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CARING FOR YOUR DATA

By Konrad Hinsen

D
ata is at the heart of science. 
A scientist is expected to be 
able to back up all published 

conclusions with data. Data manage-
ment should thus be a priority in sci-
ence. Scientists can’t afford to lose 
data, be uncertain of what it means, 
or not know where it came from. In 
the experimental sciences, there’s a 
long tradition of writing down all ex-
perimental setups, parameters, and 
results meticulously in a lab note-
book. Unfortunately, computational 
science is much less rigorous about 
data handling, although there are 
clear signs of improvement. Here, 
we’ll consider what you can do to bet-
ter prepare and manage your data.

Overview of the Problem
Most scientific computing follows a 
simple pattern: the computer runs a 
program that reads in data, manipu-
lates it in some way, and produces 
output data. Input and output data 
are typically stored in files, but pro-
grams written for interactive use also 
take input directly from the user and 
provide output in a visual form (plots, 
animations, and so on).

For scientific research, the data 
matters more than the programs. In 
processing experimental results, the 
observations are the input data, and 
some quantities more directly related 
to the problem at hand (or simply a 
more familiar quantity to experts in 
the field) are the output data. In the 
computational evaluation of theoreti-
cal models, the input data consists of 
parameters and the output data is the 

theoretical prediction. It’s the input 
and output data that’s shown and dis-
cussed in scientific publications.

The program that produces out-
put data from input data is of little 
direct scientific interest. What mat-
ters is the mathematical equations 
that it applies to do its work. As sci-
entific problems and computational 
resources evolve, the programs are of-
ten adapted for technical reasons such 
as performance, but they still imple-
ment the same mathematical equa-
tions. A typical scientific publication 
discusses only the equations, not the 
other aspects of the program. There’s 
an increasing awareness in the com-
putational science community of the 
need to publish the full programs as 
well, in order to permit verification of 
the computations by other scientists. 
However, this doesn’t change the fact 
that the central items in computational 
science are data and equations.

Despite the importance of data for 
science, the storage and processing of 
data has traditionally been given little 
priority in scientific programming. 
The typical scientific programmer 
concentrates on the mathematical 
equations and on the algorithms that 
implement them. The in-memory 
representation of data in the program 
is usually chosen for convenience of 
implementation, as is (in many cases) 
the file format used to store the data 
more permanently. To make it worse, 
the file formats of many scientific 
programs aren’t documented by any-
thing other than the program’s source 
code.

An unfortunate consequence of this 
priority of code over data is that com-
putational scientists spend a signifi-
cant amount of time converting data 
between the formats used by different 
programs. In addition to requiring a 
lot of effort, file format conversion is 
an error-prone process, in particular 
when the file formats aren’t properly 
documented. A less-visible conse-
quence of the absence of data design 
is that scientific programs sometimes 
get trapped by a legacy data represen-
tation that can no longer be adapted to 
evolving requirements.

Data Models  
and File Formats
An important distinction to keep in 
mind is the one between data models 
and file formats. A data model defines 
how a specific collection of informa-
tion is expressed in terms of basic data 
items such as integers, floating-point 
numbers, or characters, and simple 
aggregate data structures such as lists, 
arrays, sets, or associative arrays. A 
file format defines how a data model is 
represented by a sequence of bytes. A 
data model covers in-memory storage 
as well as file storage.

A given data model can be repre-
sented by several file formats. This is 
often useful because different stages 
of data processing have different re-
quirements. For example, it might be 
advantageous to have a compact and 
platform-independent file format for 
archiving, a file format optimized for 
I/O performance for high-throughput 
computations, and a text-based file 

In the long run, your data matters more than your code. It’s worth investing some effort to keep your data  
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format for manual inspection and ed-
iting of data. As long as these three 
file formats implement the same data 
model, conversion between them is 
straightforward and lossless.

As a simple example, consider an 
address book. A simple data model 
would be as follows:

1. An address book is a list of ad-
dress book entries.

2. An address book entry consists of
a fixed set of fields, whose values
are character strings. Let’s say
the fields are “first name,” “last
name,” “phone number,” and
“e-mail address.”

A simple file format representing 
this data model can be defined by 
writing the value of each field in an 
address book entry as one line of a 
text file. Each entry would then take 
up four lines. Because the entries have 
a fixed length, they can simply follow 
each other in the file. An alternative 
file format could use one line per en-
try, with the fields separated by com-
mas. Conversion between these two 
formats would be straightforward and 
not lose any information either way.

In practice, you would want to de-
fine a more elaborate data model for 
an address book. Many people have 
several phone numbers and e-mail ad-
dresses. You could give each of them a 
label, such as “home” or “work.” The 
value of the “phone number” field is 
then an associative array whose keys 
and values are character strings. An-
other generalization would be to make 
the whole entry an associative array as 
well, allowing any number of fields 
such as “Twitter account,” “nick-
name,” or “postal address.”

However, this generalization creates 
a new problem: What if different users 
of your data model pick different field 

names or the same information? One 
user could choose “postal address” and 
another one just “address.” Interoper-
ability between programs would be 
much more difficult. A partial solu-
tion would be a set of mandatory field 
names. This example illustrates that 
it’s not necessarily a good idea to make 
a data model overly general.

A more subtle problem with our ad-
dress book data model is that it defines 
an address book as a list of entries. A list 
is a sequential data structure, meaning 
that the order of address book entries 
is significant. Two address books with 
the same entries arranged differently 
would be considered different. A more 
appropriate choice for the top-level 
data structure would be a set. On the 

other hand, a set is more difficult to 
implement in software, and you lose 
the convenience of a list in which 
each element has a simple and unique  
handle: its index in the list. Data 
model design is thus often a matter of 
choosing the right compromise.

Designing Data  
Representations
How can we design a good data model? 
Unfortunately, this question has no 
simple answer. Data model design, like 
software design, is an art rather than 
a science. Nevertheless, the following 
guidelines are a good starting point.

Look at your mathematical model. 

Most scientific computing is applied  
mathematics, and in that case your 
mathematical model is usually the  
best start ing point for your data  
model. Write down a precise and  

detailed definition of it. Of course, 
input from the application domain is 
useful as well.

Inspect your algorithms. Write down 
their inputs and outputs in particu-
lar. Group data items that belong  
together.

Think in terms of plain English. Describe 
your data as you would explain it to a 
fellow scientist, not as you would im-
plement it in your programs. If you 
are a Fortran or C programmer, you 
might automatically translate “a list 
of points in 3D space” into “an N × 3  
array of floats.” However, other pro-
gramming languages encourage dif-
ferent choices.

Avoid redundancy. Any information 
that can be deduced from other data 
shouldn’t be part of your data model. 
Redundant information opens the door 
to inconsistent datasets. You of course 
might want to have redundant data in 
your implementation, usually for effi-
ciency reasons, but it shouldn’t leak out.

Design for extension. It’s hardly ever a 
good idea in software development to 
design beyond clearly identified needs. 
Such over-engineering costs time and 
effort and can actually make future 
extensions more difficult if they don’t 
turn out to be exactly the ones envis-
aged initially. However, imagining 
various possible extensions of your 
data model can help to make it more 
future-proof.

Always keep in mind that a data 
model is defined at a more abstract 

Any information that can be deduced from other data 

shouldn’t be part of your data model.
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level than any concrete implemen-
tation. The role of data models in 
software design is similar to the role 
of pseudocode. Both should con-
tain the essential features of the data 
structures and algorithms used in a 
program, but none of the technical 
implementation details.

As a concrete example that will also 
serve to illustrate file format design, 
I propose a minimal data model for 
the chemical structure of molecules. 
The term molecule is taken to mean a 
set of atoms linked by chemical bonds. 
As a useful generalization of standard 
chemical terminology, commonly 
made in computational chemistry, 
a molecule may contain atoms that 
don’t participate in any bond, and in 
fact a set of atoms without any bonds 
is accepted as an extreme case of a 
molecule. Here are the rules that de-
fine the data model:

• A molecule is defined by a name, a
set of atoms, and a set of bonds.

• The name of a molecule is a char-
acter string.

• Each atom is identified by a unique
name (a character string) consisting
of its chemical element symbol op-
tionally followed by an integer.

• Each bond is defined by a bond or-
der (an integer) and a set of exactly
two distinct atoms, each of which
must also be an element of the atom
set of the molecule.

A water molecule would thus be de-
scribed as

name  “water”
atoms  {“O”, “H1”, “H2”}
bonds {(1, {“O”, “H1”}),  (1, {“O”, “H2”})}.

Note the use of sets, rather than lists or 
arrays, for atoms and bonds, which ex-
presses the fact that there’s no natural  

order to these constituents. This is a 
design choice that favors physical re-
alism over simplicity of implementa-
tion. Many data models in actual use 
in computational chemistry do impose 
an order on the atom set, because this 
turns out to be quite convenient in 
practice. However, such convenience, 
once it becomes a habit, can lead to 
bad design decisions, even at the level 
of mathematical models. For example, 
in the widely used Amber force field 
(http://ambermd.org/#ff ), the poten-
tial energy of a molecule depends on 
the order of the atoms, even though 
that order is arbitrary and completely 
unrelated to any physical property of 
the molecule. Data models can help to 
avoid such mistakes.

Designing File Formats
Once you have your data model, you 
can think about file formats that 
implement it for archiving and for 
exchange with other programs. The 
ideal file format would have the fol-
lowing characteristics:

• Independence of specific operating sys-
tems and compilers—the specifica-
tion should make it possible to write
portable programs that read and
write the file format anywhere.

• Compactness—even with today’s
terabyte-sized disks, wasting space
is never a good idea.

• I/O efficiency—reading and writing
data should be as fast as possible on
all common computing platforms.

• Simplicity for programmers—if ex-
isting I/O libraries can be reused,
your file format will be much more
popular.

• Convenient handling by scientists—
looking inside a file, or changing
some value, should be doable with
simple, powerful, and well-known
tools.

In practice it’s rarely possible to 
satisfy all of these conditions. As with 
other aspects of programming, the 
criteria of convenience and simplicity 
on one side and efficiency and com-
pactness on the other often lead to 
contradicting requirements.

The most fundamental choice to 
make in designing a file format is the 
choice between a text-based and a  
binary format. Text formats ultimately 
represent all data as a sequence of 
ASCII or Unicode characters. The 
main advantage is that any text edi-
tor on any computer can be used to 
inspect and modify the data. On the 
other hand, text formats are neither 
compact nor efficient to read and 
write. Binary formats, which represent 
data by bit patterns identical or very 
similar to those used by the computer’s 
CPU, have exactly the opposite char-
acteristics: they’re compact and I/O 
efficient, but require format-specific  
and sometimes platform-specific tools 
for any inspection or manipulation. 
It’s often useful to define both a text 
and a binary format for the same data 
model.

Because data storage in files is a 
common need in all areas of comput-
ing, several generic file formats have 
been developed that can be adapted 
to a wide range of applications. These 
formats specify the representation of 
basic data items (numbers and text 
strings) and common data structures 
(lists, arrays, tables, associative arrays, 
and so on), which are exactly the basic 
units in terms of which data models 
are defined. Ready-to-use libraries  
for many popular programming lan-
guages make them convenient for 
the programmer, and the existence of 
generic tools that deal with these for-
mats makes the users’ life easier.

The historically first generic text rep-
resentation of complex data structures  
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was created in the 1950s together  
with the Lisp programming language. 
Known as s-expressions (for symbolic 
expressions), it’s based on the list as 
the central data structure, with list 
elements being symbols, numbers, 
character strings, and other lists. 
Nested lists that also allow non-list 
elements are a way of encoding a tree 
structure, with list-type elements  
representing nodes and non-list  
elements representing leaves. A tree 
structure is a good, flexible choice, 
because most relevant data structures 
can easily be mapped to a tree.

Today’s best-known generic text 
format is XML (www.w3.org/TR/ 
rec-xml), defined as a simplified subset 
of the Standard Generalized Markup 
Language (SGML) for use in Web 
technology. XML and SGML were 
designed for applications where the 
majority of the data consists of text—
basically character strings—but they 
can be used for different kinds of 
data at the cost of being rather ver-
bose. The strong point of XML is a 
rich ecosystem of tools for creating, 
reading, validating, and transforming 
XML files.

Similar to s-expressions, XML is 
based on the concept of a tree struc-
ture. The items in the tree are called 
elements in XML terminology. Each 
element is delimited by a start tag and 
an end tag, and can have content (con-
sisting of text and other elements) and 
attributes (an associative array). The  
label in the start and end tags identifies 
the element type. Defining a specific 
format based on XML comes down to 
choosing the tags for various element 
types and specifying constraints on the 
elements’ contents and attributes. Ex-
amples of scientific data formats based 
on XML are Mathematics Markup 
Language (MathML; www.w3.org/
Math) for mathematical formulas,  

Extensible Scientific Interchange Lan-
guage (XSIL; http://resolver.caltech. 
edu/CaltechCACR:CACR-1999-171) 
for array and table data, Chemistry 
Markup Language (CML; www.xml-
cml.org) for chemistry, and Systems 
Biology Markup Language (SBML; 
http://sbml.org) for systems biology.

Although XML has gained a lot 
of support in recent years, it isn’t  
always the best choice for a text-based 
format. Its main disadvantage is its 
often verbose style, which increases 
file sizes and tends to make the data 
more difficult to understand to the 
human reader. XML is also rather 
complex, meaning that implementing 
XML I/O can be a significant effort, 

even when using XML libraries. Two 
other formats worth looking at are 
YAML (www.yaml.org), which stands 
for “YAML Ain’t Markup Language,” 
to emphasize its differences from 
XML, and JavaScript Object Nota-
tion ( JSON; http://json.org), which 
despite its name is supported by more 
languages than just JavaScript. The 
two have much in common, with 
JSON scoring on ease of handling in 
programs and YAML having the edge 
in human readability.

Figure 1 shows how the aforemen-
tioned chemical structure data model 
can be represented in these four file 
formats. YAML is the only format 
that has a way to represent sets. In the 

(molecule "water"

(atoms "O" "H1" "H2")

(bonds (1 "O" "H1") (1 "O" "H2")))

(a)

<molecule name="water">

<atoms>O H1 H2</atoms>

<bonds>

<bond atoms="O H1" order=1 />

<bond atoms="O H2" order=1 />

</bonds>

</molecule>

(b)

molecule:

name: water

atoms: !!set {O, H1, H2}

bonds: !!set

? order: 1

 atoms: !!set {O, H1}

? order: 1

 atoms: !!set {O, H2}

(c)

{"type": "molecule", "name": "water",

"atoms": ["O", "H1", "H2"],

"bonds": [{"order": 1, "atoms": ["O", "H1"]},

{"order": 1, "atoms": ["O", "H2"]}]}

(d)

Figure 1. Possible representations of the chemical structure data model. The 

representations are shown in (a) s-expression, (b) XML, (c) “YAML Ain’t Markup 

Language” (YAML), and (d) JavaScript Object Notation (JSON) formats.
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other formats, the sets are replaced by 
lists. The same choice could be made 
in YAML to yield more compact files. 
In the s-expression example, a bond 
is represented by a three-element 
list, which is more compact than the  
attribute-style representation I used 
in the other formats. Again, other 
choices can be made as a function of 
the design priorities.

For binary formats, the two main 
contenders are the Hierarchical Data 
Format (HDF5; www.hdfgroup.org/
HDF5)1 and the Network Common 
Data Form (NetCDF; www.unidata.
ucar.edu/software/netcdf ). Of the 
two, HDF5 is more flexible but also 
more difficult to use. Both HDF5 
and NetCDF are based on multi-
dimensional arrays as their basic data 
structure. They permit the storage of 

arrays that are too big to fit into the 
computer’s working memory, provid-
ing efficient access to subarrays. Both 
libraries come with a set of generic 
tools for data management.

Data Models inside  
Your Programs
Most scientists are easily convinced of 
the utility of well-defined data models 
and file formats for archiving data and 
for exchanging it between programs 
and research groups. After all, we’ve 
all wasted a lot of time in guessing at 
file formats and writing conversion 
programs. The advantage of defin-
ing data models for the in-memory 
data structures of scientific software 
is less evident, but quite important 
as well. In fact, there are two main  
advantages.

This first one should be evident: 
the more similar the in-memory 
data model of your software is to 
the data model you use for file stor-
age, the easier it is to read and write 
files. It’s easier to program, but also 
more efficient for the computer, 
because there’s less conversion to  
be done.

The second advantage is that well-
defined data models make software 
more modular. What you pass around 
between functions are of course the 
data structures that your program-
ming language proposes. But if your 
software is designed around data 
models, you’ll probably pass around 
combinations of data structures that 
you identified in your data model as 
useful units. Without a data model,  
you’re likely to pass around just the 

data that every individual function 
needs. You then have to think about 
each function’s interface separately, 
whereas with a data model you see at a 
glance what your function parameters 
mean. For example, you might pass a 
point object to a function instead of 
three coordinates if your data model 
makes use of geometrical points.

Just as implementing a data model  
for disk storage requires defining a file 
format, implementing an in-memory 
representation of a data model re-
quires a translation into the concrete 
data structures available in your 
chosen programming language. Be-
cause programming languages vary 
enormously in their data definition 
features, implementing a data model 
can take highly different forms. At 
one end of the spectrum, there are 

languages such as Fortran 77 that 
don’t allow any user-defined data 
constructs. The only way to imple-
ment a data model is thus to provide 
a list of variables (scalars and arrays) 
and describe the relations between 
them by comments. At the other end, 
there are modern object-oriented or 
functional languages in which each 
data item in the data model can be 
implemented as one problem-specific  
data type.

Unfortunately, the art of data
modeling in scientific comput-

ing is still in its infancy, with few tu-
torials or textbooks available to serve 
as guides. A good starting point is to 
look at existing scientific data mod-
els. Try an Internet search with some 
keywords from your field of research 
followed by “XML” or “HDF5.” 
You might discover that there are 
already good data models around 
that you can simply adopt, or at least 
use as a starting point for your own  
development. 
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