
HAL Id: hal-00817362
https://hal.science/hal-00817362

Submitted on 6 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Caring for Your Data
Konrad Hinsen

To cite this version:
Konrad Hinsen. Caring for Your Data. Computing in Science and Engineering, 2012, 14 (6), pp.70-74.
�10.1109/MCSE.2012.108�. �hal-00817362�

https://hal.science/hal-00817362
https://hal.archives-ouvertes.fr

CARING FOR YOUR DATA

By Konrad Hinsen

D
ata is at the heart of science.
A scientist is expected to be
able to back up all published

conclusions with data. Data manage-
ment should thus be a priority in sci-
ence. Scientists can’t afford to lose
data, be uncertain of what it means,
or not know where it came from. In
the experimental sciences, there’s a
long tradition of writing down all ex-
perimental setups, parameters, and
results meticulously in a lab note-
book. Unfortunately, computational
science is much less rigorous about
data handling, although there are
clear signs of improvement. Here,
we’ll consider what you can do to bet-
ter prepare and manage your data.

Overview of the Problem
Most scientific computing follows a
simple pattern: the computer runs a
program that reads in data, manipu-
lates it in some way, and produces
output data. Input and output data
are typically stored in files, but pro-
grams written for interactive use also
take input directly from the user and
provide output in a visual form (plots,
animations, and so on).

For scientific research, the data
matters more than the programs. In
processing experimental results, the
observations are the input data, and
some quantities more directly related
to the problem at hand (or simply a
more familiar quantity to experts in
the field) are the output data. In the
computational evaluation of theoreti-
cal models, the input data consists of
parameters and the output data is the

theoretical prediction. It’s the input
and output data that’s shown and dis-
cussed in scientific publications.

The program that produces out-
put data from input data is of little
direct scientific interest. What mat-
ters is the mathematical equations
that it applies to do its work. As sci-
entific problems and computational
resources evolve, the programs are of-
ten adapted for technical reasons such
as performance, but they still imple-
ment the same mathematical equa-
tions. A typical scientific publication
discusses only the equations, not the
other aspects of the program. There’s
an increasing awareness in the com-
putational science community of the
need to publish the full programs as
well, in order to permit verification of
the computations by other scientists.
However, this doesn’t change the fact
that the central items in computational
science are data and equations.

Despite the importance of data for
science, the storage and processing of
data has traditionally been given little
priority in scientific programming.
The typical scientific programmer
concentrates on the mathematical
equations and on the algorithms that
implement them. The in-memory
representation of data in the program
is usually chosen for convenience of
implementation, as is (in many cases)
the file format used to store the data
more permanently. To make it worse,
the file formats of many scientific
programs aren’t documented by any-
thing other than the program’s source
code.

An unfortunate consequence of this
priority of code over data is that com-
putational scientists spend a signifi-
cant amount of time converting data
between the formats used by different
programs. In addition to requiring a
lot of effort, file format conversion is
an error-prone process, in particular
when the file formats aren’t properly
documented. A less-visible conse-
quence of the absence of data design
is that scientific programs sometimes
get trapped by a legacy data represen-
tation that can no longer be adapted to
evolving requirements.

Data Models
and File Formats
An important distinction to keep in
mind is the one between data models
and file formats. A data model defines
how a specific collection of informa-
tion is expressed in terms of basic data
items such as integers, floating-point
numbers, or characters, and simple
aggregate data structures such as lists,
arrays, sets, or associative arrays. A
file format defines how a data model is
represented by a sequence of bytes. A
data model covers in-memory storage
as well as file storage.

A given data model can be repre-
sented by several file formats. This is
often useful because different stages
of data processing have different re-
quirements. For example, it might be
advantageous to have a compact and
platform-independent file format for
archiving, a file format optimized for
I/O performance for high-throughput
computations, and a text-based file

In the long run, your data matters more than your code. It’s worth investing some effort to keep your data

in good shape for years to come.

1

format for manual inspection and ed-
iting of data. As long as these three
file formats implement the same data
model, conversion between them is
straightforward and lossless.

As a simple example, consider an
address book. A simple data model
would be as follows:

1. An address book is a list of ad-
dress book entries.

2. An address book entry consists of
a fixed set of fields, whose values
are character strings. Let’s say
the fields are “first name,” “last
name,” “phone number,” and
“e-mail address.”

A simple file format representing
this data model can be defined by
writing the value of each field in an
address book entry as one line of a
text file. Each entry would then take
up four lines. Because the entries have
a fixed length, they can simply follow
each other in the file. An alternative
file format could use one line per en-
try, with the fields separated by com-
mas. Conversion between these two
formats would be straightforward and
not lose any information either way.

In practice, you would want to de-
fine a more elaborate data model for
an address book. Many people have
several phone numbers and e-mail ad-
dresses. You could give each of them a
label, such as “home” or “work.” The
value of the “phone number” field is
then an associative array whose keys
and values are character strings. An-
other generalization would be to make
the whole entry an associative array as
well, allowing any number of fields
such as “Twitter account,” “nick-
name,” or “postal address.”

However, this generalization creates
a new problem: What if different users
of your data model pick different field

names or the same information? One
user could choose “postal address” and
another one just “address.” Interoper-
ability between programs would be
much more difficult. A partial solu-
tion would be a set of mandatory field
names. This example illustrates that
it’s not necessarily a good idea to make
a data model overly general.

A more subtle problem with our ad-
dress book data model is that it defines
an address book as a list of entries. A list
is a sequential data structure, meaning
that the order of address book entries
is significant. Two address books with
the same entries arranged differently
would be considered different. A more
appropriate choice for the top-level
data structure would be a set. On the

other hand, a set is more difficult to
implement in software, and you lose
the convenience of a list in which
each element has a simple and unique
handle: its index in the list. Data
model design is thus often a matter of
choosing the right compromise.

Designing Data
Representations
How can we design a good data model?
Unfortunately, this question has no
simple answer. Data model design, like
software design, is an art rather than
a science. Nevertheless, the following
guidelines are a good starting point.

Look at your mathematical model.

Most scientific computing is applied
mathematics, and in that case your
mathematical model is usually the
best start ing point for your data
model. Write down a precise and

detailed definition of it. Of course,
input from the application domain is
useful as well.

Inspect your algorithms. Write down
their inputs and outputs in particu-
lar. Group data items that belong
together.

Think in terms of plain English. Describe
your data as you would explain it to a
fellow scientist, not as you would im-
plement it in your programs. If you
are a Fortran or C programmer, you
might automatically translate “a list
of points in 3D space” into “an N × 3
array of floats.” However, other pro-
gramming languages encourage dif-
ferent choices.

Avoid redundancy. Any information
that can be deduced from other data
shouldn’t be part of your data model.
Redundant information opens the door
to inconsistent datasets. You of course
might want to have redundant data in
your implementation, usually for effi-
ciency reasons, but it shouldn’t leak out.

Design for extension. It’s hardly ever a
good idea in software development to
design beyond clearly identified needs.
Such over-engineering costs time and
effort and can actually make future
extensions more difficult if they don’t
turn out to be exactly the ones envis-
aged initially. However, imagining
various possible extensions of your
data model can help to make it more
future-proof.

Always keep in mind that a data
model is defined at a more abstract

Any information that can be deduced from other data

shouldn’t be part of your data model.

2

level than any concrete implemen-
tation. The role of data models in
software design is similar to the role
of pseudocode. Both should con-
tain the essential features of the data
structures and algorithms used in a
program, but none of the technical
implementation details.

As a concrete example that will also
serve to illustrate file format design,
I propose a minimal data model for
the chemical structure of molecules.
The term molecule is taken to mean a
set of atoms linked by chemical bonds.
As a useful generalization of standard
chemical terminology, commonly
made in computational chemistry,
a molecule may contain atoms that
don’t participate in any bond, and in
fact a set of atoms without any bonds
is accepted as an extreme case of a
molecule. Here are the rules that de-
fine the data model:

• A molecule is defined by a name, a
set of atoms, and a set of bonds.

• The name of a molecule is a char-
acter string.

• Each atom is identified by a unique
name (a character string) consisting
of its chemical element symbol op-
tionally followed by an integer.

• Each bond is defined by a bond or-
der (an integer) and a set of exactly
two distinct atoms, each of which
must also be an element of the atom
set of the molecule.

A water molecule would thus be de-
scribed as

name “water”
atoms {“O”, “H1”, “H2”}
bonds {(1, {“O”, “H1”}), (1, {“O”, “H2”})}.

Note the use of sets, rather than lists or
arrays, for atoms and bonds, which ex-
presses the fact that there’s no natural

order to these constituents. This is a
design choice that favors physical re-
alism over simplicity of implementa-
tion. Many data models in actual use
in computational chemistry do impose
an order on the atom set, because this
turns out to be quite convenient in
practice. However, such convenience,
once it becomes a habit, can lead to
bad design decisions, even at the level
of mathematical models. For example,
in the widely used Amber force field
(http://ambermd.org/#ff), the poten-
tial energy of a molecule depends on
the order of the atoms, even though
that order is arbitrary and completely
unrelated to any physical property of
the molecule. Data models can help to
avoid such mistakes.

Designing File Formats
Once you have your data model, you
can think about file formats that
implement it for archiving and for
exchange with other programs. The
ideal file format would have the fol-
lowing characteristics:

• Independence of specific operating sys-
tems and compilers—the specifica-
tion should make it possible to write
portable programs that read and
write the file format anywhere.

• Compactness—even with today’s
terabyte-sized disks, wasting space
is never a good idea.

• I/O efficiency—reading and writing
data should be as fast as possible on
all common computing platforms.

• Simplicity for programmers—if ex-
isting I/O libraries can be reused,
your file format will be much more
popular.

• Convenient handling by scientists—
looking inside a file, or changing
some value, should be doable with
simple, powerful, and well-known
tools.

In practice it’s rarely possible to
satisfy all of these conditions. As with
other aspects of programming, the
criteria of convenience and simplicity
on one side and efficiency and com-
pactness on the other often lead to
contradicting requirements.

The most fundamental choice to
make in designing a file format is the
choice between a text-based and a
binary format. Text formats ultimately
represent all data as a sequence of
ASCII or Unicode characters. The
main advantage is that any text edi-
tor on any computer can be used to
inspect and modify the data. On the
other hand, text formats are neither
compact nor efficient to read and
write. Binary formats, which represent
data by bit patterns identical or very
similar to those used by the computer’s
CPU, have exactly the opposite char-
acteristics: they’re compact and I/O
efficient, but require format-specific
and sometimes platform-specific tools
for any inspection or manipulation.
It’s often useful to define both a text
and a binary format for the same data
model.

Because data storage in files is a
common need in all areas of comput-
ing, several generic file formats have
been developed that can be adapted
to a wide range of applications. These
formats specify the representation of
basic data items (numbers and text
strings) and common data structures
(lists, arrays, tables, associative arrays,
and so on), which are exactly the basic
units in terms of which data models
are defined. Ready-to-use libraries
for many popular programming lan-
guages make them convenient for
the programmer, and the existence of
generic tools that deal with these for-
mats makes the users’ life easier.

The historically first generic text rep-
resentation of complex data structures

3

was created in the 1950s together
with the Lisp programming language.
Known as s-expressions (for symbolic
expressions), it’s based on the list as
the central data structure, with list
elements being symbols, numbers,
character strings, and other lists.
Nested lists that also allow non-list
elements are a way of encoding a tree
structure, with list-type elements
representing nodes and non-list
elements representing leaves. A tree
structure is a good, flexible choice,
because most relevant data structures
can easily be mapped to a tree.

Today’s best-known generic text
format is XML (www.w3.org/TR/
rec-xml), defined as a simplified subset
of the Standard Generalized Markup
Language (SGML) for use in Web
technology. XML and SGML were
designed for applications where the
majority of the data consists of text—
basically character strings—but they
can be used for different kinds of
data at the cost of being rather ver-
bose. The strong point of XML is a
rich ecosystem of tools for creating,
reading, validating, and transforming
XML files.

Similar to s-expressions, XML is
based on the concept of a tree struc-
ture. The items in the tree are called
elements in XML terminology. Each
element is delimited by a start tag and
an end tag, and can have content (con-
sisting of text and other elements) and
attributes (an associative array). The
label in the start and end tags identifies
the element type. Defining a specific
format based on XML comes down to
choosing the tags for various element
types and specifying constraints on the
elements’ contents and attributes. Ex-
amples of scientific data formats based
on XML are Mathematics Markup
Language (MathML; www.w3.org/
Math) for mathematical formulas,

Extensible Scientific Interchange Lan-
guage (XSIL; http://resolver.caltech.
edu/CaltechCACR:CACR-1999-171)
for array and table data, Chemistry
Markup Language (CML; www.xml-
cml.org) for chemistry, and Systems
Biology Markup Language (SBML;
http://sbml.org) for systems biology.

Although XML has gained a lot
of support in recent years, it isn’t
always the best choice for a text-based
format. Its main disadvantage is its
often verbose style, which increases
file sizes and tends to make the data
more difficult to understand to the
human reader. XML is also rather
complex, meaning that implementing
XML I/O can be a significant effort,

even when using XML libraries. Two
other formats worth looking at are
YAML (www.yaml.org), which stands
for “YAML Ain’t Markup Language,”
to emphasize its differences from
XML, and JavaScript Object Nota-
tion (JSON; http://json.org), which
despite its name is supported by more
languages than just JavaScript. The
two have much in common, with
JSON scoring on ease of handling in
programs and YAML having the edge
in human readability.

Figure 1 shows how the aforemen-
tioned chemical structure data model
can be represented in these four file
formats. YAML is the only format
that has a way to represent sets. In the

(molecule "water"

(atoms "O" "H1" "H2")

(bonds (1 "O" "H1") (1 "O" "H2")))

(a)

<molecule name="water">

<atoms>O H1 H2</atoms>

<bonds>

<bond atoms="O H1" order=1 />

<bond atoms="O H2" order=1 />

</bonds>

</molecule>

(b)

molecule:

name: water

atoms: !!set {O, H1, H2}

bonds: !!set

? order: 1

 atoms: !!set {O, H1}

? order: 1

 atoms: !!set {O, H2}

(c)

{"type": "molecule", "name": "water",

"atoms": ["O", "H1", "H2"],

"bonds": [{"order": 1, "atoms": ["O", "H1"]},

{"order": 1, "atoms": ["O", "H2"]}]}

(d)

Figure 1. Possible representations of the chemical structure data model. The

representations are shown in (a) s-expression, (b) XML, (c) “YAML Ain’t Markup

Language” (YAML), and (d) JavaScript Object Notation (JSON) formats.

4

other formats, the sets are replaced by
lists. The same choice could be made
in YAML to yield more compact files.
In the s-expression example, a bond
is represented by a three-element
list, which is more compact than the
attribute-style representation I used
in the other formats. Again, other
choices can be made as a function of
the design priorities.

For binary formats, the two main
contenders are the Hierarchical Data
Format (HDF5; www.hdfgroup.org/
HDF5)1 and the Network Common
Data Form (NetCDF; www.unidata.
ucar.edu/software/netcdf). Of the
two, HDF5 is more flexible but also
more difficult to use. Both HDF5
and NetCDF are based on multi-
dimensional arrays as their basic data
structure. They permit the storage of

arrays that are too big to fit into the
computer’s working memory, provid-
ing efficient access to subarrays. Both
libraries come with a set of generic
tools for data management.

Data Models inside
Your Programs
Most scientists are easily convinced of
the utility of well-defined data models
and file formats for archiving data and
for exchanging it between programs
and research groups. After all, we’ve
all wasted a lot of time in guessing at
file formats and writing conversion
programs. The advantage of defin-
ing data models for the in-memory
data structures of scientific software
is less evident, but quite important
as well. In fact, there are two main
advantages.

This first one should be evident:
the more similar the in-memory
data model of your software is to
the data model you use for file stor-
age, the easier it is to read and write
files. It’s easier to program, but also
more efficient for the computer,
because there’s less conversion to
be done.

The second advantage is that well-
defined data models make software
more modular. What you pass around
between functions are of course the
data structures that your program-
ming language proposes. But if your
software is designed around data
models, you’ll probably pass around
combinations of data structures that
you identified in your data model as
useful units. Without a data model,
you’re likely to pass around just the

data that every individual function
needs. You then have to think about
each function’s interface separately,
whereas with a data model you see at a
glance what your function parameters
mean. For example, you might pass a
point object to a function instead of
three coordinates if your data model
makes use of geometrical points.

Just as implementing a data model
for disk storage requires defining a file
format, implementing an in-memory
representation of a data model re-
quires a translation into the concrete
data structures available in your
chosen programming language. Be-
cause programming languages vary
enormously in their data definition
features, implementing a data model
can take highly different forms. At
one end of the spectrum, there are

languages such as Fortran 77 that
don’t allow any user-defined data
constructs. The only way to imple-
ment a data model is thus to provide
a list of variables (scalars and arrays)
and describe the relations between
them by comments. At the other end,
there are modern object-oriented or
functional languages in which each
data item in the data model can be
implemented as one problem-specific
data type.

Unfortunately, the art of data
modeling in scientific comput-

ing is still in its infancy, with few tu-
torials or textbooks available to serve
as guides. A good starting point is to
look at existing scientific data mod-
els. Try an Internet search with some
keywords from your field of research
followed by “XML” or “HDF5.”
You might discover that there are
already good data models around
that you can simply adopt, or at least
use as a starting point for your own
development.

Reference
1. M. Poinot, “Five Good Reasons to Use

the Hierarchical Data Format,” Comput-

ing in Science & Eng., vol. 12, no. 5,

2010, pp. 84–90.

Konrad Hinsen is a researcher at the Centre

de Biophysique Moléculaire in Orléans, France,

and at the Synchrotron Soleil in Saint Aubin.

His research interests include protein struc-

ture and dynamics and scientific computing.

Hinsen has a PhD in theoretical physics from

RWTH Aachen University, Germany. Contact

him at konrad.hinsen@cnrs-orleans.fr.

Without a data model, you’re likely to pass around just

the data that every individual function needs.

5

