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A minimal interface problem arising from a two component Bose Einstein condensate via Γ-convergence

We consider the energy modeling a two component Bose-Einstein condensate in the limit of strong coupling and strong segregation. We prove the Γ-convergence to a perimeter minimization problem, with a weight given by the density of the condensate. In the case of equal mass for the two components, this leads to symmetry breaking for the ground state. The proof relies on a new formulation of the problem in terms of the total density and spin functions, which turns the energy into the sum of two weighted Cahn-Hilliard energies. Then, we use techniques coming from geometric measure theory to construct upper and lower bounds. In particular, we make use of the slicing technique introduced in [6].

Introduction

The aim of this paper is to prove a Γ-convergence result for a functional modeling a two component Bose-Einstein condensate in the case of segregation. We introduce a new formulation of the problem which transforms the two wave functions describing each component of the condensate into total density and spin functions. The new functional in the density and spin variables is given by the sum of two weighted Cahn-Hilliard energies modeling phase transition problems as in the Modica-Mortola problem [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]. In fact, our new functional is strongly related to that of Ambrosio-Tortorelli approaching the Mumford-Shah image segmentation functional [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF]. We use techniques coming from geometric measure theory [START_REF] Alberti | Variational models for phase transitions, an approach via Γconvergence[END_REF][START_REF] Alberti | Phase transition with the line-tension effect[END_REF][START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF][START_REF] Bouchitté | Singular perturbations of variational problems arising from a twophase transition model[END_REF] to construct upper and lower bounds for our initial functional and prove Γ-convergence to a perimeter minimization problem, with a weight given by the density of the condensate. There is a large mathematical literature about the segregation patterns for two component Bose Einstein condensates [START_REF] Berestycki | On phase-separation model: Asymptotics and qualitative properties[END_REF][START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF][START_REF] Caffarelli | Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries[END_REF][START_REF] Conti | On a class of optimal partition problem related to the Fučík spectrum and to the monotonicity formulae[END_REF][START_REF] Noris | Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition[END_REF][START_REF] Wei | Asymptotic behaviour of solutions of planar elliptic systems with strong competition[END_REF]: regularity of the limiting functions, regularity of the interface, asymptotic behaviour near the interface. All these papers use the limiting equations and do not take into account the trapping potentials and the Γ convergence of the energy as we do. Before introducing the functional for a two component Bose Einstein condensate, we recall some properties of a single Bose Einstein condensate (BEC). A single BEC is described by the wave function η minimizing the energy

E ε (η) = 1 2 R 2 |∇η| 2 + 1 ε 2 V (x)|η| 2 + 1 2ε 2 |η| 4 (1.1)
where V is the trapping potential, usually taken to be harmonic, that is V (x) = |x| 2 , ε is a small parameter giving rise to a large coupling constant describing the repulsive self interaction of the condensate. The minimization is performed under the mass constraint

R 2 |η| 2 = 1.
We define the ground state by

E ε (η ε ) = inf R 2 |η| 2 =1 E ε (η) , (1.2) 
which is, up to multiplication by a constant, a real positive function. Let ρ(x) = max(λ 2 -|x| 2 , 0) with λ > 0 chosen such that D ρ = 1 where D = B(0, λ).

(1.3) Then, when ε is small, the ground state η ε is close to the function √ ρ in D, with exponential decay at infinity. Properties of η ε can be found in [START_REF] Aftalion | Progress in Nonlinear Differential Equations and Their Applications[END_REF][START_REF] Aftalion | Non-existence of vortices in the small density region of a condensate[END_REF][START_REF] Gallo | On the Thomas-Fermi ground state in a harmonic potential[END_REF][START_REF] Ignat | The critical velocity for vortex existence in a twodimensional rotating Bose-Einstein condensate[END_REF][START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF].

A two component Bose Einstein condensate can be experimentally realized as 2 isotopes of the same atom in different spin states [START_REF] Hall | Measurements of relative phase in binary mixtures of Bose-Einstein condensates[END_REF] or isotopes of different atoms [START_REF] Modugno | A two atomic species superfluid[END_REF]. They are described by two wave functions u 1 and u 2 , respectively representing components 1 and 2. The Gross Pitaevskii energy of the two component condensate is given by

E ε (u 1 , u 2 ) = E ε (u 1 ) + E ε (u 2 ) + 1 2 g ε R 2 |u 1 | 2 |u 2 | 2 , (1.4) 
where E ε is given by (1.1) and g ε is the intercomponent coupling strength. The energy is minimized under the mass constraints

R 2
|u j | 2 = α j with α j > 0 and α 1 + α 2 = 1 .

(1.5)

In [START_REF] Mason | Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate[END_REF], numerical simulations have been performed to classify the ground states according to the values of ε, g ε and also the rotational velocity. For ε small and g ε large, the numerical evidence is that, for α 1 = α 2 = 1/2, the preferred ground state is such that each component is asymptotically located in a half disk with a local inverted parabola profile. If α 1 = α 2 , they occupy sections in a disk, the area of which is proportional to α i . In particular, when neither α i is too small, this configuration has less energy than a disk vs annulus configuration, which also provides segregation but preserves symmetry. Observation of symmetry breaking has also been obtained experimentally very recently [START_REF] Mccarron | Dual-species Bose-Einstein condensate of 87 Rb and 133 Cs[END_REF]. The breaking of symmetry has been analyzed in [START_REF] Royo-Letelier | Segregation and symmetry breaking of strongly coupled twocomponent Bose-Einstein condensates in a harmonic trap[END_REF] in a different limit, namely in the case ε large and g ε large.

Here, we assume strong coupling between components, that is, g ε → ∞, and we study the regime g ε ε 2 → +∞ and ε → 0 .

(1.6)

A trick introduced in [START_REF] Mason | Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate[END_REF] is to use a spin formulation also called the nonlinear sigma model. In our special setting, since the ground states are non vanishing real functions, this amounts to defining

v := |u 1 | 2 + |u 2 | 2 η ε and ϕ 2 := Arg |u 1 | + i|u 2 | |u 1 | 2 + |u 2 | 2 , (1.7) 
where η ε is defined in (1.2). The definition of ϕ implies that |u 1 | 2 -|u 2 | 2 = η 2 ε v 2 cos ϕ. The mass constraints (1.5) can be written as

R 2 η 2 ε v 2 = α 1 + α 2 = 1 and R 2 η 2 ε v 2 cos ϕ = α 1 -α 2 .
(1.8)

We point out that cos ϕ corresponds to the third component of the spin function. Because there is no rotation in the system, the ground states are, up to multiplication by a complex number of modulus one, positive functions. Thus, the second component of the spin is zero and the first one is sin ϕ.

Since the components are expected to segregate, the expected behaviour is thus that v tends to 1 except on a transition line corresponding to the interface between the two components, while ϕ tends to 0 on component 1 and π on component 2. This is what we want to analyze rigorously. We split the energy into its main contributions and will prove that

E ε (u 1 , u 2 ) = E ε (η ε ) + F ε (v) + G ε (v, ϕ) (1.9)
where E ε is given by (1.1), η ε is the ground state of E ε and [START_REF] Braides | Approximation of free-discontinuity problems[END_REF] and gε = g ε 1 -1 gεε 2 . Since η 2 ε converges to ρ given by (1.3) in D, the limits of F ε and G ε can be analyzed as the limits of

F ε (v) = 1 2 R 2 η 2 ε |∇v| 2 + 1 2ε 2 η 4 ε {1 -v 2 } 2 , (1.10) 
G ε (v, ϕ) = 1 8 R 2 η 2 ε v 2 |∇ϕ| 2 + η 4 ε v 4 gε {1 -cos 2 (ϕ)} (1.
1 2 D ρ|∇v ε | 2 + 1 2ε 2 ρ 2 {1 -v 2 ε } 2 (1.12) 1 8 D ρv 2 ε |∇ϕ ε | 2 + ρ 2 v 4 ε gε {1 -cos 2 (ϕ ε )}. (1.13)
These two energies are of Modica Mortola types with a weight which vanishes on the boundary of D. Given the definition of ϕ ε , there is a domain where cos ϕ ε tends to 1 (asymptotic region of component 1) and a domain where cos ϕ ε tends to -1 (asymptotic region of component 2), and thus a transition region exists between the two domains. Two options exist for v ε :

• either v ε goes to 1 everywhere, which makes the first energy small and the second energy of order √ gε ,

• or v ε goes to zero on the transition line where cos ϕ varies from +1 to -1: this makes the second energy of lower order and the first energy of order C/ε.

Because of our hypothesis that ε 2 gε tends to infinity, it is the second scenario which costs less energy. Though v ε goes to 1 on each component, it has a transition region of size ε where it goes sharply to zero. The second energy is of lower order and cannot be seen in the limit. It has just the effect of creating a small region around the interface where v ε is small. The first energy can be analyzed with techniques coming from [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF] and, once the rescaling in ε is made, the Γ-limit comes from the problem on lines:

I(x) = inf 1 2 ∞ 0 ρ(x)(w ′ ) 2 + 1 2 ρ(x) 2 (1 -w 2 ) 2 ; w ∈ Lip(R + ) , w(0) = 0 and w(+∞) = 1 .
Using the Euler-Lagrange equation associated with I, we shall see that for x ∈ D, the infimum is attained by the function

w x (t) = tanh ρ(x) 2 t ,
and we shall have

I(x) = σρ(x) 3 /2 with σ = 1 √ 2 1 0 {1 -t 2 } dt . (1.14) 
This means that w x is the optimal profile transition at the point x, and that σρ(x) 3 /2 is the minimum energy needed by w, to go from 0 to 1 at x. In the 1D direction, this provides a weight 2σρ(x) 3 /2 because as ε → 0, v ε goes from 1 to 0 on one side of the interface between the two components, and from 0 to 1 on the other side. Therefore, we expect the limit to be defined as the integral on the interface where ϕ goes from 0 to π of the function 2σρ(x) 3 /2 . This requires a precise mathematical definition for this interface. We define X as the space of functions ϕ ∈ BV loc (D ; {0, π}) such that

R 2 ρ cos ϕ = α 1 -α 2 .
(1.15)

We will prove the Γ-convergence of

ε(E ε (•, •) -E ε (η ε )) to F given in X by F (ϕ) = 2σ π D ρ 3 /2 |Dϕ| .
The limiting energy F measures the length, with a weight of ρ 3 /2 , of the interface between the two phases of ϕ. Each phase of ϕ corresponds to one component of the totally segregated two-component limiting condensate. Notice that when F (ϕ) is finite, {ϕ = π} has finite perimeter in compact subsets of D, and

F (ϕ) = 2σ D ∩ ∂ * {ϕ=π} ρ 3 /2 dH 1 = 2σ D ∩ Sϕ ρ 3 /2 dH 1 .
Here ∂ * {ϕ = π} stands for the reduced boundary of {ϕ = π} and Sϕ is the complement of the Lebesgue points of ϕ, that is,

Sϕ = x ∈ D ; ∄ t ∈ R such that lim r→0 + 1 πr 2 Br(x)
|ϕ(y) -t| dy = 0 .

We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF][START_REF] Giusti | Minimal Surfaces and Functions of Bounded Variation[END_REF] for the geometric measure theory concepts. We also refer to [START_REF] Alberti | Variational models for phase transitions, an approach via Γconvergence[END_REF] for an introduction to the theory of Γ-convergence and to the Modica-Mortola theorem by G. Alberti. We now state our main theorem:

Theorem 1.1. Let us assume that V (x) = |x| 2 , and let

H = (u 1 , u 2 ) ∈ H 1 (R 2 ; R) × H 1 (R 2 ; R) , R 2 V (u 2 1 + u 2 2 ) < ∞ , (u 1 , u 2 ) satisfies (1.5) . The functional ε(E ε (•, •)-E ε (η ε )) Γ-converges with respect to the L 1 loc (D)×L 1 loc (D) distance to F (ϕ), in the following sense: (Compactness) for every sequence {(u 1,ε , u 2,ε )} ε>0 of minimizers of E ε in H such that sup ε>0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) < +∞ , (1.16) 
there exists ϕ ∈ X and a (not relabeled) subsequence such that

(u 1,ε , u 2,ε ) → √ ρ 1 {ϕ=0} , 1 {ϕ=π} in L 1 loc (D) × L 1 loc (D) ; (1.17)
and (Lower bound inequality)

lim inf ε→0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) ≥ F (ϕ) . (1.18) 
(Upper bound inequality) For every ϕ ∈ X, there exists a sequence

{(u 1,ε , u 2,ε )} ε>0 ⊂ H, converging as ε → 0 to √ ρ 1 {ϕ=0} , 1 {ϕ=π} in L 1 loc (D) × L 1 loc (D), such that lim sup ε→0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) ≤ F (ϕ) . (1.19)
We point out that we only prove the Γ-convergence at the level of minimizers of E ε . Indeed, minimizers of the functional have the property that they are positive functions which do not vanish. Therefore, this property allows the definition of (v, ϕ) through (1.7).

As usual, the Γ-convergence theorem implies the convergence of the energy of the ground states:

Corollary 1.2. If {(u 1,ε , u 2,ε )} ε>0 is a sequence of minimizer of E ε in H, then lim ε→0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε ) ) = inf X F . (1.20)
A study of the ground states of F allows us to prove symmetry breaking when neither α i is too small: Corollary 1.3. There exists δ 0 of order 0.15, such that if α 1 ∈ [δ 0 , 1δ 0 ], then for ε sufficiently small, the minimizers (u 1,ε , u 2,ε ) of E ε in H are not radial.

Remark 1.4. Our main theorem remains true when V is any trapping potential for which we have good estimates for the ground state η ε , namely the estimates in Proposition 2.1.

Links with related problems

The segregation behaviour in two component condensates has been widely studied: regularity of the wave function [START_REF] Conti | On a class of optimal partition problem related to the Fučík spectrum and to the monotonicity formulae[END_REF][START_REF] Noris | Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition[END_REF][START_REF] Wei | Asymptotic behaviour of solutions of planar elliptic systems with strong competition[END_REF], regularity of the interface [START_REF] Caffarelli | Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries[END_REF], asymptotic behaviour near the interface [START_REF] Berestycki | On phase-separation model: Asymptotics and qualitative properties[END_REF][START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF]. The main difference with these references is that, on the one hand, we use mainly the energy instead of the equation and, on the other hand, we do not switch off the trapping potential by blowing up the problem near the interface or by considering a bounded domain with no trapping. Indeed, we consider the limit where ε goes to zero at the same time as g ε ε 2 going to infinity, so that it is the trapping potential which provides the leading order behaviour of the wave function through the inverted parabola profile ρ. In all the previous quoted references, ε is set to 1, so that in the limit g ε large, the trapping potential is not present, and the limiting profile is 1. We deal with the trapping potential by a proper division of the limiting wave function which allows to express nicely the energy using a trick introduced by [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF]. Nevertheless, our proofs which rely on energy considerations also provide information for the case ρ = 1.

In [31], the authors fix a point x ∞ on the interface ∂A, and consider a sequence

x ε tending to x ∞ such that u 1,ε (x ε ) = u 2,ε (x ε ) = m ε . An open question in [31] is to prove in 2D that g ε m 4
ε stays bounded. This may be obtained with our technique since in our case m ε is probably related to the minimum of v ε . We detail this remark in Section 5.3.

Main ideas in the proof

Let us now give more details on the proof. The proof consists of upper and lower bounds, that we construct for the functional

F ε (v ε , ϕ ε ) = ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε ) ).
For the upper bound, we choose the set A where asymptotically u 2 will be ρ. In a first step, we assume that ϕ = π1 A , where A is an open bounded subset of R 2 with smooth boundary such that H 1 (∂A ∩ ∂D) = 0. The test function ϕ ε is matched between 0 in a subdomain of D \ Ā to π in a subdomain of A, using a transition region of size εt ε . In order to approximate the optimal 1 dimensional profile that solves I(y), we define

w ε,T =        m ε in (0, t ε ) tanh in (t ε , T ) h in (T, T + 1 /T ) 1 in (T + 1 /T , +∞),
where t ε = tanh m ε and h is a polynomial which matches smoothly tanh to 1. Then we define

w y ε,T (t) = w ε,T ρ(y) 2 t ,
for t = d(x)/ε < CT , and d(x) is the distance to the boundary. In order to construct v ε , we need a partition of unity for ∂A, where we match the functions w y i ε,T , as y i varies along this partition. For this v ε , we can estimate F ε with techniques similar to those of Modica Mortola [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF], and to the adaptation of these techniques to problems with weight by Bouchitté [START_REF] Bouchitté | Singular perturbations of variational problems arising from a twophase transition model[END_REF]. Because ρ vanishes, we cannot use directly the results of Bouchitté and we need precise estimates on the behaviour of η ε near the boundary. Since w ε,T is the optimal profile for the 1D version of (1.12), there is a transition from 1 to 0 and a transition from 0 to 1 and we find an upper bound which is 2 ∂A I(y) dy. Then we prove that for this test function, G ε (v ε , ϕ ε ) is lower order: indeed, the transition layer for ϕ is is of order εt ε , so much smaller than the one of v ε . Hence in G ε , v ε can be approximated by m ε . We choose m 4 ε = ε 2 g ε , which tends to 0, and makes G ε of lower order. This provides the upper bound for an open bounded subset A with smooth boundary such that H 1 (∂A ∩ ∂D) = 0. We show in the appendix that for any ϕ ∈ X, {ϕ = π} can be approximated by sets A which are open bounded subsets of R 2 with smooth boundary such that H 1 (∂A ∩ ∂D) = 0 and that the mass constraints can be satisfied for the approximating u 1,ε , u 2,ε . The difficulty in the lower bound is to prove that v ε goes to zero on a line and that it provides a positive lower bound. Indeed, the usual Modica-Mortola bound would imply that v ε goes to 1 almost everywhere and the lower bound is 0. We have to use G ε and the upper bound to prove that v ε has a transition to 0 and that cos 2 ϕ ε tends to 1. Hence, because of the mass constraint, we get two regions where asymptotically ϕ ε is 0 and π. To analyze the behaviour of v ε , we use the slicing method introduced in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF] (see also [START_REF] Braides | Approximation of free-discontinuity problems[END_REF]). This consists in looking at the transition for v ε in one dimensional slices and get the 1D energy estimate. The use of the energy G ε is only to prove that v ε goes to zero. We first prove the lower bound for εF ε in 1D using the coarea formula, and then in 2D using the slicing method. We get that εF ε (v ε , ϕ ε , E) converges to a measure µ(E) supported in S ϕ of density ρ 3/2 with respect to the H 1 measure. The last part of the proof of the lower bound is inspired by ideas in [START_REF] Alberti | Phase transition with the line-tension effect[END_REF]. We end with a variant of the coarea formula that can be found in [START_REF] Maso | Integral representation on BV(ω) of Γ-limits of variational integrals[END_REF] Lemma 2.2, and in [START_REF] Bouchitté | Singular perturbations of variational problems arising from a twophase transition model[END_REF] Proposition 2.

Proposition 1.5. Let Ω be an open bounded subset of R N , and Ψ(x, s, p) a Borel function of Ω × R × R N , which is sublinear in p. Let u be a Lipschitz continuous function on Ω and denote, for every t > 0, S t = {x ∈ Ω ; u(x) < t}. Then, for almost every t ∈ R , 1 St belongs to BV (Ω) and we have

Ω Ψ(x, u, Du) dx = ∞ -∞ dt Ω Ψ(x, t, D1 St ) .
(1.21)

The paper is organized as follows: in Section 2, we present the properties of η ε . Then in Section 3, we prove the decoupling of energy (1.9) and how to go from the (u 1 , u 2 ) formulation to (v, ϕ). Section 4 is devoted to the upper bound, and Section 5 to the lower bound. Finally, in Section 6, we prove our main theorem.

To go further 1.3.1 Analysis of the limiting problem

A natural question is to analyze the limiting problem, that is the ground state of F under the constraint (1.15). If we define A to be the set where cos ϕ = 1. Then A ρ = α 1 and

D\A ρ = α 2 with α 1 + α 2 = 1. If ρ = 1,
then the problem of minimizing F amounts to minimizing |∂A| under the constraints |A| = α 1 and |D \ A| = α 2 = 1α 1 . The Euler-Lagrange equation of the minimization problem yields that the curvature is either 0 or constant, hence A is either a disk, an annulus or a disk sector. The equivalent problem with a weight ρ is open. If we assume that the solution is either two disks sectors or a disk and an annulus, we can compute explicitly the energy F and find that if α 1 = α 2 , then the optimal configuration is two half disks, while if α 1 is much less then α 2 , then the ground state is a disk and an annulus (see Section 6.4). Indeed, the energy of two disk sectors is 3σ/2, while the energy of a disk and annulus is 8σ(1α 1 ) 3 /4 (1 -√ 1α 1 ) 1 /2 if α 1 corresponds to the mass of the inside disk. If α 1 or α 2 = 1α 1 is to small, then the disk and annulus becomes the preferred configuration. In the case α 1 = α 2 = 1/2, it follows from our theorem that symmetry breaking occurs since at the limit, the disk plus annulus configuration does not minimize the energy. These two cases are well illustrated in the experimental observations of [START_REF] Mccarron | Dual-species Bose-Einstein condensate of 87 Rb and 133 Cs[END_REF], figure 4. We insist on the point that a rigorous analysis of the ground states of F in X is an interesting open question.

1.3.2 Convergence for u 1,ε , u 2,ε
The convergence that we have for (u 1,ε , u 2,ε ) to √ ρ(1 {ϕ=0} , 1 {ϕ=π} ) is very weak. Nevertheless, we expect that on compact subsets of 1 {ϕ=π} or 1 {ϕ=0} , the convergence can be improved. For instance, it would be natural to have similar convergence as that of η ε to √ ρ (that is C 1 loc ) on these domains.

1.3.3 Case g ε ε 2 of order 1
An interesting open question is to deal with the case when g ε ε 2 tends to a positive finite constant c 2 0 . In this case, F ε and G ε become of the same order and we expect that m = lim inf ε→0 v ε is a positive constant (on the interface where ϕ varies), instead of being 0. We believe that our techniques still provide an upper bound for the problem. We expect the Γ limit to be

2σ m + c 0 π 4 m 3 1 π D ρ 3 /2 |Dϕ| .
where

σ m = 1 √ 2 1 m (1 -t 2 ) dt.

Case of different scattering lengths

In this paper, we consider that the scattering lengths are the same for both components, that is, in (1.4) it is the same energy E ε for both components. When the two components result experimentally from different atoms, the two scattering lengths are very close but not equal. This leads to an energy E ε depending on the component, namely

E ε,i (η) = 1 2 R 2 |∇η| 2 + 1 ε 2 |x| 2 |η| 2 + g i 2ε 2 |η| 4 ,
where g i is related to the scattering lentght of component i. If g 1 = g 2 , then the leading order Thomas Fermi approximation is no longer the same for each component, namely it is

g i ρ i = λ 2 i -|x| 2 in B i = B(0, λ i ). The limiting problem becomes: find a partition of B 1 ∪ B 2 into three sets A 1 , A 2 and N, such that u 2 i,ε → ρ i 1 A i , A i ρ i = α i and it minimizes A 1 |x| 2 ρ 1 + g 1 2 ρ 2 1 + A 2 |x| 2 ρ 2 + g 2 2 ρ 2 2 . (1.22)
This problem is open and is probably related to the problem of finding a partition of the disk into two subdomains which minimize the sum of the first eigenvalues of the Dirichlet laplacian.

Of course, in our case, since we have B 1 = B 2 , ρ 1 = ρ 2 and N = ∅, (1.22) does not provide any information at leading order. This is why we have to go to the next order which yields the perimeter minimization problem.

Estimates for η ε

Let η ε be the ground state defined by (1.2). The ground state is a non vanishing radially symmetric function. It is unique up to multiplication by a constant of modulus one, and satisfies the Gross-Pitaevskii equation

-∆η ε + 1 ε 2 |x| 2 η ε + 1 ε 2 |η ε | 2 η ε = λ ε ε 2 η ε . (2.1)
The term ε -2 λ ε is the Lagrange multiplier associated with the mass constraint, and the pair (η ε , λ ε ) is unique among positive solutions of (2.1). As ε tends to 0, η ε tends to √ ρ

given by (1.3). Throughout the paper, we will need precise estimates for this convergence.

The following proposition, based on previous results in [START_REF] Aftalion | Non-existence of vortices in the small density region of a condensate[END_REF][START_REF] Gallo | Expansion of the energy of the ground state of the Gross-Pitaevskii equation in the Thomas-Fermi limit[END_REF][START_REF] Gallo | On the Thomas-Fermi ground state in a harmonic potential[END_REF][START_REF] Ignat | The critical velocity for vortex existence in a twodimensional rotating Bose-Einstein condensate[END_REF][START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF], sums up the properties of η ε . We point out that it follows from [START_REF] Gallo | Expansion of the energy of the ground state of the Gross-Pitaevskii equation in the Thomas-Fermi limit[END_REF][START_REF] Gallo | On the Thomas-Fermi ground state in a harmonic potential[END_REF][START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF] that an approximation of η ε by √ ρ holds as close to the boundary of D as needed and is given by (2.5). We also include an estimate of ρ in terms of the distance to the bulk that will be used in the proofs.

Proposition 2.1. There are constants c, C > 0, α ∈ ( 1 /2, 3 /5) and γ ∈ ( 1 /2, 3 /4), such that for ε sufficiently small, ρ, λ being given by (1.3),

E ε (η ε ) ≤ C/ε 2 , (2.2) |λ ε -λ| ≤ C ε | ln ε| 1 /2 , (2.3) η ε - √ ρ C 1 (K) ≤ C K ε 2 | ln ε| for K ⊂⊂ D , (2.4) |η ε (x) - √ ρ(x)| ≤ C ε γ for x ∈ B(0 , λ -c ε α ) , (2.5) 
η ε (x) ≤ C ε 1 /6 e c ε -1 /3 (λ-|x|) for x ∈ R 2 \D , (2.6) ∂ r η ε (|x|) ≤ 0 for x ∈ R 2 , (2.7) ρ(x) λ dist(x, ∂D) ∈ [1, 2) for x ∈ D . ( 2 

.8)

Proof: for the proof of (2.2), one can rewrite the energy as

E ε (η) = E 1 ε (η) + 1 2ε 2 λ 2 - 1 2 D ρ 2 (2.9)
where

E 1 ε (η) = 1 2 R 2 |∇η| 2 + 1 2ε 2 |η| 2 -ρ(x) 2 + 1 ε 2 (λ 2 -|x| 2 ) -|η| 2 ,
and (λ 2 -|x| 2 ) -is the negative part of (λ 2 -|x| 2 ). In Theorem 2.1 of [START_REF] Aftalion | Non-existence of vortices in the small density region of a condensate[END_REF], it is proved that

E 1 ε (η) ≤ C| ln ε|. Then (2.
2) follows from (2.9) and the fact that D ρ 2 = 2λ 2 /3.

Estimate (2.4

) is proved in Proposition 2.2 of [START_REF] Ignat | The critical velocity for vortex existence in a twodimensional rotating Bose-Einstein condensate[END_REF]. Estimates (2.3) and (2.6) are proved in Theorem 2.1 of [START_REF] Aftalion | Non-existence of vortices in the small density region of a condensate[END_REF]. Estimate (2.7) is also proved in Theorem 2.1 of [START_REF] Aftalion | Non-existence of vortices in the small density region of a condensate[END_REF], but only in a neighborhood of ∂D. But the proof, however, works in the case V (x) = |x| 2 and the estimate holds in all R 2 .

We now prove (2.5). For λ > 0, we define ηε,λ as the unique radially symmetric, positive solution of the equation

-ε 2 ∆η + (λ 2 -|x| 2 )η + η 3 = 0 . (2.10)
The function ηε,λ corresponds to a ground state of a BEC without mass constraint. In [START_REF] Gallo | Expansion of the energy of the ground state of the Gross-Pitaevskii equation in the Thomas-Fermi limit[END_REF][START_REF] Gallo | On the Thomas-Fermi ground state in a harmonic potential[END_REF][START_REF] Ignat | The critical velocity for vortex existence in a twodimensional rotating Bose-Einstein condensate[END_REF], the behavior of ηε,λ is studied. Using the results in Proposition 1.2, Remark 1.3 and Proposition 1.4 in [START_REF] Gallo | Expansion of the energy of the ground state of the Gross-Pitaevskii equation in the Thomas-Fermi limit[END_REF], we obtain

ηε,1 (x) = ε 1 /3 ν 0 1 -|x| 2 ε 2 /3 + O(ε) ,
where

ν 0 (y) = y 1 /2 - 1 2 y -5 /2 + O y→+∞ (y -11 /2 ) , y ∈ (-∞, ε -2 /3 ] .
Hence, for x ∈ B(0, 1) we obtain

| ηε,1 (x) -1 -|x| 2 | ≤ C ε 2 (1 -|x| 2 ) -5 /2 + ε 4 (1 -|x| 2 ) -11 /2 + ε . In particular, if x ∈ B(0 , λ -ε α ) with α ∈ ( 1 /2, 3 /5), we get | ηε,1 (x) -1 -|x| 2 | ≤ C ε 2 ε -5α /2 + ε 4 ε -11α /2 + ε = O(ε γ ) (2.11)
with γ ∈ ( 1 /2, 3 /4). We will use (2.11) to prove (2.5). First, a straight computation shows that defining ε λ = λ -2 ε, ηε λ ,λ solves equation (2.10) with λ = 1. Hence, considering (2.11), a change of variables gives

| ηε λ ,λ (x) - √ ρ(x) | = O(ε γ ) , (2.12) 
for x ∈ B(0 , λ -(λ -2 ε) α ). In Proposition 2.2 and Theorem 2.2 in [START_REF] Ignat | The critical velocity for vortex existence in a twodimensional rotating Bose-Einstein condensate[END_REF], it is proved that

∇η ε L ∞ (R 2 ) = O(ε -1 ) ; (2.13)
and that

η ε,λ (x) = ℓ 1 /2 ε,λ ηε,λ (ℓ -1 ε,λ x) , (2.14) 
where

ℓ ε,λ = 1 + ελ ε λ and ε = ℓ -1 ε,λ ε . It follows from (2.3) that ℓ ε,λ = 1 + O(ε 2 | ln ε| 1 /2 ) and ε = ε + O(ε 2 | ln ε| 1 /2 ) .
Hence, using (2.13) and (2.14), we obtain

η ε,λ (x) = ηε,λ (x) + O(ε | ln ε| 1 /2 ) .
Putting this last estimate in (2.12), and using that γ ∈ ( 1 /2, 3 /4), we obtain

| η ε λ (x),λ - √ ρ(x) | = O(ε γ ) ,
for x ∈ B(0 , λc ε α ) with c > 0. We derive (2.5) by changing ε λ by ε in the previous estimate. Finally, writing

ρ(x) λ dist(x, ∂D) = (λ + |x|) λ
we get (2.8) for |x| < λ.

Rewriting the energy

In this section, we prove equality (1.9), that is, the reformulation of the Gross-Pitaevskii energy of a two component condensate in (1.4), as the weighted Cahn-Hilliard energy for the pair (v, ϕ) defined by (1.7), plus the energy of the ground state η ε of a one component condensate. We start by giving the properties of the minimizers of E ε and the properties of the corresponding pairs (v ε , ϕ ε ) defined by (1.7).

Proposition 3.1. (i) Let {(u 1,ε , u 2,ε )} ε>0 be a sequence of minimizing pairs of E ε in H satisfying (1.16).
Then, each component is a non vanishing smooth function, and there is C > 0 such that

u 1,ε L ∞ (R 2 ) , u 2,ε L ∞ (R 2 ) < C (3.1)
for every ε > 0. Moreover, the pairs (v ε , ϕ ε ) are well defined by (1.7), verify the mass constraints (1.8) and we have

(v ε , ϕ ε ) ∈ Lip loc (R 2 ; (0, +∞) × [0, π]) (3.2)
and sup

ε>0 v ε L ∞ (K) < C K for every K ⊂⊂ D . (3.3) (ii) Conversely, let (v, ϕ) ∈ Lip(R 2 ; (0, +∞)×[0, π]) satisfying (1.8) such that v , ∇v , ∇ϕ ∈ L ∞ (R 2 ). Then, defining u 1 = η ε v cos (ϕ/2) and u 2 = η ε v sin (ϕ/2) , (3.4 
)

we have (u 1 , u 2 ) ∈ H and |u 1 | 2 + |u 2 | 2 > 0. Proof: (i) Let (u 1,ε , u 2,ε ) be a minimizer of E ε in H. Since E ε (|u 1,ε |, |u 2,ε |) ≤ E ε (u 1,ε , u 2,ε
), the pair of the absolute values satisfies the system

-∆u 1,ε + ε -2 V + ε -2 u 2 1,ε + g ε u 2 2,ε u 1,ε = λ 1,ε u 1,ε (3.5) -∆u 2,ε + ε -2 V + ε -2 u 2 2,ε + g ε u 2 1,ε u 2,ε = λ 2,ε u 2,ε , (3.6) 
where λ 1,ε and λ 2,ε are the Lagrange multipliers associated with (1.5). The strong maximum principle yields that |u 1,ε | and |u 2,ε | are positive functions. Using standard elliptic regularity, we deduce further that u 1,ε and u 2,ε are non vanishing smooth functions. We use an argument in [START_REF] Ignat | The critical velocity for vortex existence in a twodimensional rotating Bose-Einstein condensate[END_REF] to prove that u 1,ε and u 2,ε are uniformly bounded in R 2 . Let us

define w = ε -1 |u 1,ε | -λ 1 /2 ε . We have w ∈ L 3 loc (R 2 ) and ∆w ∈ L 1 loc (R 2
). Kato's inequality and equation (3.5) give

∆(w + ) ≥ sgn + (w) ∆w ≥ ε -3 sgn + (w) εw (εw + ελ 1 /2 ε ) (εw + 2ελ 1 /2 ε ) ≥ (w + ) 3 .
Hence, -∆(w + ) + (w + ) 3 ≤ 0 weakly in R 2 and Lemma 2 in [START_REF] Brezis | Semilinear equations in R N without condition at infinity[END_REF] yield w + ≤ 0. We obtain |u 1,ε | ≤ ελ 1 /2 ε . Multiplying equation (3.5) by u 1,ε and then integrating we find λ

1 /2 ε ≤ 2 E ε (|u 1,ε |, |u 2,ε |). Since (u 1,ε , u 2,ε ) verifies (1.16), from estimate (2.2), we derive 0 < |u 1,ε | ≤ ε E ε (u 1,ε , u 2,ε ) -E ε (η ε ) + E ε (η ε ) < C .
We similarly prove that 0 < |u 2,ε | < C, so (3.1) is proved. Since η ε > 0, u 1,ε and u 2,ε do not vanish in R 2 , the pairs (v ε , ϕ ε ) are well defined by (1.7) and v ε > 0. Since u 1,ε and u 2,ε are smooth, v ε and ϕ ε are locally Lipschitz functions so (3.2) holds. The definition of v ε and (1.5) give

R 2 η 2 ε v 2 ε = α 1 + α 2 .
From the definition of ϕ ε , we infer that

cos(ϕ ε ) = |u 1,ε | 2 -|u 2,ε | 2 |u 1,ε | 2 + |u 2,ε | 2 , (3.7) 
which, together with (1.5), yields

R 2 η 2 ε v 2 ε cos ϕ ε = α 1 -α 2 .
Hence, (v ε , ϕ ε ) satisfies (1.8). Finally, the estimate (2.4) gives η ε ≥ c K > 0 in K ⊂⊂ D, so (3.1) yields (3.3).

(ii) Consider (v, ϕ) as in the statement and define (u 1 , u 2 ) by (3.4). Since (v, ϕ) verifies (1.8), relation (3.4) gives

R 2 |u 1 | 2 + |u 2 | 2 = R 2 η 2 ε v 2 = α 1 + α 2 and R 2 |u 1 | 2 -|u 2 | 2 = R 2 η 2 ε v 2 cos 2 ϕ = α 1 -α 2 .
Thus, (u 1 , u 2 ) verifies (1.5). We have

|u 1 | 2 + |u 2 | 2 > 0.
Indeed, if it was not the case, since v > 0 then ϕ should take simultaneously the values 0 and π. Since v ∈ L ∞ (R 2 ), bounds (2.5) and (2.6) on η ε give

R 2 V |u 1 | 2 + |u 2 | 2 ≤ C R 2 V η 2 ε < +∞ .
We compute

|∇u 1 | 2 ≤ C v 2 |∇η ε | 2 + η 2 ε |∇η ε | 2 + v 2 η 2 ε |∇ϕ| 2 . The right hand side of the inequality is integrable in R 2 because v , ∇v , ∇ϕ ∈ L ∞ (R 2 ) and η ε ∈ H 1 (R 2 ) ∩ L ∞ (R 2 ). Thus, u 1,ε ∈ H 1 (R 2 ). We prove similarly that u 2,ε ∈ H 1 (R 2 ).
We have proved that (u 1,ε , u 2,ε ) ∈ H.

We now prove the rewriting of the energy.

Proposition 3.2. Let (u 1 , u 2 ) ∈ H satisfying |u 1 | 2 + |u 2 | 2 > 0. Defining (v, ϕ) by (1.7) we have E ε (u 1 , u 2 ) = E ε (η ε ) + F ε (v) + G ε (v, ϕ) ,
where E ε , F ε and G ε are given respectively by (1.1), (1.10) and (1.11).

Proof: since |u 1 | 2 + |u 2 | 2 > 0, the pair (v, ϕ
) is well defined. The definitions of v and ϕ yield

|u 1 | = η ε v cos (ϕ/2) and |u 2 | = η ε v sin (ϕ/2) , (3.8) 
which give

|u 1 | 2 + |u 2 | 2 = η 2 ε v 2 |u 1 | 2 |u 2 | 2 = 1 4 η 4 ε v 4 {1 -cos 2 ϕ} (3.9) |u 1 | 4 + |u 2 | 4 = 1 2 η 4 ε v 4 {1 + cos 2 ϕ} .
Since u 1 and u 2 are real and do not change sign, we have

|∇u 1 | 2 = |∇|u 1 || 2 and |∇u 2 | 2 = |∇|u 2 || 2 .
The relations in (3.8) give then

|∇u 1 | 2 + |∇u 2 | 2 = |∇(vη ε )| 2 + 1 4 (vη ε ) 2 |∇ϕ| 2 . (3.10)
Replacing (3.9) and (3.10) in E ε (u 1 , u 2 ) we get

E ε (u 1 , u 2 ) = 1 2 |∇(vη ε )| 2 + 1 ε 2 V η 2 ε v 2 (3.11) + 1 2 1 4 v 2 η 2 ε |∇ϕ| 2 + 1 4ε 2 η 4 ε v 4 {1 + cos 2 ϕ} + 1 4 g ε η 4 ε v 4 {1 -cos 2 ϕ} .
The previous formulation of the energy is the one given by the spin formulation (see the introduction and [START_REF] Mason | Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate[END_REF]). We now show how the phase transition model is obtained.

Performing an integration by parts, using (2.1) and the first mass constraint in (1.8), we obtain

|∇(vη ε )| 2 + 1 ε 2 V η 2 ε v 2 = v 2 η ε -∆η ε + 1 ε 2 V η ε + η 2 ε |∇v| 2 = v 2 η ε -∆η ε + 1 ε 2 V η ε + 1 ε 2 η 3 ε - 1 ε 2 η 4 ε v 2 + η 2 ε |∇v| 2 = λ ε ε 2 v 2 η 2 ε + η 2 ε |∇v| 2 - 1 ε 2 η 4 ε v 2 (3.12) = λ ε ε 2 + η 2 ε |∇v| 2 - 1 ε 2 η 4 ε v 2 .
Using again (2.1), together with the mass constraint for η ε , we have that

λ ε ε 2 = 2 E ε (η ε ) + 1 4ε 2 η 4 ε . (3.13) 
Replacing (3.13) in (3.12), and then (3.12) in (3.11) we get

E ε (u 1 , u 2 ) = E ε (η ε ) + 1 2 η 2 ε |∇v| 2 + 1 2ε 2 η 4 ε {1 -2v 2 } + 1 2 1 4 v 2 η 2 ε |∇ϕ| 2 + 1 4ε 2 η 4 ε v 4 {1 + cos 2 ϕ} + 1 4 g ε η 4 ε v 4 {1 -cos 2 ϕ} .
Completing the square for {1v 2 } we get

E ε (u 1 , u 2 ) = E ε (η) + 1 2 η 2 ε |∇v| 2 + 1 2ε 2 η 4 ε {1 -v 2 } 2 - 1 2ε 2 η 4 ε v 4 + 1 2 1 4 v 2 η 2 ε |∇ϕ| 2 + 1 4ε 2 η 4 ε v 4 {1 + cos 2 ϕ} + 1 4 g ε η 4 ε v 4 {1 -cos 2 ϕ} = E ε (η) + 1 2 η 2 ε |∇v| 2 + 1 2ε 2 η 4 ε {1 -v 2 } 2 + 1 2 1 4 v 2 η 2 ε |∇ϕ| 2 + 1 4 η 4 ε v 4 g ε 1 - 1 g ε ε 2 {1 -cos 2 ϕ} ,
which finishes the proof.

Upper bound inequality

In this section, we consider the formulation of the problem in (v, ϕ) and call

F ε (v, ϕ) = F ε (v) + G ε (v, ϕ).
We prove here the upper bound inequality for εF ε :

Proposition 4.1. (Upper bound inequality for εF ε ) Let ϕ = π1 A ∈ X. There is a sequence of pairs (v ε , ϕ ε ) ∈ Lip(R 2 ; (0, 1] × [0, π]), converging as ε → 0 to (1, ϕ) in L 1 loc (D) × L 1 loc (D), such that lim sup ε→0 εF ε (v ε , ϕ ε ) ≤ F (ϕ) .
The proof is based on Bouchité's paper [START_REF] Bouchitté | Singular perturbations of variational problems arising from a twophase transition model[END_REF], where he proves the Γ-convergence of an anisotropic phase transition Cahn-Hilliard energy. We point out that our weight η ε depends on ε and vanishes asymptotically on the boundary of D.

In a first step, we assume that ϕ = π1 A , where A is an open bounded subset of R 2 with smooth boundary such that H 1 (∂A ∩ ∂D) = 0. Then, for any ϕ ∈ X we approximate {ϕ = π} by this kind of sets. We conclude then thanks to a density argument. We remark that we do not consider here the mass constraints in (1.8).

Before proving the upper bound, we recall some results about sets with smooth boundary, that can be found in Lemmas 3 and 4 of [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]. For an open set A ⊂ R 2 with smooth, non empty compact boundary, let d be the signed distance to ∂A, defined by

d(x) = dist(x, ∂A) if x ∈ A -dist(x, ∂A) if x ∈ R 2 \A .
For small t > 0, consider the neighborhood of ∂A given by

N t = {x ∈ R 2 ; |d(x)| < t} , with boundary S t = {x ∈ R 2 ; |d(x)| = t} .
For t > 0 small enough, there is a diffeomorphism Φ between N t and ∂A×]0, t[ such that ∃b > 0 , det |DΦ| ≥ b . For small t > 0, define the measure

µ t = H 1 (D ∩ S t ) .
Notice that µ 0 = H 1 (D ∩ ∂A). As in Lemma 4 in [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF],

H 1 (∂A ∩ ∂D) = 0 yields lim inf t→0 µ t (Ω) ≥ µ 0 (Ω) ,
for every open Ω ⊂ R 2 , and

lim t→0 µ t (D) = µ 0 (D) . (4.3)
Hence, as t → 0, µ t converges weakly * to µ 0 , which implies lim sup

t→0 D u dµ t ≤ D u dµ 0 (4.4)
for every upper semicontinuous function u : D → R with compact support (see Propositions 1.62 and 1.80 in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]).

Denote η 0 = √ ρ and for ε ≥ 0 define

f ε : R 2 × R × R 2 → R + by f ε (x, t, p) = 1 2 η 2 ε (x)|p| 2 + 1 4 η 4 ε (x){1 -t 2 } 2 .
For |p| = 1 and s ∈ R we also write f ε (x, t, s) = f ε (x, t, sp).

The last step in the proof of Proposition 4.1 uses the following Lemma, which proof is given in the appendix.

Lemma 4.2. Let A be a subset of D with 1 A ∈ BV loc (D). There exists a sequence {A k } k∈N of open bounded subsets of R 2 with smooth boundaries such that:

(i) lim k→∞ L 2 ((A k ∩ D)∆A) = 0, (ii) lim sup k→∞ D ρ 3 /2 |D1 A k | ≤ D ρ 3 /2 |D1 A |, (ii) A k ∩D ρ = A ρ and H 1 (∂D ∩ ∂A k ) = 0 for k large enough.
Proof of Proposition 4.1: we first assume that A is an open subset of R 2 with smooth, non empty compact boundary such that

H 1 (∂A ∩ ∂D) = 0 . (4.5) 
(Step 1: construction of the pairs of test functions.) For T > 1, consider the approximation of the optimal profile

w T =    tanh in (0, T ) h in (T, T + 1 /T) , 1 in (T + 1 /T, +∞)
where h is the unique cubic polynomial such that h(T ) = tanh(T ), h ′ (T ) = tanh ′ (T ), h(T + 1 /T) = 1 and h ′ (T + 1 /T) = 0. Computing explicitly the coefficients of h, we find that w T is a nondecreasing function in R + , with uniform C 1 -bounds with respect to T ∈ (1, ∞). We extend w T to the whole real line by setting w T (t) = w T (-t) in R -.

For ε ≥ 0, consider 0 < m ε ≪ ε (to be chosen later), t ε = tanh -1 (m ε ) and define a modification of w T near zero by

w ε,T = m ε in (0, t ε ) w T in (t ε , ∞) .
Notice that w ε,T has uniform Lipchitz bounds with respect to T ∈ (1, ∞) and ε ∈ [0, 1). We recall that D = B(0, λ) and we denote D δ = B(0, λδ). For y in ∂A\D δ , we define

w y ε,T (t) = w ε,T ρ(y) 2 t ,
and we write w y T = w y 0,T . For small δ > 0, we define R = R δ by

R = (T + 1 /T) 2 δλ . (4.6) 
Since w T has uniform C 1 -bounds with respect to T ∈ (1, ∞), while ρ is a smooth function in D δ , for every y

∈ ∂A ∩ D δ , there is an open neighborhood Σ of y in ∂A ∩ D δ such that R 0 f 0 (x, w y T (t), (w y T ) ′ (t)) dt ≤ R 0 f 0 (x, w x T (t), (w x T ) ′ (t)) dt + δ ∀x ∈ Σ , ∀T ≥ 1 .
Hence, thanks to the compactness of ∂A ∩ D δ , there is a finite family {Σ i } N i=1 of open disjoint subsets of ∂A ∩ D δ , and a corresponding family of points y i ∈ Σ i , such that

H 1 ∂A ∩ D δ \ N i=1 Σ i = 0 (4.7) and R 0 f 0 (x, w y i T (t), (w y i T ) ′ (t)) dt ≤ R 0 f 0 (x, w x T (t), (w x T ) ′ (t)) dt + δ , (4.8) 
for every x ∈ Σ i , T ≥ 1 and 1 ≤ i ≤ N. We will use the functions w y i ε,T to define the first test function, so we have to interpolate between the different Σ i 's. Define first Σ 0 = ∂A\D δ and y 0 = (λ-δ, 0) ∈ ∂D δ . For small ℓ > 0 define

Σ ℓ i = {x ∈ Σ i ; dist(x, ∂Σ i ) ≥ ℓ}. Clearly, H 1 (Σ i \Σ ℓ i ) → 0 as ℓ → 0. In particular, we can take ℓ = ℓ δ such that R H 1 (Σ i \Σ ℓ i ) = o δ→0 (1) (4.9) 
for every 0

≤ i ≤ N. Consider then { θi } N i=0 such that θi ∈ C ∞ (∂A, [0, 1]), N i=0 θi = 1 on ∂A and θi = 1 in Σ ℓ i . (4.10) 
We deduce a smooth partition of the unity on N t by setting θ i = θi • Φ and we define

v ε =      1 in R 2 \N εR N i=0 θ i (x) w y i ε,T |d(x)| ε in N εR .
Since w y i ε,T is a nondecreasing function, while ρ is a radial decreasing function, (2.8) and the fact that dist(y i , D) ≥ δ yield

w y i ε,T ∂N εR = w y i ε,T (R) = w ε,T (T + 1 /T) ρ(y i ) δλ ≥ w ε,T (T + 1 /T) = 1 , (4.11) 
so v ε is a continuous function. Moreover, since w ε,T has uniform Lipschitz bounds with respect to T ∈ (1, ∞) and ε ∈ (0, 1), there is C > 0 such that for ε small enough,

v ε C 0,1 (R 2 ) ≤ C ε . (4.12) 
We also define

ϕ ε (x) =    π if x ∈ A\N ε tε ξ( d(x) /εtε) if x ∈ N ε tε 0 if x ∈ R 2 \(A ∪ N ε tε ) , (4.13) 
where ξ(t) = π /2(1 + t) and tε = ( 2 /λ) 1 /2 t ε . We clearly have that (v ε , ϕ ε ) ∈ Lip(R 2 ; (0, 1] × [0, π]), and that (v ε , ϕ ε ) converges as ε → 0 to (1, ϕ) in L 1 loc (D) × L 1 loc (D).

(Step 2: estimating the energy εG ε .) The function

ϕ ε is constant in R 2 \N ε tε , so G ε (v ε , ϕ ε ) = G ε (v ε , ϕ ε ; N ε tε )
. Since w ε,T is a nondecreasing function while ρ has a global maximum at zero, for every x ∈ N ε tε we have

w y i ε,T |d(x)| ε ≤ w 0 ε,T |d(x)| ε = w ε,T λ √ 2 |d(x)| ε ≤ w ε,T (t ε ) = m ε , so v ε ≤ m ε in N ε tε . Hence, G ε (v ε , ϕ ε ) ≤ 1 8 N ε tε η 2 ε m 2 ε |∇ϕ ε | 2 + η 4 ε m 4 ε gε {1 -cos 2 (ϕ ε )} .
Then, the definitions of ϕ ε and gε , together with the fact that η ε is uniformly bounded, yield

G ε (v ε , ϕ ε ) ≤ C m 2 ε (ε tε ) -2 + g ε m 4 ε L 2 (N ε tε ) . Using (4.1), we have (ε tε ) -1 L 2 (N ε tε ) ≤ C (ε tε ) -1 ε tε -ε tε dt ∂A det (DΦ) -1 dH 1 ≤ b -1 H 1 (∂A) = O ε→0 (1) . For ε small, we have tε = ( 2 /λ) 1 /2 tanh -1 (m ε ) = O ε→0 (m ε ). Hence, G ε (v ε , ϕ ε ) ≤ C m ε ε -1 + m 5 ε g ε ε . Taking m ε = (g ε ε 2 ) -1 /4 , G ε (v ε , ϕ ε ) ≤ Cg -1 /4 ε ε -3 /2 ,
and after (1.6) we obtain

εG ε (v ε , ϕ ε ) ≤ C(g ε ε 2 ) -1 /4 = o ε→0 (1) . (4.14) (Step 3: computing the energy εF ε .) Since v ε is constant out of N εR , we have εF ε (v ε ) = N εR ∩D δ φ ε + N εR ∩(D\D δ ) φ ε + N εR \D φ ε . (4.15)
where

φ ε (x) = 1 ε f ε (x, v ε , εDv ε ) .
Considering (4.12), for ε small enough there is C > 0 such that |∇v ε | ≤ C /ε. Estimates (2.4), (2.7) and (2.8) thus yield

N εR ∩(D\D δ ) φ ε ≤ C max ∂D δ {ρ + ρ 2 } + C δ ε 2 | ln ε| ε -1 L 2 (N εR ∩ (D\D δ )) ≤ C δ + ε 2 | ln ε| ε -1 L 2 (N εR ) .
Using (4.1) we have

ε -1 L 2 (N εR ) ≤ C ε -1 εR -εR dt ∂A det (DΦ) -1 dH 1 ≤ C R b -1 H 1 (∂A) , so (4.6) yields lim ε→0 N εR ∩(D\D δ ) φ ε ≤ C δ R b -1 H 1 (∂A) = o δ→0 (1) . (4.16)
Similarly, using (2.6) we have

N εR \D φ ε ≤ C sup R 2 \D η 2 ε + η 4 ε R b -1 H 1 (∂A) ≤ C ε 1 /3 R b -1 H 1 (∂A) (4.17) = o ε→0 (1) .
Now, remember the interpolation from (4.10). We have

N εR ∩D δ φ ε = N i=1 N εR ∩B i φ ε + N εR ∩C i φ ε ,
where

B i = {x ∈ D δ ; Φ(x) ∈ Σ ℓ i } and C i = {x ∈ D δ ; Φ(x) ∈ Σ i \Σ ℓ i } .
As before, since η ε is uniformly bounded in R 2 with respect to ε ∈ (0, 1), (4.1) yields

N εR ∩C i φ ε ≤ C 1 ε εR -εR dt Σ i \Σ ℓ i det (DΦ) -1 dH 1 ≤ C R b -1 H 1 (Σ i \Σ ℓ i ) .
Hence, after (4.6) and (4.9), we obtain

N εR ∩C i φ ε = o δ→0 (1) (4.18)
for every ε ∈ (0, 1). In N εR ∩ B i we have v ε (x) = w y i ε,T ( |d(x)| /ε). Using (4.2) we write

N εR ∩B i φ ε = N εR ∩B i |D( |d| /ε)|(x)f ε (x, w y i ε,T ( |d(x)| /ε), (w y i ε,T ) ′ ( |d(x)| /ε)) .
The coarea formula from Proposition 1.5 yields

N εR ∩B i φ ε = R -R dt D δ ∩B i f ε (x, w y i ε,T (t), (w y i ε,T ) ′ (t)) dµ εt (x) .
We thus have,

N εR ∩B i φ ε ≤ R -R dt D δ ∩B i f 0 (x, w y i T (t), (w y i T ) ′ (t)) dµ εt (x) + R i ε + Ri ε . (4.19)
The first error here before comes from the modification of w T near 0. Using (4.3) and the definition of t ε we compute

R i ε ≤ C 2 ρ(y i ) t ε sup t∈(0,εR) µ t ≤ C 2 δλ t ε sup t∈(0,εR) µ t = o ε→0 (1) .
The second error appears when replacing f ε by f 0 , so using estimates (2.4) and (2.8), together with

y i ∈ D δ , there is C δ > 0 such that R 2 ε ≤ C δ ε 2 | ln ε| R sup t∈(0,εR) µ t = o ε→0 (1) 
.

Using Fubini's formula, we rewrite (4. [START_REF] Hall | Measurements of relative phase in binary mixtures of Bose-Einstein condensates[END_REF] as

N εR ∩B i φ ε ≤ D 1 D δ ∩B i (x) R -R
f 0 (x, w y i T (t), (w y i T ) ′ (t)) dt dµ εt (x) + o ε→0 (1) .

The set D δ ∩ B i is close and the inner integral is a continuous function of x. Hence, the function inside the outer integral is upper semicontinuous function of x. Inequality (4.4) thus yields lim sup

ε→0 N εR ∩B i φ ε ≤ D 1 D δ ∩B i (x) R -R f 0 (x, w y i T (t), (w y i T ) ′ (t)) dt dµ 0 (x) = D δ ∩Σ ℓ i R -R f 0 (x, w y i T (t), (w y i T ) ′ (t)) dt dµ 0 (x) .
Notice that since µ 0 is supported in ∂A, we replaced B i by D δ ∩ Σ ℓ i . From (4.8) and since w T is an even function, we have lim sup 

ε→0 N εR ∩B i φ ε ≤ 2 D δ ∩Σ ℓ i R 0 f 0 (x, w x T (t), (w x T ) ′ (t)) dt + δ dµ 0 (x) ≤ 2 D δ ∩Σ ℓ i ∞ 0 f 0 (x,
εF ε (v ε , ϕ ε ) ≤ 2 N i=1 D δ ∩Σ ℓ i ∞ 0 f 0 (x, w x T (t), (w x T ) ′ (t)) dt + δ dµ 0 (x) + o δ→0 (1)
. Now, we take a sequence T = T δ such that T δ → ∞ as δ → 0 (notice that (4.11) still holds). Then, Fubini's formula and dominated convergence theorem, together with (4.7) and (4.9), yield

lim δ→0 lim sup ε→0 εF ε (v ε , ϕ ε ) ≤ D ∞ 0 f 0 (x, w x (t), (w x ) ′ (t)) dt dµ 0 (x) .
Remembering the definitions of f 0 , µ 0 and w x , (1.14) yields

lim δ→0 lim sup ε→0 εF ε (v ε , ϕ ε ) ≤ 2σ D∩∂A ρ 3 /2 (x)dH 1 (x) .
We conclude thanks to a diagonal argument (see Corollary 1.16 in [START_REF] Attouch | Variational convergence for functions and operators[END_REF]): there exists a sequence δ ε → ε→0 0, such that as

ε → 0, (v ε,δε , ϕ ε,δε ) converges in L 1 loc (D) × L 1 loc (D) to (1, ϕ), and lim sup ε→0 εF ε,δε (v ε,δε , ϕ ε,δε ) ≤ 2σ D∩∂A ρ 3 /2 (x)dH 1 (x) .
(Step 5: approximation of A by Cacciopoli sets) We end the proof using Lemma 4.2, the proof of which is given in the appendix. We remove the condition (4.5) and we only assume that A is a set with locally finite perimeter in D. Consider ϕ k = π1 A k with {A k } k∈N the sequence from Lemma 4.2. From (i), (1, ϕ k ) converges to (1, ϕ) in L 1 (D) and we have A k ρ = α 2 for k large enough. Hence, from steps (1)-( 4), there is a sequence

(v k ε , ϕ k ε ) → (1, ϕ k ) in L 1 loc (D) × L 1 loc (D) such that lim ε→0 εF ε (v k ε , ϕ k ε ) = F (ϕ k ) .
Using (ii) from Lemma 4.2 we obtain lim sup

k→0 lim ε→0 εF ε (v k ε , ϕ k ε ) ≤ F (ϕ) .
As in step (4), we conclude thanks to a diagonal argument.

Lower bound inequality and compactness

The proofs in this section are based on geometric measure theory techniques. We make the lower bound on lines and then use the slicing method, which can be found in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF] or [START_REF] Braides | Approximation of free-discontinuity problems[END_REF]. The last part of the proof of the lower bound is inspired by the ideas in [START_REF] Alberti | Phase transition with the line-tension effect[END_REF].

Lower bound on lines

Consider an open set A ⊂⊂ D and let ν ∈ S 1 be a fixed direction. We call π ν the hyperplane orthogonal to ν, and A ν the projection of A on π ν . We define the one dimensional slices of A, indexed by x ∈ A ν , as

A x = {t ∈ R ; x + tν ∈ A} .
For every function f in D, we define f x as the restriction of f to the slice A x , defined by f x (t) = f (x + tν). For (v, ϕ) : A x → (0, 1] × (0, π), we define the energies

F ε (v ; A x ) = 1 2 Ax η 2 ε,x |∇v| 2 + 1 2ε 2 η 4 ε,x {1 -v 2 } 2 , G ε (v, ϕ ; A x ) = 1 8 Ax η 2 ε,x v 2 |∇ϕ| 2 + η 4 ε,x v 4 gε {1 -cos 2 (ϕ)} and
F ε (v, ϕ ; A x ) = F ε (v; A x ) + G ε (v, ϕ; A x ) .
Similarly, for ϕ ∈ BV (A x ; {0, π}) we define

F (ϕ ; A x ) = 2σ π Ax ρ 3 /2 x d|Dϕ| .
With the previous notations, we have the following result:

Proposition 5.1. Let (v ε , ϕ ε ) ∈ Lip(A x ; (0, +∞) × [0, π]) such that sup ε>0 v ε L ∞ (Ax) < ∞ (5.1)
and

εF ε (v ε , ϕ ε ; A x ) < ∞ . (5.2)
Then, there is ϕ ∈ SBV (A x ; {0, π}) such that

(v ε , ϕ ε ) → (1, ϕ) in L 1 (A x ) × L 1 (A x ) (5.3) and lim inf ε→0 εF ε (v ε , ϕ ε ; A x ) ≥ F (ϕ ; A x ) .
(5.4)

Proof: (Step 1) Using that A ⊂⊂ D and estimate (2.4), there are c 1 , c 2 > 0 such that

η 2 ε,x > ρ x -c 1 ε 2 | ln ε| > c 2 in A x . (5.5)
Hence, the definition of F ε (• ; A x ) and (5.2) give

Ax |1 -v ε | < 4|A x | c 2 2 ε 2 F ε (v ε , ϕ ε ; A x ) = o ε→0 (1) , so v ε → 1 in L 1 (A x ). Similarly, after (5.1) v ε < C in A x , so (1.6) yields Ax v 4 ε |1 -cos 2 (ϕ ε )| < 8C gε c 2 2 F ε (v ε , ϕ ε ; A x ) = o ε→0 (1) .
Hence, up to a (not relabeled) subsequence, ϕ ε → ϕ a.e. in A x , with ϕ : A x → {0, π}. This, together with A x ⊂⊂ D, gives ϕ ε → ϕ in L 1 (A x ). We have proved (5.3).

(Step 2)

We now prove the lower bound for the energy. Let t 0 ∈ Sϕ. For δ > 0 define

J δ = A x ∩ (t 0 -δ, t 0 + δ) ,
and suppose that inf

t∈J δ inf ε>0 v ε (t) > c 3 > 0 . (5.6)
Then, for every ε > 0 and every t ∈ J δ , v ε (t) > c 3 . Hence, using (5.2), (5.5) and the coarea formula (1.21), there is C > 0 such that

(c -1 2 c -2 3 + c -2 2 c -4 3 ) 8 C gε ε 2 ≥ J δ |∇ϕ| 2 + {1 -cos 2 (ϕ)} ≥ π 0 dt {1 -cos 2 (t)} 1 /2 J δ |D1 Wε,t | , (5.7) where W ε,t = {t ∈ A x ; ϕ ε (x) < t}. Since ϕ ε converges to ϕ a.e. in A x , we get 1 Wε,t → 1 {ϕ=0} in L 1 (A x ) ,
for a.e. t ∈ (0, π). Hence, the lower semicontinuity of the BV norm with respect to the L 1 -convergence, together with (1.6), (5.7) and Fatou's lemma, gives

0 ≥ π 0 dt {1 -cos 2 (t)} 1 /2 lim inf ε→0 J δ |D1 Wε,t | ≥ π 2 J δ |D1 {ϕ=0} | . Thus, 0 = H 0 (J δ ∩ Sϕ) ≥ H 0 ({t 0 }) = 1 .
This contradiction implies that (5.6) can not be satisfied. We derive that for every δ > 0, we may extract a subsequence (not relabeled), such that exists {t ε } ε>0 ⊂ J δ with

t ε → t0 ∈ J δ and v ε (t ε ) → 0 as ε → 0 . (5.8) (Step 3) For ε > 0, define I ± ε = {t ∈ J δ ; ±(t ε -t) < 0} and v ± ε : J δ → (0, 1] by v ± ε (t) = 1 I ± ε v ε (t ε ) + 1 I ∓ ε v ε (t)
. The definition of F ε , estimate (5.5) and the fact that

v ± ε is constant in I ± ε while equal to v ε in I ∓ ε yield √ 2 εF ε (v ε , ϕ ε ; J δ ) ≥ J δ ρ 3 /2 x |(v + ε ) ′ | |1 -(v + ε ) 2 | + |(v - ε ) ′ | |1 -(v - ε ) 2 | + o ε→0 (1) .
Using the coarea formula (1.21) we obtain

√ 2 εF ε (v ε , ϕ ε ; J δ ) ≥ 1 0 dt (1 -t 2 ) J δ ρ 3 /2 x |D1 V + ε,t | + |D1 V - ε,t | + o ε→0 (1)
,

where V ± ε,t = {t ∈ J δ ; v ± ε < t}. Since t ε → t0 , v ε (t ε ) → 0 and v ε (t) → 1 a.e. in J δ , 1 V ± ε,t → 1 I ∓ in L 1 (J δ )
, where I ± = {t ∈ J δ ; ±( t0t) ≤ 0}. Hence, the lower semicontinuity of the BV norm with respect to the L 1 -convergence and Fatou's lemma give lim inf

ε→0 εF ε (v ε , ϕ ε ; J δ ) ≥ 1 √ 2 1 0 dt (1 -t 2 ) J ρ 3 /2 x |D1 I -| + |D1 I + | = σ 2ρ 3 /2
x ( t0 ) . (5.9)

Moreover, since ρ

3 /2 x ≥ c 4 > 0 in A x , we have lim inf ε→0 εF ε (v ε , ϕ ε ; J δ ) ≥ 2σc 4 > 0 .
(5.10)

(
Step 4) Let Γ = {t 1 , . . . , t n }, n ∈ N, be any finite subset of Sϕ. For i ∈ {0, 1, . . . , n} we define

J i δ = A x ∩ (t i -δ, t i + δ) . Consider δ ′ > 0 such that J i δ ∩ J j δ = ∅ for i = j and let δ ∈ (0, δ ′ ). From (5.10), we have c 4 2σ lim inf ε→0 εF ε (v ε , ϕ ε ; A x ) ≥ n .
Therefore, using (5.2) we derive that n is bounded, so Sϕ is a finite set and ϕ ∈ SBV (A x ).

(Step 5) Finally, write Sϕ = {t 1 , • • • , t N }, N ∈ N.
Reasoning as before, for δ ′ small enough and δ ∈ (0, δ ′ ), (5.9) gives lim inf

ε→0 εF ε (v ε , ϕ ε ; A x ) ≥ 2σ N i=1 ρ 3 /2 x ( ti ) , with ti ∈ J i δ .
Since ρ x is a continuous function, taking the limit δ → 0 in the previous inequality we obtain

lim inf ε→0 εF ε (v ε , ϕ ε ; A x ) ≥ 2σ N i=1 ρ 3 /2 x (t i ) = 2σ Ax ρ 3 /2
x d|Dϕ| .

We have proved (5.4).

The slicing method

Using the slicing method, we now prove the compactness and the lower bound inequality for εF ε .

Proposition 5.2. (Lower bound inequality and compactness for εF

ε ) Let (v ε , ϕ ε ) ∈ Lip loc (R 2 ; (0, +∞) × [0, π]) such that sup ε>0 v ε L ∞ (K) < C K for K ⊂⊂ D (5.11)
and sup

ε>0 εF ε (v ε , ϕ ε ) < ∞ .
(5.12)

Then, there is ϕ ∈ X such that

(v ε , ϕ ε ) → (1, ϕ) in L 1 loc (D) × L 1 loc (D) (5.13) 
and

lim inf ε→0 εF ε (v ε , ϕ ε ) ≥ F (ϕ) . (5.14) 
Proof: arguing as in the proof of (5.3) of Proposition 5.1, there exists ϕ : D → {0, π} such that (5.13) is satisfied. Consider an open set A ⊂⊂ D, and fix ν ∈ S 1 . For x ∈ A ν , we define (v ε,x , ϕ ε,x ) :

A x → (0, 1] × (0, π) by (v ε,x , ϕ ε,x )(t) = (v ε , ϕ ε )(x + tν) .
Since A ⊂⊂ D and since v ε , η ε are non vanishing continuous functions, for fixed ε > 0 (5.12) yields

C ≥ εF ε (v ε , ϕ ε ; A) ≥ ε 2 inf A η 2 ε A |∇v ε | 2 + ε 8 inf A v 2 ε η 2 ε A |∇ϕ ε | 2 ≥ c ε,A A |∇v ε | 2 + A |∇ϕ ε | 2 ,
so v ε and ϕ ε belong to W 1,2 (A). Hence (see [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF], Section 4.9.2),

v ′ ε,x (t) = D ν v ε (x + tν) and ϕ ′ ε,x (t) = D ν ϕ ε (x + tν) for a.e. t ∈ A x , for L 1 -a.e. x ∈ A ν . Using then |∇v ε | 2 ≥ |D ν v ε | 2 , we get the slicing inequality εF ε (v ε , ϕ ε ; A) ≥ Aν εF ε (v ε,x , ϕ ε,x ; A x ) dx .
(5.15)

From (5.12), for L 1 -a.e. x ∈ A ν , εF ε (v ε,x , ϕ ε,x ; A x ) is uniformly bounded with respect to ε. Thus, after Proposition 5.1, for L 1 -a.e. x ∈ A ν there is

ϕ x ∈ BV (A x ; {0, π}) such that (v ε,x , ϕ ε,x ) → (1, ϕ x ) in L 1 (A x ) × L 1 (A x ) (5.16) 
and lim inf

ε>0 εF ε (v εx , ϕ ε,x ; A x ) > F (ϕ x ; A x ) . (5.17) 
The function ϕ defined in (5.13) is the L1 (A) limit of ϕ ε , so for L 1 -a.e. x ∈ A ν , ϕ x coincide with the restriction of ϕ to A x . Therefore, since the vector ν is taken arbitrarily, ϕ ∈ BV (A) (see Proposition 6.9 in [START_REF] Alberti | Phase transition with the line-tension effect[END_REF]), and since A is any open relatively compact subset of D, we derive that ϕ ∈ BV loc (D). Using (5.15), (5.17) Fatou's lemma and Fubini's formula, we also obtain lim inf

ε→0 εF ε (v ε , ϕ ε ) ≥ Aν F (1, ϕ x ; A x ) dx = 2σ π Aν dx Ax ρ 3 /2 x d|Dϕ| = 2σ π D ρ 3 /2 x d(L 1 A ν ⊗ |Dϕ x | A x ) . (5.18) 
Now, for every ε > 0, let µ ε be the energy distribution in D associated with the pair (v ε , ϕ ε ), that is, the positive Radon measure which for every Borel set E ⊂ R 2 is given by

µ ε (E) = εF ε (v ε , ϕ ε ; E ∩ D) .
From (5.12), the total mass µ ε is uniformly bounded. De La Vallée Poussin compactness criterion (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], page 26) gives then that (up to a subsequence) µ ε converges weakly * to some finite measure µ on D. We claim that

µ ≥ 2σρ 3 /2 • H 1 Sϕ .
We will prove this using Besicovitch derivation Theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], page 54). First, after (5.12) for every K ⊂⊂ D there is

R K ∈ (0, λ) such that 0 ≤ µ(K) ≤ µ(B(0, R K )) ≤ lim inf ε→0 µ ε (B(0, R K )) < ∞. (5.19) 
Hence, µ is a positive Radon measure in D, and for H 1 -a.e. x ∈ Sϕ the limit

f (x) = lim r→0 + µ(B r (x)) H 1 (B r (x) ∩ Sϕ) (5.20) 
exists, and we have

µ ≥ f • H 1 Sϕ . (5.21) 
Let x 0 ∈ Sϕ ∩ A. Since A ⊂⊂ D, B r (x 0 ) ⊂ D for r small enough. We assume 1 moreover that µ(∂B(x 0 , r)) = 0. Proposition 1.62 in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] and estimate (5.18) yield

µ(B r (x 0 )) = lim ε→0 µ ε (B r (x 0 )) ≥ 2σ π Br(x 0 ) ρ 3 /2 x d(L 1 A ν ⊗ |Dϕ x | A x ) ≥ 2σ π inf Br(x 0 ) ρ 3 /2 x Br(x) d(L 1 A ν ⊗ |Dϕ x | A x ) . (5.22) 
In Proposition 5.1 we proved that for L 1 -a.e. x ∈ A ν , ϕ x ∈ SBV (A x ) ∩ L ∞ (A), and

Aν dx Ax H 0 (S ϕx ) < ∞ .
Hence, after Theorem 2.3 in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF], ϕ ∈ SBV (A) ∩ L ∞ (A) and

Br(x 0 ) d(L 1 A ν ⊗ |Dϕ x | A x ) = π Br(x 0 ) | ν ϕ , ν | dH 1 , (5.23) 
where ν ϕ is the measure theoretic inner normal to the Caccioppoli set {ϕ = π}. Putting (5.23) in (5.22) we obtain

µ(B r (x 0 )) ≥ 2σ inf Br(x 0 ) ρ 3 /2 x Br(x 0 ) | ν ϕ , ν | dH 1 ≥ 2σ inf Br(x 0 ) ρ 3 /2 x inf Br(x 0 )∩Sϕ | ν ϕ , ν | H 1 (B r (x 0 ) ∩ Sϕ) .
Since Sϕ is a rectifiable set in A, for H 1 -a.e. x 0 ∈ Sϕ, ν ϕ (x) is continuous in B r (x 0 ) for r small enough. Thus, taking ν = ν ϕ (x 0 ) and since ρ is continuous, we get lim

r→0 + µ(B r (x 0 )) H 1 (B r (x 0 ) ∩ Sϕ) ≥ 2σρ 3 /2 (x 0 )
for H 1 -a.e. x 0 ∈ Sϕ. Hence, (5.20) and (5.21) yield the claim. The definition of µ gives then lim inf

ε→0 εF ε (v ε , ϕ ε ; A) = lim inf ε→0 µ ε (A) ≥ µ(A) ≥ 2σ Sϕ∩A ρ 3 /2 dH 1 .
Finally, taking an increasing sequence {A k } k∈N with A k ⊂⊂ D, we get lim inf

ε→0 εF ε (v ε , ϕ ε ) ≥ 2σ Sϕ∩D ρ 3 /2 dH 1 ,
which gives (5.14).

Remark about a lower bound for v ε in the transition zone

We end this section with a discussion about the infinimum of v ε in the transition zone. Let {(v ε , ϕ ε )} ε>0 be a sequence of minimizers of F ε , and let ϕ ∈ BV loc (D ; {0, π}) be the L 1 loc -limit of ϕ ε given in (1.17). Let K ⊂⊂ D be an open smooth set, with non negligible intersection with Sϕ, that is,

H 1 (K ∩ Sϕ) > 0 .
For every ε > 0, we define

m ε,K = inf x∈K v ε (x) .
We would like to obtain an upper bound for m ε,K , in connection with an open question in [START_REF] Berestycki | On phase-separation model: Asymptotics and qualitative properties[END_REF], namely

m ε,K ≤ C K (g ε ε 2 ) -1 /4 . (5.24) 
If we assume that we have the upper and lower inequalities for each ε > 0, that is

εF ε (ṽ ε ) ≤ F (ϕ) (5.25) 
and

εF ε (ṽ ε ) ≥ F (ϕ) , (5.26) 
we can give estimates on G ε in order to obtain the upper bound for m ε,K . So assume that we have (5.25) and (5.26). On the one hand, estimates (2.4) and (2.8) give then

εG ε (v ε , ϕ ε ; K) ≥ 1 4 g ε ε 2 m 3 ε,K inf K ρ 3 /2 -C K ε 2 | ln ε 2 | K |∇ϕ ε | sin ϕ ε ≥ C K g ε ε 2 m 3 ε,K K |∇ϕ ε | sin ϕ ε .
We claim that the integral here below is bounded away from zero. Indeed, if this not the case, we will have

lim inf ε→0 K |∇ϕ ε | sin ϕ ε = 0 .
Hence, since ϕ ε → ϕ in L 1 (K), the coarea formula together with the lower semi continuity of the BV norm imply the contradiction

0 = lim inf ε→0 π 0 sin t dt K |D1 {ϕε<t} | ≥ π 0 sin t dt K |D1 {ϕ=0} | = 2 H 1 (Sϕ ∩ K) .
We thus derive that there is

C ′ K > 0 such that εG ε (v ε , ϕ ε ; K) ≥ C ′ K g ε ε 2 m 3 ε,K . (5.27) 
In the other hand, by inspection of the proof of Proposition 4.1 (see estimate (4.14)), we see that the pair of test function (ṽ ε , φε ) satisfies

εG ε (ṽ ε , φε ; K) ≤ C(g ε ε 2 ) -1 /4 .
(5.28)

Hence, considering (5.25)-(5.28), together with the fact that (v ε , ϕ ε ) minimizes F ε , we obtain 2σ

K ρ 3 /2 |Dϕ| + C K g ε ε 2 m 3 ε,K ≤ εF ε (v ε , ϕ ε ; K) ≤ εF ε (ṽ ε , φε ; K) ≤ 2σ K ρ 3 /2 |Dϕ| + C(g ε ε 2 ) -1 /4 .
Multiplying both sides of the previous inequality by (g ε ε 2 ) 1 /4 we find the upper bound (5.24) for m 3 ε,K . However, we are not able to prove (5.25) and (5.26) as such because of the error terms. Indeed, the proof of the upper bound of Theorem 1.1 says that there is a sequence {(ṽ ε , φε )} ε>0 such that lim sup ε→0 εF ε (ṽ ε ) ≤ F (ϕ) .

(5.29)

In the proof of (5.29), we first approximate the locally Cacciopoli set A = {ϕ = π} by characteristics functions of open sets A k with compact smooth boundary. This gives a small error in terms of k ∈ N in the upper bound inequality (5.29). Then for each k ∈ N, we construct a test function for which (5.29) holds, up to a small error term depending on a parameter δ > 0. In these two steps, we use diagonal extraction arguments in order to get rid of the error terms, so it is not possible to compute them explicitly. Similarly, in the proof of the lower bound of Theorem 1.1, we use the compactness of bounded Radon measures, so we cannot estimate the error term in the lower bound inequality lim inf ε→0 εF ε (ṽ ε ) ≥ F (ϕ) .

(5.30)

6 Proof of the Γ-convergence for ε (E ε (•) -E ε (η ε ))

6.1 Proof of the compactness and the lower bound inequality in Theorem 1.1:

let {(u 1,ε , u 2,ε )} ε>0 be a sequence of minimizers of E ε in H satisfying (1.16). From Proposition 3.1(i), the pairs (v ε , ϕ ε ) are well defined by (1.7), belong to Lip loc (R 2 ; (0, +∞)×[0, π]) and satisfy (5.11). Proposition 3.2 yields εF ε (v ε , ϕ ε ) < ∞. Thus, the hypotheses of Proposition 5.2 are fulfilled by (v ε , ϕ ε ) and we have

(v ε , ϕ ε ) → (1, ϕ) in L 1 loc (D) × L 1 loc (D)
with ϕ ∈ X, and lim inf

ε→0 εF ε (v ε , ϕ ε ) ≥ F (ϕ ) .
Equality (1.9) yields then

lim inf ε→0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) ≥ F (ϕ) .
Finally, using identity (3.4) we get

(u 1,ε , u 2,ε ) → √ ρ (1 {ϕ=0} , 1 {ϕ=π} ) in L 1 loc (D) × L 1 loc (D) .
In order to prove the upper bound we have to work a little more. We first modify the pairs of test functions from Proposition 4.1 to make them satisfy the mass constraints 

κ ε = κ ε,ℓ,τ by κ ε (x) = ε τ ℓ κ( |x-x 0 | /r 0 ) .
We define then vε = vε + κ ε and v ε = c ε vε , with c ε = η ε vε -2

2 . For ε small enough N ε and B 0 are disjoints. We estimate

c -1 ε = 1 + Nε∪B 0 η 2 ε (v 2 ε -1) = 1 + 2 B 0 η 2 ε κ ε + Nε η 2 ε (v 2 ε -1) + B 0 η 2 ε κ 2 ε = 1 + 2 B 0 η 2 ε κ ε + O(ε) + O(ε 2τ ) .
Hence, using that τ ∈ ( 1 /2, 1) we get c 2 ε = 1r ε with

r ε = 4 B 0 η 2 ε κ ε + O(ε) = O(ε τ ) . (6.2) 
Notice that for ε small enough, r ε may be positive or negative depending on the sign of ℓ.

The definition of w y ε,T insures that v ε > 0. The first mass constraint in (1.8) is immediately satisfied by the definition of v ε . Remember the definition of ϕ ε in (4.13). For the second mass constraint we write

c -2 ε R 2 η 2 ε v 2 ε cos ϕ ε = R 2 η 2 ε (1 R 2 \(A∪Nε) -1 A\(Nε∪B 0 ) + 1 Nε∪B 0 v2 ε cos ϕ ε ) .
Adding and removing 1 Nε\A η 2 ε , 1 Nε∪A η 2 ε and 1 B 0 η 2 ε in the previous integral, we get

c -2 ε R 2 η 2 ε v 2 ε cos ϕ ε = R 2 η 2 ε (1 R 2 -21 A ) + B 0 η 2 ε (v ε + κ ε ) 2 -1 (6.3) + Nε η 2 ε (v 2 ε cos ϕ ε -1 A + 1 R 2 \A ) . (6.4) 
For the third term in (6.3), we have that η ε , vε and cos ϕ ε are bounded while

L 2 (N ε ) = O(ε). Hence, Nε η 2 ε (v 2 ε cos ϕ ε -1 A + 1 R 2 \A ) = O(ε) . (6.5)
For the first term in (6.3), using that R 2 η 2 ε = 1 = α 1 + α 2 and that D∩A ρ = α 2 , we obtain

R 2 η 2 ε (1 R 2 -21 A ) = α 1 -α 2 + A∩D (η 2 ε -ρ) + A\D η 2 ε .
Using (2.5) we get, for α ∈ ( 1 /2, 3 /5) and γ ∈ ( 1 /2, 3 /4),

A∩D (η 2 ε -ρ) = A∩B(0,λ-ε α ) (η 2 ε -ρ) + (A∩D)\B(0,λ-ε α ) (η 2 ε -ρ) = O(ε γ ) + O(ε α ) . (6.6)
Moreover, from (2.7), we have η 2 ε (x) ≤ η 2 ε (x α ) in A\D, with x α ∈ ∂B(0, λε α ). From (2.5) and (2.8) we get

η 2 ε (x) ≤ η 2 ε (x α ) = η 2 ε (x α ) -ρ(x α ) + ρ(x α ) = O(ε α ) , so using that A is a bounded set we obtain A\D η 2 ε = O(ε α ) . (6.7)
For the second term in (6.3), the definitions of κ ε and r ε yield

B 0 η 2 ε κ ε (2 + κ ε ) = 1 2 r ε + O(ε) + O(ε 2τ ) . (6.8) 
Putting (6.5)-(6.8) in (6.3) and considering (6.2) we get

c -2 ε R 2 η 2 ε v 2 ε cos ϕ ε = α 1 -α 2 + 1 2 r ε + O(ε β ) ,
where β = min{1, α, γ, 2τ } = min{α, γ} ∈ ( 1 /2, 3 /5). Hence, (6.2) gives

R 2 η 2 ε v 2 ε cos ϕ ε -(α 1 -α 2 ) = 1 2 -(α 1 -α 2 ) r ε + O(ε β ) .
Suppose now, without loss of generality, that α 1α 2 ≤ 1 /2. The definition of r ε and κ ε , together with (2.4), (2.8) and B 0 ⊂⊂ A ∩ D, give then

|r ε | ≥ 4 inf B 0 η 2 ε B 0 κ 2 ε + O(ε) ≥ 4 inf B 0 η 2 ε |ℓ| ε τ Br 0/2 (x 0 ) κ 2 ε + O(ε) ≥ c |ℓ| ε τ + O(ε) ,
for some c > 0 not depending on ε. Hence, if we take ℓ = 1 in the definition of κ ε , for ε small enough we have

R 2 η 2 ε v 2 ε cos ϕ ε -(α 1 -α 2 ) ≥ c ′ ε τ (1 + ε 1-τ -ε β-τ ) .
Analogously, taking now ℓ = -1, we get

R 2 η 2 ε v 2 ε cos ϕ ε -(α 1 -α 2 ) ≤ c ′′ ε τ (-1 + ε 1-τ + ε β-τ ) . Since β ∈ ( 1 /2, 3 /5), we can choose τ ∈ ( 1 /2, β) and obtain R 2 η 2 ε v 2 ε cos ϕ ε > α 1 -α 2 if ℓ = 1 and R 2 η 2 ε v 2 ε cos ϕ ε < α 1 -α 2 if ℓ = -1 .
Hence, there exists ℓ ε ∈ (-1, 1) such that for ε small enough, the associated pair (v ε , ϕ ε ) satisfy the second mass constraint in (1.8).

(Step 2 : Computing the energy). We now compute the energy of (v ε , ϕ ε ). We recall that N ε tε is the transition zone of ϕ ε defined in (4.13). For the energy G ε , we have that

ϕ ε is constant out of N ε tε , while v ε = c ε vε in N ε tε with c ε = 1 + O(ε τ ). Hence, εG ε (v ε , ϕ ε ) = (1 + O(ε τ ))εG ε (v ε , ϕ ε ) . (6.9) 
For the energy F ε , we have that

v ε = c ε (1 + κ ε ) in B 0 . The definition of κ ε gives then, |∇v ε | 2 = O(ε 2τ ) and {1 -v 2 ε } 2 = O(ε 2τ ). Hence, εF ε (v ε ; B 0 ) = O(ε 2τ -1 ) = o ε→0 (1) . (6.10) In R 2 \(N ε ∩ B 0 ), we have that v ε = c ε , so |∇v ε | = 0 and {1 -v 2 ε } 2 = O(ε 2τ ). As before we get εF ε (v ε ; R 2 \(N ε ∩ B 0 )) = O(ε 2τ -1 ) = o ε→0 (1) . (6.11) In N ε , we have that v ε = c ε vε . Hence, |∇v ε | 2 = (1 + O(ε τ ))|∇v ε | 2 and {1 -v 2 ε } 2 = (1 + O(ε τ )){1 -v2 ε } 2 + O(ε τ ), which gives εF ε (v ε ; N ε ) = (1 + O(ε τ )) εF ε (v ε ; N ε ) + O(ε τ )ε -1 L 2 (N ε ) = (1 + O(ε τ )) εF ε (v ε ; N ε ) + o ε→0 (1) . (6.12) Since vε is constant out of N ε , we have F ε (v ε ) = F ε (v ε ; N ε ).
Putting together (6.1) and (6.9)-(6.12), we obtain lim sup 

ε→0 εF ε (v ε , ϕ ε ) = lim sup ε→0 εF ε (v ε , ϕ ε ) ≤ F (ϕ) . ( 6 
ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) = lim sup ε→0 εF ε (v ε , ϕ ε ) ≤ F (ϕ) .

Proof of Corollary 1.2:

Let φ ∈ X with F ( φ) < +∞. From the upper bound inequality in Theorem 1.1, there is a sequence

(ũ 1,ε , ũ2,ε ) ∈ H such that lim sup ε→0 ε (E ε (ũ 1,ε , ũ2,ε ) -E ε (η ε )) ≤ F ( φ) . Since (u 1,ε , u 2,ε ) minimize E ε in H, the previous inequality yields lim sup ε→0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) ≤ F ( φ) , (6.14) 
so in particular (u 1,ε , u 2,ε ) satisfy (1.16). Hence, from the compactness and the lower bound inequality in Theorem 1.1, there is ϕ ∈ X and a subsequence (u 1,ε ′ , u 2,ε ′ ) with lim inf

ε ′ →0 ε ′ (E ε ′ (u 1,ε ′ , u 2,ε ′ ) -E ε ′ (η ε ′ )) ≥ F (ϕ) .
This inequality is verified for every subsequence of (u 1,ε , u 2,ε ), so we have

lim inf ε→0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) ≥ F (ϕ) . (6.15) 
From (6.14) and (6.15), we obtain

F ( φ) ≥ lim sup ε→0 εE ε (u 1,ε , u 2,ε ) ≥ lim inf ε→0 εE ε (u 1,ε , u 2,ε ) ≥ F (ϕ) , (6.16) so F (ϕ) = inf X F . Taking φ = ϕ in (6.16) yields lim ε→0 ε (E ε (u 1,ε , u 2,ε ) -E ε (η ε )) = inf X F .

Proof of Corollary 1.3

We start proving that when α 1 is not to close to 0 or 1, the minimizers of F in X are not radially symmetric. We show that for any radially symmetric ϕ ∈ X, F (ϕ) > F (ϕ ds ), where the support of ϕ ds ∈ X is a disk sector. We first prove this for functions such that {ϕ = 0} is a disk or an annulus. Then, we generalize by induction the result to radial functions such that {ϕ = 0} is composed of a finite number of connected components. We conclude then by approximating any radially symmetric ϕ ∈ X by this kind of functions.

We recall that ρ is given in (1.3) and that X is the space of functions ϕ ∈ BV loc (D; {0, π}) such that {ϕ=0} ρ = α 1 . (6.17)

If ϕ ds ∈ X is such that {ϕ ds = 0} is a disk sector, we easily compute

F (ϕ ds ) 8σ = 3 16 .
For 0 ≤ R -≤ R + ≤ λ we denote A(R -, R + ) the annulus of center the origin, inner radius R -and outer radius R + .

If

ϕ α ∈ X is such that {ϕ = 0} = A(0, R α ) and A(0,Rα) ρ = α, then R α = λ(1 - √ α) 1 /2 and F (ϕ α ) 8σ = f (α) , (6.18) 
where f :

[0, 1] → R + is the concave function f (α) = (1 -α) 3 /4 (1 - √ 1 -α) 1 /2
. We see that there exists

δ 0 ≈ 0.1486 such that if α ∈ [δ 0 , 1 -δ 0 ], then f (α) > 3 /16. Proposition 6.1. If α 1 ∈ [δ 0 , 1 -δ 0 ]
, then the minimizers of F in X are not radially symmetric.

Proof: (Step 1) Let R ∈ (0, λ) and consider ϕ d 1 ∈ X such that {ϕ d 1 = 0} = A(0, R). From (6.17), we have that F (ϕ d 1 )/8σ = f (α 1 ) so (6.18) yields

F (ϕ d 1 ) > F (ϕ ds ) . (6.19) Since α 2 = 1 -α 1 ∈ [δ 0 , 1 -δ 0 ], the similar inequality holds if {ϕ d 1 = 0} = A(R, λ). Consider now ϕ a 1 ∈ X such that {ϕ a 1 = 0} = A(R 1 , R 2 ), with 0 < R 1 < R 2 < λ. Writing β 1 = A(0,R 1 ) ρ , β 2 = A(R 1 ,R 2 )
ρ and

β 3 = A(R 2 ,λ) ρ , we compute F (ϕ a 1 ) 8σ = f (β 1 ) + f (β 1 + β 2 ) .
From (6.17), we have that β 2 = α 1 and β

1 + β 3 = α 2 so F (ϕ a 1 ) 8σ = f (β 1 ) + f (β 1 + α 1 ) .
The right hand size of the previous equality is a concave function of β 1 and the value of β 1 may vary between 0 and α 2 . If

β 1 = 0 then F (ϕ a 1 )/8σ = f (α 1 ). If β 1 = α 2 , since α 1 + α 2 = 1 we find F (ϕ a 1 )/8σ = f (α 2 ). We derive F (ϕ a 1 ) > F (ϕ ds ) . (6.20) (Step 2) Let n ∈ N * and consider ϕ n ∈ X such that {ϕ n = 0} = n j=1 A 2j , with A 2j = A(R - 2j , R + 2j ) and 0 ≤ R - 2j-2 < R + 2j-2 < R - 2j < R + 2j ≤ λ for 2 ≤ j ≤ n. We write β 2j = A 2j ρ, β 1 = A(0,R - 2 )
ρ, β 2n+1 = A(R + 2n ,λ) ρ and

β 2j+1 = A(R + 2j ,R - 2j+2 )
ρ for 1 ≤ j ≤ n -1. Notice that we allow A(0, R - 2 ) or A(R + 2n , λ) to be empty, but this only implies that β 1 = 0 or β 2n+1 = 0. With this notation, we have By induction, we are going to prove the following property: Hence, (P 1 ) yields g n+1 (β 1 , • • • , β 2n+2 ) > F (ϕ ds )/8σ. We derive that the result holds for all the possible values of β 2n+2 .

(P n ) ∀ β 1 , • • • , β 2n+1 ∈ [0, 1] such that
We have proved that if ϕ n ∈ X is radial and its support has a finite number of connected components, then F (ϕ n ) > F (ϕ ds ) . (6.23)

(
Step 3) Suppose now that ϕ ∈ X is a radially symmetric function such that {ϕ = 0} has an infinite number of connected components. Since ϕ has locally finite perimeter in D, {ϕ = 0} is the union of a countable family of disjoints annuli. We write

{ϕ = 0} = j∈Z A 2j
minimizes F over X, which yields a contradiction with Proposition 6.1.

Appendix

We end this article given the proof of Lemma 4.2, which is essentially the same of Lemma 4.3 in [START_REF] Bouchitté | Singular perturbations of variational problems arising from a twophase transition model[END_REF], which in turn is a generalization of Lemma 1 in [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]. For completeness we give here the details of the proof. Since r → B(x 1,2 ,r) ρ is continuous and decreasing for r ∈ (0, δ), r 1,k and r 2,k are unique and tend to zero as k → ∞. Then, we derive from (7.6) and (7.8), for large enough k, that

D∩A k ρ = Ãk ρ -γ k = A ρ .
Moreover, from (7.5) and (7.6), we have H 1 (∂A k ) = 0 for k large enough, so (ii) is proved. Using again (7.6) we obtain Since Φ is continuous, there is t = t δ ∈ (0, 1) such that Φ(tδ, (1t)δ) = 0. Define A δ = A ∪ B(x 1 , (1t)δ)\B(x 2 , tδ) and ϕ = π1 A δ . Both D ∩ A δ and D\A δ have no empty interior and A δ ρ = A ρ. Moreover L 2 (A δ ∆A) → 0 as δ → 0, and using an inequality similar to (7.9), we get lim sup

δ→0 D ρ 3 /2 |D1 A δ | ≤ D ρ 3 /2 |D1 A | .
Finally, for each A δ we apply the construction from steps 1-3 and conclude thanks a diagonal argument, see Corollary 1.16 in [START_REF] Attouch | Variational convergence for functions and operators[END_REF].

(4. 1 )

 1 We denote by Φ the component of Φ in ∂A. Moreover, d is a Lipschitz continuous function in N t and we have that |Dd| = 1 a.e. in N t .(4.2)

6. 2 (Step 1 :

 21 Proof of the upper bound inequality in Theorem 1.1: Modification of the pairs of test functions) With the notations from the proof of Proposition 4.1, we write N ε = N εR δ and we define (v ε , ϕ ε ) the sequence of pairs of test functions such that lim sup ε→0 εF ε (v ε , ϕ ε ) ≤ F (ϕ) . (6.1) Consider κ ∈ C ∞ (R + ; [0, 1]) with supp κ ⊂ (0, 1) and κ = 1 in (0, 1 /2). Since A is a non empty open set, there is B 0 = B r 0 (x 0 ) ⊂⊂ A ∩ D. For ℓ ∈ [-1, 1] and τ ∈ ( 1 /2, 1), define

β

  i =: g n (β 1 , • • • , β 2n ) .

n i=1 β 2i = α 1 and n i=1 β 2i+1 = α 2 , g n (β 1 ,β 2i = α 1 and n+1 i=1 β 2i+1 = α 2 .

 212 • • • , β 2n ) > F (ϕ ds )8σ .If n = 1 we are in one of the three cases analyzed in Step 1, so (6.[START_REF] Hall | Measurements of relative phase in binary mixtures of Bose-Einstein condensates[END_REF]) and (6.20) yield (P 1 ).Let us assume that (P n ) holds and considerβ 1 , • • • , β 2n+3 ∈ [0, 1] such that n+1 i=1The right hand side of the previous equality is a concave function of β 2n+2 . The value of β 2n+2 may vary between 0 and α 1 . Suppose first that β 2n+2 = 0. Then, definingβj = β j if j = 1, • • • , 2n and β2n+1 = β 2n+1 + β 2n+3 ,the βi 's satisfy (6.21) and we haveg n+1 (β 1 , • • • , β 2n+2 ) ≥ 2n j=1 f j i=1 β i = g n ( β1 , • • • , β2n ) .Hence, (P n ) yieldsg n+1 (β 1 , • • • , β 2n+2 ) > F (ϕ ds )/8σ.Suppose now that β 2n+2 = α 1 . From(6.22) this implies β 2j = 0 for every j = 1, • • • , n. 2n+3 , the βi 's satisfy (6.21) and we haveg n+1 (β 1 , • • • , β 2n+2 ) ≥ f 2n+1 i=1 β i + f 2n+2 i=1 β i = f ( β1 ) + f ( β1 + β2 ) = g 1 ( β1 , β2 ) .

Proof of Lemma 4 . 2 : (Step 1 ) 3 /2 dH 1 ≤∂ * A∩D k ρ 3 /2 dH 1 + ∂D k ρ 3 /2 dH 1 .ρ 3 /2 dH 1 ≤ ρ 3 / 2 L 2 k 3 / 2 H 1 ((Step 2 ) 3 / 2 

 421313313322321232 Suppose first that D ∩ A and D\A have both non empty interior and let B(x 1 , δ) ⊂ D ∩ A and B(x 2 , δ) ⊂ D\A . (7.1)We first approximate A by sets of finite perimeter in D. For k ≥ 2 we defineD k = D ∩ B(0, λ(1 -1 /k)) and A ′ k = A ∩ D k . We have that ∂ * A ′ k ⊂ (∂ * A ∩ D k ) ∪ ∂D k , so ∂ * A ′ k ρUsing Lebesgue dominated convergence theorem, the first term in the right hand side of the inequality converges to ∂ * A ρ 3 /2 dH 1 < +∞. The definition of D k and (2.8) yield∂D k ∞ (∂D k ) H 1 (∂D k ) ≤ 2λ ∂D) = o k→∞[START_REF] Aftalion | Progress in Nonlinear Differential Equations and Their Applications[END_REF] . Since A ′ k has finite perimeter in D, it can be approximated (see the proof of Lemma 1 in[START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]) by open bounded sets Ãk , such thatL 2 ( Ãk ∆A ′ k ) Ãk + B(0, 1 /k) and Ãk ⊂ A ′ k + B(0, 1 /k) (7.4) H 1 (∂ Ãk ∩ ∂D) = 0 . (7.5)The definition of A ′ k and (7.3) imply (i). Using (7.1) and (7.4), for large enough k we getB(x 1 , δ) ⊂ Ãk and B(x 2 , δ) ⊂ D\ Ãk .(7.6)Moreover, using (ii) from Proposition 2.3 in[START_REF] Bouchitté | Singular perturbations of variational problems arising from a twophase transition model[END_REF] and the fact that Ãk belongs to a sequence Ãn k such that Ãn k BV (D) → A ′ k BV (D) as n → 0, we haveD ρ |D1 Ãk | ≤ D ρ 3 /2 |D1 A ′ k | Ãk \B(x 1 , r 1,k ) if γ k > 0 Ãk if γ k = 0 Ãk ∪ B(x 1 , r 2,k ) if γ k < 0, where r 1,k and r 2,k are chosen to satisfy B(x 1 ,r 1,k ) ρ = B(x 2 ,r 2,k ) ρ = γ k .

D ρ 3 / 2 |D1 A k | ≤ D ρ 3 / 2 3 / 2 |D1 A k | ≤ D ρ 3 / 2 3 / 2 (Step 4 )where A 12 =

 3232323232412 |D1 Ãk | + ρ ∞ H 1 (∂B(x 1 , r 1,k ) ∪ ∂B(x 2 , r 1,2 )) . (7.9)Hence, using (7.7), we obtainD ρ |D1 A ′ k | + o k→∞ (1) , so (7.2) gives lim sup k→∞ D ρ 3 /2 |D1 A k | ≤ D ρ |D1 A |We have proved (iii). We now remove the condition that D ∩A and D\A have no empty interior. First, we notice that L 2 (D ∩ A) = 0 and L 2 (D\A) = 0 are not possible because of the mass constraints in (1.8). Hence, there exists x 1 a point of density of D ∩ A and x 2 a point of density of D\A. Consider the functionΦ(δ 1 , δ 2 ) = A ∪ B(x 1 , δ 1 )\B(x 2 , δ2). Since ρ > 0 in D, for any δ > 0 we have Φ(δ, 0) > 0 and Φ(0, δ) < 0 .

In fact this holds for all r except countably many (see[START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], page

[START_REF] Royo-Letelier | Segregation and symmetry breaking of strongly coupled twocomponent Bose-Einstein condensates in a harmonic trap[END_REF].
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For every n ∈ N, we define a function ϕ n : D → {0, π} by

Hence, by continuity there is a pair We have

and since ρ is radially symmetric

From (6.25), the last term in the previous equality goes to zero as n → +∞, so lim n→∞ F (ϕ n ) = F (ϕ). Hence, since {ϕ n = 0} has a finite number of connected components, (6.23) yields F (ϕ) > F (ϕ ds ), which ends the proof.

Proof of Corollary 1.3: Suppose that α 1 ∈ [δ 0 , 1δ 0 ] and that {(u 1,ε , u 2,ε )} ε>0 is a sequence of radially symmetric pairs such that (u 1,ε , u 2,ε ) minimizes E ε under the mass constraints (1.5). Then, ϕ ε defined by (3.7) is also radially symmetric. Consider ϕ ε,0 , the restriction of ϕ ε to a slice of D passing through 0. From Proposition 5.1, ϕ ε,0 belongs to SBV loc ([0, λ] ; {0, π}) and converges in L 1 loc ([0, λ]) to ϕ 0 . Hence, ϕ ε converges in L 1 loc (D) to the radial function ϕ given by ϕ(x) = ϕ 0 (|x|). From Corollary 1.2, we know that ϕ