, θ, z)).

The imperfect interface law is then obtained as follows:

• The jump in the displacement means that there is discontinuity between the
two adherents. This jump is given by the solution at order zero. In particular,
the law includes some tangential derivatives. The interfacial law is a non local
law.
• The jump in stress vector means that a given load (depending on the zero

order) is exerted along the interface.

Note that it is possible to solve the limit problem (involving equilibrium be-
tween the adherents) numerically at order zero with a perfect interface law. The
displacement and the stress vector occurring at this order are the data inputs to
the equilibrium equations for the adherents at order one in the framework of a non
local interface law. The law obtained was found to depend on the curvature (which
is given by the term r0).

4.3. A comment about the dynamic processes. If we replace the equilibrium
equations by elastodynamics equations, we have to consider various cases.

• If the density of the glue is low, ranging for example around ε, the results
presented in the previous section will still hold true, i.e., there will be no
inertial effects.
• If the density of the glue is not low enough, equation (44) will have to be

changed, by adding inertial terms to the interfacial law at order one.

16



5. Conclusions. In this paper, an interface contact law was developed in terms
of cylindrical coordinates. This non local interface law is of the imperfect interface
kind. The non local law includes some terms accounting for the curvatures.
It is now proposed to extend these findings to more general curvilinear interphases,
accounting for roughness and cracks, and to implement these laws in a computa-
tional software program.
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