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Abstract

Elaborating on the similarity between the entropy power inequality

and the Brunn-Minkowski inequality, Costa and Cover conjectured the
1

n
-concavity of the outer parallel volume of measurable sets as an ana-

logue of the concavity of entropy power. We investigate this conjecture

and study its relationship with geometric inequalities.

Keywords: entropy power, parallel volume, parallel set, isoperimetric inequality,

Brunn-Minkowski.
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1 Introduction

First, let us explain the origin of the conjecture of Costa and Cover. Costa
and Cover [6] noticed the similarity between the entropy power and the
Brunn-Minkowski inequalities: for every independent random vectors X, Y
in R

n, with finite entropy and for every compact sets A and B in R
n one has

N(X + Y ) ≥ N(X) +N(Y ) and |A+B| 1n ≥ |A| 1n + |B| 1n ,

where | · | denotes the n-dimensional Lebesgue measure and

N(X) =
1

2πe
e

2

n
H(X)

denotes the entropy power of X. Recall that for X with density f the entropy
of X is H(X) = −

∫

f ln f if the integral exists and H(X) = −∞ otherwise.

∗Corresponding author
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Applying the Brunn-Minkowski inequality to B = εBn
2 and letting ε tend to

0 one gets the classical isoperimetric inequality

|∂A|
|A|n−1

n

≥ n|Bn
2 |

1

n =
|∂Bn

2 |
|Bn

2 |
n−1

n

,

where the outer Minkowski surface area is defined by

|∂A| = lim
ε→0+

|A+ εBn
2 | − |A|
ε

,

whenever the limit exists. In the same way, Costa and Cover applied the en-
tropy power inequality to Y =

√
εG, where G is a standard Gaussian random

vector (the
√
ε comes from the homogeneity of entropy power N(

√
εX) =

εN(X)). Then by letting ε tending to 0 and using de Bruijn’s identity

d

dt
H(X +

√
tG) =

1

2
I(X +

√
tG),

which states that the Fisher information (denoted by I) is the derivative of
the entropy along the heat semi-group, they obtained the following "isoperi-
metric inequality for entropy"

N(X)I(X) ≥ n.

Notice that this inequality is equivalent to the Log-Sobolev inequality for
the Gaussian measure, see [1] chapter 9.

This analogy between the results of the Information theory and the
Brunn-Minkowski theory was later extended and further explained and uni-
fied through Young’s inequality by Dembo [8] and later on by Dembo, Cover
and Thomas [7]. Then, Szarek and Voiculescu [23] deduced the entropy
power inequality from a restricted Brunn-Minkowski inequality. Each of
these theories deal with a fundamental inequality, the Brunn-Minkowski in-
equality for the Brunn-Minkowski theory and the entropy power inequality
for the Information theory. The objects of each theories are fellows: to the
compact sets in the Brunn-Minkowski theory correspond the random vectors
in the Information theory, the Gaussian random vectors play the same role
as the Euclidean balls, the entropy power N corresponds to the 1/n power of
the volume | · |1/n and, taking logarithms, the entropy H is the analogue of
the logarithm of the volume log | · |. Hence one can conjecture that properties
of one theory fit into the other theory.

Thus, Costa and Cover [6], as an analogue of the concavity of entropy
power with added Gaussian noise, which states that

t 7→ N(X +
√
tG)

is a concave function (see [5] and [24]), formulated the following conjecture.
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Conjecture 1.1 (Costa-Cover [6]). Let A be a bounded measurable set in

R
n then the function t 7→ |A+ tBn

2 |
1

n is concave on R+.

They also showed using the Brunn-Minkowski inequality that this con-
jecture holds true if A is a convex set.

Notice that Guleryuz, Lutwak, Yang and Zhang [12] also pursued these
analogies between the two theories and more recently, Bobkov and Madiman
[4] established an analogue in Information theory of the Milman’s reverse
Brunn-Minkowski inequality.

In this paper, we investigate Conjecture 1.1 and study its relationship
with known geometric inequalities. We prove that the conjecture holds true
in dimension 1 for all measurable sets and in dimension 2 for connected
sets. In dimension n ≥ 3, we establish that the connectivity hypothesis
is not enough and that the conjecture is false in general. We then discuss
additional hypotheses which ensure its validity: we conjecture that it holds
true for sufficiently large t and we establish it for special sets A. More
precisely, our main results are contained in the following theorem.

Theorem 1.2. Let n ≥ 1, A be a bounded measurable set. Define VA(t) =
|A+ tBn

2 |, t ≥ 0.

1. For n = 1, the function VA is concave on R+.

2. For n = 2, if A is connected then V
1

2

A is concave on R+. Moreover

there exists A not connected such that V
1

2

A is not concave on R+.

3. For n ≥ 3, if the function ε 7→ |εA+ Bn
2 | is twice continuously differ-

entiable in the neighborhood of 0, then there exists t0 such that V
1

n

A is

concave on [t0,+∞). Moreover there exists A connected such that V
1

n

A

is not concave on R+.

In the next section, we first explain some notations, then we establish
analytical properties of the parallel volume and we explore relationships be-
tween this conjecture and known geometric inequalities. In the third section,
we study the 1

n -concavity property of the parallel volume. In the last sec-
tion, we investigate further analogies between the Information theory and
the Brunn-Minkowski theory.
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2 Basic properties of the parallel volume and links

with geometric inequalities

2.1 Notations

We work in the Euclidean space R
n, n ≥ 1, equipped with the ℓn2 norm | · |,

whose closed unit ball is denoted by Bn
2 and canonical basis is {e1, . . . , en}.

We also denote by | · | the Lebesgue measure in R
n. For non-empty sets A,B

in R
n we define their Minkowski sum

A+B = {a+ b : a ∈ A, b ∈ B}.

We denote by int(A), A, ∂A, conv(A) respectively the interior, the closure,
the boundary, the convex hull of the set A. A function f : Rn → R+ is
1
n -concave if f

1

n is concave on its support.

A set B is a convex body if B is a compact convex set of Rn with non-
empty interior. If 0 is in the interior of B, then the gauge associated to
B is the function ‖ · ‖B defined by ‖x‖B = inf{t > 0 : x ∈ tB}, for every
x ∈ R

n. Let A be a bounded measurable subset of Rn. For x ∈ R
n, we set

dB(x,A) = inf{‖x−y‖B : y ∈ A} and we simply denote d(x,A) = dBn
2
(x,A).

We denote by VA,B the function defined for t ≥ 0 by

VA,B(t) = |A+ tB|.

When A is convex, VA,B has a polynomial expansion according to the classical
Steiner formula

VA,B(t) = |A+ tB| =
n
∑

i=0

ti
(

n

i

)

V (A[n− i], B[i]),

where V (A[n− i], B[i]) are called the mixed volume of A, B (see [20] Chap-
ter 5).

For B = Bn
2 , we simply denote VA = VA,Bn

2
the (outer) parallel volume

function of A defined on R+ by

VA(t) = |A+ tBn
2 |.

The outer Minkowski surface area |∂A| of A may be defined using VA: if the
function VA admits a right derivative at 0 then one has

(VA)
′
+(0) = lim

t→0+

|A+ tBn
2 | − |A|
t

= |∂A|.
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2.2 Connectedness properties of the parallel set

Let A be a bounded measurable subset of Rn and B be a convex body in
R
n, then for every t > 0 the set A + tB has a finite number of connected

components and this number is non-increasing as a function of t.
Indeed, let t > 0 and C be a connected component of A + tB. Let

x ∈ C, then there exists a ∈ A such that x ∈ a + tB. Moreover a + tB
is connected, hence a + tB ⊂ C since C is the connected component of x.
Thus |C| ≥ |tB| > 0. Since |A+ tB| is finite and equal to the volume of the
disjoint union of its connected components, there is a finite number of them.

Let 0 < t0 ≤ t1. Denote by C1, . . . , CN the connected components of
A+ t0B. One has A+ t1B = ∪N

i=1(Ci+(t1− t0)B) and since Ci+(t1− t0)B
is connected, it follows that the number of connected components of A+ t1B
is at most N .

2.3 Regularity properties of the parallel volume

Let A be a compact subset of Rn and B be a convex body in R
n containing

0 in its interior. The function dB(·, A) is Lipschitz, hence from Federer’s
co-area formula [9], one has

VA,B(t) = |A+ tB| = |A|+
∫ t

0
Hn−1({x : dB(x,A) = s})ds, (1)

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure. Therefore
the function VA,B is absolutely continuous on R+.

Notice that for every bounded measurable subset A of R
n and every

0 < s < t, one has
A+ sB ⊂ A+ tB ⊂ A+ tB.

From the continuity of VA,B, one gets that |A + tB| = |A + tB| for t > 0.
Hence we may assume in the following that A is compact.

Stachó [22] proved a better regularity for VA,B, he proved namely that the
function VA,B is a n-Kneser function, which means that for every 0 < t0 ≤ t1
and every λ ≥ 1, one has

VA,B(λt1)− VA,B(λt0) ≤ λn(VA,B(t1)− VA,B(t0)). (2)

Stachó deduced that for every 0 < t0 < t1, the function

t 7→ VA,B(t)− tn
VA,B(t1)− VA,B(t0)

tn1 − tn0

is concave on [t1,+∞). Thus VA,B admits right and left derivatives at every
t > 0, which satisfy

(VA,B)
′
+(t) ≤ (VA,B)

′
−(t) (3)
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and these two derivatives coincide for all t > 0 outside a countable set. Hence
the outer Minkowski surface area of A+ tBn

2 exists for every t > 0 and one
has

|∂(A+ tBn
2 )| = lim

ε→0+

|A+ tBn
2 + εBn

2 | − |A+ tBn
2 |

ε
= (VA)

′
+(t). (4)

In Proposition 3.8 below, we show that the function VA is continuously dif-
ferentiable on [diam(A),+∞). If A is convex or with sufficiently regular
boundary then the equality (4) also holds for t = 0. For precise statements
and comparisons between the outer Minkowski surface area and other mea-
surements of ∂(A+ tBn

2 ), like the Hausdorff measure, see [2].

Proposition 2.1. Let A and B be compact subsets of R
n with B convex,

then the function (s, t) 7→ |sA + tB| is continuous on R+ × R+. Moreover
the functions

t 7→ |A+ tB| − tn|B| and s 7→ |sA+B| − sn|A|

are non-decreasing. In particular, the function (s, t) 7→ |sA + tB| is non-
decreasing in each coordinate.

Proof. Let us prove the continuity. Let 0 ≤ t ≤ t′. Let r > 0 be such that
A ⊂ rBn

2 and B ⊂ rBn
2 . Then we have

|A+ tB| ≤ |A+ t′B| ≤ |A+ tB + r(t′ − t)Bn
2 |.

From (1) the function t′ 7→ |A + tB + t′rBn
2 | is continuous at 0, thus the

function t 7→ |A+ tB| is continuous on R+. Since for s > 0 and t ≥ 0

|sA+ tB| = sn
∣

∣

∣

∣

A+
t

s
B

∣

∣

∣

∣

then (s, t) 7→ |sA+ tB| is continuous on (0,+∞)×R+. We also have for any
s ≥ 0 and t ≥ 0

|tB| ≤ |sA+ tB| ≤ |srBn
2 + tB|

so (s, t) 7→ |sA+ tB| is continuous on {0}×R+. It follows that the function
(s, t) 7→ |sA+ tB| is continuous on R+ × R+.

The monotonicity follows from (2). Indeed, the inequality (2) may be
written in a different way, as follows

|A+ λt1B| − |A+ λt0B| ≤ |λA+ λt1B| − |λA+ λt0B|.

Changing variables, it also means that for every 0 < s0 ≤ s1 and 0 < t0 ≤ t1

|s0A+ t1B| − |s0A+ t0B| ≤ |s1A+ t1B| − |s1A+ t0B|.
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Applied first to s1 = 1 and s0 → 0, and then to t1 = 1 and t0 → 0, we
deduce that the functions

t 7→ VA,B(t)− tn|B| and s 7→ |sA+B| − sn|A|

are non-decreasing. In particular, the function (s, t) 7→ |sA + tB| is non-
decreasing in each coordinate.

Remark. If A and B are arbitrary compact sets, it is not necessarily true
that the function VA,B is non-decreasing as can be seen from the example of
A = {0; 4} and B = [−5,−3] ∪ [3, 5].

2.4 Links with geometric inequalities

Let us connect the Costa-Cover conjecture with the Brunn-Minkowski in-
equality and the isoperimetric inequality. We first establish that the conjec-
ture of Costa-Cover has many equivalent reformulations.

Proposition 2.2. Let A and B be compact sets in R
n, with B convex. The

following properties are equivalent.
(i) t 7→ |A+ tB| 1n is concave on R+.

(ii) s 7→ |sA+B| 1n is concave on R+.

(iii) λ 7→ |(1− λ)A+ λB| 1n is concave on [0, 1].

(iv) (s, t) 7→ |sA+ tB| 1n is concave on R+ × R+.

Proof. (iv)=⇒(i), (iv)=⇒(ii) and (iv)=⇒(iii) are clear. Let us prove that
(i)=⇒(iv), a similar argument easily shows that (ii)=⇒(iv) and (iii)=⇒(iv).

Let f : R+ → R and g : R+ × R+ → R be defined by f(t) = |A+ tB| 1n and

g(s, t) = |sA + tB| 1n , for every s, t ∈ R+. For every t ≥ 0 and s > 0, we
have, from the homogeneity of the volume

g(s, t) = sf

(

t

s

)

.

Thus for every λ ∈ [0, 1], s1, s2 ∈ (0,+∞) and t1, t2 ∈ R+ we get

g((1−λ)s1+λs2, (1−λ)t1+λt2)) = ((1−λ)s1+λs2)f

(

(1− λ)t1 + λt2
(1− λ)s1 + λs2

)

.

Using the concavity of f , we deduce that

f

(

(1− λ)t1 + λt2
(1− λ)s1 + λs2

)

= f

(

(1− λ)s1
t1
s1

+ λs2
t2
s2

(1− λ)s1 + λs2

)

≥
(1− λ)s1f

(

t1
s1

)

+ λs2f
(

t2
s2

)

(1− λ)s1 + λs2

=
(1− λ)g(s1, t1) + λg(s2, t2)

(1− λ)s1 + λs2
.
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We deduce that g is concave on (0,+∞)2. Moreover, g is continuous on
(R+)

2 by Proposition 2.1. Hence g is concave on (R+)
2.

Remark. Notice that if for two fixed compact sets A and B, with B convex,
the assertion (iii) of Proposition 2.2 holds true then for every λ ∈ [0, 1],

|(1− λ)A+ λB| 1n ≥ (1− λ)|A| 1n + λ|B| 1n ,
which is the Brunn-Minkowski inequality. Hence the conjecture of Costa-
Cover ((i) of Proposition 2.2) implies the Brunn-Minkowski inequality in the
case where one set is convex.

Let us study the connection with the isoperimetric inequality. The Costa-
Cover conjecture implies that for every t ≥ 0 and every sufficiently regular
compact set A

1

n

|∂A|n−1

|A|1− 1

n

= (V
1/n
A )′+(0) ≥ (V

1/n
A )′+(t) ≥ lim

t→+∞
(V

1/n
A )′+(t) =

1

n

|∂Bn
2 |n−1

|Bn
2 |1−

1

n

,

which is the isoperimetric inequality. This would give a non-increasing path

from |∂A|n−1

|A|1−
1
n

to
|∂Bn

2
|n−1

|Bn
2
|1−

1
n

through the family

(

|∂(A+ tBn
2 )|n−1

|A+ tBn
2 |1−

1

n

)

t∈R+

.

We may apply the same arguments for any convex body B instead of
Bn

2 . Thus, the conjecture that t 7→ VA,B(t)
1/n is concave on R+ implies the

following generalized isoperimetric inequality, also known as Minkowski’s
first inequality proved for example in [20],

|∂BA|n−1

|A|1− 1

n

≥ |∂BB|n−1

|B|1− 1

n

= n|B| 1n .

3 The 1
n-concavity of the parallel volume

Recall that for t ≥ 0, VA(t) = |A+tBn
2 | and that Costa and Cover [6] conjec-

tured the 1
n -concavity of VA on R+, for every compact A. They also noticed

that their conjecture holds true for A being convex. Let us repeat their
argument. For every λ ∈ [0, 1] and t, s ∈ R+, from the Brunn-Minkowski
inequality, one obtains

|A+ ((1− λ)t+ λs)Bn
2 |

1

n = |(1− λ)(A+ tBn
2 ) + λ(A+ sBn

2 )|
1

n

≥ (1− λ)|A+ tBn
2 |

1

n + λ|A+ sBn
2 |

1

n .

Notice that from the same argument we deduce that for every convex sets A
and B, the function VA,B(t) = |A+tB| is 1

n -concave on R+. Hence for convex
sets A and B, the properties (i)-(iv) of Proposition 2.2 holds true. In this
case, the 1

n -concavity of VA,B on R+ is equivalent to the Brunn-Minkowski
inequality (and true).
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3.1 In dimension 1

Let us prove the Costa-Cover conjecture in dimension 1.

Proposition 3.1. Let A be a compact set in R and B be a convex body in
R, then t 7→ VA,B(t) = |A+ tB| is concave on R+.

Proof. We note that in dimension 1, for t0 > 0, A + t0B is a disjoint finite
union of intervals. Thus, by setting A+ t0B for an arbitrary t0 > 0 instead
of A, we can assume that A = ∪N

i=1[ai, bi], with ai, bi ∈ R, N ∈ N
∗. Thus,

for t sufficiently small,

VA,B(t) = |A+ tB| =
N
∑

i=1

(bi − ai + |B|t) =
N
∑

i=1

(bi − ai) + |B|Nt.

Thus VA,B is piecewise affine on R
∗
+. Moreover, when t increases, the slope

of VA,B is non-increasing since the number of intervals composing A+ tB is
non-increasing. Using that VA,B is continuous on R+, we conclude that it is
concave on R+.

Remarks. For arbitrary compact sets A and B, the function VA,B is not
necessarily concave as can be seen from the example of A = {0; 4} and
B = [−5,−3]∪ [3, 5], the same example which was given in the remark after
Proposition 2.1 to show that the function VA,B is not necessarily increasing.

3.2 In dimension 2

We first prove the Costa-Cover conjecture for compact connected sets in
dimension 2.

Theorem 3.2. Let A be a compact subset of R2. Then, VA : t 7→ |A+ tB2
2 |

is 1
2 -concave on R+.

Proof. We proceed by approximating A by finite sets, hence let us first as-
sume that A is finite, A = {x1, . . . , xN}. Let T = {t1, . . . , tm} ⊂ R+, with

t1 < · · · < tm, be the finite set of real numbers which are equal to
|xi−xj |

2
for some i, j ∈ {1, . . . , N} or to the radius of the circumscribed circle of a
triangle (xi, xj , xk) for some i, j, k ∈ {1, . . . , N}. For t > 0, let pA(t) be
the number of connected components of A+ tB2

2 and qA(t) be the genus of
A + tB2

2 . Notice that the functions pA and qA are piecewise constants on
R+ \T and that VA is infinitely differentiable on R+ \T , (see proposition 4.8
in [13]).

We use a key result established by Fiala in the context of Riemannian
manifolds, see [10], first part, section 9 "vraies parallèles": for every t ∈
(0,+∞) \ {t1, . . . , tm},

V ′′
A(t) ≤ 2π(pA(t)− qA(t)).

9



Notice that pA(t) − qA(t) is equal to the Euler-Poincaré characteristic of
A+ tB2

2 .
Now, we consider t0 ∈ R+ such that A+t0B

2
2 is connected. Then for every

t ≥ t0, A+ tB2
2 is connected. Hence for every t ∈ (t0,+∞) \ {t1, . . . , tm},

V ′′
A(t) ≤ 2π. (5)

Let us prove that VA is 1
2 -concave on (t0,+∞). By the isoperimetric inequal-

ity, we have for every t ∈ (t0,+∞) \ {t1, . . . , tm},

4π|A+ tB2
2 | ≤ |∂(A+ tB2

2)|2,

we write this in this form

4πVA(t) ≤ V ′
A(t)

2,

thus, using (5),
2VA(t)V

′′
A(t) ≤ V ′

A(t)
2.

Hence
(√

VA

)′′
(t) ≤ 0. We conclude that VA is 1

2 -concave on (ti, ti+1), for
all i ≤ m − 1 and on (tm,+∞). From (3) we have (VA)

′
−(ti) ≥ (VA)

′
+(ti),

thus VA is 1
2 -concave on (t0,+∞).

Let us then consider a compact connected set A of R
2. Let t0 > 0.

Let (xN )N∈N∗ be a dense sequence in A. We denote, for N ∈ N
∗, AN =

{x1, . . . , xN}. There exists N0 ∈ N
∗ such that for every N ≥ N0, AN + t0B

2
2

is connected. For every N ≥ N0, we have shown that VAN
is 1

2 -concave
on (t0,+∞). Moreover the sequence (AN )N → A in the Hausdorff distance,
thus by denoting dN = dH(AN , A), the Hausdorff distance, one has, for every
t > 0

AN + tB2
2 ⊂ A+ tB2

2 ⊂ AN + (t+ dN )B2
2 .

Applying the right hand side inclusion to t replaced by t − dN where N
satisfies dN < t, we deduce

A+ (t− dN )B2
2 ⊂ AN + tB2

2 ⊂ A+ tB2
2 .

Hence by continuity of the function VA at the point t,

lim
N→+∞

VAN
(t) = VA(t).

It follows that
√
VA is the pointwise limit of a sequence of concave functions,

hence VA is 1
2 -concave on (t0,+∞), for every t0 > 0. We conclude that VA

is 1
2 -concave on R+.
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Remarks

1. In the proof of Theorem 3.2, from the bound V ′′
A(t) ≤ 2π(pA(t)−qA(t))

obtained for every finite set A and for every t > 0 outside a finite
number of points, one deduces that for every compact subset A of R2

with finite connected components pA, the function t 7→ VA(t)− pAπt
2

is concave on (0,+∞). From Steiner’s formula one has

Vconv(A)(t) = |conv(A)|+ t|∂(conv(A))|+ πt2.

If A is connected, it follows that

Vconv(A)(t)− VA(t) = |conv(A)|+ t|∂(conv(A))|+ πt2 − VA(t)

is convex as the sum of an affine function and a convex function. No-
tice that this complements the result of Kampf [14] who proved that
Vconv(A)(t)− VA(t) tends to 0 as t → +∞.

2. If in Theorem 3.2 we replace B2
2 by an ellipsoid, i.e. by T (B2

2) where
T is an invertible linear transformation, then the result holds since

|A+ tT (B2
2)| = |T (T−1(A) + tB2

2)| = | det(T )||T−1(A) + tB2
2 |.

For a non-connected set A, the next proposition shows that the function
VA is not necessarily 1

n -concave on R+ in dimension n ≥ 2.

Proposition 3.3. Let n ≥ 2. We set A = Bn
2 ∪ {2e1}. The function

VA(t) = |A+ tBn
2 | is not 1

n -concave on R+.

Proof. For every t ∈ [0, 12), we have

|A+ tBn
2 | = |(Bn

2 ∪{2e1})+ tBn
2 | = |Bn

2 + tBn
2 |+ |tBn

2 | = |Bn
2 |((1+ t)n+ tn).

Since the 1
n -power of this function is not concave (it is strictly convex), VA

is not 1
n -concave on R+ for n ≥ 2.

Remark. This counterexample shows that the Brunn-Minkowski inequality
doesn’t imply the 1

n -concavity of the parallel volume for non convex sets.

3.3 In dimension n ≥ 3

We may ask if the Costa-Cover conjecture still holds for connected sets in
dimension n ≥ 3. The next proposition shows that this is false: even for
star-shaped body, the function VA is not necessarily 1

n -concave on R+.

Proposition 3.4. Let n ≥ 3. We set A = ([−1, 1]3 ∪ [e1, le1])× [−1, 1]n−3,
where l ≥ 2n2. The function VA(t) = |A+ tBn

2 | is not 1
n -concave on R+.

11



Proof. Define C = {0}3 × [−1, 1]n−3. For t ∈ [0, 1], we have

|A+ tBn
2 | = |[−1, 1]n + tBn

2 |+ |[(1 + t)e1, le1] + C + tBn
2 ∩ e⊥1 |

+|{le1}+ C + t(Bn
2 )

+|

where
(Bn

2 )
+ = {x ∈ Bn

2 : x1 ≥ 0}.
We use Steiner’s formula for each term. One has

|[−1, 1]n + tBn
2 | =

n
∑

k=0

(

n

k

)

tk2n−k|Bk
2 |k.

For the second term, we first notice that

|[(1 + t)e1, le1] + C + tBn
2 ∩ e⊥1 |n = (l − 1− t)|C + tBn

2 ∩ e⊥1 |n−1.

Using for example [20] p. 294 formula (5.3.23), we get that the coefficient
of t2 in the Steiner expansion of |C + tBn

2 ∩ e⊥1 |n−1 is equal to π2n−3. The
third term is equal to t3 times a polynomial. Thus, there are coefficients
a0, . . . , an such that for t ∈ [0, 1],

VA(t) = a0 + a1t+ · · ·+ ant
n,

with a0 = 2n, a1 = n2n and a2 = 2n−3π (n(n− 1) + l − 1) . Since l ≥ 2n2, it
follows directly that

n

n− 1
VA(0)V

′′
A(0)− V ′

A(0)
2 > 0.

Hence (V
1/n
A )′′(0) > 0, thus V

1/n
A is not concave in a neighborhood of 0.

We have seen that the Costa-Cover conjecture does not hold in general.
We still conjecture that the following weaker form may hold.

Conjecture 3.5. Let A be a compact subset of Rn and B be a convex body
in R

n. Then there exists t0 such that the function VA,B(t) = |A + tB| is
1
n -concave on [t0,+∞).

We have shown that this conjecture is true in dimension 1 and in dimen-
sion 2 for B = B2

2 . Indeed, in dimension 2, we have seen that it is true for
every compact connected set. Since for every compact subset A of R2 the
set A+ tB2

2 is connected for t ≥ 1
2diam(A), it follows that t 7→ |A+ tB2

2 | is
1
2 -concave on [12diam(A),+∞).

We prove the Conjecture 3.5 in some particular cases in dimension n ≥ 3.

12



Proposition 3.6. Let A be a compact subset of R
n. Then the function

t 7→ |A+ tconv(A)|1/n is affine on [n,+∞). If moreover ∂conv(A) ⊂ A then
this function is affine on [1,+∞).

Proof. It was noticed by Schneider [19] that A+ tconv(A) = (1+ t)conv(A),

for every t ≥ n. Thus t 7→ |A+ tconv(A)| 1n is affine on [n,+∞).
If moreover ∂conv(A) ⊂ A then for every x ∈ conv(A) there exists two

points y, z in ∂conv(A) such that x ∈ [y, z]. Say, for example, that |x− y| ≤
|x− z| then u = 2x− y ∈ [y, z] ⊂ conv(A). Hence

x =
y + u

2
∈ ∂conv(A) + conv(A)

2
.

Finally

conv(A) ⊂ ∂conv(A) + conv(A)

2
⊂ A+ conv(A)

2
⊂ conv(A).

We deduce that A+tconv(A) = (1+t)conv(A), for every t ≥ 1. We conclude

that t 7→ |A+ tconv(A)| 1n is affine on [1,+∞).

Remark. More generally, Schneider introduced in [19] the quantity

c(A) = inf{t ≥ 0 : A+ tconv(A) = (1 + t)conv(A)}.

Clearly t 7→ |A+ tconv(A)| 1n is affine on [c(A),+∞). The above proposition
establishes that c(A) ≤ n in general and c(A) ≤ 1 if ∂conv(A) ⊂ A. Notice
that if A ⊂ R

n is connected then c(A) ≤ n− 1, see [19].

Theorem 3.7. Let A be a compact set in R
n. If the function ε 7→ |εA+Bn

2 |
is twice differentiable in a right neighborhood of 0, with second derivative
continuous at 0+, then there exists t0 ≥ 0 such that the function VA(t) =
|A+ tBn

2 | is 1
n -concave for t ≥ t0. In particular this holds for A being finite.

Proof. Kampf proved in [15], lemma 28, that for every compact set A there
exists a constant C which depends on n,A so that for every t ≥ 1,

0 ≤ |conv(A) + tBn
2 | − |A+ tBn

2 | ≤ Ctn−3.

Then, setting ε = 1
t , for every ε ∈ (0, 1], one deduces

0 ≤ |εconv(A) +Bn
2 | − |εA+Bn

2 | ≤ Cε3. (6)

We denote gconv(A)(ε) = |εconv(A) + Bn
2 | and gA(ε) = |εA + Bn

2 |, since gA
is twice differentiable at 0+ it follows that

gA(0) = gconv(A)(0) , (gA)
′
+(0) = (gconv(A))

′
+(0) , (gA)

′′
+(0) = (gconv(A))

′′
+(0).

13



From Steiner’s formula, we get gconv(A)(0) = |Bn
2 | and

(gconv(A))
′
+(0) = nV (conv(A), Bn

2 [n− 1]),

(gconv(A))
′′
+(0) = n(n− 1)V (conv(A)[2], Bn

2 [n− 2]).

If conv(A) is not homothetic to Bn
2 , then from the equality case of the

Alexandrov-Fenchel inequality, see [20], theorem 6.6.8, page 359, we get

|Bn
2 |V (conv(A)[2], Bn

2 [n− 2]) < V (conv(A), Bn
2 [n− 1])2,

that is
n

n− 1
gconv(A)(0)(gconv(A))

′′
+(0) < (gconv(A))

′
+(0)

2.

Thus we deduce that

n

n− 1
gA(0)(gA)

′′
+(0) < (gA)

′
+(0)

2.

Since gA, g′A and g′′A are continuous at 0+, there exists ε0 > 0 such that for
every ε ∈ [0, ε0],

n

n− 1
gA(ε)g

′′
A(ε) ≤ g′A(ε)

2.

Hence the function gA is 1
n -concave on [0, ε0]. We conclude by Proposi-

tion 2.2, setting t0 = 1
ε0

, that t 7→ |A + tBn
2 | is 1

n -concave on [t0,+∞). If
conv(A) is homothetic to Bn

2 then the result follows from Proposition 3.6.
If A is finite then the function ε 7→ |εA + Bn

2 | is analytic in a right
neighborhood of 0, see [13].

Remarks.

1. The preceding theorem is still valid if one replaces Bn
2 by a convex body

B = rBn
2 +M , for some r > 0 and some convex body M such that its

support function hB(u) = max{< x, u >, x ∈ B} is twice differentiable
on R

n \ {0} because, as proved in [15], inequality (6) holds with these
assumptions.

2. The function ε 7→ |εA + Bn
2 | is not necessarily twice differentiable

in a neighborhood of 0 as can be seen from the following example.
In dimension 2, we consider the points I = (1, 1), J = (1, 0) and
A = I ∪ J ∪ {(cos(1/k), sin(1/k)), k ≥ 1}. Then, A is compact but for
every t0 ∈ R+, the function VA(t) = |A+tB2

2 | is not twice differentiable
on (t0,+∞).

In fact, one can show that the function VA(t) = |A+ tBn
2 | is continuously

differentiable on [diam(A),+∞).
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Proposition 3.8. Let A be a compact subset of R
n. Then the function

VA(t) = |A+tBn
2 | is continuously differentiable on [diam(A),+∞), the func-

tion gA(ε) = |εA+Bn
2 | is continuously differentiable on (0, 1

diam(A) ] and dif-

ferentiable at 0 with g′A(0) = nV (conv(A), Bn
2 [n− 1]).

Proof. Rataj et al. in [18], theorem 3.3, showed that V ′
A(t) exists for every

t ≥ diam(A), thus we have for every t ≥ diam(A)

V ′
A(t) = |∂(A+ tBn

2 )|.

Moreover, if (AN ) is a sequence of non-empty compact subset of Rn tending
in Hausdorff distance to a compact subset A of Rn, then by [22], theorem 3,
for every t > 0 such that V ′

A(t) exists

lim
N→+∞

|∂(AN + tBn
2 )| = |∂(A+ tBn

2 )|.

Let t ≥ diam(A), we apply this result to AN = A + tNBn
2 , where (tN ) is a

sequence of non-negative numbers tending to 0. We obtain that

lim
N→+∞

V ′
A (t+ tN ) = V ′

A(t).

Hence, V ′
A is right continuous at t. Let t, t0 be such that t > t0 > diam(A),

we now apply the result of Stachó to AN = A+ (t0 − tN )Bn
2 , where (tN ) is

a sequence of non-negative numbers tending to 0. We obtain

lim
N→+∞

|∂(AN + (t− t0)B
n
2 )| = |∂(A+ t0B

n
2 + (t− t0)B

n
2 )|

that is
lim

N→+∞
V ′
A (t− tN ) = V ′

A(t).

Hence, V ′
A is left continuous at t. We conclude that VA is continuously

differentiable on [diam(A),+∞).
Let us denote gA(ε) = |εA+Bn

2 |. Since

gA(ε) = |εA+Bn
2 | = εnVA

(

1

ε

)

one gets that gA is continuously differentiable on (0, 1
diam(A) ]. Moreover, from

the inequality (6), valid for any compact set A, one deduces that gA is also
differentiable at 0, with g′A(0) = nV (conv(A), Bn

2 [n− 1]).

3.3.1 A special case in dimension 3

We have seen that for every finite subset A of Rn, there exists t0(A) such
that the function VA(t) = |A+ tBn

2 | is 1
n -concave for t ≥ t0(A). In dimension

3, we can give a bound on t0(A) in terms of the geometry of A.
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In the sequel, A denotes a finite subset of R
3. We denote by Di a

Dirichlet-Voronoi cell with respect to A = {x1, . . . , xN}, defined for i ∈
{1, · · · , N} by

Di = {x ∈ R
3 : |x− xi| ≤ |x− xj |, ∀j ∈ {1, . . . , N}}.

The following condition can be found in [16].

Condition (⋆) For all faces F of the polytope conv(A), and all edges E
of F , we have

∀x ∈ E, d(x,A ∩ E) = d(x,A ∩ F ).

For example, if conv(A) is simplicial, this condition holds if and only if
each face of conv(A) is a triangle with only acute angles. In general, this
condition holds if and only if for every face F of conv(A), for every edge
[a, b] of F and for every vertex c of F , the angle (ca, cb) is acute.

Proposition 3.9. Let A be a finite set in R
3 satisfying the condition (⋆).

Then, VA(t) = |A+ tB3
2 | is 1

3 -concave on [t0(A),+∞), where

t0(A) = min{t ≥ diam(A) : Di ⊂ A+ tB3
2 , for all boundedDi}.

Proof. Kampf and Kiderlen have shown in [16] that for every t > t0(A),

|conv(A) + tB3
2 | − |A+ tB3

2 | = a0 +
∑

p≥1

apt
−2p+1

with for all p ≥ 0, ap ≥ 0. Since Vconv(A) is polynomial thus VA is twice
differentiable on (t0(A),+∞). It follows that for every t > t0(A),

V ′
A(t) = V ′

conv(A)(t) +
∑

p≥1

(2p− 1)apt
−2p

V ′′
A(t) = V ′′

conv(A)(t)−
∑

p≥1

2p(2p− 1)apt
−2p−1.

Then, for every t > t0(A),

VA(t) ≤ Vconv(A)(t), V ′
A(t) ≥ V ′

conv(A)(t) and V ′′
A(t) ≤ V ′′

conv(A)(t). (7)

The Brunn-Minkowski inequality implies that Vconv(A) is 1
3 -concave on R+.

We conclude that for every t > t0(A),

3

2
VA(t)V

′′
A(t) ≤

3

2
Vconv(A)(t)V

′′
conv(A)(t) ≤ V ′

conv(A)(t)
2 ≤ V ′

A(t)
2.

So, VA is 1
3 -concave on [t0(A),+∞).

Remarks.
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1. For an arbitrary compact subset A of R
3, if there exists a sequence

(xN )N∈N∗ dense in A such that for every N , the set AN satisfies the
condition (⋆), where AN = {x1, . . . , xN}, and such that t0(AN ) is
uniformly bounded in N by a t0, then the function t 7→ |A+ tB3

2 | will
be 1

3 -concave on [t0,+∞).

2. In dimension n ≥ 4, there is no hope to prove the inequalities (7)
because for A being two points at distance 2, one has for every t ≥ 1

V ′
A(t) = n|Bn

2 |tn−1 + 2(n− 1)|Bn−1
2 |t

∫ 1

0
(t2 − x2)

n−3

2 dx

< n|Bn
2 |tn−1 + 2(n− 1)|Bn−1

2 |tn−2 = V ′
conv(A)(t).

4 Further analogies

In Information theory, the Blachman-Stam inequality ([3] and [21]), which
states that for any independent random vectors X and Y in R

n with non-zero
Fisher information one has

I(X + Y )−1 ≥ I(X)−1 + I(Y )−1,

directly implies all previous mentioned inequalities of Information theory:
the entropy power inequality (thus the Log-Sobolev inequality for Gaus-
sian measure) and the concavity of entropy power. This last inequality also
called the "isoperimetric information inequality" may be deduced from the
Blachman-Stam inequality in the same way as the "isoperimetric entropy
inequality" was deduced from the entropy power inequality, by applying it
to Y =

√
εG and letting ε tend to 0.

Let us now investigate the analogue of the Fisher information and the
Blachman-Stam inequality in the Brunn-Minkowski theory. Recall de Bruijn’s
identity

I(X) =
d

dt |t=0
2H(X +

√
tG).

Since the entropy H is the analogue of the logarithm of the volume log | ·
|, Dembo, Cover and Thomas [7] proposed, as an analogue of the Fisher
information I, the quantity

d

dε |ε=0
(log |A+ εBn

2 |) =
|∂A|
|A| ,

for sufficiently regular compact sets A. Thus, in analogy with the Blachman-
Stam inequality, one may wonder if for every regular compact sets A and
B

|A+B|
|∂(A+B)| ≥

|A|
|∂A| +

|B|
|∂B| . (8)
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Even restricted to the case where A and B are convex sets, checking the
validity of this inequality is not an easy task and it was conjectured by
Dembo, Cover and Thomas [7] that the inequality (8) holds true in this
particular case. In [11], it was shown that this conjecture (for convex sets)
holds true in dimension 2 but is false in dimension n ≥ 3. In particular,
it was proved that, if n ≥ 3, there exists a convex body K such that the
inequality (8) cannot be true for all A,B ∈ {K + tBn

2 : t ≥ 0}. It was also
proved that if B is a segment then there exists a convex body A for which
(8) is false.

In another direction, one may also ask if (8) holds true for B being
any Euclidean ball and every compact set A. In this case, applying (8) to A
replaced by A+sBn

2 and B = (t−s)Bn
2 , one would have, for every 0 ≤ s ≤ t,

|A+ tBn
2 |

|∂(A+ tBn
2 )|

≥ |A+ sBn
2 |

|∂(A+ sBn
2 )|

+ (t− s)
|Bn

2 |
|∂Bn

2 |
=

|A+ sBn
2 |

|∂(A+ sBn
2 )|

+
t− s

n
,

with the notations given above, this would mean that

t 7→ VA(t)

(VA)′+(t)
− t

n

is non-decreasing on (0,+∞). This is equivalent to the 1
n -concavity of VA,

which is the Costa-Cover conjecture.

Extensions.
The second named author pursued these investigations in [17]. More pre-
cisely, he discusses the concavity properties of the function t 7→ µ(A+ tBn

2 ),
where µ is a log-concave measure. He also establishes functional versions of
Costa-Cover conjecture.
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