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Abstract: We present an algorithm for merging two partial maps obtained with a laser range scanner into a single map.
The most unique aspect of our algorithm is that it does not require any information on the position where the
scans were collected. The algorithm operates by performing a geometric match of the two scans and returns
the best fused map obtained by merging the two partial maps. The algorithm attempts to reduce the number of
segments in the fused map, by replacing overlapping segments with a single segment. We present heuristics
to speed up the computation, and experimental results obtained with a mobile robot in an indoor environment.

1 INTRODUCTION

The increasing use of mobile robots equipped with
laser range scanners has stimulated the development
of methods for aligning scan data collected by these
sensors. Usually these methods align two scans start-
ing from some information about the relative position
of the sensors obtained from odometry (Lu and Mil-
ios, 1997; Cox, 1991; R̈ofer, 2001).

In this paper we present a method for matching
two scans that does not requireany odometry infor-
mation. For the purposes of this paper, a scan is a col-
lection of segments. In our experimental setting each
scan is obtained by acquiring with a laser range scan-
ner (mounted on a mobile robot at a given height) a
sequence of distance measurements along directions
separated by a programmable angle (one degree, in
our case). The result of the sensing operation is thus
a set of points expressed in polar coordinates, with
the origin of the coordinate frame in the sensor itself.
We approximate these points with a set of segments
following the method described in (Gonzáles-Bãnos
and Latombe, 2002). The use of segments instead of
points reduces the computational complexity of find-
ing the match between scans. Since the method does
not use odometry information, it relies exclusively on
the geometry of the scans. In particular, we consider
the angles between pairs of segments in the scans as a
sort of “geometrical landmarks” on which the match-
ing process is based. We assume that the robot moves

on a2D surface and that walls and vertical objects are
at the height of the laser scan. The method proposed
in this paper can correctly match two scans even when
their displacement is significative, provided that they
have an overlap containing at least an angle represent-
ing the same portion of the environment.

The method integrates two scans,S1 andS2, into a
final mapS1,2. It is composed of three major steps:

1. determine the possible transformationsof S2 on
S1;

2. evaluate the transformationsto identify the best
transformation̄t of S2 onS1;

3. apply the best transformationto S2 (obtainingS t̄
2)

and fuse the segmentsof S1 and of S t̄
2 to obtain

S1,2.

The main advantage of our scan matching method
is that, since it is independent of any prior knowl-
edge about the relative position of the scans, it is ap-
plicable indifferently in situations in which the two
scans have been perceived by the same robot at dif-
ferent time instants, as well as in situations in which
the two scans have been perceived by two robots in
two different locations. In both cases,S1 andS2 are
matched only on the basis of the geometrical infor-
mation they contain. For this reason, our scan match-
ing method is naturally applicable to multirobot map
building (Simmons et al., 2000; Burgard et al., 2002).
In this context, the map merging problem, namely the
problem of building a global map from data collected
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by several robot, is usually solved by extending the
SLAM techniques (Burgard et al., 2002; Williams
et al., 2002; Stewart et al., 2003; Fenwick et al.,
2002), the EM techniques (Simmons et al., 2000;
Thrun et al., 2000), or a combination of the two ap-
proaches (Thrun, 2001). All these map merging tech-
niques rely on the assumption that the robot positions
are known. For example, in (Simmons et al., 2000;
Burgard et al., 2002) the positions of the robots are
assumed to be known at every time instant; in (Thrun
et al., 2000) the robots don’t know their relative start
position but it is assumed that each robot starts within
sight of a robot, called the team leader. Our scan
matching method could be employed to merge over-
lapping maps of different robots without knowing
their positions, since the method is fully independent
of the displacement between the maps. In the follow-
ing, we refer to the single robot case but all the results
are applicable to the multirobot case.

This paper is structured as follows. The next Sec-
tion reviews the state of the art in scan matching meth-
ods. In Section 3 we describe in detail our method and
in Section 4 we discuss the experimental activity per-
formed to validate it. Section 5 concludes the paper.

2 THE SCAN MATCHING
PROBLEM

Scan matchingis the process of calculating the
translation and rotation of a scan to maximize its over-
lap with a reference scan. The translation and rotation
can be represented by a displacement vector. Most of
the scan matching methods discussed in the follow-
ing employ laser range scanners, since they guarantee
more accuracy and reliability than sensors like sonars.

A number of scan matching algorithms have been
presented in the last two decades; they differ for
the kind of environments in which they perform
well (e.g., linear, rectilinear or polygonal environ-
ments) and for the required computational effort.
For example, the method proposed in (Weiss et al.,
1994) adopts cross-correlation to approach the prob-
lem. From the actual and previous point scans, an-
gle and distance histograms are extracted and cross-
correlated. The maxima of the respective cross-
correlation functions give the rotation and the transla-
tion between the two scans. The method uses odom-
etry for an initial position estimate, since evaluation
of cross-correlation functions might be erroneous for
large displacements between scans. The major draw-
back of this method is that the algorithm performs
well only in environments consisting of straight per-
pendicular walls and it only allows for minor changes
of the environment. The improvement in (Röfer,
2001) deals with non-perpendicular walls and seg-

ment maps, even if it still assumes straight walls and
shows poor performances in scattered environments.

Another well-known technique is the iterative al-
gorithm of (Cox, 1991) for matching range scans to
an a priori map of line segments. Since it assumes
small displacements between a scan and the map, the
algorithm first finds the correspondence between scan
points and line segments and then calculates the trans-
lation and rotation that minimize the (square of all)
point-to-segment distances. The two steps are re-
peated until the process converges. Each iteration
returns a position correction vector and a variance-
covariance matrix that evaluates the match. This ap-
proach has been extended by (Gutmann and Schlegel,
1996): instead of having ana priori model of the en-
vironment, line segments are extracted from the pre-
vious scans and used as the reference model for the
matching process. Rejection criteria are used for re-
ducing the amount of false point-to-line assignments
in order to speed-up the method. These last two meth-
ods can be applied only to polygonal environments, a
limitation that our method tries to partially overcome.

The IDC (Iterative Dual Correspondence) algo-
rithm (Lu and Milios, 1997) performs well in rectilin-
ear as well as in irregular environments. Like (Cox,
1991), IDC iteratively minimizes an error measure
by first finding a correspondence between points in
the reference scan and points in the actual scan, and
then doing a least square minimization of all point-
to-point distances to determine the best translation
and rotation. An initial position estimate is pro-
vided through odometry to avoid erroneous align-
ments. The computational cost of IDC is high and
the method does not seem to be suited for polyg-
onal environments. Thus, (Gutmann and Schlegel,
1996) proposed a scan matching method that com-
bines (Cox, 1991) (used in polygonal environments)
and IDC (used in non-polygonal environments). IDC-
S (IDC-Sector) (Bengtsson and Baerveldt, 1999) re-
duces noise sensitivity of original IDC and copes with
dynamic environments. All these methods employ in-
formation obtained from odometry.

The method proposed in (Zhang and Ghosh, 2000)
extracts line segments from range points and uses a
special Center of Gravity representation for describ-
ing the uncertainty of line segments. Relying on
odometry readings as initial estimate for the displace-
ment vector, it matches pairs of segments and com-
putes the translation by least square minimization, as
in (Lu and Milios, 1997).

The method presented by (Einsele, 1997) uses a
panoramic range finder to build segment maps. It
extracts line segments representing walls or other
boundaries of the environment and matches the scans
taken from different positions without relying on any
additional source of information. This is done by em-
ploying dynamic programming algorithms applied to
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the vertical lines of the map. It can operate in polygo-
nal or rectilinear environment but it doesn’t work well
in scattered environments and it relies on small dis-
placement of the robot.

Finally, the method illustrated in (Martignoni III
and Smart, 2002) extracts line segments from laser
range readings and matches the actual map and a
global map incrementally built during the exploration.
It first determines the heading between the two maps
by computing the histogram of the angle differences
and then adjusts the translation by overlapping the
line segments with least square minimization. The
method works in linear and static environments and
with very small displacements between two maps;
the method can also perform a global search, but it
becomes slower and prone to errors in environments
with many similarities.

3 THE PROPOSED METHOD

This Section details the three main steps of our
method for scan matching. In the algorithms, two
points are considered to coincide when they are closer
than POINTDISTANCETOLERANCE (in our experi-
ments we set this parameter to15mm) and two angles
are considered equal when their values differ for less
than ANGLEDIFFERENCETOLERANCE(in our exper-
iments we set this parameter to0.2 rad).

3.1 Determining the Possible
Transformations

This step, given the scansS1 andS2, first finds the
angles between segments inS1 and between segments
in S2 and, second, finds the possible transformations
(namely, the rotations and translations) that superim-
pose at least one angleα2 of S2 to an equal angleα1

of S1. Recall that angles between pairs of segments in
a scan are the geometrical landmarks we adopt. Find-
ing the possible transformations is a difficult combi-
natorial problem since in principle, without any infor-
mation about the relative positions of the two scans,
there areO(n2

1n
2
2) possible transformations, wheren1

and n2 are the numbers of segments inS1 and S2,
respectively. We have therefore devised three heuris-
tics for reducing this complexity and finding a set of
(hopefully) significant transformations between two
scans. The three heuristics are described in the fol-
lowing.
1. Considering Angles between Consecutive Seg-
ments. In each scan, we select the angles between
two consecutive segments; letAs

1 andAs
2 be the sets

of such angles forS1 andS2, respectively. Two seg-
ments are considered consecutive when they have an
extreme point in common. Then, we find the set of

all the transformations that make an angle inAs
2 to

correspond to an equal angle inAs
1. The number

of possible transformations found by this method is
O(n1n2). We note that finding the setsAs

1 andAs
2 is

greatly facilitated when the segments inS1 and inS2

are ordered. This is usually the case with laser range
scanners, since the points returned by the sensor are
ordered counterclockwise and it is straightforward to
maintain the same order in the segments that approx-
imate the points.

Although this method seems to perform well in in-
door environments where the angles are usually reg-
ular, the errors introduced by the sensor and by the
algorithm that approximates points with segments al-
ter the representation of these regular angles. For ex-
ample, Fig. 1 shows the segment representation of a
portion of an environment with four right angles. It is
evident that the angles between consecutive segments
sometimes do not constitute a good model of the en-
vironment angles.

Figure 1: A portion of a scan representing four right angles
of the environment

To improve the performance of this heuristic, it is
possible to consider angles between consecutive seg-
ments without a common extreme point (when an or-
der is defined for the segments of a scan) by setting
the parameter NONCONSECUTIVEEDGES to “yes”.
Consecutive segments can be considered to form sig-
nificant angles only if they are longer than a fraction
(specified by the parameter SEGMENTLENGTHPER-
CENTAGE) of the longest segment in the scan. The
implicit assumption is that long segments are more
reliable than short segments in representing the envi-
ronment.
2. Considering Angles between Randomly Se-
lected Segments. In each scan, we examine a num-
ber of angles between pairs of segments selected ran-
domly. We assign a higher probability to be selected
to longer segments, since they provide more precise
information about the environment. LetAr

1 andAr
2

be the sets of the selected angles forS1 andS2, re-
spectively. We find the set of all the transformations
that brings an angle inAr

2 to correspond to an equal
angle inAr

1. The number of transformations gener-
ated by this method isO(a1a2), wherea1 = |Ar

1| and
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a2 = |Ar
2| are the number of selected angles inAr

1
andAr

2, respectively.
Instead of assigning directly to each segment the

probability of being selected (according to its length)
and of selecting thea1 (respectivelya2) pairs, the
following approximate and easy-to-implement tech-
nique is employed. Initially only segments longer
than SEGMENTDIVISIONFACTOR times the length
of the longest segment inS1 (resp. S2) are con-
sidered for selection. All the segments considered
have equal probability of being selected. Then,
we proceed to iterate withk = 1, . . . , K. Dur-
ing the k-th iteration, we use a threshold equal to
SEGMENTDIVISIONFACTORk times the length of the
longest segment inS1 (resp.S2). Out of the seg-
ments longer than this threshold we select one with
equal probability. Thus, the parameter SEGMENT-
DIVISIONFACTOR determines the length of the seg-
ments that are considered for selection and, implicitly,
the probability of selection. This technique tries first
to find transformations based on angles between long
segments; then it progressively considers transforma-
tions based on angles between shorter and shorter seg-
ments. The above technique can be further improved
by stopping the generation of transformations when a
“good enough” transformation is found. (The evalua-
tion of the quality of a transformation is discussed in
Section 3.2.)
3. Considering Angles between Perpendicular Seg-
ments. In each scan, we select only angles between
perpendicular segments. This heuristic is particularly
convenient for indoor environments, where the pres-
ence of regular walls usually involves perpendicular
segments. The heuristic is based on histograms. The
histogramof S1 (and, in similar way, that ofS2)
is an array ofnslots elements, wherenslots is the
number of buckets of the histogram. Each bucket
Li (i = 0, 1, . . . , nslots− 1) contains the segments
with orientation comprised betweenπ × i/nslotsand
π × (i + 1)/nslots, measured with respect to a given
reference axis. To each elementLi of the histogram
of S1 is associated a value calculated as the sum of
the lengths of the segments inLi. Theprincipal di-
rectionof an histogram is the element with maximum
value. Thenormal directionof an histogram is the
element that isπ/2 rad away from the principal di-
rection. In Fig. 2, the histogram of a scan taken in an
indoor environment is shown. The principal direction
is the elementL9 and the normal direction is the ele-
mentL0. Let Ah

1 andAh
2 be the sets of angles formed

by a segment in the principal direction and by a seg-
ment in the normal direction of the histograms ofS1

andS2, respectively. The set of possible transforma-
tions is then found comparing the angles inAh

1 and
Ah

2 . The number of possible transformations gener-
ated by the above heuristic isO(p1n1p2n2), wherepi

andni are the number of segments in the principal

and normal directions of the histogram of scanSi.

Figure 2: The histogram of a scan

3.2 Evaluating the Transformations

Every transformation found in the previous step is
evaluated in order to identify the best one. To de-
termine the goodness of a transformationt we trans-
form S2 on S1 (in the reference frame ofS1) accord-
ing to t (obtainingSt

2), then we calculate the approx-
imate length of the segments ofS1 that correspond to
(namely, match with) segments ofSt

2. The measure
of a transformation is the length of the correspond-
ing segments that the transformation produces. More
precisely, the measure of a transformation is the sum
of all the matching values calculated for every pair
of segmentss1 ∈ S1 and st

2 ∈ St
2. The match-

ing valuebetween two segmentss1 andst
2 is calcu-

lated as follows. We projectst
2 on the line support-

ing s1 thus getting a projected segmentst
2p and then

we compute the lengthl1 of the common part ofs1
andst

2p; we do the same but projectings1 on st
2, ob-

taining l2. The matching value ofs1 andst
2 is cal-

culated as the average ofl1 and l2. When s1 and
st
2 do not intersect, the matching value is multiplied

by 0.95d(s1,st

2
)/POINTDISTANCETOLERANCE to penalize the

match between segments that are far away. Note that
ln(0.95) is an empirical constant whose value has
been determined during experimental activities and
d(s1, s2) is the distance between two segments, cal-
culated as

d(s1, s2) = min(max(dist(s1, start(s2)),

dist(s1, end(s2))),

max(dist(s2, start(s1)),

dist(s2, end(s1))))

where start(s) and end(s) are the extremes of seg-
ment s (see Fig. 3). Finally, two special cases can
appear during the evaluation of the matching val-
ues of s1 and st

2. The matching value is set to0
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s1

s2

a
bc

d

Figure 3: The distance betweens1 ands2 is the quantity
d(s1, s2) = min(max(a, b), max(c, d)), where the marked
angles are equal toπ/2

when the two segments are too far away, namely
when d(s1, s

t
2)/POINTDISTANCETOLERANCE >

SEGMENTDISTANCETHRESHOLD. SEGMENTDIS-
TANCETHRESHOLD is usually set to5 to obtain good
experimental results. The matching value is set to−1
when the two segments intersect and are longer than
SEGMENTLENGTHREFUSE; in this case the transfor-
mation is discarded.

The above algorithm evaluates a single transforma-
tion by considering all the pairs of segments of the
two scans that areO(n1n2). A way to limit this com-
putational effort is to stop the evaluation of a transfor-
mationt when its measure cannot be larger than the
current maximum.

3.3 Transforming and Fusing Scans

Once the best transformation̄t has been found, the
third and last step of our method transforms the sec-
ond scanS2 in the reference frame ofS1 according to
t̄ obtainingS t̄

2.
The map that constitutes the output of our scan

matching method is then obtained by fusing the
segments ofS1 with the segments ofS t̄

2. To
this end, we use the idea of matching chains. A
matching chainof the pair of scansS1 and S t̄

2

is a set C = {〈s1, s
t̄
2〉|s1 ∈ S1 and st̄

2 ∈
S t̄

2 have a positive matching value for t̄} alge-
braically closed under segment belong-to relation.
Specifically, a matching chainC is such that if
〈s1, s

t̄
2〉 ∈ C, then also〈s1, s〉 ∈ C and〈s, st̄

2〉 ∈ C
for all the segmentss that have a positive match
value (namely, have matched with)s1 or with st̄

2.
We explicitly note that, given an element〈s1, s

t̄
2〉,

the matching chainC that contains (that is generated
by) 〈s1, s

t̄
2〉 is uniquely identified. A transformation

t̄ generates a set of (disjoint) matching chains. The
main idea behind the fusion of segments is that each
matching chain (i.e., each set of matching segments)
is substituted in the final map by a single polyline.
Therefore, the final map is obtained by adding the
polylines that represent the matched segments to the
unmatched segments ofS1 andS t̄

2. The problem is
thus reduced to build a polyline that approximates the

segments in a matching chainC. With this polyline,
it is easy to smoothly connect the different segments
inserted in the final map.

The solution to the above problem consists in itera-
tively building a sequence of approximating polylines
P0, P1, . . . that converges to the polylineP that ade-
quately approximates (and substitutes in the resulting
map) the matching segments inC. The polylineP0 is
composed of a single segment connecting the pair of
farthest points inC. Given the polylinePn−1, call s
the segment in (a pair belonging to)C that is at max-
imum distance from its (closest) corresponding seg-
ments̄ in Pn−1. If the distanced(s, s̄) is less than the
acceptable error, thenPn−1 is the final approximation
P . Otherwise,s substitutes̄s in Pn−1 ands is con-
nected to the two closest segments inPn−1 to obtain
the new polylinePn.

4 EXPERIMENTAL RESULTS

The method we presented has been validated us-
ing a Robuter mobile platform equipped with a SICK
LMS 200 laser range scanner mounted in the front
of the robot at a height of approximately50cm. For
our purposes we chose to acquire scans with angu-
lar resolution of1 degree and with180 degrees an-
gular range. As already said, each scan obtained by
the laser range scanner has been processed to find a
set of segments that approximate the points returned
by the sensor, according to the algorithm described
in (Gonźales-Bãnos and Latombe, 2002). The method
presented in this paper has been coded in ANSI C++
employing LEDA libraries4.2 (LEDA Library, 2004)
for two-dimensional geometry and has been run on
a 1GHz Pentium III processor with Linux SuSe8.0.
We considered31 pairs of scans (fromS1 − S2 to
S31 − S32) that have been acquired by driving the
robot manually and without recording any odometric
information. The scans have been collected in a labo-
ratory, a very scattered environment, in a narrow hall-
way with rectilinear walls, and in a department hall, a
large open space with long perpendicular walls. The
correctness of the scan matches has been determined
by visually evaluating the initial scans and the final
map with respect to the real environment. For every
scan match, we tested the basic method and the three
heuristics, sometimes modifying the values of the pa-
rameters.

In general, our experimental results demonstrate
that our method performs very well:28 pairs of scans
out of 31 have been correctly matched. Unsurpris-
ingly, the histogram-based heuristic worked well with
scans containing long and perpendicular segments, as
those taken in the hallway and in the hall. The heuris-
tic based on consecutive segments seems to work well
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Figure 4: Matching scansS4 (left) andS5 (center) to get final mapS4,5 (right)

1m
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Figure 5: Matching scansS18 (left) andS19 (center) to get final mapS18,19 (right)

1m

1m
1m

Figure 6: Matching scansS25 (left) andS26 (center) to get final mapS25,26 (right)

in all three kinds of environment, even if sometimes
it needs some parameter adjustments.

Table 1: Summary of experimental results for the
different methods of computing transformations be-
tween two scans

S4 S5 S18 S19 S25 S26

# of segments 47 36 24 24 10 12
All 936 s [41260]1 32 s [3096] 0.38 s [231]
Consecutive 1.25 s [2] 0.73 s [27] 0.13 s [4]
Random2 7.69 s 2.51 s 0.78 s
Histogram 3.29 s [73] 1.97 s [192] 0.15 s [32]
1 [Number of possible transformation that have been evalu-

ated]
2 Obtained by generating about20000 angles

In the following we discuss some interesting scan
matches (Table 1).S4 andS5 were taken inside the

laboratory: they contain a large number of short seg-
ments since the environment is highly scattered and
the presence of chair and table legs produces an high
number of small segments (Fig. 4). The heuristic that
works better is that based on consecutive segments:
it was able to find a good transformation evaluating
only two transformations; on the other hand, the eval-
uation of all the possible transformations is infeasible
(over40000 matches to evaluate!).S18 andS19 were
taken along the hallway: they contain fewer segments
than the scans previously discussed and are charac-
terized by long rectilinear segments (Fig. 5). Even in
this case, evaluating all the transformations is expen-
sive, while the consecutive-segments heuristic per-
forms well. Finally,S25 andS26 were taken in the
hall: they contain only few segments since the envi-
ronment is characterized by long rectilinear and per-
pendicular walls (Fig. 6). All the heuristics perform
well in this case because, starting from a small num-
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ber of segments, there are only few transformations
that are easy evaluate.

For scan pairsS1−S2 andS2−S3 our method was
not able to find the correct transformation. As shown
in Fig. 7, the scans, taken in the lab entrance, are ex-
tremely rich of short segments representing scattered
small objects (chairs, tables, robots, and boxes). It is
almost impossible, even for a human being, to find
the correct match between these scans without any
prior information about their relative positions. Simi-
lar problems emerged in the hall. Fig. 8 shows scans
S27 and S28, where the second one has been taken
after rotating the robot of about100 degrees. Since
the environment is large and has only few objects that
can be used as reference, a drastic change of the field
of view eliminates any common reference between
scans, thus automatic matching is impossible.

We now briefly discuss the role of the parameters
that mostly influence the performance of our method.
POINTDISTANCETOLERANCE influences the match-
ing value of two segments and the transformation dis-
charging. In the same way, large values for SEG-
MENTDISTANCETHRESHOLDmake segments that do
not represent the same object in the environment to
match; small values reduce the number of matching
segments thus making the method more sensitive to
measurement errors. Large values of ANGLEDIFFER-
ENCETOLERANCE facilitates the search of the best
transformation by allowing a lot of possible transfor-
mations to be considered (but their evaluation requires
more time). Small values of SEGMENTLENGTHPER-
CENTAGE lead to consider more short segments and
to generate more transformations to evaluate, while
large values allow to consider only longer segments
in the map, this is useful in the case of long segments
representing walls.

5 CONCLUSIONS

We have described a powerful method for scan
matching that works without any information about
the relative positions of the two scans but relies exclu-
sively on the geometrical features of the scans. This
is the major feature which distinguishes our method
from most of the scan alignment and matching meth-
ods reported in the literature. Extensive experimental
results validate the effectiveness of the approach.

We are working to apply the method described in
this paper to the integration ofn scans. This problem
will be tackled in two steps: initially we will try to
integrate asequenceof n scans and then we will try
to extend the techniques to the integration of a gen-
eral set ofn scans, acquired by a single robot or by
different robots.
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