N
N

N

HAL

open science

Nogood-Based Asynchronous Forward Checking
Algorithms
Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, El Houssine
Bouyakhf

» To cite this version:

Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, El Houssine Bouyakhf. Nogood-Based Asyn-
chronous Forward Checking Algorithms. Constraints, 2013, 18 (3), pp.404-433. 10.1007/s10601-013-

9144-4 . hal-00816928

HAL Id: hal-00816928
https://hal.science/hal-00816928
Submitted on 23 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00816928
https://hal.archives-ouvertes.fr

Nogood-Based Asynchronous Forward Checking
Algorithms

Mohamed Wahbi *
TASC INRIA, LINA CNRS, Ecole des Mines de Nantes, France

mohamed .wahbi@mines-nantes.fr

Redouane Ezzahir
ENSA Agadir, University Ibn Zohr, Morocco
red.ezzahir@gmail.com

Christian Bessiere
CNRS, University of Montpellier, France
bessiere@lirmm.fr

El Houssine Bouyakhf

LIMIARF, University Mohammed V-Agdal, Morocco
bouyakhf@fsr.ac.ma

Abstract

We propose two new algorithms for solving Distributed Constraint Satisfaction
Problems (DisCSPs). The first algorithm, AFC-ng, is a nogood-based version of Asyn-
chronous Forward Checking (AFC). Besides its use of nogoods as justification of value
removals, AFC-ng allows simultaneous backtracks going from different agents to differ-
ent destinations. The second algorithm, Asynchronous Forward Checking Tree (AFC-
tree), is based on the AFC-ng algorithm and is performed on a pseudo-tree ordering of
the constraint graph. AFC-tree runs simultaneous search processes in disjoint problem
subtrees and exploits the parallelism inherent in the problem. We prove that AFC-ng
and AFC-tree only need polynomial space. We compare the performance of these al-
gorithms with other DisCSP algorithms on random DisCSPs and instances from real
benchmarks: sensor networks and distributed meeting scheduling. Our experiments
show that AFC-ng improves on AFC and that AFC-tree outperforms all compared
algorithms, particularly on sparse problems.

1 Introduction

1.1 Context

Constraint programming is an area in computer science that has gained increasing interest in
recent years. Constraint programming is based on its powerful framework named Constraint

*Parts of this work were carried out while the first author was a PhD student at University of Montpellier
and University Mohammed V-Agdal.

Satisfaction Problem (CSP). CSP is a general framework that can formalize many real
world combinatorial problems such as resource allocation, car sequencing, natural language
understanding, machine vision, etc. A constraint satisfaction problem consists in looking
for solutions to a constraint network, that is, a set of assignments of values to variables that
satisfy the constraints of the problem. These constraints represent restrictions on values
combinations allowed for constrained variables.

There exist applications that are of a distributed nature. In this kind of applications
the knowledge about the problem, that is, variables and constraints, is distributed among
physical distributed agents. This distribution is mainly due to privacy and/or security re-
quirements: constraints or possible values may be strategic information that should not be
revealed to other agents that can be seen as competitors. Several applications in multi-agent
coordination are of such kind. Examples of applications are Sensor Networks [20, 2], Military
Unmanned Aerial Vehicles Teams [20], Distributed Meeting Scheduling Problems [36, 23],
Distributed Resource Allocation Problems [29], Log-based Reconciliation [11], Distributed
Vehicle Routing Problems [21], etc. Therefore, the distributed framework Distributed Con-
straint Satisfaction Problems (DisCSP) is used to model and solve this kind of problems.

A DisCSP is composed of a group of autonomous agents, where each agent has control
of some elements of information about the whole problem, that is, variables and constraints.
Each agent owns its local constraint network. Variables in different agents are connected by
constraints. Agents must assign values to their variables so that all constraints are satisfied.
Hence, agents assign values to their variables, attempting to generate a locally consistent
assignment that is also consistent with constraints between agents [40, 38]. To achieve
this goal, agents check the value assignments to their variables for local consistency and
exchange messages to check consistency of their proposed assignments against constraints
that contain variables that belong to other agents.

1.2 Related work

Several distributed algorithms for solving DisCSPs have been developed in the last two
decades. The first complete asynchronous search algorithm for solving DisCSPs is Asyn-
chronous Backtracking (ABT) [39, 38, 4]. ABT is an asynchronous algorithm executed
autonomously by each agent in the distributed problem. Synchronous Backtrack (SBT) is
the simplest DisCSP search algorithm. SBT performs assignments sequentially and syn-
chronously. SBT agents assign their variables one by one, recording their assignments on a
data structure called the Current Partial Assignment (CPA). In SBT, only the agent holding
the CPA performs an assignment or backtracks [41]. Brito and Meseguer (2008) proposed
ABT-hyb, a hybrid algorithm that adds synchronization points in ABT so as to avoid some
redundant messages after backtracking. They experimentally show that in most instances
ABT-hyb outperforms ABT in terms of computation effort and communication load.
Extending SBT, Meisels and Zivan (2007) proposed the Asynchronous Forward Checking
(AFC). Besides assigning variables sequentially as is done in SBT, agents in AFC perform
forward checking (FC [18]) asynchronously. The key here is that each time an agent succeeds
to extend the current partial assignment (by assigning its variable), it sends the CPA to its
successor and sends copies of this CPA to all agents connected to itself whose assignments
are not yet on the CPA. When an agent receives a copy of the CPA, it performs the forward
checking phase. In the forward checking phase all inconsistent values with assignments on
the received CPA are removed. The forward checking operation is performed asynchronously

—from where comes the name of the algorithm. When an agent generates an empty domain
as a result of a forward checking, it informs agents with unassigned variables on the (incon-
sistent) CPA. Afterwards, only the agent that receives the CPA from its predecessor and
is holding the inconsistent CPA will eventually backtrack. Hence, in AFC, backtracking is
done sequentially, and at any time there is only either one CPA or one backtrack message
being sent in the network. Meisels and Zivan have shown in [26] that AFC is computation-
ally more efficient than ABT. However, due to the manner in which the backtrack operation
is performed, AFC does not draw all the benefit it could from the asynchronism of the FC
phase.

In [28], Nguyen et al. have proposed Distributed BackJumping (DBJ), an improved ver-
sion of the basic AFC that addresses its backtrack operation. In DBJ, the agent who detects
the empty domain can itself perform the backtrack operation by backjumping directly to
the culprit agent. It sends a backtrack message to the last agent assigned in the inconsistent
CPA. The agent who receives a backtrack message generates a new CPA that will domi-
nate older ones thanks to a timestamp mechanism. DBJ still sends the inconsistent CPA
to unassigned agents on it. DBJ does not use nogoods for justification of value removals.
Consequently, DBJ only mimics the simple BackJumping (BJ) [16] although the authors
report performing the Graph-based BackJumping (GBJ) [13].} Section 3.2 illustrates on
an example that DBJ does not perform GBJ but just BJ. In the same work, Nguyen et al.
presented the Dynamic Distributed BackJumping (DDBJ) algorithm. DDBJ is an improve-
ment of DBJ that integrates heuristics for dynamic variable and value ordering, called the
possible conflict heuristics. However, DDBJ requires additional messages to compute the
dynamic ordering heuristics.

In [15], Freuder and Quinn introduced the concept of pseudo-tree, an efficient struc-
ture for solving centralized CSPs. Based on a “divide and conquer” principle provided by
the pseudo-tree, they perform search in parallel. Depth-First Search trees (DFS-trees) are
special cases of pseudo-trees. They are used in the Network Consistency Protocol (NCP)
proposed in [12] by Collin et al.. In NCP, agents are prioritized using a DFS-tree. Agents on
the same branch of the DFS-tree act synchronously, but agents having the same parent can
act concurrently. A number of other algorithms for Distributed Constraint Optimization
(DCOP) use pseudo-tree or DFS-tree orderings of the agents [27, 30, 31, 9, 37].

1.3 Our contribution

In this work, we present two new algorithms for solving DisCSPs. The first one is based on
Asynchronous Forward Checking (AFC) and uses nogood as justifications of value removals.
We call it Nogood-Based Asynchronous Forward Checking (AFC-ng). Unlike AFC, AFC-
ng allows concurrent backtracks to be performed at the same time coming from different
agents having an empty domain to different destinations. As a result, several CPAs could be
generated simultaneously by the destination agents. Thanks to the timestamps integrated
in the CPAs, the strongest CPA coming from the highest level in the agent ordering will
eventually dominate all others. Interestingly, the search process with the strongest CPA will
benefit from the computational effort done by the (killed) lower level processes. This is done
by taking advantage from nogoods recorded when processing these lower level processes.
The second algorithm we propose is based on AFC-ng and is named Asynchronous

1BJ cannot execute two ‘jumps’ in a row, only performing steps back after a jump, whereas GBJ can
perform sequences of consecutive jumps.

Forward Checking Tree (AFC-tree). The main feature of the AFC-tree algorithm is using
different agents to search non-intersecting parts of the search space concurrently. In AFC-
tree, agents are prioritized according to a pseudo-tree arrangement of the constraint graph.
The pseudo-tree ordering is build in a preprocessing step. Using this priority ordering,
AFC-tree performs multiple AFC-ng processes on the paths from the root to the leaves
of the pseudo-tree. The agents that are brothers are committed to concurrently find the
partial solutions of their variables. Therefore, AFC-tree exploits the potential speed-up of
a parallel exploration in the processing of distributed problems [15]. A solution is found
when all leaf agents succeed in extending the CPA they received. Furthermore, in AFC-tree
privacy may be enhanced because communication is restricted to agents in the same branch
of the pseudo-tree.

This paper is organized as follows. Section 2 gives the necessary background on DisCSPs
and on the AFC algorithm. Sections 3 and 4 describe the algorithms AFC-ng and AFC-tree.
Correctness proofs are given in Section 5. Section 6 presents an experimental evaluation of
our proposed algorithms against other well-known distributed algorithms and we conclude
the paper in Section 7.

2 Background

2.1 Basic definitions and notations

The distributed constraint satisfaction problem (DisCSP) has been formalized in [40] as
a tuple (A, X,D,C), where A is a set of a agents {A1,..., A}, X is a set of n vari-
ables {z1,...,7,}, where each variable z; is controlled by one agent in A. DY =
{D%(x1),...,D"x,)} is a set of n domains, where D(z;) is the initial set of possible
values to which variable x; may be assigned. During search, values may be pruned from
the domain. At any node, the set of possible values for variable z; is denoted by D(z;) and
is called the current domain of z;. Only the agent who is assigned a variable has control
on its value and knowledge of its domain. C is a set of constraints that specify the combi-
nations of values allowed for the variables they involve. In this paper, we assume a binary
distributed constraint network where all constraints are binary constraints (they involve two
variables). A constraint ¢;; € C between two variables x; and x; is a subset of the Cartesian
product of their domains (¢;; € D°(z;) x D°(z;)). When there exists a constraint between
two variables x; and x;, these variables are called meighbors. The set of neighbors of a
variable z; is denoted by I'(x;). The connectivity between the variables can be represented
with a constraint graph G, where vertexes represent the variables and edges represent the
constraints [14].

For simplicity purposes, we consider a restricted version of DisCSP where each agent
controls exactly one variable (¢ = n). Thus, we use the terms agent and variable inter-
changeably and we identify the agent ID with its variable index. Furthermore, all agents
store a unique total order < on agents. Agents appearing before an agent A; € A in the
total order are the higher agents (predecessors) and agents appearing after A; are the lower
agents (successors). The order < divides the set I'(x;) of neighbors of A; into higher pri-
ority neighbors I' (z;), and lower priority neighbors I‘+(:ri). For sake of clarity, we assume
that the total order is the lexicographic ordering [A1, As, ..., A,]. Each agent maintains a
counter, and increments it whenever it changes its value. The current value of the counter
tags each generated assignment.

Definition 1. An assignment for an agent A; € A is a tuple (z;,v;,t;), where v; is a
value from the domain of x; and t; is the tag value. When comparing two assignments, the
most up to date is the one with the greatest tag t;.

Definition 2. A current partial assignment CPA is an ordered set of assignments
{[(x1,v1,t1)s - ooy (Tiyvi,t3)] | 21 < -+ < 2;}. Two CPAs are Compatible if they do not
disagree on any variable value.

Definition 3. A timestamp associated with a CPA is an ordered list of counters [ty,ta,

.., t;] where t; is the tag of the variable x;. When comparing two CPAs, the strongest
one is that associated with the lexicographically greater timestamp. That is, the CPA with
greatest value on the first counter on which they differ, if any, otherwise the longest one.

Definition 4. The AgentView of an agent A; € A stores the most up to date assignments
received from higher priority agents in the agent ordering. It has a form similar to a CPA
and is initialized to the set of empty assignments.

During search agents can infer inconsistent sets of assignments called nogoods.

Definition 5. A nogood ruling out value vy from the initial domain of variable xy is a
clause of the form x; = v Nxj =v; A ... = x # v, meaning that the assignment xi = vy
is inconsistent with the assignments x; = v;,x; = vj,.... The left hand side (lhs) and the
right hand side (rhs) are defined from the position of —.

The current domain D(z;) of a variable x; contains all values from the initial domain
D°(z;) that are not ruled out by a nogood. When all values of a variable zj, are ruled out
by some nogoods (D(z;) = (), these nogoods are resolved, producing a new nogood (ng).
Let x; be the lowest variable in the left-hand side of all these nogoods and z; = v;. The
lhs(ng) is the conjunction of the left-hand sides of all nogoods except z; = v; and rhs(ng)

is x; # vj.

2.2 Asynchronous Forward Checking

Asynchronous Forward Checking (AFC) incorporates the idea of the forward checking (FC)
algorithm for centralized CSP [18]. However, agents perform the forward checking phase
asynchronously [25, 26]. As in synchronous backtracking, agents assign their variables only
when they hold the current partial assignment (cpa). The cpa is a unique message (token)
that is passed from one agent to the next one in the ordering. The cpa message carries the
current partial assignment (CPA) that agents attempt to extend into a complete solution by
assigning their variables on it. When an agent succeeds in assigning its variable on the CPA,
it sends this CPA to its successor. Furthermore, copies of the CPA are sent to all connected
agents whose assignments are not yet on the CPA. These agents perform the forward check-
ing asynchronously in order to detect as early as possible inconsistent partial assignments.
The forward checking process is performed as follows. When an agent receives a CPA, it
updates the domain of its variable, removing all values that are in conflict with assignments
on the received CPA. Furthermore, the shortest CPA producing the inconsistency is stored
as justification of the value deletion.

When an agent generates an empty domain as a result of a forward checking, it initi-
ates a backtrack process by sending not_ok messages. not_ok messages carry the shortest
inconsistent partial assignment (CPA) which caused the empty domain. not_ok messages

are sent to all agents with unassigned variables on the (inconsistent) CPA. When an agent
receives the not_ok message, it checks if the CPA carried in the received message is com-
patible with its AgentView. If it is the case, the receiver stores the not_ok, otherwise, the
not_ok is discarded. When an agent holding a not_ok receives a CPA on a cpa message
from its predecessor, it sends this not_ok back in a backcpa message. When multiple
agents reject a given assignment by sending not_ok messages, only the first agent that will
receive a cpa message from its predecessor and is holding a relevant not_ok message will
eventually backtrack. After receiving a new cpa message, the not_ok message becomes
obsolete when the CPA it carries is no longer a subset of the received CPA.

The manner in which the backtrack operation is performed is a major drawback of the
AFC algorithm. The backtrack operation requires a lot of work from the agents. In addition,
the backtrack is performed synchronously, and at any time, there is only either one cpa or
one backcpa message being sent in the network.

3 Nogood-based Asynchronous Forward Checking

The nogood-based Asynchronous Forward Checking (AFC-ng) is based on AFC. AFC-ng
tries to enhance the asynchronism of the forward checking phase. The two main features
of AFC-ng are the following. First, it uses the nogoods as justification of value deletions.
Each time an agent performs a forward check, it revises its initial domain, (including values
already removed by a stored nogood) in order to store the best nogoods for removed values
(one nogood per value). When comparing two nogoods eliminating the same value, the
nogood with the highest possible lowest variable involved is selected (HPLV heuristic) [19].
When an empty domain is found, the resolved nogood contains variables as high as possible
in the ordering, so that the backtrack message is sent as high as possible, thus saving
unnecessary search effort [4]. By this ability to backtrack directly to agents responsible
of the inconsistency, AFC-ng mimics the conflict-directed backjumping CBJ mechanism
proposed for centralized CSPs [32].

Second, each time an agent A; generates an empty domain it no longer sends not_ok
messages. It resolves the nogoods ruling out values from its domain, producing a new no-
good ng. ng is the conjunction of (hs of all nogoods stored by A;. Then, A; sends the
resolved nogood ng in a ngd (backtrack) message to the lowest agent in ng. Hence, multi-
ple backtracks may be performed at the same time coming from different agents having an
empty domain. These backtracks are sent concurrently by these different agents to different
destinations. The reassignment of the destination agents then happen simultaneously and
generate several CPAs. However, the strongest CPA coming from the highest level in the
agent ordering will eventually dominate all others. Agents use the timestamp (see Defini-
tion 3) to detect the strongest CPA. Interestingly, the search process of higher levels with
stronger CPAs can use nogoods reported by the (killed) lower level processes, so that it
benefits from their computational effort.

3.1 Description of the algorithm

The pseudo code of AFC-ng, executed by each agent, say A;, is shown in Figures 1 and 2.
Agent A; stores a nogood per removed value in the NogoodStore. The NogoodStore of A;
is a set of nogoods that are compatible with the AgentView of A; and that each justify the
removal of a value from D(z;) \ D(z;). The other values not ruled out by a nogood are in

D(z;), the current domain of z;. In the following, v; will represent the current value assigned
to z; and t; the counter tagging v;. t; is used for the timestamp mechanism. “v; +— empty”
means that x; is unassigned.

procedure AFC-ng()

01. InitAgentView() ;

02. end < false; AgentView.Consistent < true;
03. if (A; = [A) then Assign();

04. while (—end) do

05. msg < getMsg();

06. switch (msg.type) do

07. cpa . ProcessCPA(msg);

08. ngd : ProcessNogood(msg);
09. stp 1 end + true ;

procedure InitAgentView()
10. foreach (z; < z;) do AgentView[j] + {(z;,empty,0)} ;

procedure Assign()
11. if (D(z;) # 0) then

12. v; < ChooseValue() ; t; < t;+1 ;
13. CPA + {AgentView U (z;, v, t:)} ;
14. SendCPA(CPA) ;

15. else Backtrack();

procedure SendCPA(CPA)
16. if (size(CPA) =n) then /* A; is the last agent in the total ordering */
17. Report SOLUTION; end < true ;

18. else foreach (z € F+(:vi)) do sendMsg:cpa(CPA) to Ay ;

procedure ProcessCPA(msg)
19. if (msg.CPA is stronger than AgentView)) then

20. UpdateAgentView(msg. CPA) ;

21. AgentView.Consistent < true ;

22. Revise() ;

23. if (D(z;) =0) then Backtrack() ;
24. else CheckAssign(msg.Sender) ;

procedure CheckAssign(sender)
25. if (predecessor(A4;) = sender) then Assign() ;

Figure 1: Nogood-based AFC algorithm running by agent A; (Part 1).

Agent A; starts the search by calling procedure AFC-ng() in which it initializes its
AgentView (line 1) by setting counters to zero (line 10). The AgentView contains a consis-
tency flag that represents whether the partial assignment it holds is consistent. If A; is the
initializing agent I A (the first agent in the agent ordering), it initiates the search by calling

procedure Assign() (line 3). Then, a loop considers the reception and the processing of the
possible message types.

When calling Assign(), A; looks for a value which is consistent with its AgentView. If
A; fails to find a consistent value, it calls procedure Backtrack() (line 15). If A; succeeds,
it increments its counter ¢; and generates a CPA from its AgentView augmented by its
assignment (line 13). Afterwards, A; calls procedure SendCPA(CPA) (line 14). If the CPA
includes all agents assignments (A; is the lowest agent in the order, line 16), A; reports the
CPA as a solution of the problem and marks the end flag true to stop the main loop (lines 17-
17). Otherwise, A; sends forward the CPA to every connected agent whose assignments are
not yet on the CPA (i.e., lower neighbors, line 18). So, the next agent on the ordering
(successor) will try to extend this CPA by assigning its variable on it while other agents will
perform the forward checking phase asynchronously to check its consistency.

Whenever A; receives a cpa message, procedure ProcessCPA is called (line 7). If the
received CPA is stronger than its AgentView, A; updates its AgentView (UpdateAgentView
call, line 20) and marks it consistent (line 21). Procedure UpdateAgentView (lines 39-41)
sets the AgentView and the NogoodStore to be compatible with the received CPA. Each
nogood in the NogoodStore containing a value for a variable different from that on the
received CPA will be deleted (line 41). Next, A; calls procedure Revise (line 22) to store
nogoods for values inconsistent with the new AgentView or to try to find a better nogood
for values already having one in the NogoodStore (line 44). A nogood is better according
to the HPLV heuristic if the lowest variable in the body (lhs) of the nogood is higher. If
A; generates an empty domain as a result of calling Revise, it calls procedure Backtrack
(line 23), otherwise, A; calls procedure CheckAssign to check if it has to assign its variable
(line 24). In CheckAssign(sender), A; calls procedure Assign to try to assign its variable
only if sender is the predecessor of A; (i.e., CPA was received from the predecessor, line 25).

When every value of A;’s variable is ruled out by a nogood (line 23), the procedure
Backtrack is called. These nogoods are resolved by computing a new nogood ng (line 26).
ng is the conjunction of the left hand sides of all nogoods stored by A; in its NogoodStore.
If the new nogood ng is empty, A; reports the failure (the problem is unsolvable) and
terminates the execution by setting end flag true (lines 27-28). Otherwise, A; updates its
AgentView by removing assignments of every agent that is placed after the agent A; owner
of rhs(ng) in the total order (lines 30-30). A; also updates its NogoodStore by removing
obsolete nogoods (line 33). Obsolete nogoods are nogoods incompatible with the AgentView
or containing the assignment of z; (the right hand side of ng) (line 32). Finally, A; marks
its AgentView as inconsistent, removes its last assignment (line 34) and it backtracks by
sending a ngd message to agent A; (the right hand side of ng) (line 35). The ngd message
carries the generated nogood (ng). A; remains in an inconsistent state until receiving a
stronger CPA holding at least one agent assignment with counter higher than that in the
AgentView of A;.

When a ngd message is received by an agent A;, it checks the validity of the received
nogood (line 36). If the received nogood is compatible with the AgentView, this nogood is
a valid justification for removing the value on its rhs. Then if the value on the rhs of the
received nogood is already removed, A; adds the received nogood to its NogoodStore if it is
better (according to the HPLV heuristic) than the current stored nogood. If the value on
the rhs of the received nogood belongs to the current domain of x;, A; simply adds it to its
NogoodStore. If the value on the rhs of the received nogood equals v;, the current value of
A;, A; unassigns its variable and calls the procedure Assign (line 38).

procedure Backtrack()
26. ng < solve(NogoodStore) ;
27. if (ng = empty) then

28. Report FAILURE; end < true ;

29. else /* Let x; denote the variable on rhs(ng) */
30. for k=j+1toi—1 do AgentViewlk].value < empty ; ;

31. foreach (nogood € NogoodStore) do

32. if (~Compatible(nogood, AgentView) V x; € nogood) then

33. remove (nogood, NogoodStore) ;

34. AgentView.Consistent < false; v; < empty;

35. sendMsg: ngd (ng) to A; ;

procedure ProcessNogood (msg)

36. if (Compatible(msg.nogood, AgentView)) then
37. add (msg.nogood, NogoodStore) ; /* according to the HPLV [19] */

38. if (rhs(msg.nogood) .value = v;) then v; + empty; Assign() ;

procedure UpdateAgentView(CPA)

39. AgentView < CPA ; /* update values and tags */
40. foreach (ng € NogoodStore) do
41. if (“Compatible(ng, AgentView)) then remove(ng,NogoodStore);

procedure Revise()

42. foreach (v € D°(x;)) do
43. if (v is ruled out by AgentView) then
44. store the best nogood for v; /* according to the HPLV [19] */

Figure 2: Nogood-based AFC algorithm running by agent A; (Part 2).

Whenever stp message is received, A; marks end flag true to stop the main loop (line 9).

3.2 A simple example of the backtrack operation on AFC-like al-
gorithms

Figure 3 illustrates the backtrack operation on AFC, DBJ and AFC-ng when detecting a
dead-end. Figure 3(a) shows a simple instance of a DisCSP containing 20 agents X =
{1, ..., @90}. The domains of z1,zs, 210,715 are D°(z1) = {a, f}, D°(x2) = {a,b},
D%x10) = D(z15) = {a,b,c}, the others can be anything. The constraints are z; # ¥,
T1 # X109, T1 F T1s, T2 F T19, L2 F* T15. Let us assume that the ordering on agents is the
lexicographic ordering [z1, ..., Z2]. Assume also that when trying to solve this instance the
algorithms, i.e., AFC, DBJ and AFC-ng, fall in the same situation shown in Figure 3(b).
Agent x, assigns value a from its domain and then z5 removes value a from its domain and
assigns value b (i.e., z2 = b) when receiving the cpa from z;. When receiving the CPA
from o, agent x1o (resp. z15) removes values a and b from D(z19) (resp. D(x15)) because
of constraints connecting x1g (resp. x15) to r1 and 2. Assume that agents x3 to xg assign
values successfully. When agent x1(¢ receives the CPA from zg, it assigns the last value in
D(z1p), i-e., 10 = ¢. Agent x1p sends the CPA to x1; and copies to the lower neighbors

agent constraint :# domain
¥

(a) A simple example of a DisCSP containing 20 agents

CPA : [(z1 = a),(xa =D),..., (210 = ¢)]

4 means
that value v
is removed from
the domain
{a} {d, v} {d.p.c} {d.p.¢}
(b) The dead-end occurs on the domain of z15 after receiving the cpa [(z1=a), (x2=b),..., (z10=0¢)]
not_ok : [(x1=a), (x2=b), ..., (@10=¢)]
------- L

.......
"""

2 P not_o
{a} {d, b} {d,p,c} {d, b, ¢}

(c) In AFC, agent x5 initiates the backtrack operation by sending not_ok to unassigned agents

backcpa [(x1=a), (x2=D), ..., (z10=c)] [(x1=a), (x2=b),..., (x10=0)] —_—
backcpa
ole
The inconsistent CPA
{a} {d, 0} {d.p,c} {d.p,¢}

(d) In DBJ, agent z15 initiates the backtrack operation by sending the inconsistent CPA to unassigned
agents and a backcpa to agent z19

ngd [r1=a A xo=b — x19 #

—_—
ngd
@ @ DY @ DY @ o« .. message

{a} {d, b} {d.}.c} {d.}.¢}

T1=a — Ty # a T1=a — 19 £ a T1=a — 15 £ a
To=b — x19 7é b To=b — x15 7é b } NOgOOdStOTe

T10=C = T15 # C

(e) In AFC-ng, agent 15 backtracks by sending a ngd to agent x1g

Figure 3: The backtrack operation on AFC, DBJ and AFC-ng on a simple example.

(including z15). When receiving this copy of the CPA, x5 removes the last value from its

domain generating a dead-end Figure 3(b).

In front of this situation of dead-end, AFC, DBJ and AFC-ng behave differently. In AFC

(Figure 3(c)), agent x15 sends not_ok messages to unassigned agents (i.e., [z11,...,T20])
informing them that the CPA [z; = a,22 = b,...,210 = ¢] is inconsistent.

10

Only the

agent who will receive the CPA from its predecessor when holding this not_ok (that is,
one among i1,..,214) will send the backtrack to z19. In DBJ (Figure 3(d)), agent x5
backtracks directly to x19 and informs unassigned agents (i.e., [z11,...,Z2]) that the CPA
[t1 = a,x2 = b,...,x10 = (] is inconsistent. In AFC-ng (Figure 3(e)), when agent x5
produces an empty domain after receiving the copy of the CPA from x1¢, it resolves the
nogoods from its NogoodStore (i.e., [zt1 = a = x15 # al, [xt2 = b — 15 # b] and [z19 =
¢ = x15 # ¢]). The resolved nogood [x1 = a Axy = b — 219 #] is sent to agent x19 in a
ngd message. In AFC-ng, we do not inform unassigned agents about the inconsistency of
the CPA.

We are now in a situation where in all three algorithms AFC, DBJ and AFC-ng, x1¢ has
received a backtrack message. After receiving the backtrack, x19 removes the last value, i.e.,
¢, from D(z10) and has to backtrack. In AFC and DBJ, x19 backtracks to zg9. We see that
the backjump to z1g is followed by a backtrack step, as done by BJ in the centralized case,
because BJ does not remember who were the other culprits of the initial backjump [16]. In
AFC-ng, when x1g receives the backtrack from x5, it removes value ¢ and stores the received
nogood as justification of its removal (i.e., [t1 = aAxza = b — x19 # ¢|). After removing this
last value, x1(resolves its nogoods generating a new nogood [z1 = a — 3 # b]. Thus, x19
backtracks to xo. We see that a new backjump follows the one to x19. AFC-ng mimics the
Conflict-directed BackJumping technique of the centralized case (CBJ) [32], which always
jumps to the causes of the conflicts.

4 Asynchronous Forward Checking Tree

In this section, we show how to extend our AFC-ng algorithm to the Asynchronous For-
ward Checking Tree (AFC-tree) algorithm using a pseudo-tree arrangement of the constraint
graph. To achieve this goal, agents are ordered a priori in a pseudo-tree such that agents in
different branches of the tree do not share any constraint. AFC-tree does not address the
process of ordering the agents in a pseudo-tree arrangement. Therefore, the construction of
the pseudo-tree is done in a preprocessing step. Now, it is known from centralized CSPs that
the performance of the search procedures tightly depends on the variable ordering. Thus,
the task of constructing the pseudo-tree is important for a search algorithm like AFC-tree.

4.1 Pseudo-tree ordering

Any binary DisCSP can be represented by a constraint graph G = (Xq, E¢), whose vertexes
represent the variables and edges represent the constraints. Therefore, Xg = X and for each
constraint ¢;; € C connecting two variables z; and z; there exists an edge {z;,z;} € Eqg
linking vertexes x; and x;.

The concept of pseudo-tree arrangement of a constraint graph has been introduced first
by Freuder and Quinn in [15]. The purpose of this arrangement is to perform search in
parallel on independent branches of the pseudo-tree in order to improve search in centralized
constraint satisfaction problems.

Definition 6. A pseudo-tree arrangement T = (X, ET) of a graph G = (X, Eq) is a
rooted tree with the same set of vertezes as G (Xg = Xr) such that vertexes in different
branches of T' do not share any edge in G.

11

Level 2

(a) a constraint graph G. (b) a pseudo-tree arrangement 7.

Figure 4: Example of a pseudo-tree arrangement of a constraint graph.

Figure 4(a) shows an example of a constraint graph G of a problem involving 9
variables X = Xg = {x1,...,29} and 10 constraints C = {c2, c14, C17, €18, C19, C25,
C26, C37, C38, C49}. An example of a pseudo-tree arrangement T of this constraint graph is
illustrated in Figure 4(b). Notice that G and T have the same vertexes (X¢ = Xr). How-

ever,

a new (dotted) edge ({z1,z3}) linking x; to x3 is added to T where {z1,23} ¢ Eg.

Moreover, edges {z1,z7}, {1,258} and {x1,z9} belonging to the constraint graph G are not
part of T. They are represented in T' by dashed edges to show that constrained variables
must be located in the same branch of T even if there is not an edge linking them.

From a pseudo-tree arrangement of the constraint graph we can define:

A branch of the pseudo-tree is a path from the root to some leaf (e.g., {x1, x4, z9}).
A leaf is a vertex that has no child (e.g., x9).

The children of a vertex are its descendants connected to it through tree edges (e.g.,
children(zy) = {x2,23,24}).

The descendants of a vertex x; are vertexes belonging to the subtree rooted at z; (e.g.,
descendants (z3) ={x5,26} and descendants(x;)={X \ x1}).

The linked descendants of a vertex are its descendants constrained with it together
with its children, (e.g., linkedDescendants(z1) = {x2, 23,24, 27,28, Tg}).

The parent of a vertex is the ancestor connected to it through a tree edge (e.g.,
parent (z9) = {4}, parent (z3) = {x1}).

A vertex z; is an ancestor of a vertex x; if x; is the parent of ; or an ancestor of the
parent of x;.

The ancestors of a vertex x; is the set of agents forming the path from the root to x;’s
parent (e.g., ancestors(zg) = {x1,23}).

The construction of the pseudo-tree can be processed by a centralized procedure. First, a
system agent must be elected to gather information about the constraint graph. Such system
agent can be chosen using a leader election algorithm like that presented in [1]. Once, all

12

information about the constraint graph is gathered by the system agent, it can perform a
centralized algorithm to build the pseudo-tree ordering. A decentralized modification of the
procedure for building the pseudo-tree was introduced by Chechetka and Sycara in [8]. This
algorithm allows the distributed construction of pseudo-trees without needing to deliver any
global information about the whole problem to a single agent.

Whatever the method (centralized or distributed) for building the pseudo-tree, the ob-
tained pseudo-tree may require the addition of some edges not belonging to the original
constraint graph. In the example presented in Figure 4(b), a new edge linking z1 to 3
is added to the resulting pseudo-tree T'. The structure of the pseudo-tree will be used for
communication between agents. Thus, the added link between z; and z3 will be used to
exchange messages between them. However, in some distributed applications, the commu-
nication might be restricted to the neighboring agents (i.e., a message can be passed only
locally between agents that share a constraint). The solution in such applications is to use
a depth-first search tree (DFS-tree). DFS-trees are special cases of pseudo-trees where all
edges belong to the original graph.

We present in Figure 5 a simple distributed algorithm for the distributed construction
of the DFS-tree named DistributedDFS algorithm. The DistributedDFS is similar to the
algorithm proposed by Cheung in [10]. The DistributedDFS algorithm is a distribution
of a DFS traversal of the constraint graph. Each agent maintains a set Visited where it
stores its neighbors which are already visited (line 2). The first step is to design the root

procedure DistributedDFS()

01. Select the root via a leader election algorithm ;

02. Visited < 0; end < false ;

03. if (@; is the elected root) then CheckNeighbourhood() ;
04. while (—end) do

05. msg < getMsg();

06. Visited + Visited U (I'(z;) N msg.VisitedAgents) ;

07. if (msg.Sender € children(xz;)) then

08. descendants(x;) < descendants(x;) Umsg.VisitedAgents ;
09. else

10. parent (x;) < msg.Sender ;

11. ancestors(x;) <+ msg.VisitedAgents ;

12. CheckNeighbourhood();

procedure CheckNeighbourhood()
13. if (I'(x;) = Visited) then

14. sendMsg : token (descendants(z;) U{xz;}) to parent(z;) ;
15. end <+ true ;

16. else

17. select z; in I'(z;) \ Visited ;

18. children(x;) ¢ children(z;) U x; ;

19. sendMsg : token (ancestors(z;) U {z;}) to A; ;

Figure 5: The distributed depth-first search construction algorithm.

13

Level 2

Level 3

Level 4

Figure 6: A DFS-tree arrangement of the constraint graph in Figure 4(a).

agent using a leader election algorithm (line 1). An example of leader election algorithm
was presented by Abu-Amara in [1]. Once the root is designed, it can start the distributed
construction of the DFS-tree (procedure CheckNeighbourhood call, line 3). The designed
root initiates the propagation of a token, which is a unique message that will be circulated
on the network until “visiting” all the agents of the problem. The token massage contains
a set of already visited agents, called msg.Visited Agents.

When an agent x; receives the token, it marks all its neighbors included in the received
message as visited (line 6). Next, z; checks if the token is sent back by a child. If it is the
case, x; sets all agents belonging to the subtree rooted at message sender (i.e., its child)
as its descendants (lines 7-8). Otherwise, the token is received for the first time from the
parent of x;. Thus, x; marks the sender as its parent (line 10) and all agents contained in
the token (i.e., the sender and its ancestors) as its ancestors (line 11). Afterwards, z; calls
the procedure CheckNeighbourhood to check if it has to pass on the token to an unvisited
neighbor or to return back the token to its parent if all its neighbors are already visited.

The procedure CheckNeighbourhood checks if all neighbors are already visited (line 13).
If it is the case, the agent x; sends back the token to its parent (line 14). The token contains
the set VisitedAgents composed by x; and its descendants. Until this point the agent x;
knows all its ancestors, its children and its descendants. Thus, the agent z; terminates the
execution of DistributedDFS (line 15). Otherwise, agent x; chooses one of its neighbors
(x;) not yet visited and designs it as a child (lines 17-18). Afterwards, z; passes on to z;
the token where it puts the ancestors of the child z; (i.e., ancestors(x;) U {x;}) (line 19).

Consider for example the constraint graph G presented in Figure 4(a). Figure 6 shows
an example of a DFS-tree arrangement of the constraint graph G obtained by performing
distributively the DistributedDFS algorithm. The DistributedDFS algorithm can be per-
formed as follows. First, let 1 be the elected root of the DFS-tree (i.e., the leader election
algorithm elects the most connected agent). The root x; initiates the DFS-tree construc-
tion by calling procedure CheckNeighbourhood (line 3). Then, z; selects from its unvisited
neighbors x5 to be its child (lines 17-18). Next, x1 passes on the token to x5 where it
put itself to be the ancestor of the receiver (z2) (line 19). After receiving the token, xo
updates the set of its visited neighbors (line 6) by marking z; (the only neighbor included
in the token) visited. Afterwards, x5 sets x1 to be its parent and puts {x1} to be its set

14

of ancestors (lines 10-11). Next, zo calls procedure CheckNeighbourhood (line 12). Until
this point, 2 has one visited neighbor (x1) and two unvisited neighbors (x5 and xg). For
instance, let x5 chooses x5 to be its child. Thus, x5 sends the token to x5 where it sets the
set msg.VisitedAgents to {x1,x2}. After receiving the token, x5 marks its single neighbor
x2 as visited (line 6), sets z3 to be its parent (line 10), sets {z1,z2} to be its ancestors ans
sends the token back to x5 where it puts itself. After receiving back the token from x5, x4
adds x5 to its descendants and selects the last unvisited neighbor (z6) to be its child and
passes the token to xg. In a similar way, xg returns back the token to x5. Then, x5 sends
back the token to its parent x; since all its neighbors have been visited. The token con-
tains the descendants of 21 on the subtree rooted at x5 (i.e., {x2,x5,x6}). After receiving
the token back from xq, 1 will select an agent from its unvisited neighbors {z4, x7, zs, x9}.
Hence, the subtree rooted at x5 where each agent knows its ancestors and its descendants is
build without delivering any global information. The other subtrees respectively rooted at
x7 and x4 are built in a similar manner. Thus, we obtain the DFS-tree shown in Figure 6.

4.2 The AFC-tree algorithm

The AFC-tree algorithm is based on AFC-ng performed on a pseudo-tree ordering of the
constraint graph (built in a preprocessing step). Agents are prioritized according to the
pseudo-tree ordering in which each agent has a single parent and various children. Using
this priority ordering, AFC-tree performs multiple AFC-ng processes on the paths from
the root to the leaves. The root initiates the search by generating a CPA, assigning its
value on it, and sending CPA messages to its linked descendants. Among all agents that
receive the CPA, children perform AFC-ng on the sub-problem restricted to its ancestors
(agents that are assigned in the CPA) and the set of its descendants. Therefore, instead of
giving the privilege of assigning to only one agent, agents who are in disjoint subtrees may
assign their variables simultaneously. AFC-tree thus exploits the potential speed-up of a
parallel exploration in the processing of distributed problems. The degree of asynchronism
is enhanced.

An execution of AFC-tree on a simple DisCSP problem is shown in Figure 7. At time
t1, the root x7 sends copies of the CPA on cpa messages to its linked descendants. Children
To, x3 and x4 assign their values simultaneously in the received CPAs and then perform
concurrently the AFC-tree algorithm. Agents x7, zg and g only perform a forward checking.
At time t5, zg finds an empty domain and sends a ngd message to x;. At the same time,
other CPAs propagate down through the other paths. For instance, a CPA has propagated
down from x3 to x7 and zg. z7 detects an empty domain and sends a nogood to x3 attached
on a ngd message. For the CPA that propagates on the path (x1,z9,2s), g successfully
assigned its value and initiated a solution detection. The same thing is going to happen on
the path (z1, 22, z5) when x5 (not yet instantiated) will receive the CPA from its parent xs.
When 1 receives the ngd message from xg, it initiates a new search process by sending a
new copy of the CPA which will dominate all other CPAs where z; is assigned its old value.
This new CPA generated by z; can then take advantage from efforts done by the obsolete
CPAs. Consider for instance the subtree rooted at xy. If the value of x5 is consistent with
the value of x; on the new CPA, all nogoods stored on the subtree rooted at xo are still
valid and a solution is reached on the subtree without any nogood generation.

In AFC-ng, a solution is reached when the last agent in the agent ordering receives the
CPA and succeeds in assigning its variable. In AFC-tree, the situation is different because

15

Level 1 =3 cpa Message
== ngd Message

O assigned agent
Level 2
inconsistent agent

- O not assigned agent
@ Level 3

asynchronous execution

Figure 7: An example of the AFC-tree execution.

a CPA can reach a leaf agent without being complete. When all agents are assigned and
no constraint is violated, this state is a global solution and the network has reached quies-
cence, meaning that no message is traveling through it. Such a state can be detected using
specialized snapshot algorithms [7], but AFC-tree uses a different mechanism that allows
to detect solutions before quiescence. AFC-tree uses an additional type of messages called
accept that informs parents of the acceptance of their CPA. Termination can be inferred
earlier and the number of messages required for termination detection can be reduced. A
similar technique of solution detection was used in the AAS algorithm [34].

The mechanism of solution detection is as follows: whenever a leaf node succeeds in
assigning its value, it sends an accept message to its parent. This message contains the
CPA that was received from the parent incremented by the value-assignment of the leaf
node. When a non-leaf agent A; receives accept messages from all its children that are
all compatible with each other, all compatible with A;’s AgentView and with A;’s value,
A; builds an accept message being the conjunction of all received accept messages plus
A;’s value-assignment. If A; is the root, a solution is found: A; reports a solution and the
process stops. Otherwise, A; sends the built accept message to its parent.

Description of the algorithm

We present in Figure 8 only the procedures that are new or different from those of AFC-
ng in Figures 1 and 2. In InitAgentView, the AgentView of A; is initialized to the
set ancestors(A;) and t; is set to O for each agent (x;) in ancestors(A4;) (line 11).
The new data structure storing the received accept messages is initialized to the empty
set (line 12). In SendCPA(CPA), instead of sending copies of the CPA to all neigh-
bors not yet instantiated on it, A; sends copies of the CPA to its linked descendants
(linkedDescendants(A4;), line 14). When the set 1inkedDescendants(A4;) is empty (i.e.,
A; is a leaf), A; calls the procedure SolutionDetection to build and send an accept mes-
sage. In CheckAssign(sender), A; assigns its value if the CPA was received from its parent
(line 17) (i.e., if sender is the parent of A;).

In ProcessAccept (msg), when A; receives an accept message from its child for the first
time, or the CPA contained in the received accept message is stronger than that received
before, A; stores the content of this message (lines 18-19) and calls the SolutionDetection
procedure (line 20).

16

procedure AFC-tree()

01. InitAgentView();

02. end <« false; AgentView.Consistent < true;
03. if (A; = root) then Assign();

04. while (—end) do

05. msg <— getMsg();

06. switch (msg.type) do

07. cpa : ProcessCPA(msg);

08. ngd : ProcessNogood(msg);
09. stp . end + true;

10. accept : ProcessAccept(msg);

procedure InitAgentView()
11. foreach (A; € ancestors(A;)) do AgentView[j] + {(z;,empty,0)} ;
12. foreach (child € children(A;)) do Accept|child] + 0 ;

procedure SendCPA(CPA)

13. if (children(A;) # () then
14. foreach (desc € linkedDescendants(A4;)) do
15. sendMsg: cpa (CPA) to desc

16. else SolutionDetection() ;

procedure CheckAssign(sender)
17. if (parent(A4;) = sender) then Assign() ;

procedure ProcessAccept (msg)

18. if (' msg.CPA stronger than Accept[msg.Sender]) then
19. Accept[msg.Sender] < msg.CPA ;

20. SolutionDetection() ;

procedure SolutionDetection()
21. if (children(A;) =0) then

22. sendMsg : accept (AgentView U {(z;,vs,t;)}) to parent(A4;) ;
23. else

24. PA <+ BuildAccept() ;

25. if (PA#() then

26. if (A; =root) then Report SOLUTION; end < true ;
27. else sendMsg:accept (PA) to parent(A;) ;

function BuildAccept ()
28. PA + AgentView U{(z;i,vi,t:)} ;
29. foreach (child € children(z;)) do

30. if (Accept|child] = () V ~Compatible (PA, Accept[child])) then return 0 ;

31. else PA <+ PA U Accept|child) ;
32. return PA;

Figure 8: New lines/procedures of AFC-tree with respect to AFC-ng.

17

In SolutionDetection, if 4; is a leaf (i.e., children(A;) is empty, line 21), it sends an
accept message to its parent. The accept message sent by A; contains its AgentView incre-
mented by its own assignment (lines 21-22). If A; is not a leaf, it calls function BuildAccept
to build an accept partial solution PA (line 24). If the returned partial solution PA is not
empty and A; is the root, PA is a solution of the problem. Then, A; reports a solution
and sets the end flag to true to stop the search (line 26). Otherwise, A; sends an accept
message containing PA to its parent (line 27).

In BuildAccept, if an accept partial solution is reached. A; generates a partial solution
P A incrementing its AgentView with its assignment (line 28). Next, A; loops over the set of
accept messages received from its children. If at least one child has never sent an accept
message or the accept message is incompatible with PA, then the partial solution has not
yet been reached and the function returns empty (line 30). Otherwise, the partial solution
PA is incremented by the accept message of child (line 31). Finally, the accept partial
solution is returned (line 32).

5 Correctness Proofs

Theorem 1. The spatial complexity of AFC-ng (resp. AFC-tree) is polynomially bounded
by O(nd) per agent.

Proof. In AFC-ng, the size of nogoods is bounded by n, the total number of variables. In
AFC-tree, the size of nogoods is bounded by h (h < n), the height of the pseudo-tree. Now,
on each agent, AFC-ng (resp. AFC-tree) only stores one nogood per removed value. Thus,
the space complexity of AFC-ng is in O(nd) on each agent. AFC-tree also stores its set of
descendants and ancestors, which is bounded by n on each agent. Therefore, AFC-tree has
a space complexity in O(hd + n). O

Lemma 1. AFC-ng is guaranteed to terminate.

Proof. We prove by induction on the agent ordering that there will be a finite number of
new generated CPAs (at most d", where d is the size of the initial domain and n the number
of variables.), and that agents can never fall into an infinite loop for a given CPA. The
base case for induction (¢ = 1) is obvious. The only messages that x; can receive are ngd
messages. All nogoods contained in these ngd messages have an empty lhs. Hence, values
on their rhs are removed once and for all from the domain of z;. Now, x; only generates a
new CPA when it receives a nogood ruling out its current value. Thus, the maximal number
of CPAs that x; can generate equals the size of its initial domain (d). Suppose now that
the number of CPAs that agents x1,...,2;_1 can generate is finite (and bounded by d*~1).
Given such a CPA on [z1,...,z;_1], x; generates new CPAs (line 13, Figure 1) only when
it changes its assignment after receiving a nogood ruling out its current value v;. Given the
fact that any received nogood can include, in its lhs, only the assignments of higher priority
agents ([z1,...,2;-1]), this nogood will remain valid as long as the CPA on [z1,...,2;_1]
does not change. Thus, x; cannot regenerate a new CPA containing v; without changing
assignments on higher priority agents ([x1,...,2;_1]). Since there are a finite number of
values on the domain of variable x;, there will be a finite number of new CPAs generated
by x; (d'). Therefore, by induction we have that there will be a finite number of new CPAs
(d"™) generated by AFC-ng.

18

Let cpa be the strongest CPA generated in the network and A; be the agent that gen-
erated cpa. After a finite amount of time, all unassigned agents on cpa ([xi41, ..., 2Zy]) will
receive c¢pa and thus will discard all other CPAs. Two cases occur. First case, at least one
agent detects a dead-end and thus backtracks to an agent A; included in cpa (ie., j < 9)
forcing it to change its current value on cpa and to generate a new stronger CPA. Second
case (no agent detects dead-end), if i < n, A;;1 generates a new stronger CPA by adding
its assignment to cpa, else (i = n), a solution is found. As a result, agents can never fall
into an infinite loop for a given CPA and AFC-ng is thus guaranteed to terminate. O

Lemma 2. AFC-ng cannot infer inconsistency if a solution exists.

Proof. Whenever a stronger CPA or a ngd message is received, AFC-ng agents update their
NogoodStore. Hence, for every CPA that may potentially lead to a solution, agents only store
valid nogoods. In addition, every nogood resulting from a CPA is redundant with regard to
the DisCSP to solve. Since all additional nogoods are generated by logical inference when a
domain wipe-out occurs, the empty nogood cannot be inferred if the network is satisfiable.
This mean that AFC-ng is able to produce all solutions. O

Theorem 2. AFC-ng is correct.

Proof. The argument for soundness is close to the one given in [26, 28]. The fact that agents
only forward consistent partial solution on the CPA messages at only one place in procedure
Assign (line 14, Figure 1), implies that the agents receive only consistent assignments. A
solution is found by the last agent only in procedure SendCPA(CPA) at line 17 of Figure 1.
At this point, all agents have assigned their variables, and their assignments are consistent.
Thus the AFC-ng algorithm is sound. Completeness comes from the fact that AFC-ng is
able to terminate and does not report inconsistency if a solution exists (Lemmas 1 and 2). O

Theorem 3. AFC-tree algorithm is correct.

Proof. AFC-tree agents only forward consistent partial assignments (CPAs). Hence, leaf
agents receive only consistent CPAs. Thus, leaf agents only send accept messages holding
consistent assignments to their parent. A parent A; builds an accept message only when
the accept messages received from all its children are compatible with each other and are
all compatible with its AgentView and its own value. As a result, the accept message A;
sends to its own parent contains a consistent partial solution. The root reports a solution
and stops the search only when it can build itself such an accept message. Therefore, the
solution is correct and AFC-tree is sound.

From Lemma 1 we deduce that the AFC-tree agent of highest priority cannot fall into an
infinite loop. By induction on the level of the pseudo-tree no agent can fall in such a loop,
which ensures the termination of AFC-tree. AFC-tree performs multiple AFC-ng processes
on the paths of the pseudo-tree from the root to the leaves. Thus, from Lemma 2, AFC-tree
inherits the property that an empty nogood cannot be inferred if the network is satisfiable.
As AFC-tree terminates, this ensures its completeness. O

6 Experimental Evaluation

In this section we experimentally compare our algorithms, i.e., AFC-ng and AFC-tree, to
other well known algorithms both with a static variable ordering behavior and a dynamic

19

variable ordering behavior. Algorithms are evaluated on three benchmarks: Uniform Binary
Random DisCSPs, Distributed Sensor-Mobile and Distributed Meeting Scheduling.

All experiments were performed on the DisChoco 2.0 platform? [35], in which agents
are simulated by Java threads that communicate only through message passing. We evalu-
ate the performance of the algorithms by communication load [22] and computation effort.
Communication load is measured by the total number of exchanged messages among agents
during algorithm execution (#msg), including those of termination detection (system mes-
sages). Computation effort is measured by the number of non-concurrent constraint checks
(#ncees) [42]. #nceces is the metric used in distributed constraint solving to simulate the
computation time. In DisChoco 2.0, nogood checks are considered as constraint checks.
Thus, the additional computational effort performed by nogood-based algorithms for han-
dling nogoods is taken into account in the #ncccs measure.

Section 6.1 describes the three types of benchmarks, Section 6.2 presents the results
on algorithms with a static variable ordering behavior, Section 6.3 presents the results
on algorithms with a dynamic variable ordering behavior. Finally, Section 6.4 draws the
conclusions of these experiments.

6.1 The three benchmarks
6.1.1 Uniform binary random DisCSPs

Uniform binary random DisCSPs are characterized by (n, d, p1, p2), where n is the number
of agents/variables, d is the number of values in each of the domains, p; is the network
connectivity defined as the ratio of existing binary constraints, and po is the constraint
tightness defined as the ratio of forbidden value pairs. We solved instances of two classes
of constraint graphs: sparse graphs (20, 10,0.2,ps) and dense graphs (20,10,0.7,ps). We
varied the tightness from 0.1 to 0.9 by steps of 0.05. For each pair of fixed density and
tightness (p1,p2) we generated 25 instances, solved 4 times each. We report average over
the 100 runs.

6.1.2 Distributed sensor-mobile problems

The Distributed Sensor-Mobile Problem (SensorDisCSP) [2] is a benchmark based on a real
distributed problem. It consists of n sensors that track m mobiles. Each mobile must be
tracked by 3 sensors. Each sensor can track at most one mobile. A solution must satisfy
visibility and compatibility constraints. The visibility constraint defines the set of sensors
to which a mobile is visible. The compatibility constraint defines the compatibility among
Sensors.

We encode SensorDisCSP in DisCSP as follows. Each agent represents one mobile.
There are three variables per agent, one for each sensor that we need to allocate to the
corresponding mobile. The domain of each variable is the set of sensors that can detect
the corresponding mobile. The intra-agent constraints between the variables of one agent
(mobile) specify that the three sensors assigned to the mobile must be distinct and pairwise
compatible. The inter-agent constraints between the variables of different agents specify
that a given sensor can be selected by at most one agent. In our implementation of the
DisCSP algorithms, this encoding is translated into an equivalent formulation where we
have three virtual agents for each real agent. Each virtual agent handles a single variable

2http:/ /www.lirmm.fr/coconut/dischoco/

20

but #msg does not take into account messages exchanged between virtual agents belonging
to the same real agent.

Problems are characterized by (n, m, p., py), where n is the number of sensors, m is the
number of mobiles, each sensor can communicate with a fraction p. of the sensors that are
in its sensing range, and each mobile can be tracked by a fraction p, of the sensors having
the mobile in their sensing range. We solved instances for the class (25, 5, 0.4, p,), where
we vary p, from 0.1 to 0.9 by steps of 0.05. Again, for each pair (p., p,) we generated 25
instances, solved 4 times each, and averaged over the 100 runs.

6.1.3 Distributed meeting scheduling problems

The Distributed Meeting Scheduling Problem (DMSP) is a truly distributed benchmark
where agents may not desire to deliver their personal information to a centralized agent to
solve the whole problem [36, 24]. The DMSP consists of a set of n agents having a personal
private calendar and a set of m meetings each taking place in a specified location. Each
agent knows the set of the k among m meetings he/she must attend. It is assumed that each
agent knows the traveling time between the locations where his/her meetings will be held.
The traveling time between two meetings m; and m; is denoted by T'ravelingTime(m;, m;).
Solving the problem consists in satisfying the following constraints: (i) all agents attending
a meeting must agree on when it will occur, (ii) an agent cannot attend two meetings at
same time, (iii) an agent must have enough time to travel from the location where he/she
is to the location where the next meeting will be held.

We encode the DMSP in DisCSP as follows. Each DisCSP agent represents a real agent
and contains k variables representing the k meetings to which the agent participates. These
k meetings are selected randomly among the m meetings. The domain of each variable
contains the d x h slots where a meeting can be scheduled. A slot is one hour long, and
there are h slots per day and d days. There is an equality constraint for each pair of variables
corresponding to the same meeting in different agents. This equality constraint means that
all agents attending a meeting must schedule it at the same slot (constraint (i)). There
is an arrival-time constraint between all variables/meetings belonging to the same agent.
The arrival-time constraint between two variables m; and m; is |m; — m;| — duration >
TravelingTime(m;, m;), where duration is the duration of every meeting. This arrival-time
constraint allows us to express both constraints (ii) and (iii). We place meetings randomly on
the nodes of a uniform grid of size g x g and the traveling time between two adjacent nodes
is 1 hour. Thus, the traveling time between two meetings equals the Euclidean distance
between nodes representing the locations where they will be held. For varying the tightness
of the arrival-time constraint we vary the size of the grid on which meetings are placed.

Problems are characterized by (n, m, k, d, h, g), where n is the number of agents, m is
the number meetings, k is the number of meetings/variables per agent, d is the number of
days and h is the number of hours per day, and g is the grid size. The duration of each
meeting is one hour. In our implementation of the DisCSP algorithms, this encoding is
translated into an equivalent formulation where we have k (number of meetings per agent)
virtual agents for each real agent. Each virtual agent handles a single variable but #msg
does not take into account messages exchanged between virtual agents belonging to the
same real agent. We solved instances for the class (20, 9, 3, 2, 10, g) where we vary ¢ from
2 to 22 by steps of 2. Again, for each g we generated 25 instances, solved 4 times each, and
averaged over the 100 runs.

21

5.0-10% ; ;
| B ABT =

@ AFC A
4010 I ... DBY P 1
3.510% | e ABT-hyb P .
3010° L —+— AFC-ng i on i

| --v-- AFC-tree Q E

#nccces
N
(6]
X
QA

1.4.10% ‘ :
---B-- ABT n

1.2.10* | ~-m- AFC 5 |
------- @ DBJ st

1.010° | .o ABT-hyb
—+— AFC-ng
8.010° --g-- AFC-tree

#msg

(b) #msg sent on sparse random DisCSPs

Figure 9: Total number of messages sent and #ncces performed on sparse uniform binary
random DisCSPs problems where (n = 20, d = 10, p; = 0.2).

6.2 Static variable ordering

We first compare AFC-ng and AFC-tree to algorithms with a static variable ordering behav-
ior. These algorithms are: ABT [40, 4], AFC [26], DBJ [28] and ABT-hyb [5]. All algorithms
are tested on the same static agents ordering using the dom/deg heuristic [3] and the same
nogood selection heuristic (HPLV) [19]. For ABT and ABT-hyb we implemented a solution
detection mechanism derived from Silaghi’s solution detection [33] and counters for tagging
assignments.

Figure 9 presents the performance of ABT, AFC, DBJ, ABT-hyb, AFC-ng and AFC-tree
running on the uniform binary random sparse instances (p; = 0.2). In terms of computa-
tional effort (Figure 9(a)), we observe that at the complexity peak, AFC is the less efficient
algorithm. DBJ improves on AFC by a factor of 1.7. ABT-hyb and ABT are better than

22

3.0-10°

B ABT
2510° | B AFC
------- - DBJ
2010 1 oM ABT-hyb |
" —+— AFC-ng
S L..el i Y e AFC-tree
g 1.5.10° v 1

01 02 03 04 05
P2

0.6 0.7 0.8 0.9

(a) #ncces performed on dense random DisCSPs

1.210° ‘ ‘
B ABT
1.0-10° | lﬂ = AFC
B e @ DBJ
6010° | i oW ABT-hyb |
P —+— AFC-ng
on H e =
E 6.010° L i | -~ AFC-tree |
3 H

(b) #msg sent on dense random DisCSPs

Figure 10: Total number of messages sent and #ncces performed on dense uniform binary
random DisCSPs problems where (n = 20, d = 10, p; = 0.7).

DBJ. On the most difficult instances, AFC-ng improves the performance of standard AFC by

a factor of 4.7, it outperforms ABT by a factor of 1.6, and is slightly better than ABT-hyb.
AFC-tree takes advantage of the pseudo-tree arrangement to be the best of all algorithms.
Concerning communication load (Figure 9(b)), AFC is again the worst algorithm and DBJ
is the second worst. AFC-ng improves AFC by a factor of 5.2 and ABT-hyb by a factor of
1.5 whereas AFC-tree has the smallest communication load on all problems.

Figure 10 presents the results on the uniform binary random dense instances (p; =
0.7). When comparing the computational effort (Figure 10(a)), the results show that ABT
dramatically deteriorates compared to other algorithms. AFC and DBJ perform almost
the same #ncces and they outperform ABT-hyb. AFC-ng and AFC-tree show a small
improvement compared to AFC and DBJ. Regarding communication load (Figure 10(b)),

23

2510° ‘ ;

B ABT
B AFC
61 %
2.010° U Q- DBJ 7
P oM ABT-hyb
. 1510°FF —+— AFC-ng |
5 : : --w-- AFC-tree
g
1.010° |
o;
5.010° 5"
0.0.-10°
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Py
(a) #ncces performed on SensorDisCSP
3.010° ‘ ;
B ABT
2510° 1 Come AFC
------- - DBJ
20165 oM ABT-hyb |
’ —+— AFC-ng
2 -
E 15105 b -~ AFC-tree |
H+
1.010°
5.010*
0.0.10°

(b) #msg sent on SensorDisCSP

Figure 11: Total number of messages sent and #ncccs performed on instances of distributed
sensor-mobile problems where (n = 25, m = 5, p. = 0.4).

ABT is again significantly the worst. AFC, DBJ and ABT-hyb require almost the same
number of messages. AFC-ng and AFC-tree outperform them by a factor of 2.5. On these
dense graphs, AFC-tree behaves like AFC-ng because it does not benefit from the pseudo-
tree arrangement, which in such graphs is a ’chain-like’ pseudo-tree.

Figure 11 presents the results obtained on SensorDisCSP with (n = 25, m = 5, p. =
0.4). When comparing the computational effort (Figure 11(a)), DBJ behaves like AFC and
they are the less efficient algorithms. The performance of ABT-hyb is unstable (strong
deterioration in the interval [0.15 0.20]). ABT is better than ABT-hyb but still, AFC-ng
outperforms it. AFC-tree outperforms all the compared algorithms. On the most difficult
instances, AFC-tree outperforms AFC and DBJ by a factor of 4.3, ABT by a factor of 3.3,
and AFC-ng by a factor of 2.5. Concerning communication load (Figure 11(b)), DBJ is the

24

T
1.6107 | . E} 252 i
1.410" | Y e ABT-hyb
1210 b ,' —+— AFC-ng
'.' Y -=-- AFC-tree

W
Q
Q
Q
=
I+
2 4 6 8 10 12 14 16 18 20 22
GridSize
(a) #ncces performed on DMSP
1.8107 = ; ; ;
, R B ABT
1.610" K B . .B- AFC]
1.410" | o oM ABT-hyb
1.210” | . —+— AFC-ng
J --g-- AFC-tree
a0 %
W
=)
3+

GridSize

(b) #msg sent on DMSP

Figure 12: Total number of messages sent and #nccecs performed on meeting scheduling
benchmarks where (n =20, m =9, k = 3,d = 2,h = 10).

worst algorithm and AFC is the second worst. ABT-hyb exchanges more messages than all
other algorithms in the interval [0.15 0.20] and requires almost the same number of messages
as ABT outside this interval. Between ABT and AFC-ng the difference is smaller than that
on the computation effort. AFC-tree remains the best on all problems. On the most difficult
instances, AFC-tree outperforms ABT and ABT-hyb by a factor of 2.5, and AFC-ng by a
factor of 2.

Figure 12 presents the results obtained on the DMSP (n =20, m =9, k=3, d=2, h =
10). AFC-tree and AFC-ng continue to perform well. AFC-tree is significantly better that
all other algorithms, both for computational effort (Figure 12(a)) and communication load
(Figure 12(b)). When comparing the speed-up of algorithms (Figure 12(a)), ABT is the
slowest algorithm to solve such problems. AFC outperforms ABT by a factor of 2 at the

25

4
1.410" [-.-@-- AFC-ng-TriggeredNogood
| —+— AFC-ng
--g-- AFC-tree

W
Q
Q
Q
=
e
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P2
(a) #ncces performed on sparse random DisCSPs
7.010° ‘ ; =
i DDBJ it
it
6.0-10° | ---@-- AFC-ng-TriggeredNogood [E
1 t
—+— AFC-ng Y
' 1
5.010° | g AFC-tree " 3]
H
50 L
W =
=
e

(b) #msg sent on sparse random DisCSPs

Figure 13: Total number of messages sent and #ncces performed on sparse uniform binary
random DisCSPs problems where (n = 20, d = 10, p; = 0.2).

peak. However, ABT requires less messages than AFC. AFC-ng and ABT-hyb are close to
each other, with a slight gain for AFC-ng.

6.3 Dynamic variable ordering

In synchronous algorithms agents perform assignments one by one in a sequential way. Im-
plementing dynamic variable ordering heuristics in these algorithms is quite natural and not
too difficult. More concretely, when an agent succeeds in extending the CPA by assigning
its variable on it, it can choose the agent who will assign next its variable. In the following,
we want to assess the performance of our static AFC-ng and AFC-tree algorithms when
compared to an algorithm that uses dynamic variable ordering, as DDBJ [28]. DDBJ inte-

26

A ke DDBJ

[3
3510° | W -=-@-= AFC-ng-TriggeredNogood]|
3010° | —+— AFC-ng i
--%-- AFC-tree

#nccces

5.0-10° ‘ ‘
wmidhmis DDBJ
4.510° | .]
-=-@-= AFC-ng-TriggeredNogood
4010° F —+— AFC-ng]
3510° | ---- AFC-tree b

#msg

(b) #msg sent on sparse random DisCSPs

Figure 14: Total number of messages sent and #ncces performed on dense uniform binary
random DisCSPs problems where (n = 20, d = 10, p; = 0.7).

grates dynamic value and variable ordering heuristics called the possible conflict heuristics
on the DBJ. DDBJ uses additional messages to compute the dynamic ordering heuristics.
Meisels and Zivan have shown empirically for random DisCSPs that DDBJ is better than
AFC in #ncces and that DDBJ is also better than the version of AFC augmented with
dynamic variable ordering heuristics [26]. To make our comparison complete, we imple-
mented a version of AFC-ng with the nogood-triggered dynamic variable ordering heuristic
[43]. The nogood-triggered heuristic is inspired by Dynamic Backtracking [17] and was first
implemented for ABT in [43] and adapted for AFC in [26]. This heuristic does not require
any additional messages to be implemented in AFC-like algorithms. When an agent takes
a new value due to a backtrack (ngd message), it chooses the sender of the backtrack to be
the next agent to assign its variable. It thus sends the CPA to that ngd sender, and tells
it that it is its new successor.

27

e DDBJ
1.410° -“ ---@-- AFC-ng-TriggeredNogood |
—+— AFC-ng
Y -—g-- AFC-tree

HARY

#nccces

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Py

5.010° ; ;
4.510° | f\ == DDBJ .
5 iy ---@-- AFC-ng-TriggeredNogood
L R Y .
4.0.10 PN —— AFCng
3.510° | ' “;—-—v—-- AFC-tree b
i i
S5 L i = i
oy 3070 i L
g 2510° H ' .
T 2010} P -
- A i i
5| Gk H i |
1.5-10 A ! i
Y ;]
ro10°F £ 0% 4 H —
g A i
5010° 1 A)

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) #msg sent on SensorDisCSP

Figure 15: Total number of messages sent and #nccces performed on instances of distributed
sensor-mobile problems where (n = 25, m = 5, p. = 0.4).

Figure 13 presents the performance of DDBJ, AFC-ng-TriggeredNogood, AFC-ng and
AFC-tree running on the uniform binary random sparse instances where (n = 20, d =
10, p1 = 0.2). When comparing the computational effort of algorithms (Figure 13(a)), we
observe that at the complexity peak, DDBJ is the less efficient algorithm. It is better
than AFC-ng only on instances to the right of the complexity peak (over-constrained).
AFC-ng-TriggeredNogood improves the performance of static AFC-ng and also outperforms
AFC-tree. Concerning communication load (Figure 13(b)), DDBJ dramatically deteriorates
compared to the other algorithms. AFC-ng-TriggeredNogood improves AFC-ng by a factor
of 2 and shows a slight gain compared to AFC-tree.

Figure 14 presents the results on the uniform binary random dense instances where
(n =20,d =10, p; = 0.7). AFC-ng and AFC-tree have the same performance in dense

28

20107 o

T T
7 ;v -é-e DDBY
1.810” I5 ' |
7 i v =@ AFC-ng-TriggeredNogood
16101 i N —— AFcng 1
1.410" | ,' “ -7~ AFC-tree E
A
I 1
g
Q
= !
B
2 4 6 8 10 12 14 16 18 20 22
GridSize
a ncces periormed on
perf d DMSP
3.0.10” R
modmie DDBJ
2510 F =@ == AFC-ng-TriggeredNogood |
—+— AFC-ng
K Vo g
2010” + !:’ i v-- AFC-tree |
g L
50 i 1
g 1510 ha Y i
11: —‘.

2 4 6 8 10 12 14 16 18 20 22
GridSize

(b) #msg sent on DMSP

Figure 16: Total number of messages sent and #ncccs performed on meeting scheduling
benchmarks where (n =20, m =9, k = 3,d = 2,h = 10).

graphs because of the chain-like pseudo-tree phenomenon seen in Section 6.2. In terms of
computational effort (Figure 14(a)), AFC-ng and AFC-tree slightly outperform DDBJ at
the complexity peak. AFC-ng-TriggeredNogood is the best. When comparing the commu-
nication load (Figure 14(b)), DDBJ is again significantly the worst algorithm. AFC-ng-
TriggeredNogood requires less messages than AFC-ng and AFC-tree.

Figure 15 presents the results obtained on SensorDisCSP with (n = 25, m = 5, p. = 0.4).
Regarding the computational effort (Figure 15(a)), we observe that AFC-ng and AFC-
tree are slightly dominated by DDBJ in the interval [0.20 0.30]. In this interval AFC-
ng-TriggeredNogood is the fastest algorithm. At the complexity peak, AFC-ng outper-
forms DDBJ. AFC-ng-TriggeredNogood improves AFC-ng by a factor of 2.2 even though
it is marginally dominated by AFC-tree. When comparing the communication load (Fig-

29

ure 15(b)), DDBJ is again the algorithm that requires the largest number of messages. It
is widely dominated by the other algorithms. AFC-tree outperforms DDBJ by a factor of
14. AFC-ng, AFC-ng-TriggeredNogood and AFC-tree exchange almost the same number of
messages with a slight gain for AFC-tree at the complexity peak.

Figure 16 presents the results obtained on DMSP where (n = 20, m = 9,k = 3, d =
2, h = 10). The results show that DDBJ dramatically deteriorates compared to other
algorithms, both for computational effort (Figure 16(a)) and communication load (Fig-
ure 16(b)). On this class of meeting scheduling problems, AFC-ng-TriggeredNogood im-
proves AFC-ng by a significant scale. AFC-ng-TriggeredNogood and AFC-tree require the
same computational effort and communication load, except for Gridsize = 6, where AFC-
ng-TriggeredNogood requires less #ncces than AFC-tree.

6.4 Discussion

A first observation on these experiments is that AFC-ng is always better than AFC and
DBJ, both in terms of computational effort (#ncces) and communication load (#msg).
A closer look at the type of exchanged messages shows that the backtrack operation in
AFC and DBJ requires exchanging a lot of messages (containing the inconsistent CPA)
(approximately 50% of the total number of messages sent by agents in AFC and 35% in
DBJ). AFC and DBJ send these messages to unassigned agents to stop the current forward
checking phase and wait for a newer CPA. Instead of stopping these forward checking phases,
AFC-ng lets them alive and takes advantage of their former computations by keeping those
of their nogoods that are compatible with the new arriving CPA. In addition, mimicking the
CBJ mechanism allows AFC-ng to jump to the culprit agent. AFC-ng saves unnecessary
search effort that may be done both by AFC and by DBJ. A second observation on these
experiments is that AFC-tree is almost always better than or equivalent to AFC-ng both
in terms of computational effort and communication load. When the graph is sparse, AFC-
tree benefits from running separate search processes in disjoint problem subtrees. When the
graph is dense, AFC-tree runs on a chain-like pseudo-tree and thus mimics AFC-ng. A third
observation on these experiments is that DDBJ suffers from the extra-messages it exchanges
to perform its dynamic value and variable ordering heuristic. It is usually dominated by
AFC-ng, which uses a static variable ordering. A fourth observation on these experiments
is that AFC-ng-TriggeredNogood is always better than AFC-ng. In addition, AFC-ng-
TriggeredNogood is almost always better than or equivalent to AFC-tree both in terms
of computational effort and communication load. This tends to show that on structured
instances (where AFC-tree was better than AFC-ng), the dynamic reordering of variables
allows AFC-ng-TriggeredNogood to adapt the order to the structure. A final observation is
that ABT performs badly in dense graphs compared to algorithms that perform assignments
on a sequential way.

7 Conclusion

In this paper, we have proposed two new complete algorithms. The first algorithm, Nogood-
Based Asynchronous Forward Checking (AFC-ng), is an improvement on AFC. Besides its
use of nogoods as justification of value removals, AFC-ng allows simultaneous backtracks go-
ing from different agents to different destinations. Thus, AFC-ng draws all the benefit it can
from the asynchronism of the forward checking phase. The second algorithm, Asynchronous

30

Forward Checking Tree (AFC-tree), is based on AFC-ng and is performed on a pseudo-tree
arrangement of the constraint graph. AFC-tree runs simultaneous AFC-ng processes on each
branch of the pseudo-tree to exploit the parallelism inherent in the problem. Our experi-
ments show that AFC-ng improves the AFC algorithm in terms of computational effort and
number of exchanged messages. Experiments also show that AFC-tree is the most robust
algorithm. It is particularly good when the problems are sparse because it takes advantage
of the problem structure. We finally implemented AFC-ng-TriggeredNogood, a version of
AFC-ng that implements the nogood-triggered dynamic variable ordering heuristic. AFC-
ng-TriggeredNogood improves AFC-ng and is almost always better than or equivalent to
AFC-tree both in terms of computational effort and communication load. It also outper-
forms DDBJ, which was a former synchronous algorithm with dynamic variable ordering.

References

[1] Hosame H. Abu-Amara. Fault-Tolerant Distributed Algorithm for Election in Complete
Networks. IEEE Transactions on Computers, 37:449-453, 1988.

[2] Ramén Béjar, Carmel Domshlak, Cesar Ferndndez, Carla Gomes, Bhaskar Krishna-
machari, Bart Selman, and Magda Valls. Sensor networks and distributed csp: com-
munication, computation and complexity. Artif. Intel., 161:117-147, 2005.

[3] Christian Bessiere and Jean-Charles Régin. MAC and Combined Heuristics: Two
Reasons to Forsake FC (and CBJ?) on Hard Problems. In Proceedings of CP’96, pages
61-75, 1996.

[4] Christian Bessiere, Arnold Maestre, Ismel Brito, and Pedro Meseguer. Asynchronous
backtracking without adding links: a new member in the ABT family. Artif. Intel.,
161:7-24, 2005.

[5] Ismel Brito and Pedro Meseguer. Synchronous, Asynchronous and Hybrid Algorithms
for DisCSP. In Proceedings of DCR’0/, pages 80-94, 2004.

[6] Ismel Brito and Pedro Meseguer. Improving ABT Performance by Adding Synchro-
nization Points. In Recent Advances in Constraints, volume 5129 of Lecture Notes in
Computer Science, pages 47-61. 2008.

[7] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global
States of Distributed Systems. ACM Trans. on Computer Systems, 3(1):63-75, 1985.

[8] Anton Chechetka and Katia Sycara. A Decentralized Variable Ordering Method for
Distributed Constraint Optimization. Technical Report CMU-RI-TR~05-18, Robotics
Institute, Carnegie Mellon University, 2005.

[9] Anton Chechetka and Katia Sycara. No-Commitment Branch and Bound Search for
Distributed Constraint Optimization. In Proceedings of AAMAS 06, pages 14271429,
2006.

[10] To-Yat Cheung. Graph Traversal Techniques and the Maximum Flow Problem in
Distributed Computation. IEEE Trans. on Soft. Engin., 9(4):504-512, 1983.

31

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Yek Loong Chong and Youssef Hamadi. Distributed Log-based Reconciliation. In
Proceedings of ECAI’06, pages 108-112, 2006.

Zeev Collin, Rina Dechter, and Shmuel Katz. On the feasibility of distributed constraint
satisfaction. In Proceedings of IJCAI’91, pages 318-324, 1991.

Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learning,
and cutset decomposition. Artif. Intel., 41(3):273-312, 1990.

Rina Dechter. Constraint Networks (survey). In S. C. Shapiro (Eds.), Encyclopedia of
Artificial Intelligence, 1:276-285, 1992.

Eugene C. Freuder and Michael J. Quinn. Taking advantage of stable sets of variables
in constraint satisfaction problems. In Proceedings of IJCAI’85, pages 10761078, 1985.

John Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new al-
gorithms for satisficing assignment problems. In Proceedings of the Second Canadian
Conference on Artificial Intelligence,, pages 268-277, 1978.

Matthew L. Ginsberg. Dynamic Backtracking. JAIR, 1:25-46, 1993.

Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artif. Intel., 14(3):263-313, 1980.

Katsutoshi Hirayama and Makoto Yokoo. The Effect of Nogood Learning in Distributed
Constraint Satisfaction. In Proceedings of ICDCS’00, pages 169-177, 2000.

Hyuckchul Jung, Milind Tambe, and Shriniwas Kulkarni. Argumentation as Distributed
Constraint Satisfaction: Applications and Results. In Proceedings of AGENTS’01,
pages 324-331, 2001.

Thomas Léauté and Boi Faltings. Coordinating Logistics Operations with Privacy
Guarantees. In Proceedings of the IJCAI’11, pages 24822487, 2011.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.

Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, and
Pradeep Varakantham. Taking DCOP to the real world: Efficient complete solutions
for distributed multi-event scheduling. In Proceedings of AAMAS’04, 2004.

Amnon Meisels and Oz Lavee. Using additional information in DisCSP search. In
Proceedings of DCR’04, 2004.

Amnon Meisels and Roie Zivan. Asynchronous Forward-Checking for Distributed CSPs.
In Frontiers in Artificial Intelligence and Applications, 2003.

Amnon Meisels and Roie Zivan. Asynchronous Forward-checking for DisCSPs. Con-
straints, 12(1):131-150, 2007.

Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. An Asyn-
chronous Complete Method for Distributed Constraint Optimization. In Proceedings
of AAMAS’03, pages 161-168, 2003.

32

[28]

[29]

[30]

[31]

Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings. Dynamic Distributed BackJump-
ing. In Recent Advances in Constraints, volume 3419, pages 71-85. 2005.

Adrian Petcu and Boi Faltings. A Value Ordering Heuristic for Distributed Resource Al-
location. In Proceedings of Joint Annual Workshop of ERCIM/CoLogNet on CSCLP’0/,
pages 86-97, 2004.

Adrian Petcu and Boi Faltings. DPOP: A Scalable Method for Multiagent Constraint
Optimization. In Proceedings of IJCAI’05, pages 266—271, 2005.

Adrian Petcu and Boi Faltings. ODPOP: An Algorithm for Open/Distributed Con-
straint Optimization. In Proceedings of AAAI’06, pages 703-708, 2006.

Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Compu-
tational Intelligence, 9:268-299, 1993.

Marius-Calin Silaghi. Generalized Dynamic Ordering for Asynchronous Backtracking
on DisCSPs. In Proceedings of DCR’06, 2006.

Marius-Calin Silaghi and Boi Faltings. Asynchronous aggregation and consistency in
distributed constraint satisfaction. Artif. Intel., 161:25-53, 2005.

Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, and El-Houssine Bouyakhf.
DisChoco 2: A Platform for Distributed Constraint Reasoning. In Proceedings of
DCR’11, pages 112-121, 2011. URL http://www.lirmm.fr/coconut/dischoco/.

Richard J. Wallace and Eugene C. Freuder. Constraint-Based Multi-Agent Meeting
Scheduling: Effects of agent heterogeneity on performance and privacy loss. In Pro-
ceedings of DCR’02, pages 176-182, 2002.

W. Yeoh, A. Felner, and S. Koeing. BnB-ADOPT: An Asynchronous Branch-and-
Bound DCOP Algorithm. In In Proceedings of Workshop on Distributed Constraint
Reasoning (DCR’07)., 2007.

Makoto Yokoo. Algorithms for Distributed Constraint Satisfaction Problems: A Re-
view. Journal of AAMAS, 3(2):185-207, 2000.

Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed
constraint satisfaction for formalizing distributed problem solving. In Proceedings of
12th IEEE Int’l Conf. Distributed Computing Systems, pages 614-621, 1992.

Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The Dis-
tributed Constraint Satisfaction Problem: Formalization and Algorithms. IEEE Trans.
on Knowledge and Data Engineering, 10:673-685, 1998.

Roie Zivan and Amnon Meisels. Synchronous vs Asynchronous Search on DisCSPs. In
Proceedings of EUMAS’03, 2003.

Roie Zivan and Amnon Meisels. Message delay and DisCSP search algorithms. Annals
of Mathematics and Artificial Intelligence, 46(4):415-439, 2006.

Roie Zivan and Amnon Meisels. Dynamic Ordering for Asynchronous Backtracking on
DisCSPs. Constraints, 11(2-3):179-197, 2006.

33

http://www.lirmm.fr/coconut/dischoco/

	Introduction
	Context
	Related work
	Our contribution

	Background
	Basic definitions and notations
	Asynchronous Forward Checking

	Nogood-based Asynchronous Forward Checking
	Description of the algorithm
	A simple example of the backtrack operation on AFC-like algorithms

	Asynchronous Forward Checking Tree
	Pseudo-tree ordering
	The AFC-tree algorithm

	Correctness Proofs
	Experimental Evaluation
	The three benchmarks
	Uniform binary random DisCSPs
	Distributed sensor-mobile problems
	Distributed meeting scheduling problems

	Static variable ordering
	Dynamic variable ordering
	Discussion

	Conclusion

