N

N
N

HAL

open science

Intensional Query Answering to XQuery Expressions

Simone Gasparini, Elisa Quintarelli

» To cite this version:

Simone Gasparini, Elisa Quintarelli. Intensional Query Answering to XQuery Expressions. Database
and Expert Systems Applications (DEXA 2005), Aug 2005, Copenhagen, Denmark. pp.544-553,

10.1007/11546924_ 53 . hal-00817533

HAL Id: hal-00817533
https://hal.science/hal-00817533

Submitted on 24 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00817533
https://hal.archives-ouvertes.fr

Intensional Query Answering to
XQuery expressions

Simone Gasparini and Elisa Quintarelli

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza Leonardo da Vinci, 32 — 20133 Milano (Italy)
{gasparini,quintarelli}@elet.polimi.it

Abstract. XML is a representation of data which may require huge amounts of
storage space and query processing time. Summarized representations of XML
data provide succinct information which can be directly queried, either when fast
yet approximate answers are sufficient, or when the actual dataset is not available.
In this work we show which kinds of XQuery expressions admit a partial answer
by using association rules extracted from XML datasets. Such partial information
provide intensional answers to queries formulated as XQuery expressions.

1 Introduction

The eXtensible Markup Language (XML) [12] was initially proposed as a standard way
to design markup languages to represent, exchange and publish information on the Web,
but its usage has recently spread to many other application fields.

XML is a rather verbose representation of data, which may require huge amounts
of storage space and query processing time. In [2] several summarized representations
of XML data are proposed to provide succinct information and be directly queried. In
particular, the notion of patterns is introduced as abstract representations of the con-
straints that hold on the data and for (possibly partially) answering queries, either when
fast (but approximate) answers are required, or when the actual dataset is not available
or it is currently unreachable.

In this work we show which kinds of queries admit a partial answer by means of
association rules extracted from XML datasets by using data mining techniques.

In particular, once a XML dataset has been analyzed by a miner tool and a set
of association rules has been extracted, we investigate how to transform an XQuery
expression to be applied to the original XML dataset, in order to apply it to the set of
rules previously extracted. In this way we provide an approximate intensional answer.

An intensional answer to a query substitutes the actual data answering the query
(the extensional answer) with a set of properties (in our work, with a set of association
rules) characterizing them [11]. Thus, intensional answers are in general more synthetic
than the extensional ones, but usually approximate.

In order to achieve our goal, an intuitive and effective language is needed to query
the extracted knowledge.

We focus on XQuery, the standard XML query language introduced by the W3C
[13]. In particular, we propose the fragment of XQuery expressions that can be used



to retrieve useful information from the extracted sets of association rules. Such useful
information can provide intensional answers to queries formulated as XQuery expres-
sions. In [7] we have focused also on a graph-based language, and in particular on
XQBE [3], because the user could (visually) express a query without taking care about
the details of the language really used to query the document. In this way, the over-
all querying process appears completely transparent to the user: if the actual dataset is
not available, the intensional (approximate) answer will be automatically provided by
querying the rule set.

The paper is organized as follows. Section 2 summarizes the different types of pat-
terns proposed in [2] and briefly describes how to represent them in a graph-based
formalism. In Section 3 we propose some examples which show the set of queries we
can manage with our approach and how to transform XQuery expressions in order to
retrieve intensional information about XML documents; the formalization of the trans-
formation process is in [7]. Previous work is discussed in Section 4, while conclusions
and possible lines for future work are presented in Section 5.

2 Patterns for XML Documents

The summarized representations introduced in [2] are based on the extraction of asso-
ciation rules from XML datasets. Association rules describe the co-occurrence of data
items in a large amount of collected data [1] and are usually represented as implica-
tions in the form X = Y, where X and Y are two arbitrary sets of data items, such
that X NY = 0. In the XML context, a data item is a pair (data-element,value), e.g.
(Conference,Pods). The quality of an association rule is usually measured by means
of support and confidence. Support corresponds to the frequency of the set X UY in
the dataset, while confidence corresponds to the conditional probability of finding Y,
having found X and is given by sup(X UY)/sup(X).

In [2] patterns are classified in two orthogonal ways. The first classification refers
to the precision with which the pattern represents the dataset: a) an exact pattern ex-
presses a property which holds on any instance of the dataset. Thus exact patterns rep-
resent constraints (e.g. functional dependencies between schema elements by means of
schema patterns). For example, the name and the edition of a conference identify the
location where the conference has taken place. b) A probabilistic pattern holds only on
a given (large) fraction of the instances in the dataset. It is a weak constraint on the
dataset, characterized by a quality index describing its reliability. For example, with a
confidence of 0.9 the name of a conference identifies its main topics.

The second classification dimension corresponds to the different summarization lev-
els of the represented information. Instance patterns are expressed on the instances of
the dataset. In this paper they are used to summarize the content of a XML dataset
by means of the most relevant (frequent) association rules holding on the dataset. As
proposed in [2], association rules are extracted by using mining algorithms; in particu-
lar, to define the concept of transaction a transaction root (i.e. an appropriate element
of the considered XML document) is selected. A transaction is then defined as a col-
lection of pairs (element tag,content) or (attribute name,value), where element tag (or
attribute name) is the name of an element (or attribute) rooted in the transaction root



Result

article article

0.5

0.2
article suthors
authors Oconference
conference d/ confYear
author
i author i l VLDB

authors

author

0~ O« O« O={]

2000
Paul Smith Pods Paul Smith E. Brown

(a) (b) (©

Fig. 1. Three instance patterns

and is defined as a complete sub-path from the root to the element. The quality index of
the pattern is the confidence of the rule.

We use previously extracted association rules to derive an approximate answer to
an XQuery expression, without requiring to actually access the dataset to compute the
answer. The answer may contain a subset or a superset of the required information,
depending on the form of the query and of the considered instance patterns.

In this work we focus our attention on (probabilistic) instance patterns. An example
of instance pattern is the following: with a confidence of 0.8 the author Paul Smith has
a publication to at least an edition of the conference /CDT.

In [2] a tree-based representation of patterns, which is formalized by means of the
language GSL, is proposed as well.

For example, the instance pattern (a) of Figure 1 represents the association rule
stating that with a confidence of 0.5 Paul Smith had a publication to any edition of the
Pods conference. In the graphical version of patterns we represent nodes with circles
(black filled circles represent the content of leaf elements or the value of attribute) and
indicate the confidence of the instance pattern on the root of the graph. Thin lines are
used to represent the body of the association rule, whereas thick lines represent the
head of a rule. A more complex instance pattern expressing an association rule with
more than one path in the thick part of the tree (i.e., in the association rule head), is
depicted in Figure 1.(b). The rule states that with a confidence of 0.2 Paul Smith had a
publication to the conference VLDB 2000. Note that here the confidence is associated
to the conjunction of the two conditions in the head of the instance pattern.

3 Experimental setup

In [7] the set of queries which can be considered to obtain approximate answers by
using instance patterns is introduced. For the sake of space, in this work we present our
idea only by examples.

For our first experiments we have used a dataset based on a slight variation of the
SIGMOD Record XML Document [10]. The document reports information about Con-
ference Proceedings; Listing 1.1 reports a XML fragment of the document itself.



<articles>
<article year"2001">
<volume>30</volume>
<number>2</number>
<month>June</month>
<conference>ACM SIGMOD International Conference on Management of Data</conference>
<date>May 21 - 24, 2001</date>
<location>Santa Barbara, California, USA</location>
<title articleCode="302001">Securing XML Documents ...</title>
<authors>
<author authorPosition="01">E. Brown</author>
<author authorPosition="02">L. Baines</author>
</authors>
<indexTerms>
<term>XML</term>
<term>Security</term>
<term>XQuery</term>
<term>Theory</term>
<indexTerms>
</article>

</articles>

Listing 1.1. A portion of the sample document inspired to the SIGMOD Record [10]

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT RuleSet (AssociationRule+)>
<!ELEMENT AssociationRule (RuleBody, RuleHead)>
<!ATTLIST AssociationRule

support CDATA #REQUIRED

confidence CDATA #REQUIRED>
<!ELEMENT RuleBody (item+)>
<!ELEMENT RuleHead (item+t)>
<!ELEMENT item (ItemName, ItemValue)>
<!ELEMENT ItemName (#PCDATA)>
<!ELEMENT ItemValue (#PCDATA)>

Listing 1.2. The DTD of the document reporting the extracted association rules set

Starting from this dataset, we perform a mining process to extract association rules.
Most of the proposed algorithms for mining association rules [1], [8] consider a collec-
tion of transactions, each containing a set of items. In our examples, we have associated
each transaction to an article, thus, we have extracted association rules describing
information about the elements which characterize articles (e.g. author, title, etc.).

In order to retrieve intensional answers from the set of extracted association rules,
we store them in a XML document. Listing 1.2 reports the relevant Document Type
Definition (DTD) we use to represent the rule set. We partially take inspiration from
the PMML (Predictive Model Markup Language) standard model proposed by the Data
Mining Group [5], which describes statistical and data mining models. Our model, how-
ever, is simpler and easier to query, i.e. it requires a less complex XQuery expression
to formulate a query. For example, a portion of the valid XML document represent-
ing some association rules, which have been extracted from the dataset based on the
SIGMOD Record XML Document, is shown in Listing 1.3.




<ruleSet>
<AssociationRule support="0.2" confidence="0.8">
<RuleBody>
<item><ItemName>author</ItemName><ItemValue>E. Brown</ItemValue></item>
</RuleBody>
<RuleHead>
<item><ItemName>term</ItemName><ItemValue>XML</ItemValue></item>
</RuleHead>
</AssociationRule>

</ruleSet>

Listing 1.3. A sample fragment of the XML document of the rule set extracted from
the sample document of Listing 1.1

Result
Result
article article Result article ?
indexTerms authors indexTerms authors
O conference
term term author author author
[ J (] [
XML, XMI. XQuery E Brown . Parker
(@) (b) (©

Fig. 2. (a) GSL visual representation of query Q2; (b) GSL visual representation of query Q4; (c)
GSL visual representation of query Q5;

In the following we analyze the kinds of queries described in [7] that admit a partial
answer by using association rules extracted from XML datasets.

3.1 Queries with conditions on content nodes

Let us consider the first kind of query with conditions on a content node; i.e. queries
imposing a restriction on the value of an attribute or on the content of a leaf element of
an XML dataset. An example is the query Q1 “List all the information about the articles
published by E. Brown”, which contains a condition on the name of an author. The GSL
representation is depicted in Figure 1.(c). An XQuery expression for this query is:

<result> {

for Sarticle in doc("document.xml")//article
where S$article/authors/author/text() = "E. Brown"
return $article }

</result>

The above expression can be run on any XQuery engine to get the extensional an-
swer to Q1. In order to get an intensional answer from the extracted rule set, we have to
transform the original XQuery expression.

For the query Q1, according to the DTD for the extracted association rules described
before (Listing 1.2), the XQuery expression should be modified as follows:




<result> {

for $article in doc("RuleSet.xml")//AssociationRule

where Sarticle[RuleBody[item[ItemName="author" and ItemValue="E. Brown"]]]
return Sarticle }

</result>

This expression returns all the association rules that have an item named author
in the body of the rule, whose value is E. Brown. The changes required (underlined in
the listing) to query the rule set affect the name of the document to examine (from now
on we suppose that the rule set is stored in a XML file named RuleSet .xml), the item
in the for clause, which has to be AssociationRule, and the expression in the where
clause, modified to select only those rules having an item in the body with the same
name of the author element.

Similarly, to get the association rules that satisfy the condition in the head of the
rule, RuleBody has to be replaced with RuleHead in the where clause. A more generic
query that looks for interesting information about E.Brown both in the body and in the
head can be expressed as follows:
<result> {

for Sarticle in doc("RuleSet.xml")//AssociationRule
where Sarticle//item[ItemName = "author" and ItemValue = "E. Brown"]]]

return Sarticle }
</result>

By using the XPath expression //item, the where clause selects all the association
rules which have an item named author in the body or in the head of the rule and
whose value is E. Brown.

Let us consider now the query that retrieves information about a node which is not
a direct ancestor of the constrained content node. An example of this kind of query is
the query Q2: “List all the authors who wrote articles about XML”. Figure 2.(a) shows
how it can be graphically represented in GSL. Like Q1, the source part matches all
the author having the term XML among the index terms of their published articles; the
query result will contain all these authors. The XQuery expression is:

<result> {

for Sarticle in doc("document.xml")//article
where Sarticle/indexTerms/term/text () = "XML"
return $article/authors/author }

</result>

In order to inquire the extracted rule set, the above XQuery expression needs the
following transformations:

<result> {

for $article in doc("RuleSet.xml")//AssociationRule

where Sarticle/RuleBody/item[ItemName = "term"]/ItemValue= "XML"
return Sarticle[RuleHead/item[ItemName = "author"]] }

</result>

The expression returns all the association rules that have an item term with required
value in the body and has an item author in the head, such as the rule relating the author
E. Brown and the index term XML in the rule set listed in Listing1.3. The changes that
are required are similar to the ones for query Q1, but in this case also a filter on the
returned $author variable is introduced in order to select only those association rules
which contain the item author in the head of the rule. In a similar way, by swapping



RuleHead and RuleBody in these expressions, the rules with term in the head and
author in the body can be obtained.

The GSL language used to represent XML patterns and the extraction process of
association rules make no distinction between elements and attributes of XML dataset
since the main aim is to find relationships among elementary values of XML documents.
However this choice can be easily tackled transparently to the user, as the following
example demonstrates. Let consider the query Q3 with condition on the value of an
attribute: “List all the conference held in 1996”. An XQuery expression of Q3 is:
<result> {

for Sarticle in doc("document.xml")//article
where S$article/Gyear = 1996

return $article/conference }
</result>

Due to the mining process, we loose the distinction between elements and attribute
and so we have to transform the above expression simply by considering in the same
way attributes and elements. Thus the XQuery expression to query the rule set becomes:

<result> {

for Sarticle in doc("RuleSet.xml")//AssociationRule

where $article/RuleBody/item[ItemName = "year"]/ItemValue= "1996"
return Sarticle[RuleHead/item[ItemName = "conference"]]}
</result>

The expression returns all the rules relating year in the body and conference in the
head.

3.2 Queries with AND-conditions on content nodes

Let us now focus on query with AND-conditions on the content nodes. As an example,
consider query Q4: “List all the authors who have published articles about XML and
XQuery” (see Figure 2.(b) for the visual representation). A related XQuery expression
is:

<result> {

for Sarticle in doc("document.xml")//article
where $article/indexTerms/term/text () = "XML"
and $article/indexTerms/term/text () = "XQuery"
return Sarticle/authors/author }

</result>

In order to provide intensional answer to Q4 by querying the extracted rule set, the
expression has to be modified in the following way:

<result> {

for Sarticle in doc("RuleSet.xml")//AssociationRule

where Sarticle/RuleBody/item[ItemName = "term"]/ItemValue= "XML"
and $article/RuleBody/item[ItemName = "term"]/ItemValue= "XQuery"
return Sarticle[RuleHead/item[ItemName = "author"]]}

</result>

This XQuery expression returns all the association rules satisfying both the conditions
on the term in the body of the rule and having an item author in the head.



3.3 Queries with OR-conditions on content nodes

Another type of query to consider is the one with two or more OR-conditions. An
example of this kind of query is Q5: “List all the conference attended by J. Parker or
E. Brown” (see Figure 2.(c) for the graphical representation. The arc between the two
edges represents a disjunctive condition). The equivalent XQuery expression is:

<result> {

for Sarticle in doc("document.xml")//article
where S$article/authors/author = "J. Parker"
or $article/authors/author = "E. Brown"
return $article/conference }

</result>

In order to query the rule set, we carry out the following adjustments:

<result> {

for Sarticle in doc("RuleSet.xml")//AssociationRule

where Sarticle/RuleBody/item[ItemName = "author"]/ItemValue= "J. Parker"
or Sarticle/RuleBody/item[ItemName = "author"]/ItemValue= "E. Brown"
return Sarticle[RuleHead/item[ItemName = "conference"]]}

</result>

Applying this XQuery expression to the rule set, we obtain all the association rules
having an item conference in the head and satisfying the OR-conditions about both
author elements in the body of the rule.

3.4 Queries with Element values

Finally let us consider the query that lists all the different values of a content node.
An example is the query Q6 “List all the authors who wrote an article, sorting in a
lexicographic order”. A relevant XQuery expression can be:

<result> {

for $author in doc ("document.xml")//author
order by S$author/text () ascending

return <author> {S$author/text()} </author>}
</result>

The above expression should be modified to query the rule set as it follows:

<result> {

for Sauthor in doc("RuleSet.xml")//item[ItemName="author"]/ItemValue
order by $author/text () ascending

return <author> {S$Sauthor/text ()} </author>}

</result>

This XQuery expression selects all the association rules having an item author in the
body or in the head of the rule and returns the content of the retrieved author ele-
ments, lexicographically sorted. This type of query requires a slight adjustment in the
expression of the for clause to filter the appropriate item in the rules.

4 Related Works

The problem of providing intensional answers by means of integrity constraints has
been initially addressed in [11] in the relational databases context. In this work we ex-
tend the approach to graph-based probabilistic patterns and XML documents. We starts



from the results published in [2], where several summarized representations of XML
data are proposed to provide succinct information: the notion of patterns is introduced
as abstract representations of the constraints that hold on the data and a graph-based
representation of patterns is proposed as well. In particular, instance patterns are repre-
sented by the most frequent association rules and are effectively extracted from XML
documents by using data-mining algorithms (e.g. by using Apriori). Some preliminary
ideas on the possibility to use such instance patterns to provide intensional answers to
user’s queries are sketched. In this work we extend the result of [2] in order to apply
the proposed approach to the XQuery language and we identify some classes of queries
that admit an approximate answer by using previously extracted association rules.

Another two works which present a framework to discover association rules in large
amounts of XML data are [4, 6].

In [4] the authors introduce a proposal to enrich XQuery with data mining and
knowledge discovery capabilities by introducing association rules for native XML doc-
uments and a specific operator for describing them. They formalize the syntax and an
intuitive semantics for the operator and propose some examples of complex association
rules. No algorithm for mining such complex rules is proposed, thus, we have decided
to start from the results in [2] and use, as a first step, very simple association rules in
order to partially answer to XQuery expressions.

In [6] a template model to specify XML-enabled associations to be effectively
mined is presented. In our opinion our work differs from [4, 6] because we do not
focus on the problems of representing and extracting complex association rules from
XML documents, instead we work on the possibility to use and manipulate the extracted
knowledge (at the moment we mine instance patterns by using the Apriori algorithm)
in order to give partial and approximate answers to XQuery expressions. As a future
work we may consider the method described in [6] to improve the performance of the
mining process and to be able to consider also more complex association rules on XML
document.

5 Conclusion and Future Work

In this work we have shown how to use association rules to provide intensional answers
and obtain approximate information about XML documents. In particular, we have ex-
plained which kinds of XQuery expressions admit an approximate answer and how to
transform them in order to query previously mined association rules.

We have built a first prototype environment implemented in Java and is mainly com-
posed of two components. The first one visualizes the DTD of a XML document in a
graph-based representation. The user chooses the items to include in the process of ex-
traction of association rules by indicating also where to apply stemming, stopwords,
and discretization procedures. The native XML document is then transformed in order
to be processed by the Apriori algorithm. The second component stores the output of
the miner into a MySQL database. To conclude, a graphical interface gives to the user
the possibility to query the extracted knowledge by using some classes of queries and
more in particular by providing values for few parameters that are then used to automat-
ically compose SQL queries to be applied to the MySQL database of rules. We are now



adapting the tool in order to transform the output of the miner into a XML document.
Another component under development uses the Saxon [9] engine to apply an XQuery
expression either to the original XML document or to the extracted set of rules.

As an ongoing work we are formalizing the degree of approximation (and the time
performance) of our approach in answering queries and studying how to combine con-
straints and association rules to improve the precision of intensional answers. We are
also considering extensions of the XQuery fragment proposed in this work that admit
partial answers.

Acknowledgment

We like to thank Letizia Tanca for the very useful comments on this work and Elena Baralis and
Paolo Garza for the precious collaboration in the setting foundations of this research.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In
Proceedings of the 20th International Conference on Very Large Data Bases, pages 487-499.
Morgan Kaufmann Publishers Inc., 1994.

2. E.Baralis, P. Garza, E. Quintarelli, and L. Tanca. Answering queries on XML data by means
of associations rules. In Current Trends in Database Technology, volume 3268. Springer-
Verlag, 2004.

3. D.Braga and A. Campi. A graphical environment to query XML data with XQuery. In Proc.
of the Fourth International Conference on Web Information Systems Engineering (WISE’03),
pages 31-40. IEEE Computer Society, 2003.

4. D. Braga, A. Campi, M. Klemettinen, and P.L. Lanzi. Mining association rules from XML
data. In Proc. of the 2003 ACM Symposium on Applied Computing, volume 2454, pages
21-30. Lecture Notes in Computer Science, 2002.

. Data Mining Group. PMML 2.1 — DTD of association rules model. http://www.dmg.org.

6. L. Feng and T. Dillon. Mining XML-Enabled Association Rules with Templates. In Proc. of
the Third International Workshop on Knowledge Discovery in Inductive Databases, volume
3377, pages 66—88. Lecture Notes in Computer Science, 2004.

7. S. Gasparini and E. Quintarelli. Intensional Query  Answering to
XQuery expressions. Technical Report 2005, Politecnico di Milano.
http://www.elet.polimi.it/upload/quintare/Papers/GQ05-Report.pdf.

8. Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation.
In 2000 ACM SIGMOD Int. Conference on Management of Data, pages 1-12. ACM Press,
2000.

9. M. Kay. Saxon — the XSLT and XQuery processor. http://saxon.sourceforge.net/,
2004.

10. P. Merialdo. SIGMOD RECORD in XML. http://www.acm.org/sigmod/record/xml,
2003.

11. A. Motro. Using integrity constraints to provide intensional answers to relational queries. In
Proceedings of the 15th International Conference on Very Large Data Bases, pages 237-246.
Morgan Kaufmann Publishers Inc., 1989.

12. World Wide Web Consortium. Extensible Markup Language (XML) 1.0, 1998.
http://www.w3C.org/TR/REC-xml/.

13. World Wide Web Consortium. XQuery: An XML Query Language, 2002.
http://www.w3C.org/TR/REC-xml/.

9}



