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Abstract

In string musical instruments, the sound is radiated by the soundboard, subject to the strings
excitation. This vibration of this rather complex structure is described here with models
which need only a small number of parameters. Predictions of the models are compared
with results of experiments that have been presented in Ege et al. [Vibroacoustics of the
piano soundboard: (Non)linearity and modal properties in the low- and mid- frequency
ranges, Journal of Sound and Vibration 332 (5) (2013) 1288-1305]. The apparent modal
density of the soundboard of an upright piano in playing condition, as seen from various
points of the structure, exhibits two well-separated regimes, below and above a frequency
flim that is determined by the wood characteristics and by the distance between ribs. Above
flim, most modes appear to be localised, presumably due to the irregularity of the spacing
and height of the ribs. The low-frequency regime is predicted by a model which consists
of coupled sub-structures: the two ribbed areas split by the main bridge and, in most cases,
one or two so-called cut-off corners. In order to assess the dynamical properties of each
of the subplates (considered here as homogeneous plates), we propose a derivation of the
(low-frequency) modal density of an orthotropic homogeneous plate which accounts for the
boundary conditions on an arbitrary geometry. Above flim, the soundboard, as seen from
a given excitation point, is modelled as a set of three structural wave-guides, namely the
three inter-rib spacings surrounding the excitation point. Based on these low- and high-
frequency models, computations of the point-mobility and of the apparent modal densities
seen at several excitation points match published measurements. The dispersion curve of
the wave-guide model displays an acoustical radiation scheme which differs significantly
from that of a thin homogeneous plate. It appears that piano dimensioning is such that the
subsonic regime of acoustical radiation extends over a much wider frequency range than
it would be for a homogeneous plate with the same low-frequency vibration. One problem
in piano manufacturing is examined in relationship with the possible radiation schemes
induced by the models.
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1 Introduction

The piano soundboard (Fig. 1) is a large, almost plane, wood-structure. It includes
a thin panel made out of glued spruce strips. A series of stiffeners – the ribs –
are glued across the grain direction of the main panel’s wood. The ribs (also made
of spruce, sometimes sugar pine) are only roughly equidistant. We define the x-
direction as the grain direction of the panel and the y-direction as that of the ribs.
On many pianos, one or two "cut-off" bars (in fir), much wider and thicker than
the ribs, form, together with the sides of the soundboard, the so-called "cut-off
corners".

Two maple bars – the bridges – thicker than the ribs, slightly curved, and eventually
partly connected, are glued on the opposite face, roughly in the x-direction. The
strings of the lower and the upper notes are attached to the (short) bass-bridge and to
the main bridge, respectively. The soundboard of upright pianos is rectangular (the
strings and the x-direction running diagonally). The soundboard of grand pianos
looks like a backward slanted "L". The width of the soundboard is more or less
140 cm, corresponding to that of the keyboard. The height or length ranges from
more or less 60 cm for very small uprights to more than 2 m for exceptionally
large concert grands. The panel thickness is w ≈ 8± 2 mm, the inter-rib distance p
ranges from 10 to 18 cm in average (depending on pianos), and is slightly irregular
from rib to rib.

Playing one note corresponds roughly to the following sequence of events: the pi-
anist gives some kinetic energy to the hammer; the hammer escapes its mechanism
and interacts very briefly (less than 5 ms) with one, two, or three unison strings; the
strings vibrate and exert a localised force at the bridge of the soundboard, which
makes the soundboard vibrating and radiating sound toward listeners. In the rest of
this paper, "unison strings" will be shortened in "string".

A part of the initial kinetic energy of the hammer is very briefly given to the strings
and then slowly transmitted to the soundboard and to the acoustical field. The spec-
trum of one note (associated with a given pitch) includes a series of almost har-
monically related partials: one partial consists of the slightly different modes of
the strings and therefore, decays in time with a slow, complex pattern. For a given
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Figure 1. (a): both sides of the soundboard of a grand piano.
(b): the rib side of the soundboard of the Atlas upright piano studied in [1], with the bridges
superimposed as thick red lines and the locations of the accelerometers (in black). The
grand soundboard had one cut-off bar, eventually removed. The upright soundboard in-
clude one ribbed zone and two cut-off corners (blue-delimited lower-left and upper-right
triangles).

note, the overall decay-time of each partial must not vary too widely between two
consecutive partials. Musically, the timbre must also be balanced from note to note.

The main objective of this paper is to present a semi-analytical model of the sound-
board from which one can predict the main characteristics of its vibration when it
is excited by one string. More precisely, we focus on the vibration as seen by the
string and by the acoustical field. The quantity that represents the coupling between
the string and the soundboard is the point-mobility. According to Skudrzyk [2], the
average of the real part of the point mobility is directly related to the modal density,
which explains in part the emphasis on this parameter throughout the paper. The
models presented here have no adjustment parameters and do not rely on the re-
sults of dynamical experiments (except for the value of damping). They are meant
to explore the changes in vibrational (and partly in radiative) overall properties of
the soundboard or in string/soundboard coupling that would be induced by changes
in wood characteristics or in the geometry of the various parts of the soundboard.
Compared to a finite-element model, our purpose is to provide more understanding
and extreme numerical easiness, at the evident price of skipping details, both in
space and partly in frequency.

We assume the following approximations:

• The soundboard represents a nearly fixed end for the string: strings and sound-
board are dynamically weakly coupled and can therefore be modelled indepen-
dently. In particular, it is considered that they have independent normal modes.
Therefore, after the end of the hammer-string interaction, each string vibrates on
its normal modes and forces the vibration of the soundboard at frequencies that
have no relationship with the soundboard eigenfrequencies.

• Effects due to the shell aspect and to the internal stress of the soundboard will be
ignored.
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• Only bending waves are considered in the soundboard and in its constituents
(plates, bars), with motion in the z-direction.

• The mechanical function of the bridge where the string is attached (as seen by
the string) is represented by a mechanical admittance, or point mobility:

ξ̇(ω) = Y (ω)F (ω) (1)

where F and ξ̇ are, in the Fourier domain, the force exerted by the string and
the velocity of the soundboard. For a thin string, F and ξ̇ are vectors and Y is
a matrix. Only the vector components in the z-direction (normal to the plane
of the soundboard) and the corresponding matrix coefficient Yzz are considered.
The impedanceZQ(ω) analysed in Section 4 must be understood as ZQ = Y −1

zz
1 .

• All structures (plates, bars) are considered as weakly dissipative, with damping
values given by experiments or chosen arbitrarily.

In an experimental study [1], we analyse several features of the vibration of the
soundboard of an upright piano in playing condition: linearity, modal dampings
and modal frequencies up to 3 kHz, experimental modal shapes up to 500 Hz,
boundary conditions, numerical modal shapes given by a finite-element modelling
up to 3 kHz. As far as modal analyses are concerned, two experimental techniques
were employed. At low frequencies, the soundboard was hit at 120 points on a rect-
angular grid covering the whole soundboard and five accelerometers were installed
as marked in Fig. 1-b. Results were obtained with a recent modal analysis tech-
nique [4] based on parametric spectral analysis rather than FFT. Results are good
up to about 500 Hz. Above this limit, the energy transmitted by the impact hammer
to the structure is limited by either its weight (for light hammers) or by the duration
of the impact which is ruled by the first returning impulse from the soundboard,
in the order of magnitude of half the longest modal period. Another experimental
technique had to be employed, namely to excite the soundboard by an acoustical
field. The vibration was measured as before. Although the actual acoustical exci-
tation was continuous in time, it was processed by deconvolution as to make use
of the same modal parametric spectral analysis technique as before. However, only
the modal frequencies and dampings could be reached by this technique but not
the modal shapes. Since the excitation was not local, no point-mobility could be
derived with this technique. In these experiments, the measurements are localised
responses to the extended excitation by an acoustical field. The piano vibrating
scheme of a piano is that of an extended response to a localised excitation. Since
these situations are linked by physical reciprocity, results obtained in one situation
are the same as in the other one.

1 By definition, Yzz is ξ̇ in response to a unit force Fz combined with zero-forces in the
plane Oxy of the soundboard. Therefore, ZQ = Y −1

zz is different, in general, from Zzz

which is the response force to a unit imposed ξ̇ and zero-velocity (that is: blocked motion)
in the Oxy plane. For a detailed discussion of differences between true mobility and true
impedance measurements, see [3] for example.
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Many observations can be summarised in Fig. 2, presenting the frequency depen-
dency of the observed modal density, and in the following conclusions:

(1) The vibration is essentially linear.
(2) Except at very low frequencies, the boundary conditions are fixed.
(3) Below ≈ 1.1 kHz, the modes extend over the whole soundboard. The modal

density slowly increases and tends towards a constant value of about 0.06 modes Hz−1.
The evaluation of the modal density is the same everywhere across the sound-
board.

(4) For frequencies above ≈ 1.1 kHz, the ribs confine wave propagation and inter-
rib spaces appear as structural wave-guides (wave-number selection in the x-
direction), as already shown by Berthaut [5], § V.5. Moreover, modal shapes
appear in Fig. 15 of [1] as localised in restricted areas of the soundboard,
presumably due to the slightly irregular spacing and geometry of the ribs, in all
pianos that we have observed. Localisation implies that the number of detected
modes per frequency band may vary across the soundboard: at a given place
an apparent modal density is estimated. This phenomenon is further discussed
at the beginning of Section 3.

(5) The loss factor is ≈ 2% ± 1% over several kHz, without strong systematic
variation.

In Section 2, devoted to the low-frequency regime, we model the ribbed part of
the soundboard as a homogeneous plate and the whole soundboard as a set of sub-
plates with clamped boundary conditions, and one bar representing the main bridge.
In Section 3, devoted to the high-frequency regime, we model the soundboard as
a set of three structural wave-guides and also describe the transition with the sub-
plate model. In Section 4, we derive the local mobility of the soundboard from the
model. In Section 5, we analyse the implications of the model on the acoustical
radiation and we discuss the consequences in terms of piano manufacturing.
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Figure 2. Modal densities observed on one piano soundboard (dots, data taken from [1])
and evaluated with the model proposed in this article (lines). The estimated values are the
reciprocal of the moving average of six successive modal spacings, and reported at the
mid-frequency of the whole interval.
Observed values at points A1 (•), A2 (N), A3 (H), and A5 (∗), whose locations are given in
Fig. 1 (b). The choice for averaging explains why the first estimated point is well above the
first detected mode of the soundboard, at 114 Hz.
Sub-plate model in the low-frequency regime (§ 2): gray lines.

: "Norway spruce". : "Sitka spruce".
: "Mediocre spruce" (see Table 1 for parameter values). Wave-guide(s) model

in the high-frequency regime (§ 3), with Norway spruce parameters: colored lines.
Lower line : modal density of the (1,n)-modes in one single inter-rib space en-
closing point A1 (see Eq. (18)); the horizontal line at the right hand-side of the figure
corresponds to the asymptotic value of the modal density in this wave-guide, with all pos-
sible (m,n)-modes.
Group of thin lines: modal density in the set of three adjacent wave-guides. : set
of wave-guides in the vicinity of A1; : vicinity of A2.

: vicinity of A3; : vicinity of A5.
Thick line: transition between the three-waveguide model and the sub-plate
model (§ 3.3), for point A5.

2 Low-frequency behaviour: the sub-plate model

2.1 General presentation

On almost all pianos, the main bridge extends throughout the entire soundboard and
nearly reaches the rims. As shown in Fig. 3, we consider four zones of the sound-
board: each side of the main bridge, with a fictitious extension up to the rim (ribbed
areas RA1 and RA2) and the two cut-off corners (CC1 and CC2, unribbed except
on some large grand pianos). On some pianos, mostly grands, only one or even no
cut-off corner may exist. It is assumed that the cut-off bars and the main bridge
are stiff and massive enough to keep modes nearly confined within one of these
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Figure 3. Geometry of the subplates: cut-off corners (CC1 and CC2), ribbed areas of the
soundboard (RA1 and RA2, the latter including the bass bridge). The main bridge is con-
sidered as one of the sub-structures. The orthotropy angle θ⊥ (defined here as the angle
between the keyboard-side of the soundboard and the main axis of orthotropy) is equal
to −32.5o. The panel thickness and cut-off corners thickness are constant and equal to
w=8mm.

regions. As discussed at the end of this section, this hypothesis is not fulfilled by
the bridge, for the first modes. In the model proposed for the low-frequency regime
(below ≈ 1.1 kHz), the main bridge is also considered as a vibrating structure. The
bass bridge is considered as adding mass to the ribbed area (being short and thick,
its first eigenfrequency is relatively high). The dynamics of the cut-off bars is ig-
nored. The main bridge and the different regions of the soundboard are considered
as weakly coupled homogeneous structures. We tested the model by comparing the
predicted and the measured modal densities. In the hypothesis of weakly coupled
subsystems, the modal density of the soundboard n(f) is the sum of the modal
densities of each structure considered separately ([6], Eq. (30), referring to [7],
Chapter VI, §1.3):

n(f) = nmain bridge + nRA1 + nRA2 + nCC1 + nCC2 (2)

Given the hypotheses presented in Section 1, the plates that compose the piano
soundboard are characterised by their surface densities µ = ρh =M/A (in generic

terms), their rigidities D =
Eh3

12(1− ν2)
(idem) or dynamical rigidities D =

D

µ
,

their areas A and their shapes and boundary conditions. As mentioned above, the
surface density of RA2 includes the mass of the bass bridge: µRA2 = (MRA2 +
Mbass bridge)/ARA2.

The cut-off corners are modelled as orthotropic plates (see Table 1 and Fig. 3 for
the values of the parameters).

Each side of the main ribbed zone of the soundboard is considered as a homo-
geneous orthotropic plate with similar mass, area, and boundary conditions. Ho-
mogenisation is done according to Berthaut (Appendix of [8]), with values of the
densities, elastic moduli, and principal Poisson’s ratios of the wood species given

7



EL (GPa) ER (GPa) GLR (GPa) νLR ρ (kg m−3)

"Sitka spruce" 11.5 0.47 0.5 0.3 392

"Mediocre wood" 8.8 0.35 0.4 0.3 400

"Norway spruce" 15.8 0.85 0.84 0.3 440

Fir 8.86 0.54 1.6 0.3 691

Maple 10 2.2 2.0 0.3 660

Table 1
Mechanical characteristics of spruce and fir species selected for piano soundboards. The
data of the first and fourth lines are given by Berthaut [8] with methodology given in [5]
§ V.2.1, those of the second line by French piano maker Stephen Paulello, and the others
by Haines [9]. The subscripts "L" and "R" stand for "longitudinal" and "radial" respectively.
The radial and longitudinal directions refer to how strips of wood are cut and correspond
to the "along the grain" and the "across the grain" directions respectively. νLR is called the
principal Poisson’s ratio.
In the geometry of the soundboard, the x- and y- directions correspond to L and R respec-
tively for the spruce panel: Ex = EL, Ey = ER, Gxy = GLR.

in Table 1. The choice for the values of the elastic constants and densities of the
woods is discussed in § 2.3. Since the ribs are slightly irregularly spaced along the
x-direction and have varying heights in the y-direction, we adopt the approxima-
tion that the flexibilities of the equivalent plate (inverse of rigidities) are the average
flexibilities in each direction. In the piano that we have observed, the orthotropy ra-
tio DH

x /D
H
y of the homogenised plate is only ≈ 1.4.

The frequency limit of the low-frequency regime is reached when the ribbed area
of the soundboard cannot be considered as homogeneous. This occurs when the
wavelength in the spruce panel (considered without ribs) becomes comparable to
the inter-rib space p. Given the generic dispersion equation Eq. (4) in an orthotropic
plate, it comes:

ωs
g =

(

π

p

)2

Dpanel
x

1/2

(3)

and the frequency limit of the regime flim = min(f s
g) is approximately 1.1 kHz.

2.2 Modal densities of the separate elements

In an orthotropic plate with thickness h, density ρ, Young’s moduli Ex and Ey,
orthotropic angle θ⊥ 6= 0 (defined as the angle between the long side of the rect-
angular plate and the main axis of orthotropy, see Fig. A.1), shear modulus Gxy,
principal Poisson’s ratio νxy and modelled by the Kirchhoff-Love theory, the dis-
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persion equation writes, in polar coordinates:

k4
[

Dx cos4(θ − θ⊥) + 2Dxy cos2(θ − θ⊥) sin
2(θ − θ⊥) +Dy sin4(θ − θ⊥)

]

= ρ hω2

(4)
with:



















Dx =
Exh

3

12(1− νxyνyx)
Dxy =

νyxExh
3

12(1− νxyνyx)
+
Gxyh

3

6

Dy =
Eyh

3

12(1− νxyνyx)
νyxEx = νxyEy

(5)

We adopt the following notations 2

ζ =

√

Ex

Ey
=⇒ Dx

Dy
= ζ2 (6)

γ =
Dxy

√

DxDy

(7)

α2 =
1

2
− Dxy

2
√

DxDy

=
1

2
(1− γ) (8)

It is shown in the Appendix A that the asymptotic modal density of a rectangular
orthotropic plate is independent of the orthotropy angle θ⊥:

n∞,orth =
A

π

√

ζ ρ h

Dx
F (α) =

A

2Dx
1/2

ζ1/2 F (α)

F (0)
=

A

2Dx
1/4
Dy

1/4

F (α)

F (0)
(9)

with F (α) =
∫ π/2

0

(

1− α2 sin2 θ
)−1/2

dθ (10)

We did not find in the literature an established formula for the low-frequency cor-
rection accounting for the boundary conditions of an orthotropic plate with arbitrary
θ⊥. Since it is a problem of practical importance (many modern materials are or-
thotropic and modal analysis is applicable in the low-frequency range), we give a
calculation of this correction in the Appendix A, for the case of a rectangular plate.

n(f) = n∞



1 +
ǫL̃

√

4πAf



 (11)

where f = f n∞ and L̃ are given by Eq. (A.16). As for an isotropic plate, the cor-
rection is negative for constrained boundary conditions (ǫ = −1). For an arbitrary

2 ζ is the square root of the orthotropy ratio. γ is called the orthotropy parameter. The
orthotropy is said elliptic when γ = 1. For most materials[10], γ is less than 1.
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contour geometry, we propose Eq. (A.18) as a generalised expression of Eq. (A.16)
for L̃.

The main bridge is modelled by a bar of length Lb and dynamical rigidity Db, its
modal density is independent nb(f) of the boundary conditions [11]:

nb(f) =
Lb

Db
1/4

(2π f)1/2
(12)

2.3 Discussion

For a given geometry, the model presented above is predictive only if the density
and elastic parameters of wood are known. This was not the case for the piano that
we have analysed experimentally. In [1], we presented results of a finite-element
model with various values for wood parameters. Even though the values of elastic
parameters, on one hand, density on the other hand, may display large variations
(say, up to 40%), the span of their ratio is much more restricted since, for a given
species, denser comes along with stiffer. We present in Fig. 2 the modal densities
predicted by Eq. (2) and the models derived above for the three sets of values indi-
cated in Tab. 1. The values predicted by the model are systematically higher than
those displayed by the FEM, which is to be expected since finite-element models
have generally a stiffening bias.

As shown by the modal shapes displayed in Fig. 14 of [1], considering the main
bridge as a separation between two zones of the soundboard is not a valid hypothe-
sis for the very first modes but is acceptable as early as 250 Hz. Also, the boundary
conditions for the very first modes are not fully constrained. Since assigning a nu-
merical value to the modal density requires averaging, this concept is not applicable
to the lowest modes anyway. Upper in frequency, some modes are confined to one
side of the bridge whereas others extend on both sides, the bridge representing a
nodal line. Therefore, the assumption of separate coupled plates might appear as
not fully valid. However, weakly coupled plates or one plate including both yield
almost the same asymptotic modal density since n∞(f) is proportional to the sur-
face of the plate. Only the low-frequency correction would differ since the overall
perimeter is less than the sum of the two perimeters. The alternate model of a plate
stiffened by a bar (the bridge) presented in Section 4, and others, also presented
in [12], do not exhibit better matches with experimental results of the observed
modal density in the low-frequency regime.

The influence on the modal density of the internal stress imposed to the sound-
board by downbearing by the strings and constrained boundary conditions at the
rim has not been modelled here. The FEM modelling presented in [1] showed that
the magnitude of these effects is small, in the range of the approximations made
in this paper. Including these effects in the model, presumably by an approximate
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analytical approach, is left for future research.

3 High-frequency behaviour: coupled wave-guides

For frequencies above ≈ 1.1 kHz, mode counting yields different results depend-
ing on the way modes are detected. As shown by numerical estimations of modes in
Fig. 16 of [1], counting all the modes of the soundboard results in a modal density
continuing the low-frequency trend. However, counting only the modes detected
at one given point results in a modal density n(f) depending on the point where
it is evaluated and decreasing with frequency. It must be noticed in Fig. 2 that the
apparent abruptness in the fall of n(f) depends on how it has been estimated: if
the average mean had been calculated over less than 6 modal spacings (≈ 120 Hz),
the curve would have been less regular in general and the abruptness more pro-
nounced. However, the main phenomenon responsible for the dependency of n(f)
on the point where it is evaluated is the localisation of modes in the x−direction, as
shown in [1]. For non-localised modes (low-frequency regime), the vibration has
the same order of magnitude everywhere, except in very restricted areas (nodes).
For localised modes (high-frequency regime), the amplitude of vibration outside
the region of localisation decreases rapidly with distance (localised modes are as-
sociated with evanescent waves). Therefore, the detection or the non-detection of
a localised mode in a given point is much more robust to measurement conditions
(exact position of the measuring device or excitation, signal-to-noise ratio, etc.)
than it would be for an non-localised mode 3 . Altogether, the observations and as-
sumptions presented above for the high-frequency regime seem reasonable enough
to refer to n(f) as the apparent local modal density.

It is shown below that the confinement of the waves between ribs (wavenumber
selection) together with localisation are responsible for the frequency dependency
of n(f) above flim. The vibration inside one wave-guide is described in § 3.1, the
association of adjacent wave-guides is discussed in § 3.2 and a transition zone with
the low-frequency regime is proposed in Section 3.3.

3.1 The wave-guide model

One inter-rib region, schematically represented in Fig. 4, behaves like an orthotropic
plate of high aspect ratio, with special orthotropy. It is limited in width by the ribs
and in length by the rim of the soundboard or by the cut-off bars. As a structure
coupled to the rest of the plate, the rib should normally be considered with its

3 The non-detection of a non-localised mode requires that the measuring device be set
exactly at a node. Additionally, the amplitude at the node depends strongly on damping.
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Figure 4. Partial scheme of the soundboard between two successive ribs. The thickness of
the spruce panel is w, the height of the rib is β, the width of the rib is a. Lg is the average
length of one inter-rib region (inter-rib spaces are not rectangular) and varies considerably
among inter-rib spaces.

full dynamics, including rotation. It is assumed here that, above flim, the ribs are
heavy enough to impose a nearly fixed condition to the bending transverse waves
in the inter-rib region. Although this is true to a lesser extent, it is also assumed
that torsion in the ribs do not influence significantly these bending waves. In other
words, we assume that the dynamics of the ribs can be ignored and that they repre-
sent hinged lines for the vibration in each inter-rib space. The propagation model is
that of a structural wave-guide where transverse modes, with discrete wavenumbers

kx,m = m
π

p
, propagate in the y-direction.

For a given kx,m, the dispersion law (4) in the orthotropic portion of the panel
between two ribs becomes an equation on ky only:

k4y + k2y
2Dxy

Dy
k2x,m +

Dx

Dy
k4x,m − ρ hω2

Dy
= 0 (13)

where the Di coefficients are given in Eqs. (5). With kp =
π

p
and notations intro-

duced in Eqs. 3, 6 and 7, it comes:

k4y + 2ζγ k2x,m k
2

y + ζ2 k4x,m

(

1− ω

m2ωs
g

)2

= 0 (14)

Introducing the m-dependent normalisation relationships:

k̃y,m =
ky
mkp

ω̃m =
ω

m2 ωs
g

(15)
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a dispersion equation of propagating waves in the wave-guide, identical for all
transverse modes, is obtained:

k̃2y,m = ζ
[

√

ω̃2
m − (1− γ2) − γ

]

(16)

Each angular frequency m2 ωs
g appears as low cut-off angular frequency associated

with the m-th transverse mode propagating in the wave-guide of width p. The dis-
persion curves ky(f) for the two first propagating transverse modes m = 1 and
m = 2 of an inter-rib space with p = 13 cm are represented in Fig. 8. They differ
noticeably from the succession of pass-bands (separated by stop-bands) that is ob-
served in a more general treatment of the dynamics of the ribbed panel (see [13]
for example).

In the piano soundboard, the wavenumbers ky,n (in the y-direction, parallel to the
ribs) are determined by the length Lg of the wave-guide and by the boundary con-
ditions at the soundboard rim or at the cut-off bars. The ribs defining an inter-rib
space have not the same lengths. We assume clamped boundary conditions (as in
Section 2) and take for Lg the length of the longest rib. The wavenumbers ky,n are

thus approximated by
(

n+
1

2

)

π

Lg
with n ∈ N

∗. The modal density in the wave-

guide, defined as the reciprocal of the interval between two successive modal fre-
quencies, can be estimated analytically by the usual method, briefly outlined below.

For a given kx = mkp, the (m, y)-modes with angular frequency less than a given
value ω⋆, have the eigen-wavenumbers less than k⋆y, given as a function of ω⋆ by
Eqs. (15) and (16). In the ky-space, these modes occupy the length |k⋆y|. Since each

mode occupies a segment of length
π

Lg
, there are N⋆ = k⋆yLg/π such modes. Dif-

ferentiating with regard to the frequency yields the modal density:

nm(f) =
∆N

∆f
=

dN⋆

dk⋆y
2π

dk⋆y
dω⋆

= 2Lg
dky
dk̃y

dω̃
dω

dk̃y
dω̃

(17)

=
Lg p

πDx
1/2

f̃m

m
√

f̃m
2 − (1− γ2)





ζ
√

f̃m
2 − (1− γ2) − γ





1/2

(18)

where f̃m =
f

m2f s
g

.

For the first transverse mode (m = 1), the theoretical modal density of one of the
wave-guides is reported in Fig. 2 (lowest solid thin blue line).

As frequency increases, transverse modes corresponding to all possible values of
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m gradually appear in the wave-guide:

n(f) =
Lg p

πDx
1/2

+∞
∑

m=1

f̃mH(f̃m − 1)

m
√

f̃ 2
m − (1− γ2)





ζ
√

f̃ 2
m − (1− γ2) − γ





1/2

(19)

where H(u) is the Heaviside function. However, since the second transverse mode
appears above ≈ 4.4 kHz, no jump in n(f) appears in Fig. 2. Those will be seen
in the next sections, devoted to the synthesis of the mobility and to the acoustical
radiation scheme.

Asymptotically, the modal density of the wave-guide, with all propagating trans-
verse modes, is that of a narrow orthotropic plate of width p and length Lg (see
Eq. (9) with A = pLg), represented as an horizontal line at the right of Fig. 2.

3.2 Discussion

If the ribs were regularly spaced, the waves (with discrete values of kx) would
extend throughout the entire soundboard and the observed modal density would
be the same everywhere. As discussed above, irregular spacing is a very probable
cause for modal localisation. Inspired by Anderson’s theory of (weak) localisation
in condensed matter systems, the localisation of vibration in irregular mechanical
structures has been extensively studied: see [14] for an introduction. We did not
find established theoretical means for predicting the localisation areas in the piano
soundboard but there is no theoretical reason either for restricting the vibration to
one structural wave-guide. Moreover, the shapes of the localised modes reported
in Fig. 15 of [1] show that they extend over more than one, but only a very few
inter-rib spaces. Following a remark made earlier on the fast spatial attenuation
of localised modes, we propose a simplified model in which the vibration extends
over three adjacent wave-guides, as represented in Fig. 5. This assumption is also
consistent with the fact that bending waves in adjacent wave-guides are coupled by
the finite impedance of bending waves in ribs, particularly near the rim where the
ribs are lower (smaller β).

Altogether, we consider that (a) modes are mainly located in one wave-guide and
selected according to the dimensions of this each wave-guide, (b) they have a con-
tribution in the two adjacent wave-guides, (c) more remote regions can be con-
sidered as quasi-nodal. When the whole soundboard vibrates under an acoustical
excitation, one accelerometer must be sensitive, in this model, to the modes located
in three wave-guides. The modal density observed at that point is the sum of the
modal densities in each of the three wave-guides, as given by Eq. (19). As shown
by Fig. 2, this simplification is in excellent accordance with the experimental re-
sults above 1.5 kHz. One notices also that the model and the observations coincide
on the differences between points. Moreover, multiplying the modal density in one
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wave-guide by three (not represented in Fig. 2) would not give as a good fit with ob-
servations as that obtained here by accounting for the fact that the two neighbouring
wave-guides have different lengths.

Figure 5. Coupling between the bending waves (in the y-direction) in wave-guides sur-
rounding the i-th one, as excited at Q, chosen here at the middle of the i-th wave-guide
(width pi). Wave-guides are separated by ribs (grey rectangles). When a force FQ is applied
at point Q, only the i − 1-th, the i-th, and the i + 1-th wave-guides are excited (see local-

isation effect in text) and vibrate in their first transverse mode kx,j =
π

pj
. The impedance

Zj(ω) is the effect of the bending waves dynamics in the j-th wave-guide. Coupling results
by the summation of the impedances (see text).

We analyse now the implications of the three-wave-guide model in terms of the
mobility or impedance measured at one point, within the hypotheses and approxi-
mations given in the Introduction. Mechanically, coupling between bending waves
in the wave-guides operates via the transverse mode. By definition, an impedance
Zj (considered here at the mid-line of wave-guide j) is created by the dynamics
of the bending waves in the j-wave-guide (Fig. 5, see Section 4 for the analytical
treatment). As a thought-experiment, cancelling the Young’s modulus Ey (but not
Ex) and the density ρ in the central and right wave-guides would annihilate forces
corresponding to these waves, thus cancelling Zi and Zi+1. In such a circumstance,
imposing a motion ξi,Q at Q would still create the shape of the first transverse mode
in the central wave-guide and thus create a motion ξi−1, by coupling between the
transverse modes at y = yQ; bending waves would therefore be generated in the
left wave-guide. The force needed to establish the transverse mode in the central
wave-guide is purely static and the corresponding impedance Zi,Ey=0 can be ne-
glected above ωs

g. Assuming perfect coupling and Q at the centre of the central
wave-guide, the impedance ZQ would then be Zi−1. In turn, these waves in wave-
guide i−1 would induce a motion in the central wave-guide, opposite to the motion
in the left wave-guide. In normal circumstances (finite Ey and ρ), it follows that the
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impedance created at Q is

ZQ =
i+1
∑

j=i−1

Zj (20)

The sort of independence between the dynamics in the x-direction (dealing with the

transverse mode kx =
π

p
and its extension in the two adjacent wave-guides only)

and in the y-direction (propagation of bending waves in one wave-guide) explains
the somewhat unusual circumstance in which modal motions and local forces add,
yielding the addition of the modal mobilities inside a wave-guide (see Section 4)
and the addition of wave-guide impedances.

Apparently, the three-waveguide model cannot account for the observed situation
of sympathetic strings: playing a low note excites strings of a higher note (with its
damper up) having common partials with the low note (usually, the fundamental
of the high note). However, this situation implies a number of phenomena that are
not examined in this paper. In the sympathetic strings situation, the vibration of the
soundboard is forced at frequencies defined by the string(s), therefore combining
several modal shapes. In particular, a low-frequency mode (that is: with a low value
of the eigenfrequency) does respond, although weakly, to a high frequency excita-
tion and can therefore excite a remote string. Another important feature is probably
that modal dampings are much lower for string modes than for soundboard modes.
Finally, it must be noticed that the coupling of remote strings occurs via the motion
of the main bridge. In the model, its transverse motion is considered as small com-
pared to that of the rest of the soundboard but some significant torsion may well
occur. In turn, parametric excitation of transverse string waves by the slight vari-
ations in string tension induced by the motion of the bridge in the string direction
may also play a role in the generation of the sympathetic strings effect.

3.3 Transition between the plate and the wave-guide models

Between 1 and 1.5 kHz, a more elaborate model taking into account the dynamics of
the ribs would be necessary in order to describe the transition between the sub-plate
and the 3-wave-guides models. We present here a cruder description. As explained
at the end of § 2.1, the sub-plate model breaks at flim (the smallest of f s

g), given by
Eq. (3)), defining the same upper bound of the sub-plate model for all measured
points. We define the centre of the transition zone (noted by a double grey arrow
in Fig. 2) as the frequency for which the sub-plate model and the three-waveguide
model have the same modal density (e.g., at ≈ 1310 Hz for point A5, as shown by
the intersection of the corresponding modal density curves in Fig. 2). This supposed
"centre" also defines, somewhat arbitrarily, the upper bound of the transition zone.

Starting at the upper bound of the transition zone (where the wave-guide model
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becomes fully valid) and decreasing frequency, the modes are expected to extend
gradually throughout the soundboard. Guided by the experimental results, we can
expect that this makes the region of the central wave-guide more remote, and there-
fore, more nodal (for modes located in remote wave-guides) than when modes are
localised in the adjacent wave-guides. In consequence, the modal density should be
less than what it would be if the model was still holding. Arbitrarily, we consider
that the modal density keeps the same value as the frequency decreases, down to the
frequency at which the modal density of the single central wave-guide is reached.
From there, we took a linear transition toward the lower bound of the transition
zone (upper bound of the sub-plate model), at f s

g. The transition is represented by
the thick plain broken line in Fig. 2.

4 Synthesised mechanical mobility and comparison with published measure-

ments

In this section, we evaluate the point mobility at different points of the soundboard.
The point mobility at the bridge, where a string is attached, describes the coupling
between the string and the soundboard. It is a key point for numerical sound syn-
thesis based on physical models and more generally, for the understanding of sound
characteristics: crucial musical parameters such as the damping of coupled string
modes depend on the mechanical mobility and on the mistuning between unison
strings [15]. In very generic terms, the modal density involves a ratio between
mass and stiffness whereas mobilities involve their product. A good model should
therefore be able to predict both.

Under the assumptions presented in Section 1, the mobility YQ at a pointQ(xQ, yQ)
of the soundboard can be expressed as the sum of the mobility of the normal modes,
considered as generalised coordinates, each having the dynamics of a linear damped
oscillator 4 :

YQ(ω) =
ξ̇Q(ω)

FQ(ω)
= jω

+∞
∑

ν=1

ξν,Q
2

mν (ω2
ν + jηνωνω − ω2)

(21)

where mν is the modal mass, ην the modal loss factor, ων the modal angular fre-
quency, ξQ the transverse displacement at Q, and ξν,Q the normalised displacement
at Q for the mode ν (modal shape). In this article, the modal mass is defined as the
mass that gives the same maximum kinetic energy to the harmonic modal oscillator
as that of the actual plate when both vibrate at the corresponding modal frequency
with a unit maximum displacement.

With a modal density of roughly 0.02 Hz−1, about 200 modes are potentially in-

4 The convention for time-dependency is exp(jωt).
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volved in the [0,10] kHz frequency range. The modal description does not bear
any musical significance in itself and it is hard to think of cues that would help to
sort out this huge number of modal parameters or to establish a hierarchy between
them. If the quality of a piano was depending on the particular geometry of (some)
modal shapes or on the particular values of (some) modal frequencies, those would
be adjusted by piano makers. This is not the case, except perhaps at very particular
locations like string-crossing, bridge ends or where the number of unison strings
changes. Therefore, it seems reasonable to derive the values of the modal parame-
ters from physical models, which depend on a much smaller number of parameters.
We present a mode-by-mode synthesis (§ 4.1) and a mean-value approach (§ 4.2)
based on Skudrzyk’s theory [2].

We are not interested here in specific point-locations. Modal shapes can thus be
described by random distributions:











Plate: ξν,Q = sin 2πα sin 2πβ

Wave-guide: ξν,Q = sin(2πkx,m xQ) sin 2πβ
(22)

where the random quantities α and β are uniformly distributed in [0,1]. For Q
near the centre of a waveguide, sin(2πkx,m xQ) is approximately 1 for m odd and
approximately 0 for m even. With the chosen definition of the modal mass and
normalisation of modal shapes, it follows that all modal masses, whether for a plate
or a wave-guide, are given by mν =Mplate,waveguide/4.

4.1 Synthesised mobility at the bridge

In the model described in Section 3, the main bridge is considered as a nodal line
for most modes of the rest of the soundboard. Therefore, no sensible value of ξν,Q
can be assigned for these modes when Q is on the bridge. We follow an other ap-
proximate model given by Skudrzyk [2, p. 1129, second approximation presented]
for a plate stiffened by a bar:

• The impedance of the soundboard at the bridge is the sum of the impedance of
the bridge, considered as a beam (see next points below for its characteristics),
and that of the central zone of the soundboard, considered as a plate (idem).

• The coupling between the bridge and the plate is described by a modified modal
density of the bridge and by an added stiffness on the plate.

• The modified modal density of the bridge is obtained by adding to the bridge the
mass of the plate.

• In its direction, the bridge imposes its stiffness to the plate (modified orthotropy
compared to § 2.1, taken arbitrarily as elliptic).
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A synthesised impedance (reciprocal of the point-mobility) at the bridge is pre-
sented in Fig. 6, according to Eqs. (21) and (22).
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Figure 6. Synthesised impedance at the bridge (blue solid line) and characteristic
impedances (red lines, see § 4.2).
Dashed line: characteristic impedance of the soundboard Zc = 1/Yc, resulting from the
sum of the characteristic impedances of the ribbed zone and of the bridge.
Dash-dotted line: characteristic impedance of the ribbed zone of the soundboard, with a
stiffness in the bridge direction imposed by the bridge (see text).
Dotted line: characteristic impedance of the bridge considered as a beam mass-loaded by
the plate (see text).

The first two values of the modal frequencies are those measured experimentally
(114 and 134 Hz) but any physically reasonable choice would be acceptable since
we are not interested in specific modal values. Beyond homogenisation that has
been done in the low-frequency regime, a significant degree of irregularity re-
mains in the soundboard, which must be considered here as uncertainty. According
to [16], the spacing of the modal frequencies obeys a Rayleigh distribution instead
of the Poisson distribution which rules modal spacings of regular structures. The
values of the modal frequencies are determined by the random distribution and the
modal density given by the model presented in Section 3:

fν+1 = fν +
1

n(fν)
r (23)

where r is a random number with the following probability distrubtion:

pd(x) =
π x

2
exp

(

− π x2

4

)

(24)
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of mean 1 and variance
4

π
− 1. The same randomisation of the modal spacing was

chosen by Woodhouse [17] for his statistical guitar 5 . WhenQ is outside the cut-off
corners, it must be considered as a node for the modes of the cut-off corners: the
modal density in Eq. (23)) is restricted to that of the ribbed zone of the soundboard.
The modal frequencies of the bridge have not been randomised.

In accordance with the experimental values that have been found for the loss fac-
tor [1], we attribute the following values to the modal dampings:

ην =
αν

π fν
=

2.3

100
r (25)

where r i a random number following a chi-square probability distribution, as pro-
posed by Burkhardt and Weaver [18, Eq. 8].

As long as the wavelength in the bridge is large compared to the inter-rib spacing,
the bridge is coupled to the whole soundboard and the effect of localisation is ex-
pected to be lost. It is expected to reappear when the half-wavelength in the bridge
becomes equal to the inter-rib spacing. We have limited the frequency range of the
synthesis to this limit.

4.2 Comparison with experiments: the mean-value approach

The only reliable and well-documented point-mobility measurements of a piano
soundboard available in the literature are those by Giordano [19]. This author
presents his measurements in the form of impedances. Giordano’s soundboard dif-
fers in size from ours by only a few centimetres. We form the hypothesis that these
pianos are dynamically comparable. This hypothesis is grounded by the observation
that different pianos that have been measured in the literature seem to display com-
parable equivalent isotropic rigidities (see Appendix B). A one-by-one comparison
between modes, peaks, etc. between two pianos would be meaningless. We have
adopted the mean-value approach of Skudrzyk [2]. His theory predicts the value of
the geometrical mean of the real part of the mobility of a weakly dissipative struc-
ture as a function of the modal density and the mass of the structure. It also shows
that weak damping has no influence on the average level of the mobility. An outline
and the main results are given below.

For a given mode, the geometrical mean of ℜ(YQ(ω)) is:

Gν =
n(f)

4Mν
with Mν = M

< ξ2ν >

ξ2ν,Q
(26)

5 See Eq. 5, where it seems that (2/π) has been written instead of (2/π)1/2.
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where M is the total mass of the structure.

For a plate or a beam, averaging on the modal shape and then on the modes yields
the real part of the so-called characteristic mobility:

Gc,plate,beam =
n

4Mplate,beam

. The geometrical mean of the imaginary part of the mobility differs between plates
and beams. Finally, the characteristic mobilities are:

Yc,plate(f) =
nplate(f)

4Mplate
Yc,beam(f) =

nbeam(f)

4Mbeam
(1 − j) (27)

In a waveguide, averaging on the modal shapes yields a different result:

Gc,guide,m = ǫQ,m
nguide

2Mg
, where, as shown above, ǫQ,m is shared by all modes corre-

sponding to a given propagating transverse mode and depends on the location of
Q. Near the middle of the wave-guide, ǫQ,m is approximately 1 for odd values of m
and approximately 0 for even values of m. All the dispersion branches in the wave-
guide (corresponding to the successivem-th propagating transverse modes) behave
asymptotically like the dispersion equation of a beam (see Eq. (16) and Fig. 8). We
consider therefore that Bc,guide ≈ −Gc,guide. Accounting for the coupling of three
wave-guides described by Eq. (20), it comes:

1

Yc,3guides(f)
=

3
∑

k=1





∑

m=1,2,...

nguide,k(f)

2Mguide,k
(1 − j)ǫQ,m





−1

(28)

At the bridge, the characteristic impedances (reciprocal of the mobilities given by
Eq. (27)) add, for the beam and plate modified as described in § 4.1. They are
represented in Fig. 6 and their sum is reported in the left frame of Fig. 7, taken
from Giordano.

Far from the bridge (right frame of Fig. 7), the characteristic mobility was computed
according to Eq. (27) for the low-frequency regime and to Eq. (28) for the high-
frequency regime, at a point similar to point "X" in Giordano’s piano (see Fig. 1 (a)
in [19]). The low-to-high transition for the modal density is described in § 3.3. At
the high-frequency end, the contribution of the second propagating transverse mode
is somewhat arbitrary since the precise location along the x-axis is unknown.

Given the approximations made in the models and their application to a piano that
we did not measure directly, one may consider that the match is striking, except
in the transition zone, as could be expected. The excellent agreement in the upper
frequency range may be considered as a partial confirmation of the coupling scheme
devised in Section 3.2. Above the frequency for which half of the wavelength in the
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bridge becomes comparable to the inter-rib spacing (≈3 kHz), the bridge begins
to "see" the ribs. This might be an explanation for the impedance decrease at the
bridge, above 3 kHz (left frame of Fig. 7). Again, irregular spacing is likely to cause
localisation, coming along with a decrease in impedance (right frame of Fig. 7,
above ≈1 kHz.

Figure 7. Magnitude of measured point-impedances by Giordano[19] (solid black lines)
and characteristic impedances modeled on a similar piano (dashed red lines, see text). Left
frame: at the bridge, where strings C4 are attached. Right frame: far from the bridge, be-
tween two ribs ("X"point in Fig. 1 (a) of [19]).

5 Some features of the acoustical radiation

In this section, we examine how the soundboard acoustical radiation differs from
the standard radiation scheme of a plain plate with the aim of examining some
allegedly critical factors in piano making. For the sake of simplicity, we restrict
our attention to the dispersion equations. Acoustical and structural waveumbers are
denoted with "a" and "s" superscripts respectively.

5.1 Radiation regimes

Waves in a plate radiate efficiently (that is: far from the plate plane) when their
wavelength is larger than that in air (supersonic waves). For structural waves prop-
agating in a direction with a dynamical rigidity D, this occurs at a frequency

f =
c2a

2πD
1/2

. For an orthotropic plate, the transition from the subsonic to the su-

personic regime is gradual, beginning at the frequency corresponding to the larger
rigidity. For the values of the spruce parameters adopted above, the dynamical
rigidities are larger in the x-directions: ≈ 150 in spruce plates (cut-off corners,
usually ribless) and 100 m4s−2 in the homogenised central zone. The coincidence
frequencies are 1.5 and 1.8 kHz respectively, both above the upper limit of the

22



low-frequency regime. In this regime, the soundboard behaves therefore like a set
of plates in their subsonic regime (analysed in [20], for example). For the ho-
mogenised ribbed zone of the soundboard (main area of acoustical radiation), the
lowest of the dispersion curves is represented in Fig. 8 (thick solid red line), with
fc defined as the lowest frequency corresponding to coincidence in this orthotropic
plate:

fc =
c2a

2πDH
x

1/2
(29)

Above f s
g , the soundboard vibrates similarly to a set of three adjacent wave-guides.

We suppose that the rest of the soundboard is at rest, more or less ensuring a baf-
fle for the acoustical field. Acoustical radiation by ribbed panels has been studied
extensively since the 60’s and 70’s by Heckl, Maidanik, Mead, Mace, and many
others since. With regularly spaced ribs, the vibration extends all over the plane.
The localised modal shapes are not known with precision in the x-direction but in
any case, their spatial spectrum in this direction is maximum (with a more or less

strong peak) at ks
x ≈ mπ

p
.

The structure-borne and the air-borne waves have the same spatial spectra in the xy-
plane. Imposing a stationary field in the x-direction (with ka

x = mπ/p) yields the
following dispersion equation for the acoustical planes waves radiated in a direction
belonging to the yz-plane with wave number ka

yz:

(

ka
yz

)2

+

(

mπ

p

)2

=
ω2

c2a
(30)

The first two dispersion branches (m = 1 and m = 2) are drawn in Fig. 8 (thin
dashed and dotted blue curves). Defining

f a
g =

ca

2p
(31)

these dispersion branches intercept the x-axis at f a
g and 4 f a

g . Their asymptots are
the air dispersion line ka = 2π f/ca (thin dash-dot blue curve). Due to the breadth of
the ks,a

x -spectrum (corresponding to localisation), these curves must be considered
as the mean-lines of dispersion bands.

The ky components of the spatial spectra are also equal. The far-field acoustical
radiation in the z-direction exists only if |ka

z| is positive. For waves propagating in
the y-direction (which are radiated by the structural waves in the wave-guides), |ka

y|
must be less than |ka

yz|: this is the usual "supersonic condition" for the radiation of
a structure-borne wave.

It is clear in Fig. 8 that the subsonic or supersonic nature of the structural waves
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Figure 8. Dispersion curves of structural and acoustical waves generated inside and ra-
diating outside the piano soundboard: supersonic vs. subsonic structural waves. Thick red
curves: bending waves in the homogenised plate equivalent to the ribbed zone of the sound-
board and in a structural wave-guides. Thin blue curves: corresponding radiated acoustical
waves. The acoustical radiation is efficient (supersonic waves) for frequencies at which a
blue curve is above the red curve with the same motive.

and : |ks
x(f)| for the fastest bending waves (x-direction, lowest

fc) in the homogenised plate equivalent to the ribbed zone of the soundboard, respectively
below and above f s

g (crossing the dispersion line of plane waves in air at fc).
: |ks

y(f)| for bending waves in the wave-guide between the second and
third ribs for the first transverse mode of the guide, starting at f s

g (see Eqs. 3 and 16).
: |ks

y(f)| for bending waves in the wave-guide between the second and third ribs for the
second transverse mode, starting at 4 f s

g.
and : |ka(f)| for plane waves in air, respectively below and be-

yond f s
g (also the asymptot of the other dispersion curves in air). : |ka

yz(f)| for
acoustical waves radiated by the main spatial component kx = kp of the first propagating
transverse mode in the wave-guides, starting at f a

g (see Eqs. 31 and 30).
: |ka

yz(f)| for acoustical waves radiated by the main spatial component
kx = 2 kp of the second propagating transverse mode in the wave-guides, starting at 2 f a

g .

depends on the relative values of f a
g (given by Eq. (31) and f s

g (given by Eq. (3)).
We examine now what is the condition on f for the structure-borne wave to be
supersonic. With the following notations and normalisations (identical to Eq. (15)
only for m = 1):

K̃ =

(

k

kp

)2

Ω̃ =

(

ω

ωs
g

)2

(32)

the dispersion curves Eqs. (16) and (30), respectively in wave-guides and air, are
transformed into:

K̃s
y = ζ

√

Ω̃ − m4(1− γ2) − m2 ζ γ (33)

K̃a
yz =

Ω̃

Ω̃a
g

− m2 (34)
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Figure 9. Dispersion curves for structural and air-waves carried by the first transverse
mode of the wave-guide (m = 1), in normalised, squared coordinates Ω̃ =

(

ω/ωs
g

)2
and

K̃ = (k p/π)2.
Red solid parabola: structural waves in a wave-guide (Eq. (33)), with x-intercept at Ω̃ = 1.
Blue straight lines: air waves (Eq. (34)) with x-intercept at Ω̃a

g.

The structural parameter p/w determines the position of the blue line. Ω̃L is the value
of Ω̃a

g for which the blue line is tangent to the red parabola. The acoustical radiation is
efficient (supersonic waves) for frequencies at which a blue straight line is above the red
parabola.
Solid: f a

g < fL. Dashed: fL < f a
g < f s

g. Dash-dot: f a
g > f s

g (as usually observed in pianos).

The two equations are graphically represented in Fig. 9 for m = 1 and various

instances of Ω̃a
g =

(

ωa
g

ωs
g

)2

∝
(

p

w

)2

. The red parabola represents Eq. (33) and

has a fixed x-intercept at Ω̃ = 1. The straight blue lines represent Eq. (34) and
their x-intercept at Ω̃a

g varies with the structural parameter p/w. Two cases must be
distinguished.

(a) Ω̃a
g > 1 ⇔ f a

g > f s
g: dash-dotted line in Fig. 9, with only one intersection

point between the dispersion curves. This is obtained with an inter-rib spacing of
p = 13 cm with a spruce panel of w ≈ 8 mm thick: f a

g is about 1.3 kHz, slightly
above the frequency limit flim ≈ f s

g of 1.1 kHz (see Eq. (3)), as shown in Fig. 8
(dashed blue curve). The structural waves are subsonic below the frequency cor-
responding to this intersection point (Ω̃ ≈ 13 in Fig. 9, f ≈ 7 kHz in Fig. 8),
and supersonic above 6 . In other words, the subsonic regime occurring naturally in
the low-frequency regime and up to f a

g in the high-frequency regime (evanescent
waves: see Eq. (34)) has been considerably extended by the ribbing of the sound-
board. With a homogeneous plate equivalent to the ribbed soundboard (in plywood,
for example), the supersonic regime would have ceased at fc ≈ 1.8 kHz. Knowing

6 One notes here that the structural waves corresponding to m = 2 are supersonic as soon
as they appear.
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how piano manufacturing has evolved, it is hard to think that this is the result of
chance.

(b) Ω̃a
g < 1 ⇔ f a

g < f s
g: dashed and solid lines in Fig. 9. It can be seen graphically

and demonstrated by some algebraic manipulations that there is one and only one
value Ω̃L ∈ [0, 1] such that the air dispersion line is tangent to the wave-guide
dispersion parabola. This case could be observed for low values of the structural
parameter p/w. The two dispersion curves have:

• no intersection for Ω̃a
g < Ω̃L (or f a

g < fL): solid blue line in Fig. 9. Assuming that
fc remains above flim, structural waves would be subsonic in the low-frequency
regime and supersonic in the high-frequency regime.

• two intersections for Ω̃L < Ω̃a
g < 1 (or fL < f a

s < f s
g): dashed line in Fig. 9. In

this intermediate case, the radiation is alternatively subsonic and supersonic.

5.2 Discussion

The above observations may answer a puzzling question on piano manufacturing:
why soundboards are not made out of plywood? Properly designed plywood would
behave similarly in the low-frequency domain (homogeneous equivalent plate, with
a low orthotropic ratio) and would radiate more efficiently above fc, which might
be considered as desirable on a musical instrument. A possible answer is that such
a strong change in the radiation regime is undesirable since it would alter the ho-
mogeneity from note to note, both in level and in sustain and also introduce a sharp
variation in the spectrum of each note. As shown above, the wave-guide regime
extends the subsonic regime and may be a cure for this problem.

Dimensioning a piano model is done for specified nominal wood characteristics. If
dimensioning is such that fc is adjusted too close to f a

g , there is a risk that the dis-
persion in wood characteristics confers the undesirable radiating feature described
above (case (b)) to some pianos of a manufacturing series. It is tempting to es-
tablish a connection between the frequency range where the radiation pattern of
the piano may be strongly modified by the wave-guide phenomenon if it is not
adjusted properly, and the so-called killer octave some manufacturers complain
about. The transition between the two vibratory regimes of the soundboard and the
induced non-uniformity of the acoustical radiation may explain why the sustain
is so difficult to obtain for piano manufacturers around the fifth to sixth octave 7

(C6 ≈ 1050 Hz).

Many attempts have been done to improve (or, more humbly, modify) the sound of
the piano instrument by changing some features in the construction of its sound-
board. However, very few have been carried along with acoustical measurements,

7 See for example comments of the Fandrich Piano Company’s piano maker [21]
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and even less have been documented. The experimental study carried out by Con-
klin on a concert grand investigates the influence of ribbing on the sound radia-
tion [22]. Conklin built a soundboard with 39 ribs (more than twice the usual num-
ber), reducing the spacing p to a value of about 5-6 cm. The height of the ribs was
the same as those of a normally-designed soundboard. Their width was changed to
around 1.1 cm, approximately half of the usual value, in order to keep almost the
same rigidity and mass as that of a conventionally designed soundboard. It follows
that f s

g reaches the highest frequency at which Conklin was interested, correspond-
ing to the fundamental of the highest string of the piano: C8 ≈ 4200 Hz. In his
own words, Conklin’s new soundboard "has improved uniformity of frequency re-
sponse, improved and extended high frequency response, higher efficiency at higher
frequencies, and improved tone quality". Of course, these conclusions need to be
taken with some caution since no measurement was published and the soundboard
was not available for third-parties’ comments. With these modifications, the coin-
cidence phenomenon is changed so that the supersonic radiation regime appears
between approximately 1 and 4 kHz: favourable to the "high frequency response"
and the "efficiency at higher frequencies" but unfavourable to sustain . . . on which
Conklin does not comment.

Suzuki [23] measured the radiation efficiency of a baby-grand piano from 10 Hz to
5.4 kHz. It is interesting to note that there is no sensitive increase of the average
radiation efficiency. A very smooth change appears in a so-called "transition range"
of 1-1.6 kHz, decreasing slowly beyond. This absence of the sharp transition in
radiation efficiency between the subsonic and the supersonic regimes is consistent
with what has been found above.

6 Conclusion

The piano soundboard is a challenging vibro-acoustical object: several more or less
independent structures, one of them with a complex ribbing system. In order to
gain insight on the vibration regimes that were revealed in previous experimental
studies, semi-analytical models have been proposed in this paper. These models
consider the different parts of the soundboard as elementary structures: homoge-
neous plates, structural wave-guides, beam. The models have been inspired by the
observation of experimental and numerical modal analyses.

The main part of the soundboard – a more or less regularly ribbed plate – has been
considered as a homogeneous orthotropic plate. The orthotropy ratio obtained after
homogenisation is much smaller than that of spruce. The more difficult problem
still consists in describing the coupled dynamics of this homogenised plate and the
main bridge (a long beam glued on one side of the soundboard). The solution that
has been proposed – two plates on each side of the bridge which couples them
– yields a modal density of the whole soundboard (including the cut-off corners)
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in good agreement with previous experimental determinations. In order to derive
the modal density of the various plates involved in the model in the low-frequency
range, the low-frequency correction due to the boundary condition must be calcu-
lated. Two extensions to the existing literature on this particular subject had to be
derived (non-special orthotropy) or proposed (arbitrary geometry of the contour).
It was also observed that pianos in the same range seem to display similar global
properties, namely the rigidity of the isotropic plate equivalent to the whole sound-
board at low frequencies.

In the high-frequency regime, the dynamics of the soundboard encounters a marked
change due to the ribbing system. Also, the slightly irregular spacing of the ribs is
very likely to be the cause of the observed localisation of the modes in the direction
orthogonal to the ribs. In this regime, a simple model of three coupled structural
wave-guides predicts an apparent (or local) modal density in excellent agreement
with the experimental observations.

The point-mobility can be predicted by the models described almost everywhere on
the soundboard. For points located at the bridge, these models cannot predict the
point-mobility and a previously established model describing plate-beam coupling
had to be used. Based on the above observation on dynamical similarity between
pianos of similar dimensions, a comparison has been made between the character-
istic impedance predicted by the models on a piano that we have measured in detail
with the impedance that has been measured in detail on a piano for which only the
overall dimensions are known. The features of the characteristic impedance, both
at the bridge and far from it, compare very well, not only qualitatively but also
quantitatively.

The vibration models which have been derived can also be used to predict the dis-
persion curves of the structural waves and thus, the dispersion curves of the cor-
responding radiated acoustical waves. It appears that the ribbing systems consid-
erably extends the subsonic regime of sound radiation, compared to what it would
be on a homogeneous plate equivalent to the soundboard at low-frequencies. It also
appears that the ratio of the rib-spacing to the thickness of the main wood panel
rules the eventual appearance of the alternation of subsonic and supersonic acousti-
cal radiation regimes. Avoiding an intermediate supersonic radiation regime (which
would create a non-regular radiation pattern in the treble range of the instrument)
seems to rely on a careful adjustment of geometrical parameters to the wood elastic
properties.
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A Appendix: Modal density of a homogeneous plate – Cases of non-special

orthotropy and of arbitrary contour geometry

For a plate of finite area A, the asymptotic modal density (reciprocal of the average
difference between two consecutive resonance frequencies) of transverse waves is
independent of the boundary conditions and, similarly, of the shape of the plate
(see [7] for example 8 ). In low frequency, boundary conditions must be taken into
account.

For a rectangular plate with an isotropic material of dynamical rigidity Diso, the
asymptotic value and the boundary conditions correction for a rectangular plate
with perimeter L are [11]:

n∞,iso =
A

2Diso
1/2

(A.1)

niso(f) = n∞,iso



1 + ǫ
L

A

Diso
1/4

√
2π f



 = n∞,iso



1 + ǫ
L

√

4πAf



 (A.2)

where ǫ depends on the boundary conditions: -1/2 for the hinged case, -1 for the
clamped case, +1 for the free case. The last expression makes use of the normalised
frequency f = f n∞,iso.

Although the literature provides all the necessary ingredients to obtain the asymp-
totic modal density of orthotropic rectangular plates with any orthotropic angle
θ⊥ 6= 0 (defined as the angle between the long side of the rectangular plate and
the main axis of orthotropy, see Fig. A.1), it seems to have been explicitly given
in the case of special orthotropy only (θ⊥ = 0: plate sides LX and LY parallel to
the x- and y-directions respectively). The same observation applies to the bound-
ary conditions correction at low-frequencies. This appendix aims at filling these
small gaps. We also propose, without proof, a generalisation of the low-frequency
correction for arbitrary geometry of the contour.

8 In his textbook Acoustics: an introduction to its physical principles and applications,
p. 293, Allan Pierce dates this result back to Weyl [24].
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A.1 Asymptotic modal density

This section extends Wilkinson’s work [10] done in the case of special orthotropy.
With new polar coordinates κ and ψ:











κ cosψ = k D1/4
x cos(θ − θ⊥)

κ sinψ = k D1/4
y sin(θ − θ⊥)

(A.3)

the dispersion law Eq. (4) becomes:

κ4



cos4 ψ +
2Dxy
√

DxDy

cos2 ψ sin2 ψ + sin4 ψ



 = ρ hω2 (A.4)

and, as in [10], can be factorised in:

κ4(ω, ψ) =
ρ hω2

1− α2 sin2(2ψ)
(A.5)

where α2 is given in (8). Adopting Courant [7] and Bolotin [25] approaches, the
asymptotic number of resonant modes N(ω) below a certain angular frequency ω
is:

N(ω) =
LX LY

π2(DxDy)
1

4

∫ κ

0

∫ π/2

0

κ(ω, ψ) dψ dκ =
LX LY

2π2(DxDy)
1

4

∫ π/2

0

κ2(ω, ψ) dψ

⇒ N(ω) =
A ω

2π2

√

√

√

√

ρ h

Dx

(

Dx

Dy

)

1

4

F (α) (A.6)

with F (α) =
∫ π/2

0

(

1− α2 sin2(2ψ)
)−1/2

dψ =
∫ π/2

0

(

1− α2 sin2 ψ
)−1/2

dψ

The last form of F is obtained using the even-parity and the π-periodicity of the
function sin2 ψ.

By derivation of N(ω), the modal density is:

n∞(f) =
dN(ω)

dω

dω

df
=
A

π

√

√

√

√

ρ h

Dx

(

Dx

Dy

)

1

4

F (α) =
A

2(DxDy)1/4
2F (α)

π
(A.7)

where the last form is similar to Eq. (A.1).

Finally, the result in the case of the non-special orthotropy is the same as that given
by Wilkinson [10]. Since the angle of orthotropy θ⊥ is, in effect, the orientation
of the plate boundaries with respect to the main axis of orthotropy, it was to be
expected that n∞, being independent from boundary conditions, does not depend
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on θ⊥ either. For the general non-isotropic case, see Langley [26].
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Figure A.1. Constant frequency contours of a bidimensional orthotropic system (Sitka
spruce plate). (a): in the wave-number k plane, according to Eq. (4); the blue axes cor-
respond to kx and ky . (b): in the modified κ plane, according to Eq. (A.4); the blue axes

correspond to κ|θ=0 = D
1/4
1

kx and κ|θ=π/2 = D
1/4
3

ky .
: special orthotropy (θ⊥ = 0). : non-special orthotropy with

θ⊥ ≈ −32.5o (corresponding to the case of our piano).

A.2 Low-frequency correction due to the boundary conditions

We derive the correction to be brought in low-frequency to the modal density of
the non-special orthotropic plate, due to the boundary conditions. The approach
is based on the work of Xie et al. [11] which yields Eq. (A.2) in the case of an
isotropic plate.

Introducing

D̃(θ, θ⊥) = Dx cos4(θ−θ⊥)+2Dxy cos2(θ−θ⊥), sin2(θ−θ⊥)+Dy sin4(θ−θ⊥)
(A.8)

transforms the dispersion law (4) into:

D̃(θ, θ⊥)k
4(ω, θ) = ρhω2 (A.9)

The correction terms on the mode count can be derived similarly to the isotropic
case (exposed in details in [11]) by adding or removing (depending of the type of
boundary condition) the areas of two strips of modes along the main axes of the
wavenumber diagram. Assuming that for simply supported boundary conditions,

the wavenumbers may be approached by m
π

LX
and n

π

LY
(m and n ∈ N

∗), we

obtain the number of modes and the modal density of a non-special orthotropic
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plate as follows:

N(ω) = N∞(ω) −
k(ω, 0)

π

2LY
+ k(ω, π/2)

π

2LX
+

π

2LX

π

2LY
π

LX

π

LY

= N∞(ω) −

(

ρ h

D̃(0, θ⊥)

)1/4√
ω

π

2LY
+

(

ρ h

D̃(π/2, θ⊥)

)1/4 √
ω

π

2LX
+

π

2LX

π

2LY

π

LX

π

LY

= N∞(ω) − 1

4π
(ρ h)

1

4

[

2LX

D̃(0, θ⊥)1/4
+

2LY

D̃(π/2, θ⊥)1/4

] √
ω (A.10)

n(f) = n∞ − 1√
32π

(ρ h)1/4
[

2LX

D̃(0, θ⊥)1/4
+

2LY

D̃(π/2, θ⊥)1/4

]

f−1/2 (A.11)

With wavenumbers approximated by
(

m+
1

2

)

π

LX
and

(

n +
1

2

)

π

LY
, we obtain

in the case of the clamped non-special orthotropic plate:

n(f) = n∞ − 1√
8π

(ρ h)1/4
[

2LX

D̃(0, θ⊥)1/4
+

2LY

D̃(π/2, θ⊥)1/4

]

f−1/2 (A.12)

In the case of free boundary conditions, with wavenumbers approximated by
mπ

2LX

and
nπ

2LY
, and accounting for the rigid and beam-modes [11] yields:

n(f) = n∞ +
1√
8π

(ρ h)1/4
[

2LX

D̃(0, θ⊥)1/4
+

2LY

D̃(π/2, θ⊥)1/4

]

f−1/2 (A.13)

These formula can be written in more compact forms, similar to Eq. (A.2):

n(f) = n∞

[

1 +
ǫ√
2πf

(DxDy)
1/4

A

π

2F (α)

(

2LX

D̃(0, θ⊥)1/4
+

2LY

D̃(π/2, θ⊥)1/4

)]

(A.14)

⇒ n(f) = n∞



1 +
ǫL̃

√

4πAf



 (A.15)

with n∞ given by Eq. (A.7), f = f n∞, ǫ = given as in Eq. (A.2) and

L̃ =

√

√

√

√

π

2F (α)
(DxDy)

1/8

(

2LX

D̃(0, θ⊥)1/4
+

2LY

D̃(π/2, θ⊥)1/4

)

(A.16)
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Naturally, Eqs. (A.11)–(A.13) yield Eq. (A.2) when D = Dx = Dy = Dxy

(isotropic plate), for any θ⊥. One notes also that for special orthotropy the expres-

sion in parentheses in Eq. (A.16) becomes:
2LX

Dx
1/4

+
2LY

Dy
1/4

when θ⊥ = aπ (with

a ∈ N) and becomes
2LX

Dy
1/4

+
2LY

Dx
1/4

for inversed axis of orthotropy (that is when

θ⊥ = π/2 + aπ).

We form the hypothesis that Eq. (A.16) can be generalised to any shape of A:

L̃ =

√

√

√

√

π

2F (α)

∮

L

(DxDy)
1/8

D̃(Θ)1/4
ds (A.17)

=

√

√

√

√

π

2F (α)

∮

L

(

ζ

ζ2 cos4Θ + 2ζ cos2Θ sin2Θ + sin4Θ

)1/4

ds (A.18)

where Θ = θ − θ⊥ is the polar angle of ds and ζ2 = Dx/Dy (see Eq. (6)). In the
case of isotropy, L̃ would simply be the perimeter of A.

B Appendix: Equivalent isotropic dynamical rigidity of piano soundboards

It has been suggested in the literature that the ribs and the bridges compensate glob-
ally the anisotropy of spruce [27,28]. This hypothesis is tested here by computing
a dynamical rigidity Diso for different piano soundboards. The literature on piano
soundboard offers data (reported in [29], p. 17, 18) that can be analysed according
to a simple equivalent isotropic plate model: Suzuki [23], Dérogis [30], Berthaut et
al. [8], and ourselves [1] have published modal frequencies (below 500 Hz or less
for the three first authors). It is out of question to apply to these instruments the full
sub-plate model developed in Section 2 since only the overall dimensions of the
soundboards are reported.

We propose here to model each soundboard as a homogeneous isotropic rectangular
plate with the same areaA, modal density niso(f) and clamped boundary conditions
along the perimeter L. Combining Eqs. A.1–A.2 (with ǫ = −1) one notes that the

quantity r = Diso
1/4

obeys the following equation:

2niso(f) r
2 +

L√
2π f

r − A = 0 (B.1)

The modal density of each soundboard has been estimated as the reciprocal of the
moving average on six successive intermodal-spacings. The solutions of Eq. B.1

33



0 200 400 600 800 1000 1200
0

50

100

150

200

Frequency (Hz)

D
yn

am
ic

al
ri
g
id

it
y

(m
4
s−

2
)

Figure B.1. Estimations of the dynamical rigidities Diso of the homogeneous isotropic
plates equivalent to different piano soundboards explored in the literature. Estimations are
based on the measurements of the modal densities as the reciprocal of the moving average
on six successive intermodal-spacings. The horizontal lines at the right side of the figure
correspond to the average value < Diso > of each series of points.
×: Ege et al. [1], impact excitation on an upright piano, < Diso >= 105 m4 s−2. ◦: Ege et
al. [1], acoustical excitation (same piano, wider frequency range), < Diso >= 96 m4 s−2.
∆: Dérogis [30], upright piano, < Diso >= 100 m4 s−2.
•: Berthaut et al. [8], baby grand piano, < Diso >= 68 m4 s−2.
∗: Suzuki [23], baby grand piano, one estimation only, due to the low number of reported
modes, Diso = 73 m4 s−2.

are reported in Fig. B.1. It appears that the dynamical rigidities of the two uprights
(Dérogis’ and ours) and the two baby-grands (Suzuki’s and Berthaut’s) are very
similar.

What would possibly constitute a manufacturing rule may be considered as what
piano makers have come to achieve with the dimensioning of the many parts of a
soundboard, over decades of empiricism or, possibly, what they kept from making
habits on earlier keyboard instruments.
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