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Abstract

In this paper we consider the problem of global asymptotic stabilization with pre-
scribed local behavior. We show that this problem can formulated in terms of con-
trol Lyapunov functions. Moreover, we show that if the local control law has been
synthesized employing a LQ approach, then the associated Lyapunov function can
be seen has the value function of an optimal problem with some specific proper-
ties. We illustrate these result on two specific classes of systems: backstepping and
feedforward systems. Finally, we show how this framework can be employed when
considering an orbital transfer problem.

Key words: Lyapunov function, Nonlinear systems, optimal control, LQ

1 Introduction

The synthesis of a stabilizing control law for systems described by nonlinear
differential equations has been the subject of great interest by the nonlinear
control community during the last three decades. Depending on the structure
of the model, some techniques are now available to synthesize control laws
ensuring global and asymptotic stabilization of the equilibrium point.

For instance, we can refer to the popular backstepping approach (see [10,1]
and the reference therein), or the forwarding approach (see [12,7,14]) and some
others based on energy considerations or dissipativity properties (see [9] for a
survey of the available approaches).

Although the global asymptotic stability of the steady point can be achieved
in some specific cases, it remains difficult to address in the same control objec-
tive performance issues of a nonlinear system in a closed loop. However, when
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the first order approximation of the non-linear model is considered, some per-
formance aspects can be addressed by using linear optimal control techniques
(using LQ controller for instance).

Hence, it is interesting to raise the question of synthesizing a nonlinear con-
trol law which guarantees the global asymptotic stability of the origin while
ensuring a prescribed local linear behavior.

In the present paper we consider this problem. In a first section we will mo-
tivate this control problem and we will consider a first strategy based on the
design of a uniting control Lyapunov function. We will show that this is re-
lated to an equivalent problem which is the design of a control Lyapunov
function with prescribed quadratic approximation around the origin. In a sec-
ond part of this paper, we will consider the case in which the prescribed local
behavior is an optimal LQ controller. In this framework, we investigate what
type of performance is achieved by the control solution to the stabilization
with prescribed local behavior. In a third part we consider two specific classes
of systems and show how the control with prescribed local behavior can be
solved. Finally in the third part of the paper, we consider a specific control
problem which is the orbital transfer problem. Employing the Lyapunov ap-
proach of Kellet and Praly in [8] we will exhibit a class of costs for which the
stabilization with local optimality can be achieved.

2 Stabilization with prescribed local behavior

To present the problem under consideration, we introduce a general controlled
nonlinear system described by the following ordinary differential equation:

Ẋ = Φ(X , u) , (1)

with the state X in Rn and Φ : Rn × Rp → Rn is a C1 function such that
Φ(0, 0) = 0 and u is a scalar control input. For this system, we can introduce
the two matrices describing its first order approximation which is assumed to
be stabilizable:

A :=
∂Φ

∂X
(0, 0) , B :=

∂Φ

∂u
(0, 0) .

For system (1), the problem we intend to solve can be described as follows:

Global asymptotic stabilization with prescribed local behavior: As-
sume the linear state feedback law u = KoX stabilizes the first order approxi-
mation of system (1). We are looking for a stabilizing control law u = αo(X),
with αo : Rn → Rp, differentiable at 0 such that:
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(1) The origin of the closed-loop system Ẋ = Φ(X , αo(X)) is globally and
asymptotically stable ;

(2) The first order approximation of the control law αo satisfies the following
equality.

∂αo
∂X

(0) = Ko . (2)

This problem has already been addressed in the literature. For instance, it is
the topic of the papers [6,16,3]. Note moreover that this problem can be related
to the problem of uniting a local and a global control laws as introduced in
[19] (see also [15]).

In this paper, we restrict our attention to the particular case in which the
system is input affine. More precisely we consider systems in the form

Ẋ = a(X) + b(X)u , (3)

with the two C1 functions a : Rn → Rn and b : Rn → Rn×p. In this case we
get A = ∂a

∂X
(0) and B = b(0).

A necessary and sufficient condition to solve the global asymptotic stabiliza-
tion with prescribed local behavior in terms of Lyapunov functions can be
given as follows.
Theorem 1. Given a linear state feedback law u = KoX which stabilizes the
first order approximation of system (3). The following two statements are
equivalent.

(1) There exists a control law u = αo(X) solution to the global asymptotic
stabilization with prescribed local behavior problem.

(2) There exists a C2 proper, positive definite function V : Rn → R+ such
that the following two properties are satisfied.
• If we denote 1 P := 1

2
H(V )(0), then P is a positive definite matrix.

Moreover this inequality holds.

(A + BKo)
′P + P (A + BKo) < 0 ; (4)

• Artstein condition is satisfied. More precisely, this implication holds for
all X in Rn \ {0}.

LbV (X) = 0⇒ LaV (X) < 0 . (5)

1 In the following, given a C2 function V : Rn → R, the notation H(V )(X) is the
Hessian matrix in Rn×n evaluated at X of the function V . More precisely, it is the
matrix

(H(V ))i,j(X) =
∂2V

∂X i∂X j
(X) .
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Proof : 1 ⇒ 2) The proof of this part of the theorem is based on recent
results obtained in [2]. Indeed, the design of the function V is obtained from
the uniting of a quadratic local control Lyapunov function (denoted V0) and a
global control Lyapunov function (denoted V∞) obtained employing a converse
Lyapunov theorem.

First of all, employing the converse Lyapunov theorem of Kurzweil in [11],
there exists a C∞ function V∞ : Rn → R+ such that

∂V∞
∂X

(X)[a(X) + b(X)αo(X)] < 0 , ∀ X 6= 0 .

On the other hand, A+BKo being Hurwitz, there exists a matrix P such that
the algebraic Lyapunov inequality (4) is satisfied. Let V0 be the quadratic
function V0(X) = X′PX . Due to the fact that Ko satisfies equation (2) it yields
that the matrix A + BKo is the first order approximation of the system (3)
with the control law u = αo(x). Consequently, it implies that there exists a
positive real number ε1 such that

∂V0
∂X

(X)[a(X) + b(X)αo(X)] < 0 , ∀ |X | ≤ ε1 .

This implies that the time derivative of the two control Lyapunov functions
V0 and V∞ can be made negative definite with the same control law in a
neighborhood of the origin. Employing [2, Theorem 2.1], it yields the existence
of a C2 at the origin function V : Rn → R+ and a positive real number ε2
such that the following two properties hold.

• For all X in Rn \ {0},

∂V

∂X
(X)[a(X) + b(X)αo(X)] < 0 .

Hence, Artstein condition (5) is satisfied ;
• For all X in Rn such that |X | ≤ ε2, we have

V (X) = V0(X) .

Consequently H(V )(0) = 2P .

2⇒ 1) Let Q be the positive definite matrix defined as,

Q := −(A + BKo)
′P + P (A + BKo) .

Employing the local approximation of the Lyapunov function V , it is possible
to find r0 such that

LaV (X) + LbV (X)KoX < 0 , ∀X ∈ {0 < V (X) ≤ r0} . (6)
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This implies that the control Lyapunov function V satisfies the small control
property (see [18]). Hence, we get the existence of a control law α∞ (given by
Sontag universal formulae introduced in [18]) such that this one satisfies for
all X 6= 0

LaV (X) + LbV (X)αu(X) < 0 . (7)

A solution to the stabilization with prescribed local problem can be given by
the control law

αo(X) = ρ(V (X))α∞(X) + (1− ρ(V (X)))KoX

where ρ : R+ → [0, 1] is any locally Lipschitz function such that

ρ(s) =

 0 , s ≤ r0
2
,

1 , s ≥ r0 .

Note that with this selection, it yields that equality (2) holds. Moreover, we
have along the solution of the system (3)

V̇ (X)
∣∣∣
u=αo(X)

= ρ(V (X)) V̇ (X)
∣∣∣
u=α∞

+(1− ρ(V (X))) V̇ (X)
∣∣∣
u=KoX

< 0

Hence, we get the result. 2

From this theorem, we see that looking for a global control Lyapunov function
locally assigned by the prescribed local behavior and looking for the controller
itself are equivalent problems.

3 Locally optimal and globally inverse optimal control laws

If one wants to guarantee a specific behavior on the closed loop system, one
might want to find a control law which minimizes a specific cost function.
More precisely, we may look for a stabilizing control law which minimizes the
criterium

J(X , u) = (8)∫ +∞

0
q(X(X , t;u)) + u(X , t)′r(X(X , t;u))u(X , t)dt ,

where X(X , t;u) is the solution of the system (3) initiated from X at t = 0
and employing the control u(X , t), q : Rn → R+ is a continuous function and
r is a continuous function which values r(X) are symmetric positive definite
matrices.
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The control law which solves this minimization problem (see [17]) is given as

u = −1

2
r(X)−1LbV (X) , (9)

where V : Rn → R+ is the solution with V (0) = 0 to the following Hamilton-
Jacobi-Bellman equation for all X in Rn

q(X) + LaV (X)− 1

4
LbV (X)r(X)−1LbV (X)′ = 0 . (10)

Given a function q and a function r, it is in general difficult or impossible to
solve the so called HJB equation. However, for linear system, this might be
solved easily. If we consider the first order approximation of the system (3),
and given a positive definite matrix R and a positive semi definite matrix Q
we can introduce the quadratic cost:

J(X , u) = (11)∫ +∞

0
[X(X , t;u)′QX(X , t;u) + u(X , t)′Ru(X , t)] dt ,

In this context, solving the HJB equation can be rephrased in solving the
algebraic HJB equation given as

PA + A′P − PBR−1B′P +Q = 0 . (12)

It is well known that provided, the couple (A,B) is controllable, it is possible
to find a solution to this equation. Hence, for the first order approximation,
it is possible to solve the optimal control problem when considering a cost in
the form of (11).

From this discussion, we see that an interesting control strategy is to solve the
stabilization with prescribed local behavior with the local behavior obtained
solving LQ control strategy. Note however that once we have solved this prob-
lem, one may wonder what type of performance has been achieved by this new
control law. The following Theorem addresses this point and is inspired from
[17] (see also [13]). Following Theorem 1, this one is given in terms of control
Lyapunov functions.
Theorem 2 (Local optimality and global inverse optimality). Given two pos-
itive definite matrices R and Q. Assume there exists a C2 proper positive
definite function V : Rn → R+ such that the following two properties hold.

• The matrix P := H(V )(0) is positive definite matrix and satisfies the fol-
lowing equality.

PA + A′P − PBR−1B′P +Q = 0 ; (13)
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• Artstein condition is satisfied (see (5)).

Then there exist q : Rn → R+ a continuous function, C2 at zero and r a
continuous function which values r(X) are symmetric positive definite matrices
such that the following properties are satisfied.

• The function q and r satisfy

H(q)(0) = 2Q , r(0) = R ; (14)

• The function V is a value function associated to the cost (8). More precisely,
V satisfies the HJB equation (10).

Proof : This proof is inspired from some of the results of [13].

First of all, there exists a positive real number r0 such that for all X such that
0 < V (X) ≤ r0 we have

−LfV (X) +
1

4
LgV (X)R−1LgV (X)′ > 0 .

Now, for all k in N, we consider Ck the subset of Rn defined as

Ck = {X , kr0 ≤ V (X) ≤ (k + 1)r0} .

Note that for all k the set Ck is a compact subset. Assume for the time being
that for all k there exists `k in R+ such that :

LaV (X)− `k
4
LbV (X)R−1LgV (X)′ < 0 , ∀X ∈ Ck . (15)

Let µ be any continuous function such that,

µ(s)


= 1 , s ≤ r0

2
,

≥ 1 , r0
2
≤ s ≤ r0 ,

≥ `k , kr0 ≤ s ≤ (k + 1)r0 .

Moreover, let

r(X) :=
1

µ(V (X))
R ,

and

q(X) := −LaV (X) +
1

4
LbV (X)r(X)−1LbV (X)′ .

With (15) and the definition of µ, it yields,

q(X) > 0 , ∀X 6= 0 .
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Hence, V is solution to the associated HJB equation. Note moreover that we
have r(0) = R and

1

2
H(q)(0) = A′P + PA− PBR−1B′P = Q .

Hence, the result.

In conclusion, to get the result, we only need to show that for all k in N, there
exists `k such that (15) is satisfied. Assume this is not the case for a specific
k in N. This implies that for all j in N there exists xj in Ck such that

LaV (X j)−
j

4
LbV (X j)R

−1LbV (X j)
′ ≥ 0 .

The sequence xj being in a compact set, we know there exists a converging
subsequence denoted (X j`)`∈N which converges toward a cluster point denoted
X∗ in Ck. The previous inequality can be rewritten as:

LaV (X j`)

j`
≥ 1

4
LbV (X j`)R

−1LbV (X j`)
′ ≥ 0 .

Letting j` goes to infinity yields the following.

LaV (X∗) ≥ 0 , LbV (X∗) = 0 .

With Artstein condition, this implies that LaV (X∗) < 0 hence a contradiction.
This ends the proof. 2

This Theorem establishes that if we solve the stabilization with a prescribed
local behavior, we may design a control law u = αo(X) such that this one is
solution to an optimal control problem and such that the local approximation
of the associated cost is exactly the one of the local system. This framework
has already been studied in the literature in [6]. In this paper is addressed
the design of a backstepping with a prescribed local optimal control law. In
our context, we get a Lyapunov sufficient condition to design a globally and
asymptotically stabilizing optimal control law with prescribed local cost func-
tion.
Corollary 1 (Locally optimal control design). Consider two positive definite
matrices R and Q respectively in Rm×m and Rn×n. Assume there exists a
C2 proper positive definite function V : Rn → R+ such that the following
properties hold.

• The matrix P := 1
2
H(V )(0) is positive definite matrix and satisfies

PA + A′P − PBR−1B′P +Q = 0 ; (16)
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• Artstein condition is satisfied (see (5)).

Then there exist q, r and αo which is solution to an optimal control problem
with cost J(X , u) defined in (8), with q and r which satisfy (14).

4 Some particular classes of systems

In this Section we consider several classes of system and show what type of
local optimal control problem can be solved.

4.1 Strict feedback form

Following the work of [6], consider the case in which system (3) with state
X = (y, x) can be written in the following form

ẏ = h(y, x) , ẋ = f(y, x) + g(y, x)u . (17)

with y in Rny , x in R and g(y, x) 6= 0 for all (y, x).

In this case, the first order approximation of the system is

A =

H1 H2

F1 F2

 , B =

 0

G

 , (18)

with H1 = ∂h
∂y

(0, 0), H2 = ∂h
∂x

(0, 0), F1 = ∂f
∂y

(0, 0), F2 = ∂f
∂x

(0, 0), G = g(0, 0).

For this class of system we make the following assumption.
Assumption 1. For all Ky in Rny such that H1 + H2Ky is Hurwitz, there
exists a smooth function αy : Rny → R such that the following holds.

• The origin is a globally asymptotically stable equilibrium for

ẏ = h(y, αy(y)) ;

• The function αy satisfies ∂αy
∂y

(0) = Ky.

This assumption establishes that the stabilization with prescribed local be-
havior is satisfied for the y subsystem seeing x as the control input.

For this class of system, we have the following theorem which can already be
found in [6].
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Theorem 3 (Backstepping Case). Let Ko in Rp×n be a matrix such that
A+BKo is Hurwitz with A and B defined in (18). Then there exists a smooth
function αo : Rn → Rp which solves the global asymptotic stabilization with
prescribed local behavior.

Proof : Let P be a positive definite matrix such that the algebraic Lyapunov

inequality (4) is satisfied. This matrix can be rewritten P =

P11 P12

P ′12 P22

 with

P22, P12, P22 matrices respectively in Rny×ny ,Rny×n,R. Consider the Lyapunov
function V0(X) = X′PX . Let T be the matrix in R(ny+1)×ny defined as 2

T =

 Idny

−P ′
12

P22

 .

Note that this matrix satisfies

T ′P =
[
Py 0

]
, T ′PB = 0 ,

where Py = P11 − P12P
−1
22 P

′
12.

By pre and post multiplying inequality (4) respectively by T ′ and T it yields
the following inequality.

Py

(
H1 −H2

P ′12
P22

)
+

(
H1 −H2

P ′12
P22

)′
Py < 0 . (19)

The matrix P being positive definite, its Schur complement Py is also positive
definite. Hence, inequality (19) can be seen as a Lyapunov inequality and x =
−P12

P22
y as a stabilizing local controller for the y subsystem with Py as associated

Lyapunov matrix. With Assumption 1, and Theorem 1 we know there exist a
smooth function αy : Rny → R and a smooth function Vy : Rny → R+ such
that the following two properties hold.

• The origin of the system ẏ = h(y, αy(y)) is globally and asymptotically
stable with associated Lyapunov function Vy. More precisely, we have

∂Vy
∂y

(y)h(y, αy(y)) < 0 , ∀y 6= 0 ; (20)

• We have the local properties

∂αy
∂y

(0) = −P12

P22

, H(Vy)(0) = 2Py .

2 Given a positive integer n, the notation Idn is the identity matrix in Rn×n.
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Consider now the function

V (X) = Vy(y) + P22(x− αy(y))2 . (21)

Note that this function is proper and positive definite. Moreover, we have

LbV (X) = 2P22(x− αy(y))g(x, y) .

Since g(x, y) 6= 0 by assumption, this implies

LbV (X) = 0, X 6= 0⇒ x = αy(y) .

Note that when x = αy(y), with (20) we have for all y 6= 0

LaV (X) =
∂Vy
∂y

(y)h(y, αy(y)) < 0 .

Hence, Artstein condition is satisfied. Finally, we have the following equality.

H(V )(0) = 2P .

Hence, with Theorem 1, we get the result. 2

Note that with Corollary 1, this theorem establishes that given Q, a positive
definite matrix in Rny×ny , and R, a positive real number, then there exist q,
r and αo which is solution to an optimal control problem with cost J(X , u)
defined in (8), with q and r which satisfy (14). In other words we can design
a globally and asymptotically stabilizing optimal control law with prescribed
local cost function.

4.2 Feedforward form

Following our previous work in [3], consider the case in which the system with
state X = (y, x) can be written in the form

ẏ = h(x) , ẋ = f(x) + g(x)u , (22)

with y in R, x in Rnx . Note that to oppose to what has been done in the previ-
ous subsection, now the state component y is a scalar and x is a vector. Note
moreover that the functions h, f and g do not depend of y. This restriction
on h has been partially removed in our recent work in [4].
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The first order approximation of the system is denoted by

A =

 0 H

0 F

 , B =

 0

G

 , (23)

with H = ∂h
∂x

(0), F = ∂f
∂x

(0), G = g(0).

For this class of system we make the following assumption.
Assumption 2. For all Kx in Rnx such that F +GKx is Hurwitz, there exists
a smooth function αx : Rnx → R such that the following holds.

• The origin is a globally asymptotically stable equilibrium for

ẋ = f(x) + g(x)αx(x) ;

• The function αx satisfies ∂αx
∂x

(0) = Kx.

This assumption establishes that the stabilization with prescribed local be-
havior is satisfied for the x subsystem. With this Assumption we have the
following theorem which proof can be found in [3].
Theorem 4 (Forwarding Case). Let Ko in Rp×n be a vector such that with
A and B defined in (23) the matrix A + BKo is Hurwitz. Then there exists a
smooth function αo : Rn → Rp which solves the global asymptotic stabilization
with prescribed local behavior.

Similarly to the backstepping case, with Corollary 1), this theorem establishes
that given Q, a positive definite matrix in Rn×n, and R, a positive real number,
there exists q, r and αo which is solution to an optimal control problem with
cost J(X , u) defined in (8), with q and r which satisfy (14). Consequently,
similarly to the backstepping case, we can design a globally and asymptotically
stabilizing optimal control law with prescribed local cost function.

5 Illustration on the orbital transfer problem

As an illustration of the results described in the previous sections, we consider
the problem of designing a control law which ensures the orbital transfer of a
satellite from one orbit to another. In this section we consider the approach
developed in [8] where a bounded stabilizing control law was developed. More
precisely, we study the class of optimal control law (in the LQ sense) that can
be synthesized. This may be of interest since, as mentioned in [5], it is difficult
to consider performance issues with this control law.

Following [8], let (a, e, ω,Ω, i, f) be the orbital parameters of the space vehicle.
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Consider the state variable



p = a(1− e2)

ex = e cos(ω + Ω)

ey = e sin(ω + Ω)

hx = tan(i/2) cos(Ω)

hy = tan(i/2) sin(Ω)

L = ω + Ω + f

Denoting ur, uθ and uh the three components of the acceleration the propulsory
of the spacecraft may provide, we get the following orbital transfer model
described by the following sixth order system:



ṗ = 2kpuθ

ėx = k [Z sin(L)ur + Auθ − eyY uh]

ėy = k [−Z cos(L)ur +Buθ + exY uh]

L̇ =
√

µ
p3
Z2 + kY uh

ḣx = k
2
X cos(L)uh

ḣy = k
2
X sin(L)uh

(24)

where

k =
√

p
µ

1
Z
, Z = 1 + e cos(f)

A = ex + (1 + Z) cos(L)

B = ey + (1 + Z) sin(L)

X = 1 + h2x + h2y

Y = hx sin(L)− hy cos(L)

The control objective is to achieve asymptotic stabilization of the system to an
equilibrium with parameter p = p0, ex = ey = hx = hy = 0 and L(t) = L0(t)
given by

L0(t) =

√
µ

p30
t (mod2π) .

As mentioned in [8], this is a circular orbit in the equatorial plane. Contrary
to what has been done in [8], in order to simplify the presentation, we do not
consider input saturation constraint.

13



Consider the rotation matrix

R(L) =

 cos(L) sin(L)

− sin(L) cos(L)

 ,

and the new coordinates

X1 = L− L0 , X2 =
p0
p

(1 + X̄2)− 1 , X3 = −
√
p0
p
X̄3 ,

where  X̄2

X̄3

 = R(L)

 ex
ey

 , X4 = p ,

 X5

X6

 = R(L)

hx
hy

 .

With these new coordinates, the system can be rewritten as the following one.



Ẋ1 =
√
µX4

p20
(1 + X2)

2 −
√

µ
p30
− X4

p0

√
X4

µ
X6

1+X2
uh

Ẋ2 = −
√

µ
p30

(1 + X2)
2X3

Ẋ3 =
√

µ
p30

(1 + X2)
2
[
X4

p0
(1 + X2)− 1

]
+
√

p0
µ
ur

Ẋ4 = 2X4

p0

√
X3

4

µ
1

1+X2
uθ

Ẋ5 =
√
µX4

p20
(1 + X2)

2X6 + p0√
X4µ

1+X2
5−X2

6

2+2X2
uh

Ẋ6 = −
√
µX4

p20
(1 + X2)

2X5 + p0√
X4µ

X5X6

1+X2
uh

(25)

In compact form, the previous system is simply:

Ẋ = a(X) + br(X)ur + bθ(X)uθ + bh(X)uh .

The first order approximation of this system around the equilibrium is given
as

A =

√
µ

p30



0 2 0 1
2

0 0

0 0 1 0 0 0

0 1 0 1
p0

0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


,
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and

B =

√
p0
µ



0 0 0

0 0 0

1 0 0

0 2p0 0

0 0 1
2

0 0 0


.

Note that these matrices can be rewritten as

A = diag{Ã, A1} , Ã =

 A0 A2

013 0


and

B = diag{B̃, B2} , B̃ =

B0 031

0 2

√
p30
µ


where

A0 =

√
µ

p30


− 3

2p0
2 0

0 0 1

0 1 0

 , A1 =

 0
√

µ
p30

−
√

µ
p30

0

 ,

and,

A2 =

√
µ

p30


1
2

0

1
p0

 , B0 =

√
p0
µ


0

0

1

 , B2 =

√
p0
µ

 1
2

0

 .

The control strategy developed in [8] was to successively apply backstepping,
forwarding and dissipativity properties.

With the tools developed in the previous sections, we are able to solve the lo-
cally optimal control problem for a specific class of quadratic costs as described
by the following theorem.
Theorem 5 (Locally optimal stabilizing control law). Given Q0 a positive
definite matrix in R3×3 and R0 in R+. Let P0 be the solution of the (partial)
algebraic Riccati equation:

A0P0 + P0A0 − P0B0R
−1
0 B′0P0 = −Q0 . (26)
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Then for all positive real numbers R0, R1, R2, ρ1, ρ2 such that the matrix

Q = diag{Q̃, ρ22B2R
−1
2 B′2} , Q̃ =

 Q0 P0A2

A′2P0 4
p30
µ
ρ21R

−1
1


is positive, there exists q and r and a globally asymptotically stabilizing control
law (ur, uθ, uh) = αo(X) which is solution to an optimal control problem with
cost J(X , u) defined in (8), with q and r which satisfy (14).

Proof : First of all, when uθ = uh = 0 and when X4 = p0, then the dynamics
of the (X1, X2, X3) subsystem satisfies

Ẋ1 =
√

µ
p30

[(1 + X2)
2 − 1]

Ẋ2 = −
√

µ
p30

(1 + X2)
2X3

Ẋ3 =
√

µ
p30

(1 + X2)
2X2 +

√
p0
µ
ur

(27)

It can be noticed setting y := X3 and x := X2 the (X2, X3) subsystem is in the
strict feedback form (17). Note that employing Theorem 3, it yields that for
this system all locally stabilizing linear behavior can be achieved.

Moreover, setting y := X1 and x := (X2, X3) the (X1, X2, X3) subsystem is in
the feedforward form (22). Note that employing Theorem 4, it yields that for
this system all locally stabilizing linear behaviors can be achieved.

Hence, with Theorem 1, it yields that given P0 which by (26) is a CLF for the
first order approximation of the system (27) there exists a smooth function
V0 : R3 → R+ such that

• V0 is a CLF for the (X1, X2, X3) subsystem when considering the control ur
and when X4 = p0, i.e. for the system (27) ;
• V0 is locally quadratic and satisfies H(V0)(0) = 2P0 .

Let Ṽ : R4 → R+ be the function defined by

Ṽ (X1, X2, X3, X4) = V0(X1, X2, X3) + V1(X4) ,

with V1(X4) = ρ1(p0 − X4)
2. Note that this function is such that

H(Ṽ )(0, 0, 0, p0) = 2P̃ , P̃ = diag {P0, ρ1} .

Employing (26), it can be checked that P̃ satisfies the (partial) algebraic HJB

P̃ Ã + Ã′P̃ − P̃ B̃R̃−1B̃′P̃ + Q̃ = 0 ,
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with R̃ = diag{R1, R2}. We will show that this function is also a control
Lyapunov function when considering the (X1, X2, X3, X4) subsystem in (25)
with the control inputs ur and uθ. Consider the set of point in R4 such that
Lbr Ṽ (X) = Lbθ Ṽ (X) = 0. Note that Lbθ Ṽ (X) = 0 implies that X4 = p0. With
the CLF property for the system (27), it yields that in this set LaV0(X) < 0 for
all (X1, X2, X3) 6= 0. Consequently, La(Ṽ )(X) < 0 for all (X1, X2, X3, X4−p0) 6= 0
such that Lbr Ṽ (X) = Lbθ Ṽ (X) = 0. Hence with Theorem 2 we get the existence
of q̃ : R4 → R+ a continuous function, C2 at zero and r̃ a continuous function
which values r(X) are symmetric positive definite matrices such that:

• The function q̃ and r̃ satisfy the following property

H(q̃)(0, 0, 0, p0) = 2Q̃ , r(0, 0, 0, p0) = R̃ . (28)

• The function Ṽ is a value function associated to the cost (8) with q̃ and
r̃. More precisely, Ṽ satisfies the HJB equation (10) when considering the
(X1, X2, X3, X4) subsystem in (25).

Finally, let V : R6 → R+ be defined by

V (X) = Ṽ (X1, X2, X3, X4) + V2(X5, X6) ,

with V2(X5, X6) = ρ2(X
2
5 + X2

6). Moreover, consider q the positive semi definite
function q defined as

q(X) = q̃(X1, X2, X3, X4) +
1

4
(LbrV (X))2R−12 ,

and r defined as

r(X) = diag{r̃(X), R2} .
Note that the following properties are satisfied.

• The function q and r satisfy

H(q̃)(0) = 2Q , r(0) = diag{R1, R2, R3} ; (29)

• The function V is a value function associated to the cost (8) with q and r.

Hence, the control law (9) makes the time derivative of the Lyapunov function
V nondecreasing and is also optimal with respect to cost defined from q and r.
Note however that we get a weak Lyapunov function. Nevertheless, following
[8], it can be shown that employing this Lyapunov function in combination
with LaSalle invariance principle, global asymptotic stabilization of the origin
of the system (25) with the control law (9) is obtained. 2
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6 Conclusion

In this article we have developed a theory for constructing control laws having
a predetermined local behavior. In a first step, we showed that this problem
can be rewritten as an equivalent problem in terms of Lyapunov functions.
In a second step we have demonstrated that when the local behavior comes
from an (LQ) optimal approach, we can characterize a cost with specific local
approximation that can be minimized. Finally, we have introduced two classes
of system for which we know how to build these locally optimal control laws.

All this theory has been illustrated on the problem of orbital transfer.
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