
HAL Id: hal-00817108
https://hal.science/hal-00817108v1

Submitted on 23 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Independence and 2-monotonicity: Nice to have, hard to
keep

Sébastien Destercke

To cite this version:
Sébastien Destercke. Independence and 2-monotonicity: Nice to have, hard to keep. International
Journal of Approximate Reasoning, 2013, 54 (4), pp.478-490. �10.1016/j.ijar.2012.11.002�. �hal-
00817108�

https://hal.science/hal-00817108v1
https://hal.archives-ouvertes.fr


Independence and 2-monotonicity: nice to have, hard to
keep I

S. Destercke

Université de Technologie de Compiègne - CNRS, Heudiasyc UMR 7253 BP 20529, 60205 Compiègne,
France

Abstract

In imprecise probability theories, independence modeling and computational tractabil-
ity are two important issues. The former is essential to work with multiple variables
and multivariate spaces, while the latter is essential in practical applications. When
using lower probabilities to model uncertainty about the value assumed by a variable,
satisfying the property of 2-monotonicity decreases the computational burden of infer-
ence, hence answering the latter issue. In a first part, this paper investigates whether
the joint uncertainty obtained by main existing notions of independence preserve the
2-monotonicity of marginal models. It is shown that it is usually not the case, except
for the formal extension of random set independence to 2-monotone lower probabili-
ties. The second part of the paper explores the properties and interests of this extension
within the setting of lower probabilities.

Keywords: factorisation properties, credal sets, propagation, lower previsions

1. Introduction

Independence modelling and computational tractability have always been two im-
portant issues in uncertainty theories. On one hand, independence notions allow one to
easily deal with multivariate spaces, their associated factorization properties allowing
one to decompose a complex problem into simpler ones (using, e.g., graphical models),
or to easily build joint models from marginal ones. They are also essential to derive
statistical results such as laws of large numbers. On the other hand, ensuring computa-
tional tractability is essential in many applications, especially those involving complex
systems.

Lower expectation bounds, better known as lower previsions [31], are very gen-
eral models of uncertainty that have been shown to be formally equivalent to convex
sets of probabilities, or credal sets. They include most known uncertainty models as
special cases [32], but this generality can result in a prohibitive computational cost of
information processing.

IThis paper is an extended version of [10]
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This computational issue is even more critical in multivariate problems. A first
mean to reduce the computational burden of dealing with multivariate models is to as-
sume independence between the variables: this facilitates the joint model construction
and avoids the need to identify dependence structures. When expectations or probabil-
ities are made imprecise, the classical notion of stochastic independence between pre-
cise probabilities can be extended in several ways. Such extensions have been proposed
and compared by many authors (see, for example, Walley [31] and Couso et al. [4]).
These independence notions ensure that the joint uncertainty model can be built from
the sole knowledge of the marginal models, facilitating their handling. However, these
joint models may still be hard to handle from a computational viewpoint. A possible
way to facilitate even more this computational handling is for the joint model to share
some convenient properties with the marginals (2-monotonicity in this paper).

In practice, tractability can be further improved by restricting oneself to classes
of uncertainty models that present a good trade-off between generality and computa-
tional convenience. 2-monotone lower probabilities constitute such a trade-off: they
still encompass many useful uncertainty models (e.g., belief functions [26, 9], proba-
bility intervals [5], possibility distributions [13], p-boxes [14, 11], Pari-mutuel mod-
els [22]) while the property of 2-monotonicity greatly facilitates several computational
aspects [21, 2, 1].

This paper is divided in two parts. The first part investigates whether joint lower ex-
pectations built through various independence assumptions preserve the 2-monotonicity
of marginals. Only the most common type of independence assumptions are consid-
ered: the case of strong independence is studied in Section 3, the cases of epistemic
irrelevance and independence are studied in Section 4, while Section 5 studies an ex-
tension of random set independence to 2-monotone lower probabilities, that we call
Möbius independence. As this extension turns out to satisfy 2-monotonicity preserva-
tion, the second part of the paper explores it in more details. Section 6, whose results
also apply to random set independence (of which Möbius independence is a formal
extension), investigates its properties as well as its links with the lower prevision ap-
proach. Finally, Section 7 illustrates Möbius independence on an illustrative practical
example in the domain of multi-criteria decision making. Preliminaries about lower
previsions and 2-monotone lower probabilities needed in this paper are recalled in Sec-
tion 2.

2. Preliminaries

This section recalls basic notions and introduces main notations used in the rest of
the paper. Although we deal with marginal uncertainty models defined by 2-monotone
lower probabilities, we will start from lower expectations, as they are needed to express
the joint models resulting from different independence assumptions.

2.1. Lower expectations and credal sets

Lower expectations have been introduced by Williams [33] and formalized by Wal-
ley [31] as a unifying reasoning framework encompassing most known uncertainty
models, which generalizes de Finetti’s [16] subjective account of probabilities (and is
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therefore coherent with this latter). This section recalls the basics needed in this paper,
and we refer to Refs. [20] and [31] for more details. Note that since this study mainly
focuses on formal properties, we will prefer the term lower expectation to lower previ-
sion, as the latter is related to a particular interpretation of imprecise probabilities.

Consider a variable X whose value lies in a finite space X . We assume that the
uncertainty on X is described by a lower expectation P : L (X )→ R defined over the
set L (X ) of all real-valued functions over X . The quantity P( f ) then denotes the
lower expectation of a function f . A lower expectation P is associated with its dual
upper expectation P, defined as P( f ) =−P(− f ) for any f ∈L (X ).

The lower probability of an event A ⊆X corresponds to the value P(1A ), where
1A is the indicator function of A (1A (x) = 1 if x ∈ A, zero otherwise). This lower
probability will be denoted by P(A) when no confusion is possible. In the specific case
of lower probabilities, the dual notion of upper probability is such that P(A) = 1−P(A)
where A is the complement of A.

A coherent lower expectation P on L (X ) is defined as a lower expectation satis-
fying the following conditions:

1. P( f )≥ infx∈X f (x) for all f ∈L (X ) (accepting sure gain);

2. P(λ f ) = λP( f ) for each f ∈L (X ) and λ ≥ 0 (positive homogeneity);

3. P( f +g)≥ P( f )+P(g) for all f ,g ∈L (X ) (superadditivity).

Note that, in this paper, we will exclusively deal with coherent lower expectations.
A coherent lower expectation is said to be a linear expectation P if it is self-dual,

that is if P( f ) = P( f ) = P( f ) for all f ∈L (X ) (in particular, P(A) = P(A) = P(A)
for any event A). A linear expectation P is additive, in the sense that P( f +g) = P( f )+
P(g) for all f ,g ∈L (X ). A linear expectation P corresponds to the expectation of
a probability measure, and we will denote by p the corresponding probability mass
function p defined as p(x) := P(1x ),x ∈X and such that P( f ) = ∑x∈X p(x) f (x) for
any f ∈L (X ).

A lower expectation P induces a corresponding closed convex set M (P) of domi-
nating probability distributions, here called credal set, such that

M (P) = {p ∈ PX |P( f )≥ P( f ) ∀ f ∈L (X )},

where PX is the set of all probability masses over X and P( f ) is the linear expectation
of f induced by p. One can show that there is a one-to-one correspondence between
lower expectations and credal sets (that is, each credal set corresponds to one and only
one lower expectation).

As M (P) is a convex set of probabilities, another way to represent is by its set
E (M (P)) of extreme points. Although this representation is in one-to-one correspon-
dence with coherent lower expectations, it will often be less convenient than using
bounds over expectations, simply because the number of extreme points can be very
large. However, the computation of such extreme points may be necessary in some
algorithms, for example in some extensions of graphical models [23].

In practice, the information contained in P will often be given or restricted to a finite
subset K of L (X ). A lower expectation defined on such a subset K ⊆L (X ) is
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Figure 1: Lower expectations, credal set and extreme points of Example 1

called coherent if it is the restriction on K of some coherent lower expectation on
L (X ). The induced credal set is then

M (P) = {p ∈ PX |P( f )≥ P( f ) ∀ f ∈K }

and the lower expectation, or natural extension1 induced by P on any function g ∈
L (X ) is given by P(g) = min{P(g)|p ∈M (P)}. This natural extension represents
the most conservative inference one can make on g when all the information we have
about X is represented by the initial lower expectation P defined on K .

Example 1. Consider a 3 elements space X = {x1,x2,x3}. The information (e.g., given
by some expert) we have about the ill-known variable X is that

• x3 is at least two times more probable than x2: 2P({x2})≤ P({x3}), and

• the probability of x1 is not higher than 0.4: P({x1})≤ 0.4.

The first statement can be transformed into 0 ≤ P({x3})− 2P({x2}), meaning that
the lower expectation of the function f1(x1) = 0, f1(x2) = −2, f1(x3) = 1 is P( f1) =
0. Similarly, the second statement says that P( f2 = −1{x1} ) = −0.4 (obtained from
P({x1}) = 0.4 and duality of lower/upper expectations). The coherent lower expecta-
tion P defined on K = { f1, f2} then induces the credal set depicted2 in Figure 1.

Manipulating coherent lower expectations to make various inferences (e.g., com-
pute the natural extension, conditioning) may represent a heavy computational burden,
especially when the space X is large (as it happens in the multivariate case). An
important case where it is reduced is when P is restricted to events (i.e., K is the

1Note that here, we use the same notation for P and its natural extension, as we only deal with so-called
coherent lower expectations.

2The figure displays the unit simplex in barycentric coordinates where each point represent a
probabilityp = (p1, p2, p3) with pi = P({xi}). Recall that given the extreme points x1,x2,x3 of the sim-
plex, if p = p1x1 + p2x2 + p3x3, the probability masses (p1, p2, p3) are the barycentric coordinates of p. See
Ref. [24] for details about this representation.
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set of indicator functions and P is a lower probability) and satisfies the property of
2-monotonicity. Before summarizing the main advantages of 2-monotonicity in Sec-
tion 2.3, we recall the property of n-monotonicity and its links with the Möbius inverse,
as these notions will be used in the following.

2.2. n-monotone lower probabilities and Möbius inverse
Many of the results presented in this section and the next one are contained in the

paper of Chateauneuf and Jaffray [2].
A lower probability P is n-monotone, where n > 1 and n ∈N, if and only if for any

set A = {Ai ⊆X |i ∈ N,0 < i≤ n} of events Ai, it holds that

µ

( ⋃
Ai∈A

Ai

)
≥ ∑

I⊆A

(−1)|I|+1
µ

(⋂
Ai∈I

Ai

)
(1)

where |I| is the cardinality of I. If a lower probability is n-monotone, then it is (n−1)-
monotone. Any n-monotone lower probability P for n≥ 2 is coherent (i.e., is the lower
envelope of M (P) on events).

In particular, a lower probability P satisfies the property of 2-monotonicity when,
for any pair A,B⊆X of events, the following inequality holds:

P(A)+P(B)≤ P(A∪B)+P(A∩B). (2)

Chateauneuf and Jaffray [2] have shown that there are strong links between the n-
monotonicity of a lower probability P and the mass assignment induced by its Möbius
inverse. The Möbius inverse m : ℘(X )→ R of P is defined as a mapping from the
power set of X to the real space such that, for every subset E ⊆X ,

m(E) = ∑
A⊆E

(−1)|E\A|P(A), (3)

with |E \A| the cardinality of E \A = {x|x ∈ E and x 6∈ A}. We will call Möbius mass
the mass m(E) attributed to a set E. For any lower probability, ∑E⊆X m(E) = 1,
m( /0) = 0 and m({x}) ≥ 0 for any x ∈X . The Möbius inverse is a bijective trans-
formation, meaning that the lower probability P can be retrieved from m through the
formula

P(A) = ∑
E⊆A

m(E) (4)

for any A⊆X . Using the language of belief functions [26], we will call focal a set E
whose Möbius mass is non-null (i.e., m(E) 6= 0).

2-monotonicity of P can be checked through its Möbius inverse, thanks to the fol-
lowing proposition [2]:

Proposition 1. P is a 2-monotone lower probability if and only if its Möbius inverse m
is such that, for any A⊆X and all {x,y} ∈ A, x 6= y,

∑
{x,y}⊆B⊆A

m(B)≥ 0.
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This proposition has the following corollary

Corollary 2. If P is a 2-monotone lower probability, then m(E)≥ 0 for all E such that
|E| ≤ 2.

However, the converse is not true, i.e., any mapping m with ∑E⊆X m(E) = 1 and
m(E) ≥ 0 for all E such that |E| ≤ 2 will not induce a 2-monotone lower probability,
as the next example shows:

Example 2. Consider a 3 elements space X = {x1,x2,x3} with the mass function m
such that

m({x1}) = 0.1, m({x2}) = 0.2, m({x3}) = 0.5, m({x1,x2}) = 0,
m({x1,x3}) = 0.2, m({x2,x3}) = 0.3, m(X ) =−0.3.

Using Eq (4), we get P({x1}) = 0.1 and P({x2,x3}) = 1, a non-coherent lower proba-
bility which therefore cannot be 2-monotone (another means to see it is to consider the
pair of events A = {x1,x3} and B = {x2,x3}).

2.3. Some advantages of 2-monotonicity

According to Walley [30, P. 51], there is not “. . . any rationality argument for two-
monotonicity, beyond its computational convenience.” However, as said by other au-
thors [1] and as recalled in the Introduction, computational convenience is a critical
issue in imprecise probabilistic approaches, and having easy-to-find 2-monotone ap-
proximations at our disposal can help to solve practical problems.

Let us recall some of the computational advantages of a 2-monotone lower proba-
bility P:

• the natural extension of P can be exactly computed using the Choquet integral.
If f is a positive bounded function over X , its natural extension P( f ) is

P( f ) =
|X |

∑
i=1

f (xσ(i))(P(Aσ(i))−P(Aσ(i+1))) (5)

with σ the permutation of X elements such that f (xσ(1))≤ . . .≤ f (xσ(|X |)) and
with Aσ(i) = {xσ(i), . . . ,xσ(n)} (Aσ(|X |+1) = /0). This Choquet integral can also
be computed as follows

P( f ) = ∑
E⊆X

m(E) inf
x∈E

f (x) (6)

with m the Möbius inverse of P;

• the vertices of the credal set M (P) can be generated in a straightforward way. If
σ denotes a permutation of elements of X , then the probability mass function
pσ such that, for any i ∈ 1, . . . , |X | we have

pσ (xσ(i)) = P(Aσ(i))−P(Aσ(i+1))

6



belongs to the set of extreme points E (M (P)). Sampling extreme points of
credal sets generated by 2-monotone lower probabilities then comes down to
sample permutations of elements of X , thus avoiding the need to enumerate
them. Such a sampling can then be used to approximate the results of infer-
ence procedures whose exact solution is known to lie on some vertex (or on a
combination of vertices), such as inferences in Credal networks [23];

• conditional lower and upper probabilities P(A|B)= infp∈M (P) P(A|B) and P(A|B)=
supp∈M (P) P(A|B), where P(A|B) = P(A∩B)/P(B) is the conditional probability
measure on A computed from p, can be evaluated through the closed-form for-
mulas

P(A|B) = P(A∩B)
P(A∩B)+P(A∩B)

; P(A|B) = P(A∩B)
P(A∩B)+P(A∩B)

. (7)

It can be shown that P(·|B) remains 2-monotone if P is. Similar arguments apply
to other conditioning rules such as Dempster’s conditioning [9] that can be ex-
tended to 2-monotone lower probabilities if assimilated to a maximum likelihood
principle [17];

• robust statistics based on minimax test and least-favourable pairs can be effi-
ciently performed by using the Huber-Strassen theory [18];

• propagating the uncertainty represented by P over some input variable X through
a function h(X) =Y to estimate the uncertainty over some output variable Y (as-
suming its values on a space Y ) can be done easily through the Möbius inverse,
as it simply comes down to transfer the Möbius mass m(E) to the image h(E)
(obtaining m(h(E))).

From now on, we will assume that the uncertainty concerns two variables X and Y
taking their values on two finite spaces X and Y , respectively, and is modeled by the
2-monotone lower probabilities PX and PY , respectively. To make inferences on the
product space X ×Y , one needs to build a joint uncertainty model P : L (X ×Y )→
R that complies with the marginal information given by PX and PY , i.e. for any A⊆X
and any B⊆ Y , we should have

P(A×Y ) = PX (A) and P(X ×B) = PY (B). (8)

A classical mean to build the joint model P is to assume that X and Y are indepen-
dent. Given the practical interest of having a 2-monotone model, the next sections of
this paper address two problems:

• whether usual independence assumptions [4] applied to marginal models that are
2-monotone lower probabilities will lead to 2-monotone joint models (Sections 3
and 4);

• if the answer to this questions is negative, whether or not it is possible to find an
easy-to-build 2-monotone approximation (Section 5).
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3. The case of strong independence

When uncertainty is modelled by precise probabilities, a first way to express inde-
pendence between two variables X and Y is to require the joint model PXY to satisfy

PXY (A×B) = PX (A)PY (B) (9)

for any A ⊆X and any B ⊆ Y . Note that Equation (9) is by nature symmetric. The
joint probability mass pXY is then obtained by the stochastic product pXY := pX ⊗ pY
defined, for any x ∈X and y ∈ Y , as

pXY (x,y) = pX (x)pY (y). (10)

The concept of strong independence directly extends Equation (10) to sets of prob-
abilities, in the sense that it corresponds to taking the stochastic product of every prob-
ability mass function inside M (PX ) and M (PY ). The joint lower expectation obtained
by such an assumption, denoted by PSI , is then such that for any f ∈L (X ×Y ),

PSI( f ) = inf{P12( f )|p12 = p1⊗ p2, p1 ∈M (PX ), p2 ∈M (PY )},

with P12 the linear expectation induced by p12. The set of extreme points of M (PSI)
can be obtained by computing the stochastic products of every extreme points of M (PX )
and M (PY ). Strong independence satisfies Equations (8), and it can be shown [4] that
on Cartesian products of events A× B,A ⊆ X ,B ⊆ Y , the following factorization
property holds:

PSI(A×B) = PX (A)PY (B); PSI(A×B) = PX (A)PY (B). (11)

The next example shows that 2-monotonicity is, in general, not preserved by the
assumption of strong independence.

Example 3. Consider two binary spaces X = {x1,x2} and Y = {y1,y2}. Recall that
any lower expectation on binary spaces only depends on its values on singletons and
is always a 2-monotone lower probability. Consider then the following marginal lower
probabilities:

PX ({x1}) = 0.2,PX ({x2}) = 0.3 and PY ({y1}) = 0.3,PY ({y2}) = 0.4.

The extreme points of E (M (PX )) and E (M (PY )) are respectively:

E (M (PX )) = {(p(x1) = 0.2, p(x2) = 0.8),(p(x1) = 0.7, p(x2) = 0.3)},

E (M (PY )) = {(p(y1) = 0.3, p(y2) = 0.7),(p(y1) = 0.6, p(y2) = 0.4)}.

The four extreme points of M (PSI) obtained from these two sets are summarized in
Table 1. Now, consider the two events A =X ×{y2} and B = ({x1}×{y1})∪ ({x2}×
{y2}) on X ×Y . Under an assumption of strong independence, we have

PSI(A) = PY ({y2}) = 0.4,
PSI(B) = 0.42.
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E (M (PSI)) (x1,y1) (x1,y2) (x2,y1) (x2,y2)

p1 0.06 0.14 0.24 0.56
p2 0.21 0.49 0.09 0.21
p3 0.12 0.08 0.48 0.32
p4 0.42 0.28 0.18 0.12

Table 1: Probability mass functions in E (M (PSI)) of Example 3.

PSI(A) is obtained by applying Equation (8), while PSI(B) is obtained by selecting p2

in Table 1. Then, using the factorization properties (11) of PSI over Cartesian products,
we have

PSI(A∩B) = P({x2}×{y2}) = P({x2})P({y2}) = 0.12,

PSI(A∪B) = P({x2}×{y1}) = 1−P({x2})P({y1}) = 0.52,

hence, PSI violates 2-monotonicity, as

0.82 = PSI(A)+PSI(B)≥ PSI(A∪B)+PSI(A∩B) = 0.64.

Strong independence therefore does not preserve 2-monotonicity. The next sec-
tion deals with another extension of stochastic independence to imprecise probabilities:
epistemic irrelevance and independence.

4. The case of epistemic irrelevance and independence

A second way to express independence between precise probabilities is through
conditional probabilities, by requiring that the conditional probability computed from
the joint model satisfies

PXY (B|A) = PY (B) (12)

for any A⊆X and any B⊆ Y . Equation (12) is by nature asymmetric, and translates
the fact that learning the value of X does not change our information about Y , or in
other words that X is epistemically irrelevant to Y . It is only the axioms of probability
theory that make this condition symmetric (i.e., Equation (12) implies Equation (9)).
Using Equation (12), the joint probability is

pXY (x,y) = pY (y|x)pX (x) = pY (y)pX (x). (13)

The notion of epistemic irrelevance with imprecise probabilities aims at expressing
the same idea, that is the fact that learning the value of a variable does not modify
the uncertainty (or the knowledge) about the value of another variable (not excluding
the possibility that learning the value of the latter may modify our uncertainty about
the former). We consider the statement that X is epistemically irrelevant to Y and
denote it by X 6→ Y . We refer to Ref. [7] for the extension to any number of variables.
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E (M (PX 6→Y )) (x1,y1) (x1,y2) (x2,y1) (x2,y2)

p5 0.06 0.14 0.48 0.32
p6 0.21 0.49 0.18 0.12
p7 0.12 0.08 0.24 0.56
p8 0.42 0.28 0.09 0.21

Table 2: Probability mass functions in E (M (PX 6→Y )) of Example 4.

The corresponding joint lower expectation, denoted by PX 6→Y , is such that, for any
f ∈L (X ×Y ),

PX 6→Y ( f ) = inf{P12( f )|p12(x,y) = p2(y|x)p1(x), p1 ∈M (PX ), p2(·|x) ∈M (PY )},
(14)

where p2(y|x) may depend on the value of x, i.e, for two distinct values x,x′ ∈X ,
we may have p2(y|x) 6= p2(y|x′). The constraint p2(·|x) ∈M (PY ) corresponds to the
epistemic irrelevance assumption that learning X value does not change the informa-
tion about Y (given by M (PY )). The extreme points E (M (PX 6→Y )) can be obtained by
computing p(x,y) = p1(x)p2(y|x) for each x,y ∈X ×Y , with p1 ∈ E (M (PX )) and
p2(·|x) ∈ E (M (PY )) (possibly choosing p2(·|x) 6= p2(·|x′) for x 6= x′). Note that when
working with imprecise probabilities, an assumption of epistemic irrelevance is truly
asymmetric, as the two models PX 6→Y and PY 6→X will in general be different. The sym-
metrisation of the notion is called epistemic independence, and will be studied later in
this section. In contrast with strong independence, the joint lower expectation PX 6→Y ( f )
can easily be expressed in terms of marginal lower expectations as we have [7]

PX 6→Y ( f ) = PX (PY ( f (X , ·))), (15)

where PY ( f (X , ·)) is a function on X assuming the value PY ( f (x, ·)) for every x∈X .
The joint lower expectation PX 6→Y satisfies Equation (8) and also factorizes over

Cartesian products of events [4] (see Equation (11)). The next example shows that,
as for strong independence, 2-monotonicity is in general not preserved by epistemic
irrelevance.

Example 4. Consider the same marginal models as in Example 3 with the assumption
that X 6→ Y , and the same events A and B. As PX 6→Y still factorizes over products of
events, the values for PX 6→Y (A∪B) =PSI(A∪B) and PX 6→Y (A∩B) =PSI(A∩B) remain
unchanged. Table 2 summarizes the extreme points in E (M (PX 6→Y )) not already given
in Table 1 (the first point p5 is obtained by taking p1(x1) = 0.2, p2(y1|x1) = 0.3 =
1− p2(y2|x1) and p2(y1|x2) = 0.7 = 1− p2(y2|x2) in (14)). Under the assumption
X 6→ Y , we have

PX 6→Y (A) = PY ({y2}) = 0.4,

PX 6→Y (B) = 0.33,
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where PX 6→Y (A) value is due to the marginal preservation (Equation (8)) and PX 6→Y (B)
value is reached by considering p6 in Table 2. We then get

0.73 = PX 6→Y (A)+PX 6→Y (B)≥ PX 6→Y (A∪B)+PX 6→Y (A∩B) = 0.64.

Note that the assumption Y 6→ X leads to PY 6→X (B) = 0.27, hence also resulting in an
inequality violating 2-monotonicity.

Let us now look at the symmetric counter-part of epistemic irrelevance: epistemic
independence [29]. It corresponds to the statements that X and Y are epistemically
irrelevant of each other, and is denoted by X 6↔ Y . Its extension to any number n of
variables has recently been investigated by de Cooman et al. [8]. The corresponding
joint lower expectation, denoted by PX 6↔Y , is such that, for any f ∈L (X ×Y ),

PX 6↔Y ( f ) = inf
{

P( f )|p ∈
(
M (PX 6→Y )∩M (PY 6→X )

)}
.

As for epistemic irrelevance, epistemic independence preserves marginal information
and factorizes over Cartesian products of events.

Example 5. Consider the same marginals and events A,B as in Example 3. . As
PX 6↔Y still factorizes over Cartesian products, its values on A,A∩B and A∪B do not
change. Also, as M (PX 6↔Y ) = M (PX 6→Y )∩M (PY 6→X ), we have that PX 6↔Y (B) ≥
max{PY 6→X (B),PX 6→Y (B)}, hence PX 6↔Y is also not 2-monotone.

Examples 3, 4 and 5 indicate that neither strong independence, epistemic irrele-
vance nor epistemic independence preserve the 2-monotonicity of marginals. The next
question is to know whether or not we can find an easy-to-build 2-monotone approxi-
mation. In the next section, we explore a formal extension of random set independence
to 2-monotone lower probabilities, and show that it does preserve 2-monotonicity.

5. Extending random set independence

The notion of random set independence [4] only applies to lower probabilities that
are n-monotone for any number n, also said to be completely- or ∞-monotone. A lower
probability P on a space X is a completely-monotone lower probability if and only
if its Möbius inverse is non-negative [26], that is m : ℘(X )→ [0,1]. In this case, the
Möbius mass m(E) can be interpreted as a probability bearing over sets E rather than
singletons (hence it can be assimilated to a random set [9] or a belief function [26]).

Let mX and mY be the two Möbius inverses obtained from completely-monotone
lower probabilities PX and PY . Then the joint model PRI obtained by an assumption
of random set independence is defined as a the lower probability having for Möbius
inverse the joint distribution mRI : ℘(X ×Y )→ [0,1] such that, for any A ⊆X and
any B⊆ Y ,

mRI(A×B) = mX (A)mY (B). (16)

PRI can then be estimated via Equation (4) (and as Möbius inverse is a bijective trans-
formation, mRI can then be retrieved by applying Equation (3)). Note that mRI has only
Cartesian products of events for focal elements. As mRI is non-negative by definition,
then PRI is completely-monotone, meaning that the joint model preserves monotonicity
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in the case of random set independence. As for strong independence, epistemic irrel-
evance and epistemic independence, random set independence does satisfy marginal
preservation and factorizes over Cartesian product of events. Similarly to strong inde-
pendence, it is a symmetric notion.

Formally extending the notion of random set independence and Equation (16) to
2-monotone lower probabilities can be done in a simple way:

Definition 1 (Möbius independence). Let PX , PY be 2-monotone lower probabilities
defined on finite spaces X ,Y with mX ,mY their respective Möbius inverses. The joint
model PMI corresponding to a Möbius independence notion is defined as the lower
probability having for Möbius inverse the distribution mMI : X ×Y → R such that,
for every A×B⊆X ×Y ,

mMI(A×B) = mX (A)mY (B). (17)

The joint lower probability PMI induced by mMI over X ×Y is then defined for
every event E ⊆X ×Y as

PMI(E) = ∑
(A×B)⊆E

mMI(A×B).

Note that, as Möbius inversion remains a bijection in the 2-monotone case, applying
Equation (3) to PMI gives back mMI .

Proposition 3. Let PX , PY be 2-monotone lower probabilities, then PMI is a 2-monotone
lower probability.

Proof. As PMI is entirely defined by its Möbius inverse mMI , proving that PMI is 2-
monotone comes down to show that mMI has the following properties:

1. mMI( /0) = 0;

2. ∑A×B⊆X ×Y mMI(A×B) = 1 (as mMI is non-null only on Cartesian products);

3. For any E ⊆X ×Y and all ({x1}×{y1}∪{x2}×{y2})⊆ E,

∑
({x1}×{y1}∪{x2}×{y2})⊆C⊆E

mMI(C)≥ 0

holds (using Prop. 1). To simplify notation, we will denote {x,y}i := {xi}×{yi}
in this proof.

The first property is easily shown, as mX ( /0) = mY ( /0) = 0. The second property follows
from

∑
A×B⊆X ×Y

mMI(A×B) = ∑
A⊆X

∑
B⊆Y

mX (A)mY (B) = ∑
A⊆X

mX (A) ∑
B⊆Y

mY (B) = 1.

12



Now, let us show the third property. We have

∑
({x,y}1∪{x,y}2)⊆C⊆E

mMI(C) = ∑
({x,y}1∪{x,y}2)⊆A′×B′⊆E

mMI(A′×B′)

= ∑
({x,y}1∪{x,y}2)⊆A′×B′⊆E

mX (A′)mY (B′)

= ∑
A′×B′⊆E

(
∑

({x1}∪{x2})⊆A′⊆A
mX (A′)

)(
∑

({y1}∪{y2})⊆B′⊆B
mY (B′)

)
≥ 0.

The first equality follows from the fact that mMI is non-null only on Cartesian products,
and the second from Definition 1 of Möbius independence (mMI(A′×B′)=mX (A′)mY (B′)).
Finally, the last inequality comes from the fact that both sums are positive (according
to Prop. 1).

Proposition 3 shows that by extending the notion of random set independence we
get an independence notion (here understood as a formal means to build a joint model
from marginals) that preserves 2-monotonicity. Since Equation (17) is symmetric, ex-
tending the notion to any number N of variables is straightforward. As we now have
an easy way to get a 2-monotone approximation (that benefits from the computational
advantages recalled in Section 2.3), we can explore its properties and links with respect
to the other joint models described in Sections 3 and 4.

6. Properties of Möbius independence

An immediate remark is that, as Möbius independence is a direct extension of ran-
dom independence, the cases where it is likely to be the most useful are those where
the notion of random set independence is commonly used. This includes, in particular,
problems of uncertainty propagation [15] or of reliability analysis [25].

There are no natural semantics to Möbius independence within frameworks based
on lower expectations and lower probabilities, as the Möbius inverse itself has no se-
mantic within such frameworks. Actually, Möbius independence cannot even directly
benefits from a random set-like interpretation, due to the presence of focal sets re-
ceiving negative masses. Providing Möbius independence with a semantic interpreta-
tion would therefore require to give a proper interpretation to focal sets with negative
masses, an open question that is out of the scope of the present paper (some attempts
at such interpretation have been made in other approaches such as Smets Transferable
Belief Model [27], but they hardly apply to the present case).

This is why we will concentrate on the formal properties of Möbius independence
that link it to strong independence, epistemic irrelevance and epistemic independence.

6.1. Factorization over Cartesian products
All joint models studied in the previous sections factorize over Cartesian products

of events, i.e., if PX , PY are the marginal models and Pω the joint model with ω ∈
{SI,Y 6→ X ,X 6→ Y,X 6↔ Y,RI}, then for any A×B⊆X ×Y , we have

Pω(A×B) = PX (A)PY (B), Pω(A×B) = PX (A)PY (B).
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The same holds for Möbius independence: let PX , PY be 2-monotone lower probabili-
ties, and PMI the joint model. Then for any A×B⊆X ×Y

PMI(A×B) = ∑
C⊆A×B

mMI(C) = ∑
(A′×B′)⊆(A×B)

mX (A′)mY (B′)

= ∑
A′⊆A

mX (A′) ∑
B′⊆B

mY (B′) = PX (A)PY (B)

since, by construction, mMI is non-null only on Cartesian products. Similar arguments
can be used to prove PMI(A×B) = PX (A)PY (B).

That PMI as an approximation preserves marginal information (Equation (8)) is
immediate, since

PMI(A×Y ) = PX (A)PY (Y ) = PX (A) (18)

as PY (Y ) = 1. The same argument applies to events X ×B.
Let us now show that Möbius independence can be used as a conservative approxi-

mation of other independence notions.

6.2. Möbius independence as a conservative approximation
In this paper, a model is said to be a conservative approximation of another one

if inferences made using the former are more cautious than inferences made using the
latter. In practice, this translates in the fact that a credal set M ′ defined on a space
X is a conservative approximation of another set M defined on the same space X if
and only if M ⊆M ′, or equivalently if P′ ≤ P with P′ and P the lower expectations
induced by M ′ and M , respectively. We will also say that P′ outer-approximate P
(since for any function f ∈L (X ) we will have [P( f ),P( f )]⊆ [P′( f ),P′( f )]).

In uncertainty reasoning, if an approximation is going to be used as a replacement
of an exact but more complex model, being conservative ensures that inferences made
using the approximation will be at least as cautious as inferences made using the exact
model. Although this may make conclusions more imprecise, it ensures that these
same conclusions will not be misleading (e.g., by providing overly precise results or
bad estimates). This is particularly critical in applications such as risk analysis.

The next proposition shows that Möbius independence is a conservative approxi-
mation of independence notions studied in Sections 3 and 4.

Proposition 4. Let PX , PY be 2-monotone lower probabilities, then the joint uncer-
tainty model PMI outer-approximates the joint uncertainty models PX 6→Y ,PY 6→X ,PX 6↔Y ,
and PSI , in the sense that for any f ∈L (X ×Y ),

PMI( f )≤min{PX 6→Y ( f ),PY 6→X ( f ),PX 6↔Y ( f ),PSI( f )}.

Proof. First, recall that joint models obtained via the independence assumptions of
Sections 3 and 4 are related in the following way [4]:

max{PX 6→Y ,PY 6→X} ≤ PX 6↔Y ≤ PSI

when the joint uncertainty models are obtained from the same marginals PX ,PY . Hence,
it is sufficient to show that PMI ≤ PX 6→Y and PMI ≤ PY 6→X to prove that PMI outer-
approximates the other joint uncertainty models. We will only prove that PMI ≤ PX 6→Y ,
as the proof of PMI ≤ PY 6→X follows similar arguments.
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Consider a function f ∈L (X ×Y ). Using the fact that PX , PY are 2-monotone
lower probabilities and combining Eq. (6) with Eq. (15), we obtain that PX 6→Y ( f ) can
be reformulated as follows:

PX 6→Y ( f ) = ∑
A⊆X

mX (A) inf
x∈A

(
∑

B⊆Y

mY (B) inf
y∈B

f (x,y)

)
.

Similarly, since we have shown that PMI is 2-monotone, we can use Eq. (6) and obtain

PMI( f ) = ∑
A×B⊆X ×Y

mMI(A×B) inf
(x,y)∈A×B

f (x,y)

= ∑
A⊆X

∑
B⊆Y

mX (A)mY (B) inf
x∈A

inf
y∈B

f (x,y)

= ∑
A⊆X

mX (A) ∑
B⊆Y

mY (B) inf
x∈A

inf
y∈B

f (x,y).

This shows that PMI( f )≤ PX 6→Y ( f ), since

∑
B⊆Y

mY (B) inf
x∈A

inf
y∈B

f (x,y)≤ inf
x∈A

(
∑

B⊆Y

mY (B) inf
y∈B

f (x,y)

)
.

Proposition 4 and Equation (18) indicate that Möbius independence can be used as
a conservative approximation while not losing information about the marginals. This is
in contrast with other (simpler) conservative approximations of independence notions
using models such as possibility distributions [12] or p-boxes [28], which use implies
a partial loss of the marginal information.

One question that remains, though, is whether PMI is the most specific 2-monotone
outer-approximation of max{PX 6→Y ,PY 6→X}, in the sense that there is no other model P
that is 2-monotone and such that PMI ≤ P≤max{PX 6→Y ,PY 6→X}. The answer is no, as
shown by the next example.

Example 6. Consider again the marginal models of Example 3. We already know
that none of PX 6→Y ,PY 6→X does satisfy the 2-monotonicity property. As all studied
independence concepts of this paper factorizes over events, the only events on which
the joint models may differ are {x1}×{y1}∪ {x2}×{y2} and {x1}×{y2}∪ {x2}×
{y1}. We have, using Möbius inverse independence, that

PMI({x1}×{y1}∪{x2}×{y2}) = 0.17 and PMI({x1}×{y2}∪{x2}×{y1}) = 0.18,

however it can be checked that the most specific joint model P being 2-monotone and
outer-approximating PX 6→Y ,PY 6→X is such that P({x1}× {y2} ∪ {x2}× {y1}) = 0.23
and P({x1}×{y1}∪{x2}×{y2}) = 0.24.

It must be noted that obtaining such a ”best” approximation (that is not unique in
general [1]) would require to estimate PX 6→Y on every event of X ×Y and then run
some linear program [1] to find an approximation. In this case, the approximation
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would not longer be easy to get, therefore losing the main advantages of an approxi-
mated model.

Also, the joint model mMI requires storing at most 2|X |+|Y | values, as mMI is non-
null only on Cartesian products. This can be compared to the maximal number of
2|X |·|Y | values needed to store a generic 2-monotone lower probability, or to the max-
imal factorial number (|X | · |Y |)! of extreme points of the induced credal set.

Remark 1. As a side result, Example 6 (and the examples before) also answers to
the following interesting question: given marginals PX ,PY , is it possible to find a 2-
monotone joint model P that inner approximates the model obtained by an assumption
of epistemic irrelevance and outer approximates the model obtained by an assumption
of epistemic independence? That is, is it always possible to find a 2-monotone lower
probability P such that max{PX 6→Y ,PY 6→X}≤ P≤ PX 6↔Y ? The answer is no, since if we
consider marginal models and events of Example 3, lower probabilities on events A,A∩
B and A∪B are the same for all independence assumptions and all approximations P
would be such that PX 6↔Y (B)≥ P(B)≥max{PX 6→Y (B),PY 6→X (B)}. Therefore P would
not be 2-monotone.

In summary, Möbius independence provides an easy means to build a (not too) con-
servative approximation of the usual independence assumptions for imprecise proba-
bilities.

6.3. Möbius independence and productivity
Within the theory of lower prevision, recent works [8] have focused on character-

izing other extensions of stochastic independence in the form of properties that a joint
model could satisfy. One of the weakest property developed in these works is the one
of productivity, from which very general laws of large numbers can be derived [3]. To
simplify notations, we identify in this section a function g defined on the space X with
its cylindrical extension to the Cartesian product X ×Y (defined, for every x∈X and
all y ∈ Y , as g(x,y) = g(x)), and we similarly identify functions defined on the space
Y . The property of productivity for two variables is then defined as follows:

Definition 2 (Productivity). Consider a joint lower expectation P on L (X ×Y ). This
lower expectation is called productive if for all g ∈L (X ) (resp. all g ∈L (Y )) and
all non-negative f ∈L (Y ) (resp. all non-negative f ∈L (X )), P( f [g−P(g)])≥ 0.

Intuitively, this property states that a random variable with positive expected value
(g− P(g) has a lower expectation equal to zero) multiplied by a positive value ( f )
should have a positive expected value. Unfortunately, the next example shows that
the joint uncertainty model PMI obtained under an MI assumption does not satisfy this
property.

Example 7. Let X = {x1,x2} and Y = {y1,y2} be two binary spaces. Consider two
2-monotone lower probabilities PY and PX defined on this space and their Möbius
inverses mX and mY (note that they are positive), such that

mX ({x1}) = α1,mX ({x2}) = α2 and mX (X ) = 1−α1−α2;

mY ({y1}) = β1,mY ({y2}) = β2 and mY (Y ) = 1−β1−β2.
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Now consider two functions g∈L (X ) and f ∈L (Y ) such that g(x1) = a < g(x2) =
b and 0 < f (y1) = c < f (y2) = d. Consider now PMI as a joint uncertainty model, and
let us calculate PMI( f [g−PMI(g)]). Let us first consider PMI(g). As g ∈L (X ), we
have that

PMI(g) = α2b+(1−α2)a,

and the function h = f [g−PMI(g)] on X ×Y is summarised in Table 3 below. The

h = f [g−PMI(g)] x1 x2
y1 cα2(a−b) < c(1−α2)(b−a)

<

<

y2 dα2(a−b) < d(1−α2)(b−a)

Table 3: Function f [g−P(g)] of Example 7

inequalities in Table 3 are due to the two inequalities a ≤ b and 0 ≤ c ≤ d and to the
fact that (a−b)≤ 0, (1−α2)≥ 0. Note that the four values are totally ordered. Using
Eq. (6) and Definition 1, we have that

PMI(h) = (1−α2)(1−β1)h(x1,y2)+β1(1−α2)h(x1,y1)

+α2(1−β2)h(x2,y1)+α2β2h(x2,y2)

= (1−α2)((1−β1)h(x1,y2)+β1h(x1,y1))+α2((1−β2)h(x2,y1)+β2h(x2,y2))

= ((1−α2)α2(a−b)(d−β1d +β1c))+(α2(1−α2)(b−a)(c−β2c+β2d))

= (1−α2)α2(b−a)(c−d)(1−β2−β1).

If we assume that 0 < α2 < 1, then this value is negative (as b−a > 0 and c−d < 0),
unless ((1−β2−β1) = 0, that is unless PY is a precise probability. If we extend these
conclusions to all possible f and g satisfying Definition 2, this means that PMI( f [g−
PMI(g)])≥ 0 only in degenerated cases (that is, when PX and PY are either both precise
probabilities or vacuous models).

This example shows that we cannot expect the notion of Möbius independence
(and also of random set independence) to satisfy productivity as well as other stronger
properties that imply productivity. This unfortunately means that results from Ref. [6]
do not apply to Möbius independence nor with random set independence.

However, it should be noted that the notion random set independence (of which
Möbius independence is a direct extension) has been used in graphical models [34]
as well as basic assumptions to prove laws of large numbers [19]. This means that
although Möbius independence cannot use recent results concerning lower expecta-
tions, it may still be useful if considered as an extension of random set independence.
This direction is not explored here, as our main focus is the relation between Möbius
independence and lower expectations.

7. An illustrative example

In this section, we provide a simple example of the use of Möbius independence
in the computation of natural extension. This example can be seen as a particular
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instance of an uncertainty propagation problem, where one searches to estimate the
output uncertainty from the uncertainty on input variables. The problem considered in
this example is one of multi-criteria decision-making, where input variables are criteria
and the function through which they are propagated is an aggregation function (i.e., a
weighted mean).

Assume that some decision maker (DM) wants to build a new airport in a region,
and has retained some sites to do so. After selecting sites whose building costs are
roughly equivalent, the DM decides to base his/her decision on some additional criteria:
the easiness of access to main roads (variable X defined on X ), the generated pollution
impact on nearby lands (variable Y defined on Y ) and the public opinion (variable Z
defined on Z ). Each criterion is evaluated on a utility scale ranging from 1 to 4, 1 being
the worst case, 4 the best. Criteria values are then aggregated according to a weighted
average f = wX X +wYY +wZZ to obtain the global utility of a given alternative, where
wX = 0.2,wY = 0.4,wZ = 0.4 are the importance weights given to each criterion.

Now, consider an alternative where the utility of each criterion is uncertainly known.
The uncertainty concerning variable X is given by the following probability intervals
(i.e. upper and lower probabilities over singletons):

P({1}) = 0.1, P({2}) = 0.2, P({3}) = 0.6, P({4}) = 0.7,

P({1}) = 0, P({2}) = 0, P({3}) = 0.3, P({4}) = 0.3.

This uncertainty can correspond to the fact that a major road is likely to be built in the
future in the region, but that this fact is not fully certain. Uncertainty can come, for
example, from an expert. These probability intervals are 2-monotone (we refer to [5]
for details on probability intervals) and their Möbius inverse is such that

mX ({3}) = mX ({4}) = 0.3, mX ({3,4}) = mX ({1,2,4}) = mX ({1,3,4}) = 0.1,

mX ({2,3,4}) = 0.2, mX (X ) =−0.1.

Concerning variable Y , risk analysis shows that pollution impact may be high, and
the related uncertainty is modeled by the possibility distribution (recall that possibility
distributions have Möbius inverses which are positive and are such that non-null masses
are given to nested sets)

mY ({1}) = 0.3, mY ({1,2}) = 0.7.

Finally, public opinion has been gathered by a survey where answers can be impre-
cise (hence, frequencies can be given to sets of values). The results are such that

mZ({2}) = 0.3, mZ({4}) = 0.2, mZ({1,2}) = 0.2, mZ(Z ) = 0.3.

The weighted average (or any other aggregation functions) is a mapping f : X ×
Y ×Z → R, and as it seems reasonable to assume that each criterion is independent
of the other, we can use mMI as a joint model over X ×Y ×Z to compute lower and
upper expectations outer approximating results given by other (more complex) joint
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models. Using mX ,mY ,mZ as uncertainty models, the results are (for lower and upper
expectations)

PMI( f ) = 1.74 ; PMI( f ) =−PMI(− f ) = 2.62.

We can compare the results to the bounds obtained from an assumption of strong
independence between X ,Y,Z, which are

PSI( f ) = 1.74 ; PSI( f ) =−PSI(− f ) = 2.62.

In this case, we have equality between the two inferences. We may conjecture that this
is due to the fact that f is non-decreasing in each variable X ,Y and Z. So, in this case,
the same conclusion can be computed more efficiently using Möbius independence, as
evaluating PMI( f ) and PMI( f ) is simpler than evaluating PSI( f ) and PSI( f ).

Note that, in the above example, f can be replaced by any mapping or by any
indicator function on the resulting output of f , thus allowing one to perform uncertainty
propagation through f .

8. Conclusions

In this paper, we have first explored whether the most usual independence notions
that can be found in the imprecise probabilistic literature preserve the 2-monotonicity
of marginal models. The main interest of knowing the answer to such a question is
practical, as 2-monotonicity is before all a convenient property that allows for more
efficient computations.

As the answer to this question is negative, we have first shown that by extending
the notion of random set independence to 2-monotone lower probabilities, we get a
2-monotone joint model that is easy to build. We call Möbius independence the cor-
responding notion (as it consists in taking the product of the Möbius inverses of the
marginal models). We have also explored the properties of this model.

On the upside, we have shown that it can be used as a conservative approximation
of the other independence notions, and therefore can be useful in applications where
computational tractability and cautiousness of inferences are important issues. This is
typically the case in risk and reliability studies, or in application requiring some ro-
bustness. Other areas where it could be useful is those where random set independence
plays an important role, as Möbius independence is a direct extension of it.

On the downside, it appears that recent works concerning lower expectations and
independence notions do not apply to this approximation (nor to classical random set
independence), as Möbius independence fails to satisfy the property of productivity.
Also, providing Möbius independence with a proper semantic appears difficult, as it
would require to give an interpretation to focal sets with negative masses (an open
issue).
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