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Pierre Boutillier

Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS, PiR2, INRIA
Paris-Rocquencourt, F-75205 Paris, France

Abstract. We report on a new implementation of a reduction strategy
in Coq to simplify terms during interactive proofs.

By “simplify”, we mean to reduce terms as much as possible while avoid-
ing to make them grow in size. Reaching this goal amounts to a discussion
about how not to unfold uselessly global constants. Coq’s simpl is such
a reduction strategy and the current paper describes an alternative more
efficient abstract-machine-based implementation to it

Introduction

This article discusses the issue of reduction in an extension of the λ-calculus
that contains algebraic data structures, fixpoints and global constants. This is
representative of the core of the programming language of a proof assistant such
as Coq [9]. Its grammar is presented Fig.1.

t, u := x | t u | fun x → t | c |
Ci | case t of u1 . . . up end | fix f := t

γ := ε | γ; c := t

Fig. 1. Language syntax

Algebraic datatypes are introduced by constructors. The information stored
is just “This is the ith constructor of its datatype”. Algebraic datatypes are
eliminated by what we call a destructor. It is either a case analysis alone or
case analyses inside a fixpoint definition. Branches of a Case analysis do not
bind arguments of constructors directly. The branch of a constructor that has k
arguments must start by k functional abstractions.

In a proof assistant, this language would be strongly typed and have type
annotations. To remain focused on our goal, we assume everything to be well-
typed.

Our language is endowed with a small-step semantics characterized by four
non-structural rules:

β-reduction functional elimination γ ⊢ (fun x → t) u 7→ t[u/x]
when a function is applied, the linked variable is substituted by the argument.



δ-reduction constant unfolding γ; c := t; γ′ ⊢ c 7→ t
A global constant is substituted by its definition.

ι-reduction Algebraic datatypes elimination
Pattern matching over the ith constructor is substituted by its ith branch
applied to the constructor arguments.

γ ⊢ case Ci u1 . . . un of | t1 . . . | tp end 7→ ti u1 . . . un

A fixpoint applied to a constructor is substituted by its body.
γ ⊢ (fix f := t) (Ci u1 . . . u) 7→ t[fix f := t/f] (Ci u1 . . . u)

Big-step semantic can be obtained by building an abstract machine and fol-
lowing untyped normalization by evaluation technique [5, 8]. This technique an-
swers by default a normal form whose length may be significantly bigger than the
original term. Especially, when global constants and free variables are involved,
unfolded form may be more difficult to recognize at first glance.

Reducing while remaining concise may seem contradictory but a simple ex-
ample can illustrate what enhancement can be achieved over straightforward
normalization. Take the unary integers defined as either zero (O) or the succes-
sor of an integer n (S n) and plus the constant defined as

plus := fun m →
fix pl := fun n →
case n of | m | fun n’ → S (pl n’) end.

The normal form w.r.t. βιδ-reduction of plus x (S (S y)) is not S (S (plus x y))
but S (S (fix pl := fun n → case n of | x | fun n’ → S (pl n’) end y)).

We could have defined fixpoints in a generative way: a fixpoint is a toplevel
object that defines a global constant and recursive calls are calls to this constant.
However, the design considered here deals with anonymous fixpoints. Names
are local to a fixpoint expression. Only the skeleton has a meaning and two
definitions equivalent modulo renaming of binders are equivalents. We will not
discuss further the difference between the two approaches. Further thoughts can
be found in [10, 1]. Let us stop at the level of a user of a proof assistant: a
goal is easier to read and more intuitive if it uses constants than expanded local
definitions.

The Coq proof assistant features a popular reduction strategy called simpl
performs reductions but unfold a constant only if

1. it leads to an algebraic data-structure destructor being in head position
2. this destructor can be eliminated by ι-reduction

Moreover, recursive calls are substituted by the constant that has been un-
folded instead of the fixpoint definition.

While it is a corner-stone of many Coq proofs, its complexity is exponen-
tial in the number of constant that will not be unfolded. The reduction of
plus m (plus n p) exhibits the undesirable behaviour.

1. It tries to unfold the first plus,
2. sees that the ι-reduction depends of the the result of plus n p
3. tries recursively to reduce plus n p



4. sees that it does not reduce to a constructor.
5. does not unfold the first plus but calls itself on the subterms.
6. reduces plus n p a second time.

The constant plus would have tried to be unfolded 2n time if it appears n time.
The implementation of simpl is also unpredictable in its behavior when

dealing with cascade of constants (constants that unfolds to a fixpoint via a
chain of δ-reductions). Actually, unfolding depends of the context in which the
cascade occurs.

In this paper, we propose a new implementation directly based on a variant
of Krivine Abstract Machine with algebraic datatypes proposed by Bruno Barras
in [2, Chapter 2] but behaves just like simpl with respect to constant unfolding.
The key idea is to maintain a list of constants convertible to the term being
reduced.

Outline This paper is organized as follows. In section 1, we propose an imple-
mentation of a call by name reduction strategy for our calculus. In section 2, we
describe how we improve on the previous section to keep track of the constants
that are unfolded. In section 3, we discuss how the use of explicit substitutions
makes it possible to improve both on the efficiency of the reduction of our ma-
chine and on its ability to refolded terms. In section 4, we analyze the extent to
which our reduction strategy may be fine tuned by the users. Section 5 proposes
a discussion of some of our implementation choices.

1 Call By Name abstract machine

We use OCaml as the language to describe our abstract machine and assume
that the standard library over lists is known.

Term reduction is performed by translating terms to a particular language,
compute in this language and translating back to terms. It follows the general
picture of untyped normalization by evaluation. First, a term is evaluated to
an abstract machine state composed of a term, called the head and a stack [7].
Stacks store the destructors of types. All of them are defined by

type s ta ck e l ement = Zapp of term | Zcase of term l i s t
| Zf ix of var ∗ term

type s tack = s ta ck e l ement l i s t
type s t a t e = term ∗ s tack

Evaluation starts from the source term in front of an empty stack. It pushes
destructors of types on the stack and computation occurs when a constructor of
type appears in head position.

Computational steps are a rewriting in OCaml of the reduction rules describe
page 1. (the evaluation function is given as a continuation for tail-recursivity).

(∗ ∗ va l compute arrow : var → term → s t ack →
( s t a t e → s t a t e ) → s t a t e (∗ be t a ∗) ∗)



l e t compute arrow x t s tack k = match s tack with

| Zapp u : : q → k ( subst t u x , q )
| → (mkLam x t , s tack )

(∗ ∗ va l s t r i p z a p p : s t ack → term l i s t ∗ s t ack ∗)
l e t s t r i p z app s =

l e t rec aux acc = function

| Zapp x : : q → aux (x : : acc ) q
| s → L i s t . rev acc , s

in aux [ ] s

(∗ ∗ va l compu t e a l gebra i c : i n t → s t ack →
( s t a t e → s t a t e ) → s t a t e (∗ i o t a ∗) ∗)

l e t compute a lgebra ic i s tack k =
l e t args , stack ’ = s t r i p z app stack in

match stack ’ with

| Zcase l : : q →
k ( L i s t . nth i l , ( L i s t .map Zapp args ) @ q)

| Zf ix ( f , t ) : : q →
k ( subst t (mkFix f t ) f ,

Zapp (mkApp (mkConstruct i ) a rgs ) : : q )
| → ( mkConstruct i , s tack )

The code for the evaluation function is:

(∗ ∗ va l e va l : env → term → s t a t e ∗)
l e t eva l env t =

l e t rec cbn = function

| App ( t , u ) , s → cbn ( t , Zapp u : : s )
| Case ( t , l ) , s → cbn ( t , Zcase l : : s )
| Fix ( f , t ) , Zapp u : : s → cbn (u , Z f i x f t : : s )
| Lam (x , t ) , s → compute arrow x t s cbn
| Construct i , s → compute a lgebra ic i s cbn
| Const c , s → cbn ( cons t va lue env c , s )
| s t a t e → s t a t e
in cbn ( t , [ ] )

Then the state is quoted back to a term by putting back the surrounding
type destructors.

(∗ va l quote : s t a t e → term ∗)
l e t rec quote = function

| t , Zapp u : : q → quote (mkApp t u , q )
| t , Zcase l : : q → quote (mkCase t l , q )
| u , Z f i x ( f , t ) : : q →

quote (mkFix f t , Zapp u : : q )
| t , [ ] → t



This process returns a weak head normal form. It has to be mapped over the
subterms to reach a strong normal form. It is also naive about efficiency because
it performs the substitutions one by one. We will address this inefficiency issue
in section 3.

2 Trace of unfolded constants

Refolding We add to the framework of section 1 a list of constants convertible
to the head term in which we will pick the “refolded” form of the term. This list
gives us the log of the chained δ-reduction done by the machine.

Formally, it is not strictly composed of constants but of triples we call un-
folding.

type c s t s t k = ( c s t ∗ term l i s t ∗ term l i s t ) l i s t

Elements of the first list are called the parameters and those of the second the
arguments.

A list p of unfoldings is a refolding of a term t (written t  p) if for any of
its elements, the constant applied to the parameters is convertible to t applied
to the arguments.

We define primitives over lists of unfolding such that

– if t u  p then t  add arg u p

– if fun x → t  p then t[u/x]  add param u p

– if c  p and c := t then t  add cst c p

by

(∗ ∗ va l add arg : term → c s t s t k → c s t s t k ∗)
l e t add arg arg =

L i s t .map ( fun ( a , b , c ) → ( a , b , c @ [ arg ] ) )
(∗ ∗ va l add param : term → c s t s t k → c s t s t k ∗)
l e t add param param p = L i s t .map ( fun ( a , b , c ) →

match c with | [ ] → ( a , b @ [ param ] , c ) | : : q → ( a , b , q ) ) p
(∗ ∗ va l add cs t : c s t → c s t s t k → c s t s t k ∗)
l e t add cst c s t p = ( c , [ ] , [ ] ) : : p

It is chosen such that if the stack is put back onto the head. in the manner of
the quote function, up to and including the considered node, the list of unfolding
would be a refolding of the head.

type s ta ck e l ement = Zapp of term
| Zcase of term l i s t ∗ c s t s t k
| Zf ix of var ∗ term ∗ c s t s t k

We now modify cbn to maintain a refolding.

l e t compute arrow x t s tack p k = match s tack with

| Zapp u : : q → k ( add params u p) ( subst t u x , q )



| → (mkLam x t , s tack )

l e t eva l env t =
l e t rec cbn p = function

| App ( t , u ) , s → cbn ( add arg u p) ( t , Zapp u : : s )
| Case ( t , l ) , s → cbn [ ] ( t , Zcase ( l , p ) : : s )
| Fix ( f , t ) , Zapp u : : s → cbn [ ] (u , Z f i x ( f , t , p) : : s )
| Lam (x , t ) , s → compute arrow x t s p cbn
| Construct i , s → compute a lgebra ic i s ( cbn [ ] )
| Const c , s → cbn ( add cst c p) ( cons t va lue env c , s )
| s t a t e → s t a t e
in cbn [ ] ( t , [ ] )

Nothing is refolded for now but everything is set in place to use the fact
that for example plus applied to one argument is convertible to fix pl := . . . .
The missing part to provide the expected behavior is to take advantage of this
information during ι-reduction and quotation.

Best unfolding We define functions refold in term t p and refold in state t p
that will look in terms and state respectively. If it finds t applied to the argu-
ments of the first unfolding of p, it is substituted by the constant applied to the
parameters. Otherwise, it tries with the next triple.

The constant unfolded first is the deepest in the refolding, i.e. the top element
of the cascade of constants. It is the one that we want to use in priority. It is
also the one with the longest number of arguments. So, it is tried first but its
arguments are not found in any situation and it cannot always be used (see
Section 5 for illustrative examples). That is why the other unfolding must be
kept and tried.

Concise term reconstruction Finally, we try to use constant instead of algebraic
data-structure destructor during computation for fixpoint substitution

l e t compute a lgebra ic i s tack k =
l e t args , stack ’ = s t r i p z app stack in

match stack ’ with

| Zcase ( l , ) : : q →
k ( L i s t . nth i l , ( L i s t .map Zapp args ) @ q

| Zf ix ( f , t , p ) : : q → k
( subst ( r e f o l d i n t e rm (mkVar f ) p ) (mkFix f t ) f ,
Zapp (mkApp (mkConstruct i ) a rgs ) : : q )

| → ( mkConstruct i , s tack )

and at quotation

l e t rec quote = function

| t , Zapp u : : q → quote (mkApp t u , q )
| t , Zcase ( l , p) : : q →

quote ( r e f o l d i n s t a t e p (mkCase t l , q ) )



| u , Z f i x ( f , t , p ) : : q →
quote ( r e f o l d i n s t a t e p (mkFix f t , Zapp u : : q ) )

| t , [ ] → t

3 Refolding Algebraic Krivine Abstract Machine

Our machine works but it is not optimally efficient. There is a computational
inefficiency as seen at the end of section 1. Worse, its ability to refold is too
limited. Improving substitution is the key to correct that, let us see how and
why.

Defining
succ := plus (S O)

we have that succ (S n) reduces to S (succ n) but compute algebraic does
not answer that in Coq.

In Coq’s standard library [9], the default definition of plus is a bit different.
The fix f := . . . construction takes as an annotation its recursive argument.
It is the argument that generates the fixpoint unfolding (and not necessary the
first one). The fun m → . . . of our definition is put inside the fixpoint body. We
end with plus := fix pl := fun m n → . . . pl m n’ . . . . This means that during
reduction, first the fixpoint is unfolded, then m is substituted.

In this situation, when the fixpoint pl is reduced, the cst stk tells that pl
applied to the argument (S O) is succ and that pl is plus. In the body of pl, pl
m appears. Consequently, plus is chosen and not succ. The substitution of m by
S O that would have allow a substitution to succ is only done later.

Substitution is done by maximally refolding constants. It brings to a com-
plexity problem when the term will be reduced further later during evaluation.
The unfolded version should be used directly under these circumstances. For
example, during the evaluation of plus m (S (S n)), plus is δ-reduced, pl is ι-
reduced by using plus m for the recursive call, the case is ι-reduced, we have got
S (plus m (S n)). Then, plus is δ-reduced a second time and so on. . .

Later substitutions offer the opportunity to both use unfolded form during
evaluation and the best constant during quotation. It allows also to get the most
precise possible environment while choosing the constant to use.

Explicit substitutions are a lazy way to substitute. Our abstract machine
takes advantage of them. It becomes very close to the Krivine abstract machine:
we use closures instead of terms in the state of the machine. The difference is
that our substitutions are composed of pairs: a term (to proceed evaluation) and
a cst stk (to quote gently).

4 Configurability by user

You cannot provide to users a tool to reduce their goals without allowing them to
customize how they want the reduction to proceed. Enrico Tassi [9, 4] proposed



a command Arguments in Coq to specify the behavior of the user-level reduction
regarding to a particular constant.

A constant can be

– never refolded
– unfolded if only it is applied to at least k arguments (with k bigger than its

number of arguments, you have an opaque constant)
– unfolded iff a given list of its arguments starts by a constructor
– unfolded only if no case will remain in the normal form.

Our framework is suitable to handle the 3 first situations.

– A constant not to refold is a constant that you do not put in the cst stk .
– By counting the number of node Zapp at the beginning of the stack, you

know the number of arguments a term is applied to.
– Whether argument i starts by a constructor is exactly the question we handle

to trigger a fixpoint ι-reduction.
A extra node Zconst is added. It takes as arguments a constant, the list of
the (i − 1)th first arguments and a list of argument numbers (the one, we
want that starts by a constructor). When cbn crosses such a constant, it puts
the first argument to check in head of the state and pop a Zconst. Then,
compute algebraic puts in head the next argument to check or unfold the
constant if the list is empty.

– An heuristic answering “will all the case that unfolding this constant intro-
duces be reduced ?” seems very specific to a system that unfolds constant
one by one and backtracks. We do not take it into account.

5 Discussion

Despite its configurabity, some choices are hard coded in our framework. They
are made explicit and discussed now.

Constant cascade Functional programmers often work by defining new constants
using general combinators on data-structure (fold, map) instead of direct recur-
sive definition. During proofs, it seems preferable to get goals talking about the
toplevel constant instead of the combinator. Therefore, the machine deals with a
list of constants with arguments and parameters and not only the last unfolded
constant. In that respect, it goes further than just simulating a generative sys-
tem.

Reduce or refold The combinator map does not change the “iterated” function. A
constant defined from it can always be refolded. With fold left , the accumulator
changes. Consequently, going back to a toplevel constant that uses fold left
can be impossible. Answering a reduced result expressed using fold left has
been preferred. The former implementation does not reduce the term in order to
leave it written using the toplevel constant. Here is the backward incompatibility
between the implementations.



Guessing refolding The presented way of dealing with unfolding is too sensitive
to the syntax and implies an expertise of the user to define constants that will be
refolded. A single swap of arguments and the system is lost. If plus would have
been defined by recurrence on its first argument and succ m by plus m (S O),
the information stored in the cst stk during the evaluation of succ (S n) would
have been that pl (S n) (S O) is equivalent to succ (S n). This is true but useless
since the recursive call talks about pl n (S O).

q

Split tree The reason why one can want not to unfold if several arguments does
not reduce to a constructor can be seen with the example of substraction.

minus := fix mn := fun a b →
case b of | a | fun b’ →
case a of | O | fun a’ → mn a’ b’ end end

Only when both arguments start with a constructor will the second case be
eliminated. However, the following implementation of division by 2shows that
we need a more complex strategy.

div2 := fix d2 := fun m →
case m of | O | fun n →
case n of | O | fun p → S (d2 p) end end

In the current implementation, there is no way to specify constaints such as
unfold only if it is 0, 1 or the successor of the successor of a number . . .

Control number of reduction Directives such as “Do unfold” or “do not unfold”
may not be precise enough. We have imagined a system where a δ-reduction
consumes a token as long as some are available. The user can choose, for each
constant, how many tokens it is allowed to use. It is useful, for instance, if you
want to reduce function of n+ 2 as a function of n+ 1 but not of n.

Conclusion

We have described a Krivine abstract machine with algebraic datatypes that
stores lists of equivalent form for the term it handles. We believe it is a good
way to reconcile in a proof assistant a notion of local fixpoint and a generative
intuition of users.

This new reduction strategy improves upon the former by offering a uniform
behaviour for cascade of constants. Furthermore its implementation of constant
refolding does not affect the complexity of the underlying Krivine Machine. It is
available in Coq’s development branch as the cbn tactics.

Besides its use in proof development, our abstract machine is leveraged by
Coq’s implicit argument inference mechanism to produce shorter terms.

It is, however, sensitive to how constants are defined. Moreover, it can be
difficult to avoid undesirable reductions. Therefore, it cannot pretend to fully
replace functional induction [3] or more step-by-step rewriting techniques [11].
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