N

N

Well-posedness of the Stokes-Coriolis system in the
half-space over a rough surface
Anne-Laure Dalibard, Christophe Prange

» To cite this version:

Anne-Laure Dalibard, Christophe Prange. Well-posedness of the Stokes-Coriolis system in the half-
space over a rough surface. 2013. hal-00817359v1

HAL Id: hal-00817359
https://hal.science/hal-00817359v1

Preprint submitted on 24 Apr 2013 (v1), last revised 30 Jan 2014 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00817359v1
https://hal.archives-ouvertes.fr

Well-posedness of the Stokes-Coriolis system in the half-space
over a rough surface

Anne-Laure Dalibard and Christophe Prange

April 24, 2013

Abstract

This paper is devoted to the well-posedness of the stationary 3d Stokes-Coriolis system
set in a half-space with rough bottom and Dirichlet data which does not decrease at
space infinity. Our system is a linearized version of the Ekman boundary layer system.
We look for a solution of infinite energy in a space of Sobolev regularity. Following
an idea of Gérard-Varet and Masmoudi, the general strategy is to reduce the problem
to a bumpy channel bounded in the vertical direction thanks a transparent boundary
condition involving a Dirichlet to Neumann operator. Our analysis emphasizes some
strong singularities of the Stokes-Coriolis operator at low tangential frequencies. One of
the main features of our work lies in the definition of a Dirichlet to Neumann operator

for the Stokes-Coriolis system with data in the Kato space H 1/2

uloc”

1 Introduction

The goal of the present paper is to prove the existence and uniqueness of solutions to the
Stokes-Coriolis system
—Au+esxu+Vp =0 inQ,
divu =0 inQ, (1.1)
ulr = ug

where
Q:={zeR> z3>w(z)},

I=00={zcR> z3=uw(zy)}

and w : R? — R? is a smooth bounded function.

When w has some structural properties, such as periodicity, existence and uniqueness of
solutions are easy to prove: our aim here is to prove well-posedness when the function w is
arbitrary, say w € W1°°(R?), and when the boundary data wug is not square integrable. More
precisely, we wish to work with ug in a space of infinite energy of Sobolev regularity, such as
Kato spaces. We refer to the end of this introduction for a definition of these uniformly locally
Sobolev spaces L?Lloc’ H? .

The interest for such function spaces to study fluid systems goes back to the papers by
Lieumarié-Rieusset |24, 23|, in which existence is proved for weak solutions of the Navier-
Stokes equations in R3 with initial data in Liloc. These works fall into the analysis of fluid
flows with infinite energy, which is an field of intense research. Without being exhaustive, let
us quote the works of:



e Cannon and Knightly [3]|, Giga, Inui and Matsui [17], Solonnikov [27], Bae and Jin [1]
(local solutions), Giga, Matsui and Sawada [13] (global solutions) on the nonstationary
Navier-Stokes system in the whole space or in the half-space with initial data in L°° or
in BUC (bounded uniformly continuous);

e Basson [2], Maekawa and Terasawa [25] on local solutions of the nonstationary Navier-
Stokes system in the whole space with initial data in LZZ oc SPaces;

e Giga and Miyakawa [18]|, Taylor [28] (global solutions), Kato [20] on local solutions to
the nonstationary Navier-Stokes system, and Gala [9] on global solutions to a quasi-
geostrophic equation, with initial data in Morrey spaces;

e Gallagher and Planchon [11] on the nonstationary Navier-Stokes system in R? with

B2/r71.

initial data in the homogeneous Besov space By ;

e Giga and co-authors [15] on the nonstationary Ekman system in Ri with initial data in
the Besov space 3207170 (R% LP(Ry)), for 2 < p < oo; see also [14] (local solutions), [16]
(global solutions) on the Navier-Stokes-Coriolis system in R and the survey of Yoneda

[29] for initial data spaces containing almost-periodic functions;

e Konieczny and Yoneda [21] on the stationary Navier-Stokes system in Fourier-Besov
spaces.

Despite this huge literature on initial value problems in fluid mechanics in spaces of infinite
energy, we are not aware of such work concerning stationary systems and non homogeneous
boundary value problems in Ri. Let us emphasize that the derivation of L? bounds in
stationary and time dependent settings are rather different: indeed, in a time dependent
setting, boundedness of the solution at time t follows from boundedness of the initial data
and of the associated semi-group. In a stationary setting, to the best of our knowledge, the
only way to derive estimates without assuming any structure on the function w is based on
the arguments of Ladyzhenskaya and Solonnikov [22] (see also [12] for the Stokes system in a
bumped half plane).

In the present case, our motivation comes from the asymptotic analysis of highly rotating
fluids near a rough boundary. Indeed, consider the system

1
—eAu® + €3 X ut+Vp" =0 in Q°,
divu* =0 in Q°, (1.2)
UE‘FE = 0,

U€|363:1 = (th 0)7

where QO := {z € R3, ew(zp/e) < w3 < 1} and I'® := 90 \ {z3 = 1}. Then it is expected
that u° is the sum of a two-dimensional interior flow (u”(z},),0) balancing the rotation with
the pressure term and a boundary layer flow uP%(z/e; x), located in the vicinity of the lower
boundary. In this case, the equation satisfied by u®” is precisely (1.1), with uo(yn;x) =
—(u™(z1,),0). Notice that x, is the macroscopic variable and is a parameter in the equation
on uBL,

The system (1.2) models large-scale geophysical fluid flows in the linear régime. In order
to get a physical insight into the physics of rotating fluids, we refer to the book by Greenspan
[19] (rotating fluids in general, including an extensive study of the linear régime) and to the



one by Pedlosky [26] (focus on geophysical fluids). In [8], Ekman analyses the effect of the
interplay between viscous forces and the Coriolis acceleration on geophysical fluid flows.

For further remarks on the system (1.2), we refer to the book [4, section 7| by Chemin,
Desjardins, Gallagher and Grenier, and to [5], where a model with anisotropic viscosity is
studied and an asymptotic expansion for uf is obtained.

Studying (1.1) with an arbitrary function w is more realistic from a physical point of view,
and also allows us to bring to light some bad behaviours of the system at low horizontal
frequencies, which are masked in a periodic setting.

Our main result is the following.

Theorem 1. Let w € Wh(R?), and let ug), € H?
there exists Uy, € HY? (R%)2 such that

uloc

(R?)%, uo3 € HY, (R?). Assume that

loc

up,3 — Vhw : UO,h = Vh . Uh. (1.3)
Then there exists a unique solution u of (1.1) such that

Va >0, sup Hu‘|H1(((l+[071]2)X(_La))mg) < 00,
lez?

o0
2
sup / / |IV&u|* < oo
lez? Z 1 Ji4[0,1)2

a€N3,|al=¢q
for some integer q sufficiently large, which does not depend on w nor uy (say q > 4).

Remark 1.1. o Assumption (1.3) is a compatibility condition, which stems from singu-
larities at low horizontal frequencies in the system. When the bottom is flat, it merely
becomes up3 = Vy, - Up,. Notice that this condition only bears on the normal component
of the velocity at the boundary: in particular, if ug - n|p = 0, then (1.3) is satisfied. We
also stress that (1.3) is satisfied in the framework of highly rotating fluids near a rough
boundary, since in this case ugz = 0 and ugy, is constant with respect to the microscopic
variable.

e The singularities at low horizontal frequencies also account for the possible lack of inte-
grability of the gradient far from the rough boundary: we were not able to prove that

[e.e]
sup/ / |Vu|? < oo
1€z2J1 Ji4[o,1]?

although this estimate is true for the Stokes system. In fact, looking closely at our
proof, it seems that non-trivial cancellations should occur for such a result to hold in the
Stokes-Coriolis case.

o (Concerning the reqularity assumptions on w and ug, it is classical to assume Lipschitz
regularity on the boundary. The reqularity required on ug, however, may not be optimal,
and stems in the present context from an explicit lifting of the boundary condition. It is
possible that the reqularity could be lowered if a different type of lifting were used.

e The same tools can be used to prove a similar result for the Stokes system in three
dimensions (we recall that the paper [12] is concerned with the Stokes system in two
dimensions). In fact, the treatment of the Stokes system is easier, because the associated



kernel is homogeneous and has no singularity at low frequencies. The results proved in
Section 2 can be obtained thanks to the Green function associated with the Stokes system
in three dimensions (see [10]). On the other hand, the arguments of sections 3 and 4
of the present paper can be transposed as such to the Stokes system in 3d. The main
novelties of these sections, which rely on careful energy estimates, are concerned with
the higher dimensional space rather than with the presence of the rotation term (except
for Lemma 3.2).

The statement of Theorem 1 is very close to one of the main results of the paper [12] by

Gérard-Varet and Masmoudi, namely the well-posedness of the Stokes system in a bumped
half-plane with boundary data in Hil/ 02 .(R). Of course, it shares the main difficulties of [12]:
spaces of functions of infinite energy, lack of a Poincaré inequality, irrelevancy of scalar tools
(Harnack inequality, maximum principle) which do not apply to systems. But two additional

problems are encountered when studying (1.1):

1. First, (1.1) is set in three dimensions, whereas the study of [12]| took place in 2d. This
complicates the derivation of energy estimates. Indeed, the latter are based on the
truncation method by Ladyzhenskaya and Solonnikov [22|, which consists more or less
in multiplying (1.1) by xxu, where xz € C5°(R%!) is a cut-off function in the horizontal
variables such that Supp xx C Bi11 and xx = 1 on By, for k € N. If d = 2, the size of
the support of Vi is bounded, while it is unbounded when d = 3. This has a direct
impact on the treatment of some commutator terms.

2. Somewhat more importantly, the kernel associated with the Stokes-Coriolis operator has
a more complicated expression than the one associated with the Stokes operator (see
[10, Chapter IV] for the computation of the Green function associated to the Stokes
system in the half-space). In the case of the Stokes-Coriolis operator, the kernel is not
homogeneous, which prompts us to distinguish between high and low horizontal frequen-
cies throughout the paper. Moreover, it exhibits strong singularities at low horizontal
frequencies, which have repercussions on the whole proof and account for assumption
(1.3).

The proof of Theorem 1 follows the same general scheme as in [12] (this scheme has also
been successfully applied in [6] in the case of a Navier slip boundary condition on the rough
bottom): we first perform a thorough analysis of the Stokes-Coriolis system in R3 | and we

define the associated Dirichlet to Neumann operator for boundary data in H il/ 02 .
we derive a representation formula for solutions of the Stokes-Coriolis system in R:j_, based on a
decomposition of the kernel which distinguishes high and low frequencies, and singular /regular
terms. We also prove a similar representation formula for the Dirichlet to Neumann operator.
Then, we derive an equivalent system to (1.1), set in a domain which is bounded in 3 and
in which a transparent boundary condition is prescribed on the upper boundary. These two
preliminary steps are performed in Section 2. We then work with the equivalent system, for
which we derive energy estimates in H&loc; this allows us to prove existence in Section 3.
Eventually, we prove uniqueness in Section 4. An Appendix gathers several technical lemmas

used throughout the paper.

. In particular,



Notations

We will be working with spaces of uniformly locally integrable functions, called Kato spaces,
whose definition we now recall. For d € N, p € [1,00), s > 0, we set

Loe(RY) := {u € L}, (RY), sup [ull Lo (k4 (0,1)2) < 00}
€
0e(RY) = {u € Hi, (RY), sup [lull gre (4. (0,1y0) < 00}
kezd

We will also work in the domain Q° := {x € R3, w(x;) < 23 < 0}, assuming that w takes
values in (—1,0). With a slight abuse of notation, we will write

lullLe (@vy := sup [lull o(((rrio,112) x (inf w,0))n00)
utoc k‘eZ2

ullgs, (@) = sup el s (((R+10,112)  (inf w,0))020) 5

and H
oo}
Throughout the proof, we will often use the notation |V?u|, where ¢ € N, for the quantity

> Vol

a€Nd Jal=g

lOC(Qb) = {'LL [ Hlsoc(Qb), HUHHZZOC(Qb) < OO}, Lﬁloc(Qb) = {'LL - LfOC(Qb), HUHLleC(Qb) <

where d = 2 or 3, depending on the context.

2 Presentation of a reduced system and main tools

Following an idea of David Gérard-Varet and Nader Masmoudi [12], the first step is to trans-
form (1.1) so as to work in a domain bounded in the vertical direction (rather than a half-
space). This allows us eventually to use Poincaré inequalities, which are paramount in the
proof. To that end, we introduce an artificial flat boundary above the rough surface I', and
we replace the Stokes-Coriolis system in the half-space above the artificial boundary by a
transparent boundary condition, expressed in terms of a Dirichlet to Neumann operator.

In the rest of the article, without loss of generality, we assume that supw =: @ < 0 and
infw > —1, and we place the artificial boundary at x5 = 0. We set

Q0 = {z € R3, w(xy) < x3 <0},
= {xg = 0}

The Stokes-Coriolis system differs in several aspects from the Stokes system; in the present
paper, the most crucial differences are the lack of an explicit Green function, and the bad
behaviour of the system at low horizontal frequencies. The main steps of the proof are as
follows:

1. Prove existence and uniqueness of a solution of the Stokes-Coriolis system in a half-space
with a boundary data in H'/?(R?);

2. Extend this well-posedness result to boundary data in HY? (R2);

uloc



3. Define the Dirichlet to Neumann operator for functions in H/?(R?), and extend it to
functions in H'/> (R?);

uloc

4. Define an equivalent problem in 9, with a transparent boundary condition at ¥, and
prove the equivalence between the problem in QP and the one in §;

5. Prove existence and uniqueness of solutions of the equivalent problem.

Items 1-4 will be proved in the current section, and item 5 in sections 3 and 4.

2.1 The Stokes-Coriolis system in a half-space
The first step is to study the properties of the Stokes-Coriolis system in Ri’_, namely
—Au+ezxu+Vp =0 inR3,

divu =0 inR3, (2.1)
Ulzg=0 = vo.

In order to prove the result of Theorem 1, we have to prove the existence and uniqueness of
a solution u of the Stokes-Coriolis system in H} (R3) such that for some ¢ € N sufficiently

|

arge, .
sup/ / |Vu|? < oo
1€22 J1+(0,1)2 J1

However, the Green function for the Stokes-Coriolis is far from being explicit, and its Fourier
transform, for instance, is much less well-behaved than the one of the Stokes system (which
is merely the Poisson kernel). Therefore such a result is not so easy to prove. In particular,
because of the singularities of the Fourier transform of the Green function at low frequencies,

[e.e]
sup/ / |Vu|* < oo.
1€22 J1+(0,1)2 J1

e We start by solving the system when vy € H'/ 2(R?). We have the following result:

we are not able to prove that

Proposition 2.1. Let vy € HY/?(R?)? such that

| glioa©P de < o (2.

Then the system (2.1) admits a unique solution u € H}

loc
/ Vul? < oo,
R

3
+

(R3) such that

Remark 2.2. The condition (2.2) stems from a singularity at low frequencies of the Stokes-
Coriolis system, which we will encounter several times in the proof. Notice that (2.2) is
satisfied in particular when vo3 = Vy, -V, for some V), € Hl/z(R2)2, which s sufficient for
further purposes.



Proof. e Uniqueness. Consider a solution whose gradient is in LQ(R:}F) and with zero boundary
data on 23 = 0. Then, using the Poincaré inequality, we infer that

//ruﬁsca//\w%oo,
0 R2 0 R2

and therefore we can take the Fourier transform of u in the horizontal variables. Denoting by
¢ € R? the Fourier variable associated with z;,, we get

(1% — 03)aup, + 1wy, +i&p =0,
(1617 — 83)iz + 93p =0, (2.3)
i€ -ap + 0sus =0,

and
U|pg=0 = 0.

Eliminating the pressure, we obtain
(I€]* — 03)*ti3 — i05&™ - @1y, = 0.

Taking the scalar product of the first equation in (2.3) with (£+,0), and using the divergence-
free condition, we are led to

(1] — 83)%a3 — D303 = 0. (2.4)

Notice that the solutions of this equation have a slightly different nature when £ # 0 or
when £ = 0 (if £ = 0, the associated characteristic polynomial has a multiple root at zero).
Therefore, as in [12] we introduce a function ¢ = (£) € C5°(R?) such that the support
of ¢ does not contain zero. Then pug satisfies the same equation as ug, and vanishes in a
neighbourhood of £ = 0.

For ¢ # 0, the solutions of (2.4) are linear combinations of exp(—Aiz3) (with coefficients
depending on &), where (A;)1<k<6 are the complex valued solutions of the equation

(W =€)+ A% =0. (2.5)

Notice that none of the roots of this equation is purely imaginary, and that if X is a solution of
(2.5), so are —\, XA and —\. Additionally (2.5) has exactly one real valued positive solution.
Therefore, without loss of generality we assume that A1, Ao, A3 have strictly positive real
part, while A4, A5, \g have strictly negative real part, and A\; € R, Ao = A3, with I(X\2) > 0,
F(A3) < 0.

On the other hand, the integrability condition on the gradient becomes

[ (€Pa(e,aa) P + 236, ) P s < o,

We infer immediately that ¢is is a linear combination of exp(—Agzs) for 1 < k < 3: there
exist Ay, : R? — C3 for k = 1,2, 3 such that

p(&)as(§, x3) = §) exp(—Ag(§)x3).

”M“



Going back to (2.3), we also infer that

3
P(E)E - (&, w3) = —i Yy Me(€) Ar(€) exp(=Ak(€)x3),
k=1 (2.6)
() - n(€,a5) =i 3 UL ZAD” .
W€ xs) =iy " k(&) exp(—Ax(§)zs3).
k=1
Notice that by (2.5),
2 2\2
(¢l )\—k)\k) _ ]g\;\f 2 for k = 1,2,3.

Thus the boundary condition #|z,—0 = 0 becomes

AL(§)
M€ | A28 | =0,
A3(€)
where
1 1 1
M= A1 A2 A3
' (€7 =202 (I€2 = 239)* (€7 = A3)?
A A9 A3

We have the following lemma:

Lemma 2.3.
det M = ()\1 — )\2)()\2 — )\3)()\3 — )\1)(|§| + A+ X+ )\3).

Since the proof of the result is a mere calculation, we have postponed it to Appendix A.
It is then clear that M is invertible for all £ # 0: indeed it is easily checked that all the roots
of (2.5) are simple, and we recall that A1, A2, A3 have positive real part.

We conclude that A7 = As = Az = 0, and thus ¢(&)a(€,z3) = 0 for all ¢ € C5(R?)
supported far from ¢ = 0. Since @ € L2(R? x (0,a))? for all a > 0, we infer that 4 = 0.

e Eristence. Now, given vy € HY?(R?), we define u through its Fourier transform in the
horizontal variable. It is enough to define the Fourier transform for £ # 0, since it is square
integrable in £. Following the calculations above, we define coefficients Ay, As, A3 by the
equation

A1(§) 00,3
M(&) | A2(8) | = i€ dop V¢ £ 0. (2.7)
A3(8) —i&+ By

As stated in Lemma 2.3, the matrix M is invertible, so that Aq, As, A3 are well defined. We
then set

N

U3(&,w3) = ) Ar(§) exp(—Ak(§)xs),

i

! (2.8)

i 3 2 12)2
il ) = i 3 A (w06 + A Y epon @)
k=1

8



We have to check that the corresponding solution is sufficiently integrable, namely

[, (€Plan(€, )P + v (¢, m0) P s < o

i (2.9)
[ ePliale. o0)? + osia(c. 20)P)d o < oc.
R
+
Notice that by construction, dsts = —i& - 4y, (divergence-free condition), so that we only have

to check three conditions.

To that end, we need to investigate the behaviour of Ay, Ax for £ close to zero and for
& — oco. We gather the results in the following lemma, whose proof is once again postponed
to Appendix A:

Lemma 2.4.

e As & — oo, we have

M =1l - 5lel 7 +0 (I %),
3o =lel = Zie5 + 0 (1673).

3 =1l - 216 +0 (I %),

where j = exp(2im/3), so that

Ay (€) AR 803
Az(8) | = 3 I & —2|¢|1/3 (i€ - Do, — [€]D0,3) + O(|00]) | - (2.10)
As(€) 142 —1€|734i¢L - B 1, + O([t0])

o As & — 0, we have
A= e +0(lel) .
do =i +0(IgP)
Ag=e'T+0(I¢f).

As a consequence, for & close to zero,

A1(€) = 0(€) — % (i€ 900+ i€ 0.+ [€loo3) + OUEPIo0(€):
Ax(€) = 5 (74E - dop+ €/ 0+ [elio)) + O(EPl0(@]), (211
A3(€) = 5 (/4 - o+ €=/ 0.+ [€lio3)) + O(IEPlin(€)))

e For all a > 1, there exists a constant C, > 0 such that

A ()] + IR < Ca,

-1
o <lff<a= { |A(€)] < Calto(E)].



We then decompose each integral in (2.9) into three pieces, one on {|{| > a}, one on
{|¢] < @'} and the last one on {|¢| € (a=!,a)}. All the integrals on {a=! < [£] < a} are
bounded by

C, [00(6)I” d€ < CallvollF1/2 (g2

a~1<|¢|<a

We thus focus on the two other pieces. We only treat the term

/IR3 €12 i3 (€, z3)|* d€ das,

+

since the two other terms can be evaluated using similar arguments.
>> On the set {|¢{| > a}, the difficulty comes from the fact that the contributions of the
three exponentials compensate one another; hence a rough estimate is not possible. In order
to simplify the calculations, we introduce the following notation: we set
By = A) 4+ As + As,
By = Ay + j% Ay + jAs, (2.12)
Bs = Ay + jAy + 7 As,

so that
Aq 1 1 1 1 B,
Ao =3 1 5 g By
A 1 5% 5 Bs

Hence we have Ay = (B; + ax B2 + ang)/S, where a1 = 1,a0 = j,a3 = j2. Notice that
a; =1 and Y o = 0. According to Lemma 2.4,

By = 193,
By = —2|€Y/3(i€ -t — |€]B0,3) + O(|%0)),
By = —|¢| Y3t 6.1, + O(|00]).

For all ¢ € R?, |¢| > a, we have

68 [ lin( Pz = €S A

1<k,1<3 Ak + A

Using the asymptotic expansions in Lemma 2.4, we infer that

1 1 of + af
b (%Y s —8/3>_

Therefore, we obtain for [£] > 1

< 1 €] i o+ 07 a3 -8/3
Y ad o = s, (1+rs| 4 01 %)
1<k,1<3 Ak + A 2 1<k,I<3 2
1 _ _ .
= BB+ LB+ BByl + 0(1in)

= O(l¢] [o0]*)-

10



Hence, since vy € H'/?(R?), we deduce that

/|§ /0 €| a3|? das d€ < +oo.
>a

>> On the set |£| < a, we can use a crude estimate: we have

2 [AR(©)?
/lg = / (€L it3 (€, 3) s dE. < cz ety

Using the estimates of Lemma 2.4, we infer that

/|§ § /0 (€2l (€, ) Py d

" . 1
< 1o (0mao + ePioon @) s +IePlooe)R ) ae
= ¢ (’”03( I 4 e anate )|)d§<oo
l€1<a ’5‘

thanks to the assumption (2.2) on 79 3. In a similar way, we have

[e') ~ 2
/g ) /0 Elinte,ap)Prsdg <0 [ ('“‘)f’gf"ﬂsr \@o,h@)\?) .

[ [ et anPdzads <c [ il de.
l¢|<a JO l€]<a
Gathering all the terms, we deduce that

[ (€Pa(E 2a) P + Bs(€. ) P s < oc,

+
so that Vu € L?(R3). O

Remark 2.5. Notice that thanks to the exponential decay in Fourier space, for all p € N with
p > 2, there exists a constant Cp, > 0 such that

oo
|19t < Gl

e We now extend the definition of a solution to boundary data in H
the sets

1/2
uloc

(R?%). We introduce

K = {u € Hy"(R?), 30y € H,[2(RY?, u=V)-Up},

uloc uloc

loc

K= {u e H " (R, uz € K}

In order to extend the definition of solutions to data which are only locally square integrable,
we will first derive a representation formula for vy € H/?(R?). We will prove that the formula
still makes sense when vy € K, and this will allow us to define a solution with boundary data

in K.

11



To that end, let us introduce some notation. According to the proof of Proposition 2.1,
there exists L1, Lo, L3 : R? — M3(C) and q1, g2, g3 : R?> — C3 such that

a(€, x3) Z Ly (€)00(§) exp(—Ax(§)3),
(2.13)
P&, x3) = ZQk §) exp(—Ax(§)z3).
For further reference, we state the following lemma:
Lemma 2.6. For all k € {1,2,3}, for all £ € R2, the following identities hold
—Lpo1 —Lgo2 —Lgos 1&1qk,1 &1qr2  161qr3
(€2 = MDLe+ | Lk Lki2  Lras |+ | iCeqra ioqr2  1oqr3 | =0
0 0 0 —AkQk,1 —AkQk2  —AkGE3

and for j=1,2,3, k=1,2,3,
i&1 L1 + 12 Lk 25 — ALy 3 = 0.
Proof. Let vg € H'/?(R?)3 such that vg 3 = Vj, - Vj, for some Vj, € H'/2(R?). Then, according

to Proposition 2.1, the couple (u,p) defined by (2.13) is a solution of (2.1). Therefore it
satisfies (2.3). Plugging the definition (2.13) into (2.3), we infer that for all x3 > 0,

/ 2zexp ~Nes) Aw(E)io(€) dE =0, (2.14)
R
where
—Lygo1 —Lgoo —Lio3 1€1qk,1 €1qk2  1€1qk,3
A= (6P =X)L+ | Lkt Lraz  Lieas |+ | i€gra i&aqr2  i&2qr3
0 0 0 kel —ARQR2  —ARGR3

Since (2.14) holds for all vy, we obtain

3
Z exp(—Apz3)Ar(§) =0 VE Vs,

k=1

and since Aj, A2, A3 are distinct for all £ # 0, we deduce eventually that A () = 0 for all £
and for all k.
The second identity follows in a similar fashion from the divergence-free condition. O

Our goal is now to derive a representation formula for u, based on the formula satisfied
by its Fourier transform, in such a way that the formula still makes sense when vy € K. The
Crucial part is to understand the action of the pseudo-differential operators Op(Lg(&)¢(§)) on

L2, . functions, where ¢ € C5°(R?). To that end, we will need to decompose Li(€) for € close
to zero into several terms.

12



Lemma 2.4 provides asymptotic developments of Li, Lo, L3 and a1, a9, a3 as |[§] < 1 or
|€] > 1. In particular, we have, for || < 1,

NG Ll —&) —&L&+8&a) —iv2
Li(§) = 20e| GG —-&)  &G&+&) G (2.15)
ilE[(&—&) —ilél(&+&) V20

+(0(€PR) ol?) o),

1 i W
L) = % —i 1 —2i(6 + &)
i(Ere i — &™) i(gem Tt g /) ellﬂh
+ (0P o) o) .
1 i 2i(&1+ &)
L3(§) = % . , _22(5:3_52)

i(€1€7/ — gaeimIY) i(6eim/A 4 igremin/Y)  gmin/d
+(0(gP) o) o).

The remainder terms are to be understood column-wise. Notice that the third column of
Ly, i.e. Lyes, always acts on 093 = i - Vh. We thus introduce the following notation: for
k=1,2,3, My := (Lger Lgea) € M32(C), and Nj, := iLyes te e M3 2(C). M,% (resp. N,%)
denotes the 3 x 2 matrix whose coefficients are the nonpolynomial and homogeneous terms of
order one in My, (resp. Ny) for £ close to zero. For instance,

V2 £(&L—&) —&(&L+&H) ; —&& &
Ml =_—| -&(&-&) &&+&) |, N=—| & &&

We also set M = M), — M,%, N[e™ == Nj, — N,%, so that for £ close to zero,

M7e™ = O([¢]), and for k=2, 3, Mp“™ = O(1),
VE €{1,2,3}, N =O0(|¢]).

There are polynomial terms of order one in M{*™ and N;*™ (resp. of order 0 and 1 in M/*™
for k = 2, 3) which account for the fact that the remainder terms are not O(|¢|?). However,
these polynomial terms do not introduce any singularity when there are differentiated and
thus, using the results of Appendix B, we get, for any integer ¢ > 1,

=O0(Jg*7+1) for ¢ < 1. (2.16)

)

Ve

VN

> Concerning the Fourier multipliers of order one M, l% and NV, ,g, we will rely on the following
lemma, which is proved in Appendix C:

13



Lemma 2.7. There exists a constant C1 such that for all i,j € {1,2}, for any function
g € S(R?), for all ¢ € C*(R?) and for all K > 0,

Op (ﬁjﬂ'af)) 9(x)
_ 0ij o (@i—wi)(z; —ys)
e /R dy Lx_yp B « (2.17)

x {p*g(x) = prgly) — Vp*g(x) (z — y) L y<x}
where p = F1( € S (R?).
Definition 2.8. If L is a homogeneous, nonpolynomial function of order one in R?, say
&
L= Y aijﬁy
1<i,j<2

then we define, for ¢ € W2 (R?),

I[Lp(x) == Y ay /R2 dyvij(x — y) {e(x) — e(y) — V(@) - (2 — ) Ljxey<x ] -

1<4,5<2

where

(51'7' TiTj
wote) =01 (2% 977 ).
Remark 2.9. The value of the number K in the formula (2.17) and in Definition 2.8 is
irrelevant, since for all o € W3(R?), for all 0 < K < K',

[ st =) 9p(a) - (@ = 1) iccnyicre = 0
by symmetry arguments.
We then have the following bound:
Lemma 2.10. Let p € W2®°(R?). Then for all 1 <i,j <2,

)

€ < Cllellf? 1Vl

Lo (R2)

Remark 2.11. We will often apply the above Lemma with o = p % g, where p € C*(R?) is
such that p and V%p have bounded second order moments in L?, and g € LilOC(RQ). In this
case, we have

lelloe < Cliglzz, 1+ - Pollzqee)

192l < Clgllzz, [1(1+1- V20l 2(a).

Indeed,
1 9 1/2 A ) 1/2
* o < su —_— d </ 1+ |z — T — d )
lo*gllp, < sup, (/RQ T ‘x_y,4lg(y)| y) R2( |z —y[")|p(z — y)|° dy
<Clgllzz, 10+ P)ollzee).

The L™ norm of V2 is estimated exactly in the same manner, simply replacing p by V?p.

14



Proof of Lemma 2.10. We split the integral in (2.17) into three parts

IF@}W) = [ dysle =) {ela) - o) - Vela) - (- )
[3 lz—y|<K

o e (2.18)
- / dyij(z —y)e(y)
lz—y|>K

= A(z) + B(z) + C(z).

Concerning the first integral in (2.18), Taylor’s formula implies

d
A(z)| < C Hv%HLm /Ix—yISK Iz _yy|

< OK [V .-

For the second and third integral in (2.18),

dy _
B(2)| + 1C(@)] < Cligl / YW < CK gl
lz—y|>K |33 y|

We infer that for all K > 0,

29 B
[9] 4] <o (vl + 5 tel)
Optimizing in K (i.e. choosing K = H‘P||<1>éz/\\v290Hcl>é2), we obtain the desired inequality. O

> For the remainder terms M[®", N[®™ as well as the high-frequency terms, we will use
the following estimates:

Lemma 2.12 (Kernel estimates). Let ¢ € C§°(R?) such that ¢(&) = 1 for |€] < 1. Define

NI

onr(zh,r3) = F <
k

Fi <
k

wz(wh,xg) = ./'—“71 <

(1= @)(&)Lk(E) eXp(—/\k(f)903)> ;

1

[M]

VY1 (xp, x3) :

PE)MET™ (€) eXP(—M(f)iﬂz)) )

1

NE

PN (€) exp(—Ak(§)$3)> :

k=1

Then the following estimates hold:

e for all ¢ € N, there exists coq > 0, such that for all o, 8 > cpq, there exists Cp g4 > 0

such that
Ca,ﬁ,q

& xp, r3)| < —— 221 -
M P

o for all a € (0,2/3), for all ¢ € N, there Cqy 4 > 0 such that

Ca7q

Vi (zp, 23)] < :
| 7/)1( h» 3)| = |.’Eh|3+q+‘ﬂj’3|a+%’

15



e for all o € (0,2/3), for all g € N, there exists Co g > 0 such that

< Goa
PRTEPINPNTES:

|V (xp, z3)

Proof. e Let us first derive the estimate on ¢pp for ¢ = 0. We seek to prove that there exists
cp > 0 such that

Cop

e | 2.19
< e+ Il (2:19)

V(Oé,,B) € (60700)27 300{,57 |<)0HF(xh7'r3)
To that end, it is enough to show that for a € N? and 8 > 0 with |a|, 8 > co,
sup (|as|’|@mE(, 23) |1 2) + I VEPHE (- 23) | 1 2y ) < o0

x3>0

We recall that A\ (&) ~ [¢] for |£| — co. Moreover, using the estimates of Lemma 2.4, we infer
that there exists v € R such that L (&) = O([¢]7) for || > 1. Hence

3
3|’ | e (& as)l < CIL— (&) €] D |asl” exp(—R(A)as)
k=1

3
C|1— (O] €7D [R(Ar)ws]® exp(—R(Ai)x3)
P

IN

< Cslel g5
Hence for g large enough, for all 3 > 0,
237 rp (-, 23)| 11 (r2) < Cg.
In a similar fashion, for & € N2, |a| > 1, we have, as |£| — oo (see Appendix B)
VeLL(E) = O (g,
Ve (exp(—Agz3)) = O ((|€]" 1 as + |25]1*T) exp(—R(Ai)z3)) = O (J¢] 7).

Moreover, we recall that V(1 — ¢) is supported in a ring of the type Br \ B; for some R > 1.
As a consequence, we obtain, for all o € N? with |a| > 1,

IVPuF (€, m3)| < Calé 11 g5,
so that
IVCrr (- 23) || L1 (r2) < Ca-

Thus ¢pr satisfies (2.19) for ¢ = 0. For ¢ > 1, the proof is the same, changing Lj into
€194 | Ak| %2 Ly, with g1 + g2 = q.

e The estimates on 1,19 are similar. The main difference lies in the degeneracy of Ay
near zero. For instance, in order to derive an L bound on |z3|*t%/3V %), we look for an
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L3 (LE(R?)) bound on [23]*F4/3(¢[%y (€, 23). We have

3

3" TP 1E196(€) D M exp(—Axas)
k=1

3
Claz3|*T31€17 Y~ exp(—R(Aw)wa) ML L <r
k=1

IN

3
CIE[T " RN~ T3 | MEe™ |11 <r
=1

Clel (el 71 + 1) 1jg<r.
The right-hand side is in L! provided o < 2/3. We infer that

IN

IN

\ |23| 293V Ty (m)( < Chy Va Vo€ (0,2/3).
The other bound on 17 is derived in a similar way, using the fact that
VEMIT™ = O~ + 1)
for £ in a neighbourhood of zero. O

> We are now ready to state our representation formula:

Proposition 2.13 (Representation formula). Let vy € H1/2(R2)3 such that vg3 = V- Vy, for
some Vi, € HY2(R?), and let u be the solution of (2.1). For all z € R3, let x € Cg°(R?) such
that x = 1 on B(xp,1). Let ¢ € C(R?) be a cut-off function as in Lemma 2.12, and let oy F,
W1, Yo be the associated kernels. For k =1,2,3, set

fu(rws) == F 1 (0(€) exp(— M) -
Then

3

_ Xv0,1(€)
u(z) = F (1?::1 Ly (&) <V _ (th)> eXP(—/\k$3)> (z)

3

+ 3 ZMA fu (o s) # (1= X)vop)(2)
k=1
3

+ D ZINA S as) « (1= x)Va) ()

k=1
(1 = x)vo,
T Crie N I
+ 1+ (1= x)von) () + 2 * (1 — x) Vi) ()

As a consequence, for all a > 0, there exists a constant C, such that

a
sup / / u(an, x3)|*das dxy, < Cq (HUOH?{I/Q
keZz? k+[0,1}2 0 uloc

(RQ)) '
(RQ)) '

VA

uloc

(R?)

Moreover, there exists ¢ € N such that

sup / / \un(a:h,mg)\deg dap, < C (HUOH?{W
k+[0,1)2 J1

+ (IV3 12
sup 172 Vil /2

uloc

(R?)
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Remark 2.14. The integer q in the above proposition is explicit and does not depend on vg.
One can take g = 4 for instance.

Proof. The proposition follows quite easily from the preceding lemmas. We have, according
to Proposition 2.1,

3 U
u(@) = F (2%(5)( X°h(>)( )> p(—Ak:Eg)) (@)

k=1 (th

Sy (1= 2010 ) oo ) (o
(1?::1%(5) (Vth)(S) p(—Akxs) | ().

In the latter term, the cut-off function ¢ is introduced, writing simply 1 = 1 — ¢ + ¢. We
have, for the high-frequency term,

s _ (1 =x)v0r(&) ) o n
<’;(1 #(€)) Lk () (vah)(f) p(—Ar3)

e (1= x)0,(€) ( (1= )0 (€) )
= F! , X (/\ = , X3) * :
<90HF(€ 3) (V A onF(;T3) V(1= )V)(E)
Notice that V, - (1 = x)Vi) = (1 — x)voz — Vrx - Vi € H/?(R?).
In the low frequency terms, we distinguish between the horizontal and the vertical com-

ponents of vg. Let us deal with the vertical component, which is slightly more complicated:
since vp3 = Vj, - Vj,, we have

3
- (Z P(&)Li(§)es Vi - (1 = x)Vi)(€) eXp(—/\k:fBa)>
k=1

3
! (Z (&) Li(§)esi& - (1 — x)Vi(€) eXP(—)\km)) .
k=1
We recall that N = iLges t{, so that

Li(§)esi€ - (1 = x)Va(§) = Ni(§)(1 — x)Va(§)-
Then, by definition of 19 and fi,

T[N fiox (1= x) Vi) + 7 (dal ) (1= x) Va(©))
TN fox (1 =) Vi) + 2 = (1= x) - Vi)

3
D
k=1

3
D
k=1

18



The representation formula follows.

There remains to bound every term occurring in the representation formula. In order to
derive bounds on (I + [0, 1]?) x R, for some I € Z?, we use the representation formula with a
function y; € Cg°(R?) such that x; =1 on [ + [—1,2]?, and we assume that the derivatives of
x: are bounded uniformly in [ (take for instance x; = x(- 4 1) for some y € C§°).

e According to Proposition 2.1, we have!

3 o 2
ol X1vo.4(€)
/ F (Z L (&) </\> eXP(—)\km)) dzs
0 =1 V- (xiVh) @)
2 2 2
< Co (IouvonlByose + 190 Vil + it sl e )
2 2
< Ca(lloolps + Va2 )
and similarly,
o : X0 (€) 2
_ X100,k
/ vVF! (Z Ly (&) <//—7> exp(—)\kmg)> dzxs
0 =1 V- (xiVh) @)
< C (Hvo”zil/ozc + ”VhHiIiz/jc) .
Moreover, thanks to Remark 2.5, for any g > 2,
= : Xi007(6) 2
_ X1Vo,n
/ V4F ! (Z Lk(f) </\> exp(—)\kxg)> d1'3
1 =1 V- (xiVh) @)

< Gy (HUOH?{M =+ ||Vthq1/2 > .

uloc uloc

e We now address the bounds of the terms involving the kernels ¢, ¥1,12. According
to Lemma 2.12, we have for instance, for all x3 > 0, for all z;, € [ + [0, 1]?, for 0 € N?

1 —
/ Voour(yn,x3) (V( X% ) (x, — yn) dyn
]R2

(1= x1) V)
1
< Capol | Ivolen — )l ——— du
lyn|>1 lyn|® + x5
1
Cosio [ Walan =)l ——— dun
1<|yn|<2 [yn|® + 25
1/2
1/2
1 U()xh—yh2 1_|_yh7
< O,y +o( [ Pty Ll ay,
uocl+x3 R2 + ‘yh’ |yh|2]_ (‘yh‘a‘F«ng)
: BEE-1)
< CHVh”L?l 5+ Clluo|lgz inf (1,24
uocl +iU3 uloc

"We give in the next paragraph (see (2.28)) a proof of the inequality

Ixivo,nll iz < Cllvo,nll sz
uloc

which is not entirely obvious since H'/? is a fractional Sobolev space.
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for all v > 2 and for «, 8 > ¢y and sufficiently large. In particular the HZZ oc Pound
follows. The local bounds in L%l oc Dear x3 = 0 are immediate since the right-hand side is
uniformly bounded in x3. The treatment of the terms with 11, 19 are analogous. Notice
however that because of the slower decay of ¥, 19 in x3, we only have a uniform bound

in H((1+1[0,1]?) x (1,00)) if ¢ is large enough (¢ > 2 is sufficient).

e There remains to bound the terms involving Z[M}], Z|N}], using Lemma 2.7 and Remark
2.11. We have for instance, for all 3 > 0,

[z« (@ =30V | oy o
< ClVallz,,, (KU1 P el ws) ey + 1@+ P)VEC28) i)

Using the Plancherel formula, we infer

1A+ P) (s 2s) | 22y Cllo(§) exp(—Arz3) || g2 (r2)

<
< Ollexp(=Aezs)| m2(By) + C exp(—pzs),

where R > 1 is such that Supp ¢ C Br and p is a positive constant depending only on
¢. We have, for k =1, 2, 3,

‘V2 exp(—)\k:ﬁg)‘ <C <$3|Vg)\k| + :U§|V§)\k|2) exp(—Agr3).

The asymptotic expansions in Lemma 2.4 together with the results of Appendix B imply
that for £ in any neighbourhood of zero,

VA = 0([¢), VA= 0(I¢P),
VA = 0(1), Vp = O(|¢]) for k = 2,3.

In particular, if £ = 2, 3, since A is bounded away from zero in a neighbourhood of zero,

/ dxsl| exp(—)\kxg)H%{z(BR) < 00.
0

On the other hand, the degeneracy of A1 near £ = 0 prevents us from obtaining the same
result. Notice however that

/0 J exp(=Mzs) 22 < Ca

for all @ > 0, and
eV expl-dizl s,y < o0
for ¢ € N large enough (¢ > 4). Hence the HZZOC bound follows. O

> The representation formula, together with its associated estimates, now allows us to
extend the notion of solution to locally integrable boundary data. Before stating the corres-
ponding result, let us prove a technical lemma about some nice properties of operators of the

type Z [g‘iéj }, which we will use repeatedly:
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Lemma 2.15. Let ¢ € C°(R?). Then, for all g € L?,,.(R?), for all p € C*(R?) such that
V®p has bounded second order moments in L? for0 < a <2,

&5;} B fzfg}v
T = T
/Rf La Py /Rzg gl |7

/ \Y I{gzg]}p*g: / QOIFZ&J}Vp*g.
€] €
Remark 2.16. Notice that the second formula merely states that

gzgﬂ >: F@}
VHM pra) =L |Yg | VPra

in the sense of distributions.

Proof. e The first formula is a consequence of Fubini’s theorem: indeed,

Lot oes
_ /R da dy dt 73 (¢ — y)g (D () x
< {plx—t)—ply —t) = Vp(x — 1) - (x — Y)Ljx_y|<1}
_ /R du dy diyis(y' — D)g(t)p() x

y'=x+t—y
x {p(x—t) = p(x —y) = Vpla —1) - (y = t)1jy_gj<1} -

Integrating with respect to x, we obtain

&i&j
/M"I{ MP*Q
= /M dy dtvij(y' — £)g(t) {0 p(t) — @ ply') — 0+ V() - (t = ¥ )Ly _g<1 )

= dtg(t)T ﬁfﬁ } © * .

R2

e The second formula is then easily deduced from the first one: using the fact that Vj(z) =
—Vp(—z) = —Vp(x), we infer

forelitlers = Lo
[

diy
di:
yy
[

px Ve

}V EX
fz’ﬁg}v

glv
§

|
gij
I3

}Vp*g.
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We are now ready to state the main result of this section:

Corollary 2.17. Let vg € K. Then there exists a unique solution u of (2.1) such that
U|zg=0 = vo and

a
Ya >0, sup / / \u(zp, 3)|2dxs d), < oo,
kez? Jk+[0,1)2 Jo

(2.20)

[e.9]
dg € N*,  sup / / |V (zp, x3)[2des dry < co.
kez? Jk+[0,1)2 J1

Remark 2.18. As in Proposition 2.13, the integer q in the two results above is explicit and
does not depend on vy (one can take ¢ = 4 for instance).

Proof of Corollary 2.17. Uniqueness. Let u be a solution of (2.1) satisfying (2.20) and such
that u|z,—0 = 0. We use the same type of proof as in Proposition 2.1 (see also [12]). Using a
Poincaré inequality near the boundary z3 = 0, we have

o0
Sup/ / \Vu(zp, z3)|*dzs dz), < co.
kez2 Jk+[0,1]2 Jo

Hence u € C(Ry,S’(R?)) and we can take the Fourier transform of u with respect to the
horizontal variable. The rest of the proof is identical to the one of Proposition 2.1. The
equations in (2.3) are meant in the sense of tempered distributions in x3, and in the sense of
distributions in x3, which is enough to perform all calculations.

Ezistence. For all x;, € R?, let x € C§°(R?) such that x = 1 on B(x,1). Then we set

3 o
u(z) = fl(iﬂﬂ©<14ﬂ%>wm—Mm0Cw

k=1 V- (xVa
3
+ Y Z[MR () (1= X)von)(x)
k=1
3
+ DIV () * (1= X)Va) (@) (2.21)
k=1

(1 = x)vo,n )
+ * ’ x
R ORI
+ (1= x)von) () + 2% (1 = X)Va) ().
We first claim that this formula does not depend on the choice of the function x: indeed,

let x1, X2 € C§°(R?) such that y; = 1 on B(zp,1). Then, since x; — x2 = 0 on B(zp,1) and
X1 — X2 is compactly supported, we may write

3

S I[ME]fi(,s) * (1 — x2)von) + 1 (X1 — x2)von)
=1
3
= F! (Z #(&) My (x1 — x2)vo,n eXp(—)\kﬂCs.))
k=1
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and

3
S I[N fr(ws) * ((x1 — x2) Vi) + 2 # (x1 — x2) Vi)
=1

I
K,.]

3
1<Z¢ )Nk(x1 — x2) Vi exp(— Akx3)>
k=1

3
= (Z gb Lkegf ( X2)Vh> eXp(_)\k373)> :

k=1

On the other hand,

(x1 — x2)vo.n
PHEE <V ((x1 — XQ)Vh))

3
= F! 1-— L <X1/_2<ﬂ’h exp(—Apx .
(;( ¢(&)) L <V s Xz)Vh)) p(—Ak 3))

Gathering all the terms, we find that the two definitions coincide. Moreover, u satisfies
(2.20) (we refer to the proof of Proposition 2.13 for the derivation of such estimates: notice
that the proof of Proposition 2.13 only uses local integrability properties of vy).

There remains to prove that u is a solution of the Stokes system, which is not completely
trivial due to the complexity of the representation formula. We start by deriving a duality
formula: we claim that for all n € C5°(R?)3, for all 23 > 0,

3.
/IR2 u(ajh, 1}3) . n(xh) dry, = /R2 UO,h(f’?h) CFL <Z (th'f/(g))hexp(—j\kl’g)> (222)

k=1
3 _— —
- / Vi(p) - F! <Z i€ ("Lin(€)) exp(—)\k:z:g)> .
R2 — 3
To that end, in (2.21), we may choose a function x € C§°(R?) such that y = 1 on the set

{z € R?, d(z,Suppn) < 1}.

We then transform every term in (2.21). We have, according to the Parseval formula

-1 y </X/U_\%) )ex —ALT )
/Rf (;m@ T ) P )
° (M)

V- (xVa)(€)

= /]R2 XvonF <23: ( Lin(€ ) eXP(—)\kSUE;))
_ /R2(1 — X)WV - F1 (23: i€ (ﬁﬁ(@)g exp(—)\kxg)> )

k=1

) exp(—Apx3) d&
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Using standard convolution results, we have

/ D% (1= X)von)n = / (1= x)vop "1 1.
R2 R2

The terms with ¥y and @ are transformed using identical computations. Concerning the
term with Z[M}], we use Lemma 2.15, from which we infer that

/R2 1 [Mlﬂ Te* (1= x)von)n = /R?(l - x)vo,nZ {tM;ﬂ fk * 7).

Notice also that by definition of M}, M} = M]. Therefore

3
Lo @=xmam + 3 [ T e (-0l

= /RQ(I — UOh f (Z <Lk€1 zk€2>ﬁ§5(§> exp(—ka3)> .

k=1

and

3
ARG o S LA CENIGY

B /R (1 B <Z§ (7’Lk€3> 5) eXP( 5\]&73))

Now, we recall that if vy € HY/?(R?) NK is real-valued, then so is the solution u of (2.1).
Therefore, in Fourier space,

ﬂ(-,l’g) = ﬁ(~,x3) Vas > 0.

We infer in particular that
3 3 -
Z Ly exp(—Apz3) = Z & exXp(—Axx3).
Gathering all the terms, we obtain (2.22).

Now, let ¢ € C§°(R? x (0,00))? such that V- ¢ =0, and n € C§°(R? x (0,00)). We seek to
prove that

/ u(—Af—e3x¢)=0 (2.23)
R
as well as

/ w-Vn=0. (2.24)
=
Using (2.22), we infer that

/ u(—A¢—e3 % ()

//RZWJ-" <§j (©)C () eXp(—/\kxg)>
/ /R Vi (Z: (©)C(€) exp(—j\kx:g))’
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where

0 1 0 0 1 0
= (|€* = M) "M +"M, | -1 0 0 = (|62 = A2)'N + Ny [ =1 0 0
0 00 0 0 0
According to Lemma 2.6,
M, = <i§1%,1 i&2qk1 —)\ka,1>
1qr2  12qr2  —MkQk2
so that, since i€ - ¢ + 95(3 = 0,
Mi(E¢ qk,1
K(€)C(E w3) = (D53 — M) <q;e 2)
Integrating in x3, we find that
Mk- 5,333) exp(—Apx3)drs = 0.
Similar arguments lead to
oo 3 R _
/ / Vi F (Z §)C(§, x3) exp(— )\kx?))) =0
0o Jr2 =1
and to the divergence-free condition (2.24). O

2.2 The Dirichlet to Neumann operator for the Stokes-Coriolis system

We now define the Dirichlet to Neumann operator for the Stokes-Coriolis system with bound-
ary data in K. We start by deriving its expression for a boundary data vy € H'/2(R?) satisfying
(2.2), for which we consider the unique solution u of (2.1) in Hl(R?’,_) We recall that u is
defined in Fourier space by (2.8). The corresponding pressure term is given by

(ol @
)= 2 A F g e M(Oz),

The Dirichlet to Neumann operator is then defined by
DNwp := —03u|z3=0 + Ples=0€3-
Consequently, in Fourier space, the Dirichlet to Neumann operator is given by

3 2 2 \2\2¢1
BN (¢ Z ( 3 (—ARE + \5\ — A% ))

—~

=: Msc(§)bo(§), (2.25)

K

>

where Mgc € M3 3(C). Using the notations of the previous paragraph, we have

3

Msc =Y ALy + e3 g
k=1

Let us first review a few useful properties of the Dirichlet to Neumann operator:
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Proposition 2.19.

e Behaviour at large frequencies: when || > 1,

2
&1+ ‘% 5‘152 i1
Msc(§) = &i& & . +0(|¢'?).
&1+ i&2
€] €]
—i&y —i&  2[¢]
e Behaviour at small frequencies: when || < 1,
1 1 i(§1|2- 3)
Mol =] 1 I R
iGL-6) —iG+&) V2o
i iq i

e The horizontal part of the Dirichlet to Neumann operator, denoted by DNy, maps H1/2(R2)
into H—1/2(R?).

o Let ¢ € C°(R?) such that ¢(&) = 1 for €| < 1. Then
(1—¢(D))DNg : HY2(R?) — H™/*(R?),
D¢(D) DNy, [ D|¢(D) DNg : L*(R?) — L*(R?),

where, classically, a(D) denotes the operator defined in Fourier space by

a(D)u = a(§)u(§)
for a € C(R?), u € L*(R?).

Remark 2.20. For || > 1, the Dirichlet to Neumann operator for the Stokes-Coriolis system
has the same expression, at main order, as the one of the Stokes system. This can be easily
understood since at large frequencies, the rotation term in the system (2.3) can be neglected in
front of €%, and therefore the system behaves roughly as the Stokes system.

Proof. The first two points follow from the expression (2.25) together with the asymptotic
expansions in Lemma 2.4. Since they are lengthy but straightforward calculations, we postpone
them to the Appendix A.

The horizontal part of the Dirichlet to Neumann operator satisfies

IDN;, vo(€)] = O([¢] |20(€)])  for [¢] > 1,
DNy, 00(€)] = O([i0(€)])  for €] < 1.

Therefore, if [pa(1+ 1€12)1/2 59 (€)]? d€ < oo, we deduce that
IR DN @) de < oc.
R2
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Hence DNy, : HY/2(R?) — H~1/2(R?).
In a similar way,

IDN3 0()| = O([¢] [0(€)])  for [¢] > 1,

so that if ¢ € C§°(IR?) is such that ¢(£) = 1 for ¢ in a neighbourhood of zero, there exists a
constant C such that

(1= 6(£)DN5 w0(©)] < Clel lin(€)] V¢ € B2

Therefore (1 — ¢(D)) DN3 : HY/2(R?) — H~1/2(R?).

The vertical part of the Dirichlet to Neumann operator, however, is singular at low fre-
quencies. This is consistent with the singularity observed in L;(&) for £ close to zero. More
precisely, for & close to zero, we have

DG 10(¢) = Q@O,g 1+ 0(li(€)).

Consequently, for all £ € R?

[€6(6)DN3 wo(6)| < Clin(€)]. 0

Following [12], we now extend the definition of the Dirichlet to Neumann operator to func-
tions which are not square integrable in R?, but rather locally uniformly integrable. There
are several differences with [12]: first, the Fourier multiplier associated with DN is not homo-
geneous, even at the main order. Therefore its kernel (the inverse Fourier transform of the
multiplier) is not homogeneous either, and, in general, does not have the same decay as the
kernel of Stokes system. Moreover, the singular part of the Dirichlet to Neumann operator for
low frequencies prevents us from defining DN on H. lltl/ 026. Hence we will define DN on K only
(see also Corollary 2.17).

Let us briefly recall the definition of the Dirichlet to Neumann operator for the Stokes
system (see [12]), which we denote by DNg2. The Fourier multiplier of DN is

& L&
- '5':515\ ‘., i
s© =1 && [SH
g g
—i&1 —i& 2/

The corresponding kernel, denoted by Kg (i.e. the inverse Fourier transform of Mg in §&’) is
homogeneous of order —3, and therefore
C

Kg(t)] < .
’ S()|_‘t‘3

Hence DNy is defined on H/2 in the following way: for all ¢ € C3°(R?), let y € C°(R2) such

uloc

that x = 1 on the set {t € R?,d(t,Suppy) < 1}. Then

(DNg u, p)pr p = (F ' (MsXt) , ) g-1/2 /2 + /R2 Kgx((1—x)u) - .

2In [12], D. Gérard-Varet and N. Masmoudi consider the Stokes system in R3 and not R3., but this part of
their proof does not depend on the dimension.
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The assumption on x ensures that there is no singularity in the last integral, while the decay
of Kg ensures its convergence.

We wish to adopt a similar method here, but a few precautions must be taken because of
the singularities at low frequencies, in the spirit of the representation formula (2.21). Hence,
before defining the action of DN on K, let us decompose the Fourier multiplier associated with
DN. We have

Msc (&) = Ms(§) + ¢(§)(Msc — Ms)(§) + (1 — ¢)(§)(Msc — Ms)(§).

Concerning the third term, we have the following result, which is a straightforward consequence
of Proposition 2.19 and Appendix B:

Lemma 2.21. As [£| — oo, there holds
a 3—lal
V(Mo — Ms)(€) = O (jelie!)

fora e N2, 0 < |a] <3.

We deduce from Lemma 2.21 that V*[(1 — ¢(€))(Msc — Ms)(€)] € L' (R?) for all o € N?
with |a| = 3, so that it follows from lemma B.3 that there exists a constant C' > 0 such that

77110 - oD s~ M) (0] < 1

There remains to decompose ¢(&)(Mgc — Mg)(€). As in Proposition 2.13, the multipliers
which are homogeneous of order one near £ = 0 are treated separately. Note that since the
last column and the last line of Mgc act on horizontal divergences (see Proposition 2.22),
we are interested in multipliers homogeneous of order zero in Mgc 3i, Msc,3 for i = 1,2, and
homogeneous of order —1 in Mgc 33. In the following, we set

V2 (1 -1 — (M 0
w2 (1) - ()
v V2 <§1+§2> v V2 (—&m)
P \a-&) TP 2 \—a—&)

We decompose Mgc — Mg near £ =0 as

$ Mo~ Ms)©) =N +06) (] 11) = (1= ST + o eprr™™

where M; € My(C) only contains homogeneous and nonpolynomial terms of order one, and
Mf™ contains either polynomial terms or remainder terms which are o(|¢[) for § close to zero
if 1 <i,j < 2. Looking closely at the expansions for \j in a neighbourhood of zero (see (A.4))
and at the calculations in paragraph A.4.2, we infer that M/™ contains either polynomial
terms or remainder terms of order O(|¢[?) if 1 < 4,5 < 2. We emphasize that the precise
expression of M"®™ is not needed in the following, although it can be computed by pushing
forward the expansions of Appendix A. In a similar fashion, M;§™ and M3™ contain constant

terms and remainder terms of order O(|¢]) for ¢« = 1,2, Mi%™ contains remainder terms of
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order O(1). As a consequence, if we define the low-frequency kernels K7™ : R? — My (C) for

1<i<4by
- Mrem Mrem
rm e (o (VA0 VED)).
21 22

ngm = f_l <¢ (%§§Z> 1 (51 52)) )
Kjem = F (—ig()e (Mg Mis™))

rem . —1 rem €% G162
K" = F | o(§)M33 €16 €

we have, for 1 < i <4 (see Lemmas B.1 and B.4)

C
|zp]3

| K7™ (2,)| < Vi, € R2.

We also set B
M =F " (=(1 = ¢)M + (1 — ¢)(Msc — Mg))
which also satisfies

|\ M (zn)| < —=  Vap € R2.

C
EAK

There remains to define the kernels homogeneous of order one besides M;. We set

M,y :=Vii (& &),

M3 := —i&'Va,
_ 1 /g €1§2>
M= €] <51§2 &)’

so that My, My, Mg, M, are 2x 2 real valued matrices whose coefficients are linear combinations

of &ﬁj . In the end, we will work with the following decomposition for the matrix Mgc, where

the treatment of each of the terms has been explained above:

Mgo = Mg + M + (1—-¢)(Mgc — Mg — M) + ¢ (f\‘{; |€‘|/£1> + pMTE™,

We are now ready to extend the definition of the Dirichlet to Neumann operator to func-
tions in K: in the spirit of Proposition 2.13-Corollary 2.17, we derive a representation formula
for functions in K N H'/2(R?)3, which still makes sense for functions in K:

Proposition 2.22. Let p € C§° (R2)3 such that @3 = V- @), for some ®), € C5° (R?). Let
X € C&°(R?) such that x =1 on the set

{x € R?, d(z,Supp ¢ U Supp ®;) < 1}.

Let ¢ € CSO(]RE) such that ¢(€) =1 if |€] < 1, and let p := F~1¢.
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o Let vg € HY?(R?)? such that v0,3 = V- V. Then

(ON(w). ¢l = (DNs(uohpop+ [ o Mo
+ <f_1 ((1 - Qb) (MSC - MS - M) %) ’@>H*1/2,H1/2

+ /so‘M}"FF*((l—X)vo)
RQ

N G G G [ ) o
[ en AN (1= 00+ KF™ ¢ (1= 1))}
[ o TR (1 50V) + K™ ¢ (1= 0V
[P T+ (1= ) + K (1= 0}

[ T+ (1= VA + KF™ ¢ (1= 0VA))-

o The above formula still makes sense when vy € K, which allows us to extend the definition
of DN to K.

Remark 2.23. Notice that if vg € K and ¢ € K with w3 = Vj, - @y, and if ¢, Py, have
compact support, then the right-hand side of the formula in Proposition 2.22 still makes sense.
Therefore DN vy can be extended into a linear form on the set of functions in K with compact
support. In this case, we will denote it by

(DN(vo), ¢),

without specifying the functional spaces.

The proof of the Proposition 2.22 is very close to the one of Proposition 2.13 and Corollary
2.17, and therefore we leave it to the reader.

The goal is now to link the solution of the Stokes-Coriolis system in Ri with vp € K and
DN(wp). This is done through the following lemma:

Lemma 2.24. Let vy € K, and let u be the unique solution of (2.1) with u|y,—0 = vo, given
by Corollary 2.17.
Let ¢ € C(R3)3 such that V - ¢ = 0. Then

Vu-Vp+ /3 ez X u - = (DN(vo), plzs=0)-

RY

=
In particular, if vo € K with vo3 = Vy, - Vi, and if vy, Vi, have compact support, then

(DN(wp),v0) > 0.
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——\3
Remark 2.25. If p € C§° (Ri) 15 such that V - ¢ = 0, then in particular

P3las=0(Th) = —/ O3p3(wp, 2) dz
0
= / V- on(xn, z) = Vi - @
0

for @, = f0°° on(-,2)dz € C§°(R?). In particular ¢|.,—o is a suitable test function for Propo-
sition 2.22.

Proof. The proof relies on two duality formulas in the spirit of (2.22), one for the Stokes-
Coriolis system and the other for the Dirichlet to Neumann operator. We claim that if vy € K,
then on the one hand

8 Vu- Vi + /RB e3 X U= /R2 v F  ("Msc(§)¢les=0(€)) (2.26)

+

and on the other hand, for any n € C§°(R?)? such that i3 = V}, - 0, for some 6, € C5°(R?)2,

ONG) o = [ 0P (Msc(©n(©)). (227)

Applying formula (2.27) with = ¢|z,—0 then yields the desired result. Once again, the proofs
of (2.26), (2.27) are close to the one of (2.22). From (2.22), one has

e3xXu-p = — U-eg X
RE R3

o o O
>

I
\
<

o
k,.,
\
@
»
"U
>/
o
8
8/
R‘
\
—_

Moreover, we deduce from the representation formula for u and from Lemma 2.15 a represen-
tation formula for Vu: we have

= F! 3ex—:c X0k €1 &2 — x
Vu(z) = F (1; p(—Axz3) L () (V'(th)> (f & Ak))( )

+ D IIMEIV fil(,23) + (1= x)vos) (@)

(1 —=x)vo,n(§)
VwﬂF*<v-«1—xn@D

Vipr (1= x)von) () + Vipa (1 = x) Vi) (@)
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Then, proceeding exactly as in the proof of Corollary 2.17, we infer that

3 0o
Vu-Vo = / w0 F ! (Z / |§|2exp<—xkx3>thsa(&,xs)dxs)
R k=10

3 0o
- / v F ! (Z/ )\kexp(—)\kﬂﬁs)th33@(57903)d903>-
R2 k=10

Integrating by parts in x3, we obtain

3
R

/ exp(=Apz3) ' Lpds@(€, w3)das = /_\k/ exp(—Meas) ' Lrp (€, x3)dws — ' Li@lug=0(E).
0 0

Gathering the terms, we infer

co 3
Vu -V +/ e3xXu-p = / voffl (/ Z eXp(—kag) tpk¢7>
R2 0
3

R} k=1

+
+ / Uof_l (Z j‘k: th’@‘:Eg:O) 3
R? k=1

3
Ry

where
0 -1 0
Pe = (P =)L+ 1 0 0L
0O 0 0
&1
= —| & <Qk,1 k2 Qk,:s)
_>\k

according to Lemma 2.6. Therefore, since ¢ is divergence-free, we have
L - qk,1
Prp = (=0303 + M\e3) | Qr2 |
k.3

so that eventually, after integrating by parts once more in xs,

Vu-Vgo+/ e3 X u-p

R? R?
) 3 k1
= /vof_ S ML+ | G2 | Tes| @las=o
R? k=1 q
qk,3

= / voF ! (tMSC¢|x3=0)'
R2

The derivation of (2.27) is very similar to the one of (2.22) and therefore we skip its proof. [J

We conclude this paragraph with some estimates on the Dirichlet to Neumann operator:
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Lemma 2.26. There exists a positive constant C' such that the following property holds.
Let ¢ € CS°(R?)? such that w3 = YV, - @) for some ®, € CP(R?), and let vg € K with
vg3 = Vp-Vy. Let R>1 and xg € R? such that

Supp ¢ U Supp ¢, C B(zg, R).
Then

[(DN(w0), )] < CR (Il oragae) + 1@l vvaey) (eoll s + IVl o )

uloc

Moreover, if vo, Vi, € HY/2(R?), then

(DN(v0), #)pr,p| < C (Il 2@y + 1@nll ) (Ivollzrae + 1Vall gz)-

Proof. The second inequality is classical and follows from the Fourier definition of the Dirich-
let to Neumann operator. We therefore focus on the first inequality, for which we use the
representation formula of Proposition 2.22.

We consider a truncation function y such that x = 1 on B(zo, R+ 1) and x = 0 on
B(xo, R+ 2)¢ , and such that |[V¥x|lcc < Cq, with C, independent of R, for all « € N. We
must evaluate three different types of term:
> Terms of the type

K (1= x)vo) - ¢,
RQ
where K is a matrix such that |K(x)| < C|z|™3 for all z € R? (of course, we include in the
present discussion all the variants involving V3, and ®,). These terms are bounded by

1
C T3l = x(@ =) Jvo(z —1)| |p(z)| dz dt
rR2xR2 ||
1/2 1/2
vo(z — 1) 1
gc/dxw; (/ lol@ =H)F ) —_at
R?2 (@)l lt|>1 |t]3 =1 [t
< Cllwolz,_llelle
<

CR”UOHLilOCHSDHL?-

> Terms of the type
[, on TG = 0001 5

where M is a 2 x 2 matrix whose coefficients are linear combinations of £;¢;/|¢|. Using Lemma
2.10 and Remark 2.11, these terms are bounded by

1/2 1/2
Cllelllvollzz, 11+ P)pl e 11+ V0] 147
Using Plancherel’s Theorem, we have (up to a factor 27)

IL+1-Pollze = 12 - A)dllaee < C,
141 P)V0llzz = (1 = A)] - Pol ez < C,

so that eventually

éfﬁﬂMWLw%mHPSCWMWMQMSGWWMMWML
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> Terms of the type

(FH(MEXT6()) @) 172,172 and /
R

where M (€) is some kernel such that Op(M) : H'/?(R?) — H~Y2(R?) and M is a constant
matrix.
All these terms are bounded by

@ - Mug
2

Clixvoll gz@ey el vz mey-

In fact, the trickiest part of the Lemma is to prove that

HXUO”HI/Q(R?) S CRHUQHHll/Q . (2.28)
To that end, we recall that
2 2 | (xvo) (x) — (xvo)(y)[?
= dx dy.
e e

Clearly,
Ixvollzagez) < Ixllocllvoll2((eo, 12y < CRllullye .
We then notice that the integrand of the second term is identically zero if z,y € B(xo, R+ 2)°.
We then decompose the domain R? x R? as
R? x R? = B(zo,R) x B(zo, R)
U (B(xo,R+2)\ B(zo,R)) x B(xg, R) U B(xo, R) x (B(zg, R+ 2) \ B(xg, R))
U B(zo, R+ 2)° x B(zo, R+ 2)°¢
and we evaluate the corresponding integral on each of the subdomains.
First, by definition of xy and of the HY? norm

uloc
/ | (xvo) (z) — (xvo) (y)[?
B(z0,R)x B(z0,R) |z —y[?

Moreover, by symmetry arguments, it is easily checked that

dx dy = HUOH%pM(B(zO,R)) S CR2H1)0H21/2 ’

uloc

B 2
/ |(xvo)(z) (ngo)(y)| d dy
(B(z0,R+2)\B(x0,R)) x B(z0,R) lz -y
B 2
_ / | (xvo) () (ngo)(y)| de dy,
B(wo,R) x (B(0,R+2)\ B(x0,R)) |z —y

and
[(xvo) (@) = Cevo) (W), a

—

(B(x0,R+2)\ B(x0,R)) x B(z0,R) |z —y[?
2
< |X(y)|2|U0(x) - UO(y)| dx dy
— J(B(20,R+2)\B(x0,R)) x B(x0,R) lz —yl?
o |x(@) = x ()
+/ lvo()] 5—dx dy
(B(x0,R+2)\B(xo,R)) x B(z0,R) lz —yl

dz
< CR*|v|? + C|x|121.00 |00 ||? / —
< | OHHiz/fc IXIWee 100172 B(2o, 120\ B(wo, R)) c<onin 7]
<

CR? oo %12 -

uloc

34



Gathering all the terms, we obtain (2.28). This concludes the proof of the Lemma. O

2.3 Presentation of the new system

We now come to our main concern in this paper, which is to prove the existence of weak
solutions to the linear system of rotating fluids in the bumpy half-space (1.1). There are
two features which make this problem particularly difficult. Firstly, the fact that the bottom
is now bumpy rather than flat prevents us from the use of the Fourier transform in the
tangential direction. Secondly, as the domain {2 is unbounded, it is not possible to rely on
Poincaré type inequalities. We face this problem using an idea of [12]. It consists in defining a
problem equivalent to (1.1) yet posed in the bounded channel Q°, by the mean of a transparent
boundary condition at the interface ¥ = {x3 = 0}, namely

—Au+esxu+Vp =0 in QF,
. _ . b
divu =0 in Q°, (2.29)
ulp = up,

—03u +pes = DN(ulgy=0) on 3.

In the system above and throughout the rest of the paper, we assume without any loss of
generality that supw < 0, infw > —1. Notice that thanks to assumption (1.3), we have

0
U3|zs—0(Th) = uo,s(ivh)—/( )Vh'uh(ﬂfh,z) dz
w(zp

= woa(zn) — Viaw - ugp(xp)

0
-V - / up(xp, 2) dz

w(zp)

0
= V- (Uh(xh) — /( )uh(:vh,z) dz) ,
w(zxp

so that ug,,—o satisfies the assumptions of Proposition 2.22.
Let us start by explaining the meaning of (2.29):

Definition 2.27. A function u € H}, (Q°) is a solution of (2.29) if it satisfies the bottom

boundary condition u|r = ug in the trace sense, and if, for all ¢ € C§° (ﬁb) such that V-p =0
and @|r = 0, there holds

/szb(Vu Vo+esxu-¢)=—(DN(u|zz=0), ¢|es=0)D D-

Remark 2.28. Notice that if ¢ € C3° (m) is such that V- ¢ =0 and ¢|r = 0, then
0 2
P3)zs=0 = Vi + Pp, where ®p(xp) 1= — /( )goh(xh,z)dz € C°(R?).
W (Th
Therefore ¢ is an admissible test function for Proposition 2.22.
We then have the following result, which is the Stokes-Coriolis equivalent of [12, Proposi-
tion 9], and which follows easily from Lemma 2.24 and Corollary 2.17:
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Proposition 2.29. Let ug € L2, .(R?) satisfying (1.3), and assume that w € W1 (R?).

ulo

e Let (u,p) be a solution of (1.1) in Q such that u € H. () and

Va > 0, sup/ / (Jul* + |Vul?) < oo,
1ez? J1+[0,1]2 Jw(zxp)

[e.e]
sup/ / |Vu|? < oo,
1€22 J1+[0,1)2 J1

Then u|qy is a solution of (2.29), and for x3 > 0, u is given by (2.21), with vy =
U‘:pg:O e K.

for some g €N, ¢ > 1.

e Conversely, let u= € HY, (Q°) be a solution of (2.29), and let vy = u™ |z—0 € K.
Consider the function u™ € H} (R3) defined by (2.21). Then, setting

u(x)  ifw(xp) <x3 <0,

u(@) = { ut(z) if w3 >0,

the function u € HL () is such that

Va > 0, sup/ / (Ju]? + |[Vul?) < oo,
lez? J1+[0,1]%2 Jw(zp)

oo
sup / |Vu|? < oo,
1€22 J1+[0,1)2 /1

for some q € N sufficiently large, and is a solution of (1.1).

As a consequence, we work with the system (2.29) from now on. In order to have a
homogeneous Poincaré inequality in ©°, it is convenient to lift the boundary condition on
I', so as to work with a homogeneous Dirichlet boundary condition. Therefore, we define
V = (Vi, V3) by

Vi i=won, Vs:i=wug3— V- uop (s —w(zp)).
Notice that V|,,—0 € K thanks to (1.3), and that V is divergence free. By definition, the
function
u:=u— V1 aop

is a solution of

—Al+e3xu+Vp =f in Qb
diva =0 in QP,
alr =0, (2.30)
—03u + peg = DN(fL|x3:0—) 4+ F, on X X {0}

where

f:=AV—€3XV=AhV—€3XV,
F := DN(V|z5=0) + 33V ] z5=0-
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Notice that thanks to the regularity assumptions on ug and w, we have, for all [ € N and for
all p € C§°(020)3 with Supp e C ((=1,1)? x (=1,0)) N Y,

(@) p| < Clllluonllge + Nuoslls ) I8l ony (231)

a1, )
uloc

where the constant C' depends only on ||lw][j31,0. In a similar fashion, if ¢ € C§°(R?)? is such
that @3 = V}, - @}, for some @}, € C5°(R?)2, and if Supp p, Supp ®;, C B(wo, 1), then according
to Lemma 2.26,

[(F,)0r0] < Clllluonlye, +luoals, +1Tnl 1) (1ol + [@nllmze) - (232

2.4 Strategy of the proof

From now on, we drop the ~in (2.30) so as to lighten the notation.

e In order to prove the existence of solutions of (2.30) in H}, (), we truncate horizontally

the domain €2, and we derive uniform estimates on the solutions of the Stoke-Coriolis system
in the truncated domains. More precisely, we introduce, for all n € N, k € N,
0, :=0"n {z € R3, |z1| < n, x2 < n},
Qe pet1 = Qg1 \ Qs
Y = {(x4,0) € R®, |z1| < n, zo < n},
Ykl = Dt \ Sk

We consider the Stokes-Coriolis system in €2, with homogeneous boundary conditions on the
lateral boundaries

_Aun+€3xun+vpn :f7 x €y
V-u, =0, z e,
- z e\ Q, (2.33)

—03uUp + pneslzs=0 = DN (up|zs=0) + F, = € X,.

Notice that the transparent boundary condition involving the Dirichlet to Neumann operator
only makes sense if uy|z,—0 is defined on the whole plane ¥ (and not merely on 3,), due to
the non-locality of the operator DN. This accounts for the condition urn|Qb\Qn =0.

Taking u,, as a test function in (2.33), we get a first energy estimate on w,

IVt [72 09
= — (DN (un‘@:o) 7un‘x3:0> —(F, un‘x3:0> + (f, un) (2.34)
<0

0
/ Up (T, 2')d2
w(zp)

< Cn <Hun,h|x3:0”H1/2(En) + ‘ ) +Cn ||’LLnHH1(Qn)
H1/2(En)

< C”HUn”Hl(Qn)a

where the constant C' depends only on ||ug]| w2, and ||lwl||y31,00. This implies, thanks to the
Poincaré inequality,

E, = / Vg, - Vu, < Con?. (2.35)
Q
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The existence of u, in H'(Q2°) follows. Uniqueness is a consequence of equality (2.34) with
F=0and f=0.

In order to prove the existence of u, we will derive H 1l uloc €stimates on u,, uniform with
respect to n. Then, passing to the limit in (2.33) and in the estimates, we deduce the exi-

stence of a solution of (2.30) in H}, .(Q%. In order to obtain H}, . estimates on u,, we

follow the strategy of Gérard-Varet and Masmoudi in [12], which is inspired from the work of
Ladyzhenskaya and Solonnikov [22]. We work with the energies

Ey = Vuy, - Vi, (2.36)
Qp

The goal is to prove an inequality of the type
By < C (K + (B — Er)), Vke{m,... n}, (2.37)

where m € N is a large, but fixed integer (independent of n) and C' is a constant depending
only on [lw[[y1.ec and [[uonllgz, Hu073HH1 MUkl /2 - Then, by backwards induction on &,

uoc

we deduce that
E, <Ck* Vke{m,...n}

so that E,,, in particular, is bounded, uniformly in n. Since the derivation of the energy
estimates is invariant by translation in the horizontal variable, we infer that for all n € N,

sup [ Vunl? < €
c€Cm J (ex(—1,0))NNb

where
Cm = {c, square of edge of length m contained in ¥,, with vertices in ZQ} . (2.38)

Hence the uniform H! uloc POUnd on u, is proved. As a consequence, by a diagonal argument, we
can extract a subsequence UW”))neN such that ) — u weakly in H 1(Q) and Up(n) l2z=0 —

| p5—0 weakly in H'/2(3y) for all k € N. Of course, u is a solution of the Stokes-Coriolis system
in Q° and u € H},.(92°). Looking closely at the representation formula in Proposition 2.22,
we infer that

<DN uw(n) ‘x3=07 €0>'D’7D nif) (DN U|x3:0, (10>D’,’D

for all admissible test functions . For instance,
/ M;[e]?‘l * ( X) (uw(n)|x3=0 - u|m3=0>
= [ ] a0 ) (s — vleamn) 0
R2 t|<k
b [ ] a0 ) (o — vleamn) (O
R2 [t|>k

For all £, the first integral vanishes as n — oo as a consequence of the weak convergence in
L?(X;). As for the second integral, let R > 0 such that Suppy C Bg, and let kK > R+ 1.
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Then
L [ e MR (=) (o — =) 0

1
C | do / @I (|t es=0(8)] + [ulas=0(2)])

1 1/2 gt ) 5\ 1/2
C/ dx|o(x </ dt) (/ ———= (|]zs=0|" + |Up(n) |z5= )
R e o=k 17—t jo—t[>1 \x—ﬂgﬂ sl ‘ ol 0‘ )

<

1 1/2
< Ol + b, ) [t ()
= ¢ <Hu|x3:0' 2, + Sngun\u:o’ Lizoc) Il (k — R)~Y2,

Hence the second integral vanishes as kK — oo uniformly in n. We infer that

T [ MR (1= ) (gm0 — Ulamo) = 0.
Therefore u is a solution of (2.30).

The final induction inequality we will be much more complicated than (2.37), and the
proof will also be more involved than the one of [12|. However, the general scheme will be
very close to the one described above.

e Concerning uniqueness of solutions of (2.30), we use the same type of energy estimates
as above. Once again, we give in the present paragraph a very rough idea of the computations,
and we refer to section 4 for all details. When f = 0 and F' = 0, the energy estimates (2.37)
become

Ey, < C(Epy1 — ),

and therefore
Ey <rEpqq

with r := C/(1+4 C) € (0,1). Hence, by induction,
F < TkilEk < Cri—1x?

L (Q°). Letting k — oo, we deduce that
FE1 = 0. Since all estimates are invariant by translation in xj, we obtain that u = 0.

for all £ > 1, since u is assumed to be bounded in H}!

3 Estimates in the rough channel

This section is devoted to the proof of energy estimates of the type (2.37) for solutions of the
system (2.33), which eventually lead to the existence of a solution of (2.30).

The goal is to prove that for some m > 1 sufficiently large (but independent of n
is bounded uniformly in n, which automatically implies the boundedness of w,, in H&
We reach this objective in two steps:

); Em
().

loc
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e We prove a Saint-Venant estimate: we claim that there exists a constant C7 > 0 uniform
in n such that for all m € N\ {0}, for all k € N, k > m,
K Eiym—E;
B, <Cy |k* 4+ Epgpmy1 — B + — sup —adm - 0 (3.1)
m= j>m+k J
The crucial fact is that C is independent of n, k£ and m.

e This estimate allows to deduce the bound in H}, .(Q) via a non trivial induction argu-
ment.

Let us first explain the induction, assuming that (3.1) holds. The proof of (3.1) is post-
poned to the subsection 3.2.
3.1 Induction

We aim at deducing from (3.1) that there exists m € N\ {0}, C' > 0 such that for all n € N,
/ Vuy, - Vu, < C. (3.2)
Qm

The proof of this uniform bound is divided into two points:

e Firstly, we deduce from (3.1), by downward induction on k, that there exist positive con-
stants Cq, C3,my, depending only on [|w|y1, and HUO’hHHZzoc’ Hu0’3||Hizoc’ Uk /2 5
such that for all (k,m) such that k& > Cym and m > my,

4

k Eiim — E;
E, <Oy {k2 +m3+ — sup 7]+m, L.
m= j>m+k J

uloc

(3.3)

Let us insist on the fact that Cy and C'5 are independent of n, k, m. They will be adjusted
in the course of the induction argument (see (3.8)).

e Secondly, we notice that (3.3) yields the bound we are looking for, choosing k = |Csm |+
1 and m large enough.

e We thus start with the proof of (3.3), assuming that (3.1) holds.

First, notice that thanks to (2.35), (3.3) is true for k£ > n as soon as Cy > Cj, remembering
that u, = 0 on Q°\ ©,,. We then assume that (3.3) holds for n,n — 1,... k -+ 1, where k is
an integer such that k > Csm (further conditions on Cs, C3 will be derived at the end of the
induction argument, see (3.7)).

We prove (3.3) at the rank k& by contradiction. Hence, assume that (3.3) does not hold at
the rank k, so that

K Ejim — E;
Ep > Co {k2 +m3 + — sup ]Hn]} . (3.4)
M= j>m+k J
Then, the induction assumption implies
Eptm+1 — Ex
k 14—k Ejrm — E;
S CZ (k+m+1)2—k2+( +m+5) sup -an}
m j>k+m J
K3 Ejym—E;
< Oy {Qk(m + 1)+ (m+1)* + 80— sup ﬁm]} . (3.5)
m= j>k+m J
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Above, we have used the following inequality, which holds for all kK > m > 1

(k4+m+D' =k = 43(m+1) +6k*(m +1)% + 4k(m + 1) + (m + 1)*
8mk® + 6k% x 4m? + 4k x 8m> + 16m*

<
< 80mk3>.

Using (3.4), (3.1) and (3.5), we get

[ K Ejim — E;
Cy | K2+ m?+ —= sup ﬁm]}
L m= j>k+m J
< Ej (3.6)
[ k2 k4 Eitm—E;
< Oy K 4 2Cok(m 4 1) + Cy(m + 1) + (80024 + 5) sup 9
L m me ) j>k+m J

The constants Cp, C1 > 0 are fixed and depend only on ||w||1, and HUO,hHH2l , HUO’SHle ,

|Unll ;12 (cf. (2.35) for the definition of Cp). We choose my > 1, Co > Cp and C3 > 1
uloc

depending only on Cy and C so that

{ k> Csm Co(k? +m3) > Oy [k? + 2C2k(m + 1) + Ca(m + 1)?] (3.7)

ol
and m > my HHphes { and CQ% > Ch (8002% + %) .
One can easily check that it suffices to choose Cs, C3 and myg so that

Co > max(?Cl, C()),
(CQ — 01)03 > 800102, (3.8)
VYm >mg, (CoCp+ Ch)(m+1)% <m?.

Plugging (3.7) into (3.6), we reach a contradiction. Therefore (3.3) is true at the rank k. By
induction, (3.3) is proved for all m > mg and for all £k > Cym.

e It follows from (3.3), choosing k = [Csm| + 1, that there exists a constant C' > 0,
depending only on Cy, C;, Cs, Cs, and therefore only on ||wl||y1.« and on Sobolev-Kato
norms on ug and Uy, such that for all m > my,

ELm/QJ SE\_C:%mj-i-l <’ ms—i—i sup M

(3.9)
M j>|Cam|+m+1 J

Let us now consider the set C,,, defined by (2.38) for an even integer m. As Cp, is finite, there
exists a square c¢ in Cp,, which maximizes

{HUnHHl(QC),C € Cm}

where ., = {:c el oy, € c}. We then shift u,, in such a manner that c is centered at 0. We
call 4, the shifted function. It is still compactly supported, yet not in €2, but in Qo,,

/ |van|2_/ Vuo* and / \vanﬁ_/ V2.
Qon Qn Q /2 Qe

Analogously to Ej, we define Ek Since the arguments leading to the derivation of energy
estimates are invariant by horizontal translation, and all constants depend only on Sobolev

m
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norms on uo, U, and w, we infer that (3.9) still holds when Fj is replaced by Ek On the
other hand, recall that E,, /2 maximizes (i |2 H1(n,) on the set of squares of edge length m.
Moreover, in the set ¥4, \ X; for j > 1, there are at most 4(j +m)/m squares of edge length
m. As a consequence, we have, for all j € N*,

E]+m_E < /27

so that (3.9) written for @,, becomes

E‘/m/2 <C m?

1 ~
+— < sup 1+m> Em/Q]
M= \j>(Cs+1)m J
1 ~

This estimate being uniform in m € N provided m > myg, we can take m large enough and

get
3

~ m
Em/2 < C 0%7
so that eventually there exists m € N such that
3
m
sup ||un |51 oy < 07.
CEmH ”’H ((ex(~1,0)n2b)) 1-C4

This means exactly that u,, is uniformly bounded in QOb). Existence follows, as explained

in paragraph 2.4.

uloc(

3.2 Saint-Venant estimate

This part is devoted to the proof of (3.1). We carry out a Saint-Venant estimate on the

system (2.33), focusing on having constants uniform in n as explained in the section 2.4. The

preparatory work of the section 2.1 and 2.2 allows us to focus on very few issues. The main

problem is the non-locality of the Dirichlet to Neumann operator, which at first sight does not

seem to be compatible with getting estimates independent of the size of the support of u,,.
Let n € N\ {0} be fixed. Let also ¢ € C$°(22°) such that

V=0, ©=00n2\Q, Pl =0 (3.10)

Remark 2.28 states that such a function ¢ is an appropriate test function for (2.33). In the
spirit of Definition 2.27, we are led to the following weak formulation:

Vun-VsoJr/bUih'soh
Q

- <DN (un|13=0_) 7@|x3:()_ >D’7D - <F7 §0|x3:O— >D’,D + <f, SO)D’,'D (311)

Ob

Thanks to the representation formula for DN in Proposition 2.22, and to the estimates (2.31)
for f and (2.32) for F, the weak formulation (3.11) still makes sense for ¢ € H'(QP) satisfying
(3.10).

42



In the sequel we drop the subscripts n. Note that all constants appearing in the inequalities
below are uniform in n. However, one should be aware that Ey, defined by (2.36) depends on
n. Furthermore, we denote u/,,_o- by vo.

In order to estimate Ej, we introduce a smooth cutoff function xx = xx(yn) supported in
Y41 and identically equal to 1 on Xj. We carry out energy estimates on the system (2.33).
Remember that a test function has to meet the conditions (3.10). We therefore choose

Ph XkUh 10b
= = z S H Q 5
v ( V . ‘I)h ) < —Vh . (Xk fw(xh,) uh(mh, z’)dz’) ) ( )

0
= XkU — <thk<$h) . fj(mh) uh(xh, Z/)dZ/)

which can be readily checked to satisfy (3.10). Notice that this choice of test function is
different from the one of [12], which is merely xju. Aside from being a suitable test function
for (2.33), the function ¢ has the advantage of being divergence free, so that there will be no
need to estimate commutator terms stemming from the pressure.

Plugging ¢ in the weak formulation (3.11), we get

/QXkVU|2 = /VU (Vxk) u+/VU3 (thk(xh)'/( )Uh(xhazl)dzl)
w(zp

— (DN (v0) , laz=0-) = (Fs ¢laz=0-) + (fr9) - (3.12)

Before coming to the estimates, we state an easy bound on ®; and ¢

1
12nll 7 0y + 12l ey + 1 Ples=oll prrae) + lolzs=oll prroe) < CEE- (3:13)

As we have recourse to Lemma 2.26 to estimate some terms in (3.12), we use (3.13) repeatedly
in the sequel, sometimes with slight changes.

We have to estimate each of the terms appearing in (3.12). The most difficult term is
the one involving the Dirichlet to Neumann operator, because of the non-local feature of the
latter: although wvg is supported in ¥,, DN(vg) is not in general. However, each term in
(3.12), except — (DN (vg) , ¢|z5—0- ), is local, and hence very easy to bound. Let us sketch the
estimates of the local terms. For the first term, we simply use the Cauchy-Schwarz and the
Poincaré inequalities:

1 1
2 2
[ vu- sc( / \Vul2> ( / \uF) < C(Bpor — By).
Q Qi kt1 Qg kr1

In the same fashion, using (3.13), we find that the second term is bounded by

/ Vus -V (Vth(a:h) . / up(xp, z')dz') dxpdz
Q w(zp)

< [ IVl I9Viaanl [ e )
w(xp
—i—/Q|VhU3] ]Vth(:rh)\/( )\thh(:rh,z')]dz'dxhdz
w(zyp,
+/Q |03u3 Vi xk(zh) - un(zh, 2)| drpdz
< C(Egsr — Eg).
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We finally bound the two last terms in (3.12) using (3.13), and (2.32) or (2.31):

0

1

H1/2(R2)J

uh(xhv Zl)dzl>

w(zp)

~<F790’x3=0*>| < C<k + 1) {HX’Cuh’xL@:OHHlﬂ(R?) + th ’ <Xk/

} <Clk+1)E,

M=

1
< C(k‘ + 1) {Elg 1t (Ek—i-l Ek)

1

[(fro)l < (k+1)EL,.

The last term to handle is — (DNp, (vg) , ¢|45=0- ). The issue of the non-locality of the
Dirichlet to Neumann operator is already present for the Stokes system. Again, we attempt
to adapt the ideas of [12]|. So as to handle the large scales of DN(vg), we are led to introduce
the auxiliary parameter m € N*, which appears in (3.1). We decompose vy into

vo = XEV0,h n (Xk+m — Xk) Vo,n
0 = -V - (Xk fb.())(l‘h) up(h, z’)d;/) —Vy - ((Xk+m X&) fw(x )Uh<37h7 z’)dz’)
n (1 = Xk+m) vo.n
—Vp - ((1 — Xk-+m) ff(xh) up (2, z’)dz’)

The truncations on the vertical component of vy are put inside the horizontal divergence, in
order to apply the Dirichlet to Neumann operator to functions in K.
The term corresponding to the truncation of vy by xg, namely

XkUO,h g0h|1. =0~ >
— (DN : ’
< ( Vi (X gy tn e )2 ) ( Vi Bilayoo-
XEkV0,h

XkUOh
= e ) (o o) )
)
(

is negative by positivity of the operator DN (see Lemma 2.24). For the term corresponding
to the truncation by xgim — Xx We resort to Lemma 2.26 and (3.13). This yields

(Xk+m — X&) V0,h Ohlzaeo-
DN ’ : v3=0
’< < ~Vp - ((Xk+m — Xk) f:,)(mh) uh(xhazl)dzl) ( Vi - @hles—0- )

1 L
< C (Ek-i-m-i-l - Ek)2 E]?.H'

However, the estimate of Lemma 2.26 is not refined enough to address the large scales inde-
pendently of n. For the term

(1 *Xk-i-m) Vo,h Soh‘ -
DN ’ , e3=0 :
< < ~Vp - ((1 — Xbtm) (o) uh(iﬂh,z')d«z') ( Vi ®plys—0- )

we must have a closer look at the representation formula given in Proposition 2.22. Let

(1 = Xktm) V0,1 (= Xptm) von
- )

vo = ( -V - ((1 — Xk+m) fo?(xh) uh(xh,z’)dz')
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We take x := X1 in the formula of Proposition 2.22. If m > 2, Supp Xx+1NSupp(l—Xg+m) =
0, so that the formula of Proposition 2.22 becomes?

ON ) = [ blugmo Koo+ [ | pluuco - M < T

RQ RQ

* /2 Ohlzs=0— * 1ZIM1] (p * Do) + K1 * Do}
R

+ /R2 Ph|zz=0~ {I[Mg] (p * ‘7}1) + K5 % Vh}

* /RQ DPpjy—0- - {Z[Ms3] (p * on) + K5 * 0o}

+ /2 Opypgo-  {Z[Ma] (p+ Vi) + K5« Vi } .
R

Thus, we have two types of terms to estimate:

e On the one hand are the convolution terms with the kernels Kg, M7, and K" for

1 < < 4, which all decay like L

EEN
e On the other hand are the terms involving Z[M;] for 1 < i < 4.

For the first ones, we rely on the following nontrivial estimate:

Lemma 3.1. For all k > m,

1

@0*7‘ |3

[\

3 1
k* E _ E 2
< C’—2 ( sup ﬁm]) . (3.14)
m= \j>k+m J

L2(Zk41)

This estimate still holds with Vh in place of vg.
For the second ones, we have recourse to:

Lemma 3.2. For all k> m, for all1 <i, j <2,

1
k2 E. —E:\2
< C— ( sup J*”‘J) . (3.15)
L?(Bk41) m2 \jzk+m J

F[st)o-en

This estimate still holds with Vi, in place of vy p,.

We postpone the proofs of these two key lemmas to section 3.3. Applying repeatedly
Lemma 3.1 and Lemma 3.2 together with the estimates (3.13), we are finally led to the

estimate
K i Ejvm — Ej 2
+ §E1€2—|—1 sup ————— )
2

1

1 1
E, <C ((k +DEZ + (Brr1 — Ey) + EZy (Bxpme1 — Ei)

N

m j>k+m J

3Here, we use in a crucial (but hidden) way the fact that the zero order terms at low frequencies are

constant. Indeed, such terms are local, so that

/2 (10|a:3:0* : M’DO =0.
R
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for all £ > m > 1. Now, since F} is increasing in k, we have
Epp1 < Ep + (Ergms1 — Eg).
Using Young’s inequality, we infer that for all v > 0, there exists a constant C), such that

k* Ejim — E;
Ey <vEp+C, (Ek+m+1 —Ep+ — sup Wn]) .
M= j>k+m J
Choosing v < 1, inequality (3.1) follows.
Inequality (3.1) then follows easily from Young’s inequality and from the fact that Ej is
increasing in k.

3.3 Proof of the key lemmas

It remains to establish the estimates (3.14) and (3.15). The proofs are quite technical, but
similar ideas and tools are used in the two proofs.

Proof of Lemma 3.1. We use an idea of Gérard-Varet and Masmoudi (see [12]) to treat the
large scales: we decompose the set ¥\ ¥y, as

o0
S\ Zetm = U Zhtm+1) \ Shrmy-
j=1

On every set X (j4+1) \ Zktmj, we bound the L? norm of ¥y by Eyim(i+1) — Ek+myj- Let us
stress here a technical difference with the work of Gérard-Varet and Masmoudi: since ¥ has
dimension two, the area of the set Xy (1) \ Lkim; is of order (k + mj)m. In particular,
we expect Ej i j41) — Eramj ~ (k+mgj)mllul|3;  to grow with j. Thus we work with the
uloc
quantity
sup M’
j>k+m J
which we expect to be bounded uniformly in n, k, rather than with sup;> 4, (Ej+m — Ej).
Now, applying the Cauchy-Schwarz inequality yields for n > 0

2 5
I |t |00 (£) |
dy (/ vo(t)dt> <C dy/ dt/ W g
/2k+1 R |y —t3 ka1 S\Epem [ — P2 g, [y — 2220

The role of the division by the |t| factor in the second integral is precisely to force the apparition
of the quantities (Ejim — Ej) / j. More precisely, for y € X1 and m > 1,

|00(t)]? |00 (1) ? gt
Ity —t]3~ 24 [t[|y — t[3=2n
AN\ ktm 2k+m(]+1)\2k+m]
1
<C) (Epym+1) — Erimg) Y -
jZ: ey " (k +mg)|mj + k — [ylse[>2
E _
<C| su ]er )
- <j>kfm Z < |mj +k — \ylool?’*”7
S Ejim — Ej

1
< Cp— ) ( Sup ) ’
mm Ak =yl \joktm 7

46



where |7|o 1= max(|z1],|z2|) for x € R2. A simple rescaling yields

t]
dtdy
/>2k+1 /2\2k+,n ly — t+21m + k — [yloo[*~27

i
B / / 7 dtdy.
Zip IRy — 632 |14 R~y

Let us assume that £ > m > 2 and take n € ]%, 1[. We decompose X\ Yipm as X \ZaUXo\
E14+m. On the one hand, since [t — y| > C[t = yloo = C([t|oo — [y|oo) = C([tloc — 3/2),

/ / t]
14q T\Zo |y—t|3+27l‘1—|—%

Decomposing ¥, 1 into elementary annular regions of the type ¥, 4\ 2, on which |y|e >~ 7,

dy

5o dtdy < C’/E 52"

1+4+

— [yloo|

we infer that the right-hand side of the above inequality is bounded by
1+% 1+% d
c / z 5—gpdr < C / —TH
m n m—1 n
0 ‘1—1-?—7“‘ 0 ‘r—l——k ’

m 2n—1 m—1 2n—1
o)) <

On the other hand, y € ¥, 1 implies ‘1 + 7= |y|00) > mk_l’ 50
k

t
/ / id 5o, dtdy
m oy — 32 |1 L m K
T s | B T
k

C( > / dy/ o
312
m—1 SN S2\Sypm |t —y|3+2n

kEo\2~2 dxX kN3
< G e mEmeo(R)

molx|<c

Gathering these bounds leads to (3.14). O

Proof of Lemma 3.2. As in the preceding proof, the overall strategy is to decompose

[e.o]

(1 = Xk+m)vo,n = Z(Xk+m(j+1) - Xk+mj)U0,h-
j=1

In the course of the proof, we introduce some auxiliary parameters, whose meaning we explain.
We cannot use Lemma, 2.10 as such, because we will need a much finer estimate. We therefore
rely on the splitting (2.18) with K := . An important property is the fact that p := Flo
belongs to the Schwartz space S (RQ) of rapidly decreasing functions.

As in the proof of Lemma 2.10, for K = m/2 and = € ¥j1, we have

A@)] < IV (1= Xaembo )L,y )1
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and for all a > 0, for all y € Zk+1+%:

V205 (1= Xm) v (y)]| < / V2ol = 0)| Jvon (1) dt

E\Ek+m

) 1/2 AR\ 2
< (/ V2p(y — )| |t\°‘dt> (/ Wdt) .
S\ St \Sem |

Yet, on the one hand, for a > 2,

t)|? = t)|?
/ |U0,h(a)| dt:Z/ |UO,h(a)| gt
P\Zptm I S mG+1) \Zktms t]

=1
o0
B T -
j>k+m J j=1 (k + m])ai
cobi b (o BB,
m (k+m)*2 \j>kim J

On the other hand, y € Ek+1+% and ¢t € ¥\ Xj4p, implies [y —¢| > ¢ — 1, and for all 5 >0

2
[ 9oty e
E\Ek+m

:

IN

C V2(y = )] (ly — ¢+ y|")dt

E\Ek+’m
a 2 2
< C((k+1+m) / [V20(s)| ds+/ V20(s)| |s]°‘ds>.
27 Sz s>z —1

Now, since p € S(R?), for all 3 > 0, > 0 there exists a constant Co,p such that
2
/ (14 |s]*) ‘Vzp(s)’ ds < Cym™2.
|s|>%—1

The role of auxiliary parameter 5 is to “eat” the powers of k in order to get a Saint-Venant
estimate for which the induction procedure of section 3.1 works. Gathering the latter bounds,
we obtain for kK > m

B Ejvm — Ej 2
Al < Cgkm™ sup , ) . 3.16
R e 3.16)
The second term in (2.18) is even simpler to estimate. One ends up with

E.. —E\Y?
Bl zoo(2y40) < Cﬁkm_ﬁ< sup J+m]> : (3.17)
j>k+m J
Therefore A and B satisfy the desired estimate, since

ANz, ) S Ckl[A Loy, IBllezs,,,) < CkIBllLec (i)

Ykt
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The last integral in (2.18) is more intricate, because it is a convolution integral. Moreover,
p* (1 — Xk+m)vo,n(y) is no longer supported in ¥\ Xj1,,. The idea is to “invert” the variables
y and ¢, i.e. to replace the kernel |z —y| =3 by |z — t|73. Indeed, we have, for all x, y, t € R?,

1 1
lz—yP o —t?

Cly —t| Cly —t|
Tz —ylle =t |z —yPle -t

(3.18)

We decompose the integral term accordingly. We obtain, using the fast decay of p,

1
dy———=[p* (1 = Xk+m)vo.n)(y
o e (= xeemwa))

1
<cf ayf o a—glo Ol
o—yl>m/2 IS 1T
ly — ¢
+C dy/ dt——=———|p(y — t)[[vo,n(?)|
o—ylzm/2 S, 17— YT —
ly —1
c dy [t oty = Olenal®)
e—ylzm/2  J\Epem T Ylle =t
1
< C dtig)]vgyh(t)\

- S\ S 17—

ly — 1|
e dy / dt— oy~ ) o).
o—ylzm/2 S, 17— YT —

The first term in the right hand side above can be addressed thanks to Lemma 3.1. We focus
on the second term. As above, we use the Cauchy-Schwarz inequality

—t —t
/ ly —t| ’P_(Zt/ )| v (1) dt
S\ kpm E |

(@)
< Z/ by~ ’p(i t>‘|vo,h(t)|dt
=17 Zkpm+1) \Sktmj |z — 1
1 1
Emii—E;j\? 1 2
< (L BEE) S (/ |y—t|2|p<y—t>|2|t|dt> .
Jj=k+m J j=1 +mj — ’$|°0 ErtmG+1) \Zk+mj

The idea is to use the fast decay of p so as to bound the integral over Xy i1y \ Zktmg-

1 . . .
However, 3772 FEmi—a] = 09 80 that we also need to recover some decay with respect to j
in this integral. For t € X4 mi11) \ Shamgs

[t — |7]oo It]
T k+mj—|Tlee ~ k+mj—|T|eo
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so that for all n > 0,

/ ly — t2lo(y — 0)PJtldt
Zhtm+1) \Sktmy

1 / 2 2141142

. ly =ty — O[] " dt
(k+mj — |2|o)? S mG+1) \Sktms

C

. ly — t12(ly =t + [y |p(y — t)[*de
(k +mj — |]sc)?? /ZH )\

m(j+1) k+mj
C

(14 ly — 27727+ [a] 7F27)).

"
(k+mj — |x]o0)?"

Summing in j, we have as before

i 1 - C, _ Gy

j=1 (k+m] - |x|oo)1+77 B m(k:—f—m — |x’oo)77 — mltn

so that for 0 < n < %, one finally obtains

—t —t
/ dy/ ly Hg(y t)’\vo,h(t)!dt
lz—y|=% E\Egtm |z —y[*le — ]

1
E . —E:\?2
< C’m_l_”< sup Bt =B f) [ e sl B iy ay
j>k+m J le—y|>%
1 1
N Ervj— E;\2
< C’mfg 1_|_(7) ( sup kﬂj)
m j>k+m J

Gathering all the terms, and using one again the fact that
[EN 25,0y < CRIF o,y YF € L7(Xgk41),

we infer that for all £ > m,

Njw

1

k Eryi— E;\ 2

Cllre <C— | sup H)
T (%m j

[\

Lemma 3.2 is thus proved. O

4 Uniqueness

This section is devoted to the proof of uniqueness of solutions of (2.30). Therefore we consider
the system (2.30) with f = 0 and F = 0, and we intend to prove that the solution w is
identically zero.

Following the notations of the previous section, we set

Ey = Vu - Vu.
Qp
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We can carry out the same estimates than those of paragraph 3.2 and get a constant C7 > 0
such that for all m € N, for all & > m,

k4 Ejim — E;
E, <Cy (Ek+m+1 — B, + 5 sup J+m]> ) (4.1)
j>k+m J
Let m a positive even integer and € > 0 be fixed. Analogously to paragraph 3.1, the set Cp, is
defined by
Cp = {c, square of edge of length m with vertices in ZQ} .

Note that the situation is not quite the same as in paragraph 3.1 since this set is infinite.
The values of B, := [, |Vu|?, when ¢ € C,, are bounded by m? ||u|]§{11 (av)» so the following
supremum exists e

Em = sup E. < 0o,
CECm

but may not be attained. Therefore for € > 0, we choose a square ¢ € Cy, such that &, —e <
E. < &,,. As in paragraph 3.1, up to a shift we can always assume that c is centered in 0.
From (4.1), we retrieve, for all m,k € N with k > m,
4 c,  k* Ejim—E;
E; < E +——— sup
e R R TR <
Again, the conclusion Ej = 0 would be very easy to get if there were no second term in the

right hand side taking into account the large scales due to the non local operator DN.
An induction argument then implies that for all r € N,

C r r—1 4 r'+1 (k:—i—r’(m—l—l))4 E'+m—E'
Er < ( ) E + ( > sup I (4.2
k> Cl 1 k+r(m+1) sz::() Cl 1 mo jzkfm ] ( )

Now, for k :=In (C +1> < 0 and for k € N large enough, the function z — exp(k(z +1))(k +
x(m + 1))* is decreasing on (—1,00), so that

’“i ( Ch )’"'“ (k+r'(m+1)* _ i < Ch )7"’“ (k+1'(m+1))*
Ci+1 - Ci+1 md

< / Texp (5 + 1)) (k + 2(m + 1)) dz

kS [ ( Kk ) 4
< (2
<C /_ exp | (1+u)"du

since k/(m + 1) > 1/2 as soon as k > m > 1. Therefore, we conclude from (4.2) for k = m
that for all r € N,

Cro\" C Ejm — E;
E,—c< FE << ) E — -
m €S iy > Cl +1 m+r(m+1) + ]S>112€1 ]
Cl r 2 2 2 C ]+m
< r+1D)*(m+1)%||u —1—4— sup —&n,
“\C1+1 ( A Il HHI j>213n im
Ch \" C

(VAN
—
Q

(r+1)%(m + I)QHUH%ILM + ng'

—_
N————

1+

o1



Since the constants are uniform in m, we have for m sufficiently large and for all € > 0,

Em < C {(Clcily(r—i—l)Q(m—l—l)Q—&—a ,

which letting r — oo and € — 0 gives &, = 0. The latter holds for all m large enough, and
thus we have u = 0.

Acknowledgements

The authors wish to thank David Gérard-Varet for his helpful insights on the derivation of
energy estimates.

A  Proof of Lemmas 2.3 and 2.4

This section is devoted to the proofs of Lemma 2.3, which gives a formula for the determinant
of M, and Lemma 2.4, containing the low and high frequency expansions of the main functions
we work with, namely A; and Ag. As A, As, A3 can be expressed in terms of the eigenvalues
A solution to (2.5), it is essential to begin by stating some properties of the latter. Usual
properties on the roots of polynomials entail that the eigenvalues satisfy

R(\p) >0for k=1,2,3, A €]0,00[, Ay =3,
—(Mdads)? = —[€]5, Adodg = €[5,

(11> = A7) 2(|§|2 = A3) (1€ = A3) = [¢f, (A1)
(P =20)" _
Ak €12 — A%
and can be computed exactly
P (et )3\ > (et 412\
i — g+ [ ) (L))

1

Wl

_ 2_|_ 4+i% 2+ 4+i%
o) — g+ [ USRI )T)

—€12 + 4+i% 2 4 4+i%
e — g+ R ) (ERI)T)

A.1 Expansion of the eigenvalues )\,

The expansions below follow directly from the exact formulas (A.2). In high frequencies, that
is for |{| > 1, we have

M=le?(1-le 5 +0(7%)), M=l -3 s+o (e F), (A3
N=lg? (1-2E72+0(1e %)), h=le-Sl s +0(jg3),  (A3b)
N=leP (1-dle i +0 (%)), rs=lg -l s +0(lel3).  (A3c)

wloo

wloo
wlu
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In low frequencies, that is for |{| < 1, we have

1

4\2 2 27
(et +55)" = 735 1+ Fle+ 0 (eF).
el + (el + )2 Y1, VB 6
5 = = 5l =l o (lel°).
(e + )\ 1 1 VB s
5 = 5 +aleP - gl o (),

from which we deduce
=i+ e - gz’m‘* +O(I€l%), de=e'T (1= FilgP + FlE* +0(€)),  (Ada)
3= ik SIEP + Silel +O(El), Xy =% (14 2ilel2 + Blel +O(El)) . (Adb)
Since A1 A2z = [€]3, we infer that
M= 1€ + O],

A.2 Expansion of A;, A; and Aj

Let us recall that Ay = Ag(§), k=1,... 3, solve the linear system

R S A
1 2 3 A, = i&-von
2 2 2 )
(i () ) Ay et Ton
=M (E)

The exact computation of Ay is not necessary. For the record, note however that Ay can be
written in the form of a quotient

Ak: _ P(§17€27)‘17)‘27)‘3>
Q (J&], A, A2, Ag)

where P is a polynomial with complex coefficients and
Q = det(M) = (M — A2) (A2 = A3) (A3 = A1) (€] + A1+ Aa + A3) . (A.6)
This formula for det(M) is shown using the relations (A.1)
BT (S M K U ) A (3 Rl M A (A SV
A2A3 A1A3
LR N - B (P - M)

A1 A2

=l (M (A3 = A3) =22 (A = 28) + 23 (A = 23))
+Xods (A =A%) — Mg (A3 — A7) + Mda (A3 =A%)

= (A1 = A2) (A2 = A3) (A3 = A1) (JE] + A+ A2 + Ag).

(A.5)

det(M)
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This proves (A.6), and thus lemma 2.3.
We now concentrate on the expansions of M (&) for |{] > 1 and |¢] < 1.

A.2.1 High frequency expansion

At high frequencies, it is convenient to work with the quantities By, By, Bs introduced in
(2.12). Indeed, inserting the expansions (A.3) into the system (2.7) yields

By = o3,
1B — SIEI" /By + O(I€ =) A]) = i€ - 7,
€' Bs + O(¢[ 7" |A]) = —ig" - T
Of course A and B are of the same order, so that the above system becomes
By = o3,
By = 2[¢|"*(g[o0s — i€ - Dow) + Ol B]),
By = —il¢[77¢h - wo + 01|71 B).
We infer immediately that |B| = O(|¢|*/?[7g]), and therefore the result of Lemma 2.4 follows.
A.2.2 Low frequency expansion

At low frequencies, we invert M thanks to the adjugate matrix formula

MY(E) = dt(ﬂlm) [Cot(M(€))] .
We have

(€2 =23)° _ (14 0(¢P)

_ _in/ o (€2 =23
N enaroggyy | ¢ PO TR
Hence,
1 1 ' 1
M(g) O(gf)  @i+0(EP) e +o(kP)
€[ +O(E°) —eT T +O0(|E?) e +O0(lEP)
and . .
—2i fgle® —fgleid
Cof(M)=| V2i —ei—[¢ eT+[¢ | +O(IP)
—V/2i —ei el
We deduce that
1
M) = - Cof (M (&))"
2i (1+2[e[ + 0 (I¢))
1=l 2 [1- ¥2iel] +2 [1- k]|
Grlel g [ - (1T lel] —e [1-o2le] ) +o(ieP).
Srlel =g e T4 (1= e ) fgl] —5 1 2]



Finally,

\/§ ﬂ — o~
1- 7 V03— 5 (5 + fl) vo,n + O (\f|2 |U0|) ) (A.Ta)
T 1 9 |~
Ay = |€’U03+2€ i UOh—*e et von + 0 (1€ o) (A.7b)
—iq 1 1 _
Ag=© \§|Uo3—§6 e U0h+26 Gt von 4+ 0 (1€ [wol) - (A.Tc)

A.3 Low frequency expansion for L, L, and L;

For the sake of completeness, we sketch the low frequency expansion of Ly in detail. We recall

that If\
L
Li(€)T(€) = <| 7 “1 e >) Ax(€)

Hence, for || < 1,

el 2
L1<£>=('55 o )) (-32@-&) -2E+&) 1) +0(P)

which yields (2.15). The calculations for Ly and L3 are completely analogous.

A.4 The Dirichlet to Neumann operator

Let us recall the expression of the operator DN in Fourier space:

z_: < [(’é“ |£|)2 A2 /\kd )Ak (A.8)

Ao +
3 i 2 \2)2¢1 2 _ 2

:( . (i )) > ( @ ¢l ) € A €] ) A (a9
=1 Ak

A.4.1 High frequency expansion
Using the exact formula (A.9) for DN v together with the expansions (A.3) and (2.10), we
get for the high frequencies
B = ( —iv§(€)¢ ) N (K ((I&1**Bs + O(¢[***[wal))6* + (1€ B2 + 0(15\2/3%\))5))
i€ - o(€) €171/ B2 + O(¢[ =/ wal)
(A.10)

- ( ’5‘%* |§|h§+“’3f ) +0 (€317 -

2|§|v3 — - vh
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A.4.2 Low frequency expansion

For [¢| < 1, using (A.8), (A.4) and (A.7) leads to

—

DNh’UO
2| 2 50 (¢ Fig+0(1P)) (5™ |¢lvos & =™/ - v T e/ - vos + O(I€ P ual))
+
(A.11a)
1
_V2E & o3 + f(qfo\mv/o?woqgnm). (A.11b)

2 gl 2

For the vertical component of the operator DN, we have in low frequencies

DN vy = i€ - Tos + (|5| +0 (|5|>) 1(€) — ("1 + 0 (I€?)) A2(&) — (7T + O (I€[7)) As(€)

_ TUog ﬁUA V2i &g + &L @+
— - 5 V0,3 —
&l 2 2 H

O (¢l val) - (A.11c)

B Lemmas for the remainder terms

The goal of this section is to prove that the various remainder terms encountered throughout
the paper decay like |x| 3. To that end, we introduce the algebra

= {f € C([0,00),R),3A C R finite, Irg >0, f(r) = Z % fo(r) ¥r € [0,r9),
acA (B.1)
where Voo € A, f,: R — R is analytic in B(O,ro)}.

We then have the following result:
Lemma B.1. Let p € S'(R?).

o Assume that Supp @ C B(0,1), and that ¢(&§) = f(|¢]) for & in a neighbourhood of zero,
with f € E and f(r) = O(r®) for some a > 1. Then ¢ € L2 (R*\ {0}) and there exists
a constant C' such that o

lo(z)| < —= Vo € R2
|z
o Assume that Supp$ C R?\ B(0,1), and that ¢(&) = f(|€|7) for |¢] > 1, with f € E

and f(r) = O(r®) for some a > —1. Then ¢ € LS. (R?\{0}) and there exists a constant

C such that o
2

We prove the Lemma in several steps: we first give some properties of the algebra E. We
then compute the derivatives of order 3 of functions of the type f(|¢|) and f(|¢|~!). Eventually,
we explain the link between the bounds in Fourier space and in the physical space.
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Properties of the algebra E

Lemma B.2. o FE is stable by differentiation.
o Let f € E with f(r) = acar®fa(r), and let oy € R. Assume that
(r) = 0G)
for r in a neighbourhood of zero. Then

inf{a € A, fa(0) # 0} > ao.

e Let f € E, and let ag € R such that
f(r) =0@*)
for r in a neighbourhood of zero. Then
7(r) = 0(ro™)
for0<r < 1.

Proof. The first point simply follows from the chain rule and the fact that if f, is analytic in
B(0,79), then so is f!. Concerning the second point, notice that we can always choose the set
A and the functions f, so that

f(T’) = Talfoa(r) +t rasfas(r)a
where a1 < -+ < a5 and fq, is analytic in B(0,79) with f,,(0) # 0. Therefore
f(r) ~r*tf,,(0) as r — 0,

so that r*t = O(r®). It follows that a3 > «p. Using the same expansion, we also obtain
fir) = air® ™ fo (r) + 1 fo, (r) = O™ 7).
=1
Since 7 = O(r®), we infer eventually that f'(r) = O(r®~1). O

Differentiation formulas

Now, since we wish to apply the preceding Lemma to functions of the type f(|¢]), or f(|¢|71),
where f € FE, we need to have differentiation formulas for such functions. Tedious but easy
computations yield, for ¢ € C3(R),

3 o 6? . 5@) /
B0 = (358 —3g ) 706D
. 3
n <3|§2—éx|4)f”<\£|>
53 1(3)
+ @ﬂ (€1)
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and

. 3
e = (05— 18 e

& er
. 3
! <3§f6 - 7|?|8> £
g3
b e

In particular, if ¢ : R? — R is such that (¢) = f(|¢]) for £ in a neighbourhood of zero, where
f € E is such that f(r) = O(r®) for r close to zero, we infer that

192, 0()] + 10,0(&) = O(1€]*™?)

for [€] < 1. In a similar fashion, if p(¢) = f(|¢|7!) for ¢ in a neighbourhood of zero, where
f € E is such that f(r) = O(r®) for r close to zero, we infer that

102,0(6)] + 108,0(6) = O (I~ (Il ™" + &7 (EI7H) ~*21e =0 (e~ %) = O(lg]* 7).

Moments of order 3 in the physical space

Lemma B.3. Let ¢ € 8'(R?) such that ¢ ¢, 83 ¢ € L' (R?).

Then, for all x), € R?\ {0},
C

F ) )| £ O

Proof. The proof follows from the formula
ZhF () = iF 1 (VEw)

for all o € N2 such that |a] = 3. When ¢ € S(R?), the formula is a consequence of standard
properties of the Fourier transform. It is then extended to ¢ € S’(R?) by duality. 0

The result of Lemma B.1 then follows easily. There only remains to explain how we
can apply it to the functions in the present paper. To that end, we first notice that for all
ke {1,2,3}, A\ is a function of |{| only, say A\ = fr(|¢]). In a similar fashion,

Li(€) = GR(IE]) + &1Gr(I€]) + E2GR(l€]).

We then claim the following result:

Lemma B.4. e Forallk €{1,2,3}, j €{0,1,2}, the functions fk,Gi, as well as
re fro(rTh), e Gi(r‘l) (B.2)

all belong to E.
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e For & in a neighbourhood of zero,

MP™ = P+ Y &&ai (16) + € - br(é)),
1<4,5,<2

NE™ = Q&)+ D &b (16D + € - dr(l4)),
1<4,5,<2

where Py, Q. are polynomials, and a?,cﬁ;j € E, by, di, € E? with by(r), di(r) = O(r)
for r close to zero.

e There exists a function m € E such that

(Msc — Ms)(€) = m(l¢] ™)
for || > 1.

The lemma can be easily proved using the formulas (A.2) together with the Maclaurin
series for functions of the type =+ (1 + z)° for s € R.

C Fourier multipliers supported in low frequencies

This appendix is concerned with the proof of Lemma 2.7, which is a slight variant of a result
by Droniou and Imbert [7] on integral formulas for the fractional laplacian. Notice that this

corresponds to the operator Z[|£|] = Z Flrfﬂ We recall that g € S (R?), ¢ € C° (R?) and
p:=F 1 € S(R?). Then, for all z € R?,

& S AU
<|s| ()3 <5>) (o) = F (|£|> FU(E6¢©3(6) (2).

As explained in [7], the function |¢|~! is locally integrable in R? and therefore belongs to
S’(R?). Its inverse Fourier transform is a radially symmetric distribution with homogeneity
—2 4+ 1 = —1. Hence there exists a constant C such that

F! (1) e
€1/ lal

We infer that

&8 LG
(m ()3 <s>)<> Cy(0v0)

1
:C’/ T 0ii(p* d
) v i(p*g)(y)dy
1
:c,/ —0i5(p * g)(x + y)dy.
R2 ]yl

The idea is to put the derivatives d;; on the kernel é through integrations by parts. As such

it is not possible to realize this idea. Indeed, y — 0; (ﬁ) 0;(p * g)(x + y) is not integrable
in the vicinity of 0. In order to compensate for this lack of integrability, we consider an even

99



function 6 € C5° (R?) such that 0 < § < 1 and § = 1 on B(0,K), and we introduce the
auxiliary function

Us(y) = p*glx+y)—prg(x) —0(y) (y-V)p*g(z)

which satisfies

Us()| < Clyl?, [VyUa(y)] < Clyl, (C.1)
for y close to 0. Then, for all y € R?,

By, 0y; Uy = 0y, 0y, p 5 g(z +y) — (05,0,,0) (y - V)p x g(w) — (9y,0) O p % g() — (0,,0) D, p # g()

where
y e —(05,0,,0) (y - V)p* g(x) — (8y,0) Ouyp x g(x) — (y,0) O, p * g()

is an odd function. Therefore, for all € > 0,

1
/ 3z‘j(p*g)(w+y)dy—/ 3y13y]U( )dy
e<ly|<e~?! Y| <ly|<t |yl

A first integration by parts yields

/ L 048y, gz +y)dy
<lyl<i \y|

= 0,0y, Uz (y)dy
/<y|<1 ‘y| Yi 7Y ( )

1
= [t teomts+ [ oty [ o, vy

<lyl<l |3/|3 v

The first boundary integral vanishes as ¢ — 0 because of (C.1), and the second thanks to the
fast decay of p* g € S (R?). Another integration by parts leads to

Yi

e<lyl<i |y

Y; Yi 1

Uz (y)ng(y)dy + T Uz (y)ns(y)dy + 0y, 0y, 7 | Uz (y)dy
jyl=< 19| =2 1] e<lyl<? [yl

e /R2 <8y18yj| |> Uz (y)dy,

1 0ij Vil
Oy, 77— — + )
Yy IR e

where

0, — | < —
s yl‘ = yl?
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and the boundary terms vanish because of (C.1) and the fast decay of U,. Therefore, for all

r € R2,
(ﬁffc(&) (5)) @=cr [ (%ﬁw ” ‘) Us(y)dy

- af, (ayﬁy]| |)[p*g<x+y>—p*g<x>—e<y><y-v>p*g<m>]dy

1
= CI/ (%%) p*xg(x+y)—p*g(x)—y - Vpxg(r)dy
B(0,K) lyl
1
v o (ayiayj) pe g+ 1) — pxg(a)]dy
R2\B(0,K) |yl

1
o (aa) 0w) (y - V) p» g(a)dy.
R2\B(0,K) |y

The last integral is zero as y — 6(y) (@;ﬁy;-ﬁ) y is odd. We then perform a last change of
variables by setting y' = x + y, and we obtain

(ﬁffc(@ (s)) (=)

— _/l II<K%‘j($—y/){P*g(y’)—p*g() (o — 2)Vp s g(a)} dy

—/ Yij(x =y ) {p*9(y) —pxg(x)}dy'.
|z—y'|<K

This terminates the proof of Lemma 2.7.
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