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Abstract

An efficient method to compute the scattering of a guided wave by a localized defect, in an elastic waveguide
of infinite extent and bounded cross section, is considered. It relies on the use of perfectly matched layers (PML)
to reduce the problem to a bounded portion of the guide, allowing for a classical finite element discretization.
The difficulty here comes from the existence of backward propagating modes, which are not correctly handled
by the PML. We propose a simple strategy, based on finite-dimensional linear algebra arguments and using the
knowledge of the modes, to recover a correct approximation to the solution with a low additional cost compared
to the standard PML approach. Numerical experiments are presented in the two-dimensional case involving
Rayleigh–Lamb modes.

1 Introduction

Since their introduction by Bérenger [1], the perfectly matched layers (PML) have been applied to a large number
of time-dependent and time-harmonic wave-equation problems set on unbounded domains. For such problems, it is
necessary, if any computation is to be done, to put artificial boundaries at some distance away from the given region
of interest and, in order to give accurate and reliable results, this truncation has to produce an error on the solution
as small as possible. The PML provide a way to do so by introducing layers surrounding the domain of interest
in which the waves enter without reflection and decay exponentially, hence solving the difficult task of choosing
an adequate boundary condition at the end of the computational domain. Moreover, they are relatively easy to
implement in conjunction with virtually any conventional approximation method, like the finite difference, finite
element or spectral methods, and can be adapted to solve problems originating from electromagnetism, acoustics,
or elasticity, to name a few. They are also generally very efficient and often compare favorably with other existing
techniques for artificially handling unbounded domains (see for instance the reference [2], in which a comparison
of the performances of high-order absorbing boundary conditions and several types of perfectly matched layers in
two dimensions, for problems governed by the Helmholtz equation, is offered).

Despite this undeniable success, the PML technique has been shown to fail in some specific situations. For linear
elastic systems in which the propagative medium presents particular anisotropy properties, numerical instabilities
can be observed in time-domain simulations [3]. In the context of waveguides, anisotropy of the material is not
even a necessary feature for this phenomenon to occur. Investigations connected this behavior to the existence of
so-called backward waves, whose group and phase velocities have opposite signs.1 In their presence, exponentional
growth occurs in the layers, rendering the method completely unusable [8, 9]. While the generated instabilities are
largely discernible in transient simulations, it should be emphasized that it is not the case in time-harmonic ones,
the solution effectively computed, usually in a numerically stable manner, simply being not an approximation to
the outgoing solution of the problem. Additionally, one should mention that the PML also perform very poorly
when so-called long waves (associated with a mode which has an almost zero propagation constant) arise near
cut-off frequencies, as the slow decay of these in the PML region calls for a very thick layer (and thus expensive
computations in practice).

In the present article, we are interested by the numerical solution of time-harmonic problems set in (semi-
)infinite waveguides. We introduce an original methodology based on a previous idea (see [10]), which can be

1The possibility of their existence having been first discussed by Lamb [4], it is now well-known that such waves are present in
linear elasticity (see [5] for instance), as the inspection of the dispersion curves of Rayleigh–Lamb modes for some homogeneous,
isotropic elastic plates shows that, for a majority of commonly encountered materials and in some frequency ranges, the phase and the
energy of a given mode can propagate in opposite directions. These “backward-waves” modes also appear in dielectric-loaded circular
electromagnetic waveguides, as discovered in [6], or in layered elastic structures (see [7]).
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seen as a way to rehabilitate the use of PML in the presence of backward waves and/or a means to improve its
performance when long waves exist, at a moderate additional computational cost. It makes essential use of the
orthogonality (or biorthogonality) properties enjoyed by the guided modes and the a priori knowledge that some of
these modes are associated with backward and/or long waves. It therefore bears some strong similarities with the
method proposed by Skelton et al. in [8] to overcome the very same issue, which uses the biorthogonality relations
satisfied by the Rayleigh–Lamb modes to separate the forward propagating waves from the backward ones in order
to treat them appropriately within the PML. It also shares a bond with the approach proposed by Barnett and
Greengard in [11] for an integral representation for quasi-periodic scattering problems, in the sense that it involves
the computation of a finite number of “corrections”, which measure in some way the failure of the approximate
solution to satisfy a radiation condition.

Our presentation will be focused on the case of an elastic waveguide, which is particularly interesting as the
potential applications are numerous, notably for the detection of cracks within plates, rods, or pipes, in nonde-
structive testing, but the underlying idea is quite general and can be applied to other wave propagation models.
Note however that, due to pending open theoretical questions on modal expansion series of guided elastic modes,
we were not able to give a rigorous mathematical justification of the method, as we achieved in [10] with the
same technique applied to the use of Robin-type boundary conditions as approximate radiation condition at finite
distance for the Helmholtz equation. As a consequence, several essential facts need to be assumed or conjectured
for the method to be applicable in the present context.

Our paper is organized as follows. In section 2, the general setting of the problem is given and the modal
formalism to be used throughout is recalled. The PML technique and its drawbacks are described in section 3 and
the novel methodology is presented in section 4. Details on its implementation are provided in section 5 and a few
numerical results are shown in the following section. Finally, we address in the closing section some mathematical
questions concerning this work which, to the best of our knowledge, remain open.

2 General setting

In this paper, the elastic wave propagation problems we aim at solving numerically can be either radiation or
scattering problems, in which one wants to determine respectively the field generated by a compactly supported
source placed in the waveguide or the scattered field due to a local perturbation of the waveguide given an incident
field at infinity. The present section is devoted to their mathematical modeling and properties.

2.1 The elastic waveguide

For the sake of simplicity, we consider an isotropic elastic waveguide of semi-infinite length, an extension to the
infinite case being dealt with in section 5. Let Ω ⊂ Rd, with d = 2 or 3, be a connected unbounded domain,
obtained by locally perturbing the perfectly straight waveguide, whose cross section S is a bounded subset of
Rd−1. More precisely, suppose that Ω ∩ {x = (xS , xd) |xd > 0} = Ω+, and Ω ∩ {x = (xS , xd) |xd < 0} = Ω0 is a
bounded domain possibly containing a localized perturbation of the cylindrical geometry of the waveguide, either a
deformation of the boundary or a defect (a crack for instance) enclosed in the guide (see Figure 1 for an example).

Ω0 Ω+

xS

xd

Figure 1: A realization of the domain Ω in two dimensions, representing a waveguide of semi-infinite length with
a local boundary deformation.

Within the framework of linear elasticity theory, a time-harmonic dependence of pulsation ω > 0 being assumed,
the (vectorial) displacement is the quantity Re(u(x) e−iω t), where the field u satisfies the following equations (note
that the e−iω t factor will be omitted henceforth)

− ρω2u− div(σ(u)) = f in Ω, (1)

with the stress-free boundary condition
σ(u)n = 0 on ∂Ω, (2)
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in which ρ is the mass density of the material forming the waveguide, σ(u) is the stress tensor, f is a source
term with compact support in Ω0 and n is the unit outward normal vector to ∂Ω, the boundary of Ω. In order
to close the system (1)-(2), one must prescribe the relationship between the stress tensor and the strain tensor
ε(u) = 1

2

(
∇u+ (∇u)T

)
, which is done by Hooke’s law

σ(u) = λ div(u) I + 2µ ε(u), (3)

where λ and µ are the Lamé parameters, given by

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
,

with E and ν the Young modulus and the Poisson ratio of the elastic material.

2.2 Guided elastic modes and biorthogonality

An essential tool used throughout these pages is the modal series expansion of the solution to the elastic wave
propagation problem in the unperturbed straight part of the waveguide. In order to make the present article more
self-contained, let us collect some basic but fundamental notions and properties relative to guided elastic modes.

The modes of the waveguide are solutions with separated variables of the standard form

u(x) = u(xS) eiβxd ,

where the function u and the complex number β are respectively the field profile and the propagation constant of
the mode, to the system of homogeneous equations

−ρω2u− div(σ(u)) = 0 in S × R,

σ(u)n = 0 on ∂S × R.

The pulsation ω being given, approximations of these particular solutions are generally obtained by solving a
quadratic eigenvalue problem resulting from a finite element discretization over the cross section of the waveguide
(this is the so-called semi-analytical finite element (SAFE) method, see [12, 13] for a historic application to elastic
layered orthotropic cylinders and plates). In the particular cases of a homogeneous plate (the Rayleigh–Lamb
modes) or of a homogeneous circular rod (the Pochhammer–Chree modes), closed-form expressions of the modes
are available and their determination reduces to a search for the zeros of a dispersion relation. It follows (see [14]
for instance) from properties of the functional operators involved in the problem that the set of complex numbers
β associated with the set of modes is both discrete and symmetric with respect to Re(β) = 0 and Im(β) = 0, a
mode being said to be propagative if β ∈ R, and evanescent if Im(β) 6= 0.

The guided elastic modes also satisfy biorthogonality relations. To see this, let us denote respectively by uS
and ud the transverse and axial components of the displacement field u, and by tS and td those of the normal
stress σ(u)ed. We then introduce the hybrid (since they include both displacement and stress tensor components)
vector quantities

X =

(
tS
ud

)
and Y =

(
uS
−td

)
,

as in [15, 16]. These new variables provide a particularly adequate approach to the characterization of modes,
both from a theoretical (mathematical analysis) and practical (numerical computation, construction of transparent
boundary conditions, etc...) perspective, since a triplet (β,X,Y) associated with a mode, that is, such that

X(x) = X(xS) eiβxd and Y (x) = Y(xS) eiβxd ,

is solution to a linear eigenproblem (see again [14]). For this reason, we refer to such a triplet as an eigenelement
in what follows.

Setting, for any X and Y in L2(S)d,

(X|Y)S =

∫
S

d∑
i=1

XiYi dxS =

∫
S

(tS · uS − udtd) dxS , (4)

it can be seen that any pair of eigenelements (β,X,Y) and (β̃, X̃, Ỹ), β̃ 6= β, satisfies the following relation

(β̃2 − β2)(X|Ỹ)S = 0.
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In particular, one has (X|Ỹ)S = 0 as soon as β̃ 6= −β, which generalizes the relation for the Rayleigh–Lamb modes
derived by Fraser [17]. This also means that an eigenelement (β,X,Y) is “orthogonal”, in the sense of biorthogonal

systems, to any other eigenelement (β̃, X̃, Ỹ), except if β̃ = −β, in which case the corresponding modes propagate
in opposite directions. Defining the important notion of propagation direction requires to avoid the so-called cut-off
frequencies. This is the object of the following hypothesis.

Assumption 1. The pulsation ω is such that (X|Y)S 6= 0 for any eigenelement (β,X,Y).

We conjecture that the set of values of the pulsation ω which do not meet assumption 1 is a countable subset
of R+, but we do not know of any proof of this result. Now, assuming the wavenumber β is a smooth function
of the pulsation ω, this hypothesis implies that the group velocity ∂ω

∂β of a propagative mode does not vanish (see

Lemma 4 and Remark 1 in [14]), which allows to define the propagation direction of the considered mode. We
thus say that a propagative mode is rightgoing (resp. leftgoing) if its group velocity is positive (resp. negative).
Accordingly, an evanescent mode is rightgoing (resp. leftgoing) if Im(β) > 0 (resp. Im(β) < 0). Note that, due
to the chosen convention for the assumed time-dependance, a rightgoing (resp. leftgoing) mode propagates in the
xd > 0 (resp. xd < 0) direction.

From now on, we denote by (βn,Xn,Yn), n ∈ N, an eigenelement corresponding to a rightgoing mode, counted
with its multiplicity. It then results from simple symmetry arguments that (−βn,−Xn,Yn), n ∈ N, corresponds to
a leftgoing mode. Since assumption 1 ensures that the quantity (Xn|Yn)S , n ∈ N, is never zero, we can suppose,
after a suitable normalization, that it holds

(Xm|Yn)S = δmn, ∀m ∈ N, ∀n ∈ N. (5)

Before we close this subsection, we formulate a conjecture about the localization of the wavenumbers βn, n ∈ N,
in the complex plane.

Conjecture 1. For any value of the pulsation ω and any real number δ in [0, π2 ), there exist a positive integer Nδ
and an ordering of the set {βn}n∈N such that one has

n ≥ Nδ ⇔ |Im(βn)| ≥ tan(δ) |Re(βn)| . (6)

This conjecture implies in particular that there is a finite number N , with N ≤ Nδ, of propagative modes. This
result is commonly admitted but, to the best of our knowledge, has never been rigorously proven in the general
case. It holds true for Rayleigh–Lamb modes, as Merkulov et al. [18] derived the following asymptotic behavior

βn h ∼
inπ

2
as n→ +∞,

for rightgoing modes in a plate of height 2h.

2.3 Modal expansion

As already mentioned, modal series expansions are extensively used in the sequel. The proper mathematical sense
of these will not be discussed here, as it would raise several questions which are out of the scope of the present
paper, even in the simple two-dimensional case of the Rayleigh–Lamb modes. We solely point out that, for any
practical (that is, numerical) purpose, these expansions will always be truncated to a finite number of terms.

Consider a portion of the waveguide S × [x−d , x
+
d ] and a solution u to the homogeneous equations

−ρω2u− div(σ(u)) = 0 in S × (x−d , x
+
d ),

σ(u)n = 0 on ∂S × (x−d , x
+
d ).

By choosing a reference position z, x−d ≤ z ≤ x+
d , the solution u can formally be expressed as a superposition of

leftgoing and rightgoing modes in S × [x−d , x
+
d ], that is

u(x) = u(xS , xd) =
∑
n∈N

(
A+
n (z)u+

n (xS) eiβn (xd−z) +A−n (z)u−n (xS) e−iβn (xd−z)
)
, (7)

where

u+
n =

(
unS
und

)
and u−n =

(
unS
−und

)
, ∀n ∈ N.
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In practice, the values of the modal coefficients A±n (z), n ∈ N, can be recovered from the knowledge of the
displacement and axial stress fields on a given cross section, by considering the hybrid quantities X(u) and Y (u)
and using the biorthogonality relation. Indeed, if the fields X(u) and Y (u) are known for a given xd ∈ (x−d , x

+
d )

and any xS in S, one has on the one hand

X(u)(xS , xd) =
∑
n∈N

(
A+
n (z) eiβn (xd−z) −A−n (z) e−iβn (xd−z)

)
Xn(xS),

and
Y (uS , xd)(x) =

∑
n∈N

(
A+
n (z) eiβn (xd−z) +A−n (z) e−iβn (xd−z)

)
Yn(xS)

on the other. It then results from (5) that

(X(u)(·, xd)|Yn)S = A+
n (z) eiβn (xd−z) −A−n (z) e−iβn (xd−z),

(Xn|Y (u)(·, xd))S = A+
n (z) eiβn (xd−z) +A−n (z) e−iβn (xd−z),

the modal coefficients being easily obtained by solving a two by two linear system. When the data set is given on
the cross-section corresponding to xd = z, one is led to the following formulas for the coefficients

A+
n (z) =

1

2
((X(u)(·, z)|Yn)S + (Xn|Y (u)(·, z))S) , n ∈ N, (8)

A−n (z) =
1

2
((X(u)(·, z)|Yn)S − (Xn|Y (u)(·, z))S) , n ∈ N. (9)

Note that these coefficients depend linearly on the displacement field u, and we thus use the notation A±n (z;u),
n ∈ N, whenever this dependence ought to be precised in the forthcoming developments.

2.4 The diffraction-radiation problem

Let us finally define a problem set in the semi-infinite waveguide Ω introduced in subsection 2.1. Without loss of
generality, we may consider an incident field uinc in the form of a leftgoing propagative mode

uinc(x) = u−` (xS) e−iβ` xd ,

with ` a fixed natural number, and a source term f , accounting for a volumic density of body forces, in L2(Ω)d

with compact support in the region Ω0. We look for the displacement field u in H1
loc(Ω)d which satisfies, in an

appropriate sense, the following system

−ρω2u− div(σ(u)) = f in Ω,

σ(u)n = 0 on ∂Ω,

usca = u− uinc is a superposition of rightgoing modes in Ω+,

(10)

which can be viewed as a diffraction (when the source term f vanishes) and/or radiation (when there is no incident
field) problem. The last condition in (10) expresses that the solution is outgoing. It also means that the modal
coefficients A−n , n ∈ N, vanish in the expansion (7) of the field usca, so that

usca(xS , xd) =
∑
n∈N

A+
n (0;usca)u+

n (xS) eiβn xd , xS ∈ S, xd ∈ [0,+∞).

Note that problem (10) is of Fredholm type and may be ill-posed. Indeed, there exist values of the pulsation ω,
forming at most a countable set, for which uniqueness of the solution is lacking. In this very case, observe that, by
linearity, there exists a nontrivial field w satisfying

−ρω2w − div(σ(w)) = 0 in Ω,

σ(w)n = 0 on ∂Ω,

which is outgoing, hence admitting a representation of the form

w(xS , xd) =
∑
n∈N

A+
n (0;w)u+

n (xS) eiβn xd , xS ∈ S, xd ∈ [0,+∞).
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As non-propagative modes do not carry energy (see for instance [16, section 4]), the energy conservation relation
then yields

N∑
n=1

∣∣A+
n (0;w)

∣∣2 = 0,

where N denotes the number of propagative modes, hence A+
n (0;w) = 0, ∀n ∈ {1, . . . ,N}. In other words, any

solution of the homogeneous problem can be decomposed on the evanescent modes for xd > 0. Such a field being
exponentially decaying at infinity, this solution is called a trapped mode (see [19] for instance). By making the
following postulate, problem (10) is well-posed.

Assumption 2. The configuration of problem (10) is such that there are no trapped modes.

When devising a numerical method to approximate the solution to problem (10), the main difficulty is to derive
a formulation of the problem which is both set in a bounded domain and able to accurately handle the propagative
nature of the scattered field at infinity. For classical scattering problems, one of the simplest ways to accomplish
this is to employ perfectly matched layers, as explained in the next section. However, this technique is sometimes
discarded in elastic waveguides, because it fails when backward propagating modes are present (see [8] for instance).
Alternative solutions, which use the modal representation, have been developed [20, 14, 21], but they may require
specific implementation efforts. In section 4, we propose a strategy which combines the simplicity of the PML
methods with the accuracy of the modal ones.

3 Perfectly matched layers

We now describe and discuss the application of the PML technique to the problem introduced in the preceding
section. References pertaining to PML for time-harmonic elastic wave propagation problems are, for instance,
[22, 23, 8, 24]. Here, only the most straighforward kind of PML, that is, with constant coefficients, is considered,
but the whole reasoning still applies if these coefficients are complex-valued functions of the space variables satisfying
the conditions stated below. One might note in passing that optimizing the choice of the absorbing function for a
bounded layer, as done in [25] for instance, cannot cure the problem caused by the presence of backward modes,
as can be seen from a straightforward extension of the analysis in subsection 3.2 (see remark 1).

3.1 General presentation

The PML method aims at constructing an artificial medium to be placed adjacent to the region of interest and
designed in such a way that the waves entering it are not reflected at its interface with the “physical” medium and
decay exponentially into it. To achieve such features, a complex (in the sense of imaginary numbers) coordinate
stretching is used, as was observed in [26, 27], to analytically continue the solution to the problem along a given
contour in the complex plane.

Let us thus introduce a complex number α, whose precise value will be discussed later, and consider the
analytically stretched scattered displacement field, denoted by uα, associated with the solution to problem (10) in
the unbounded domain Ω+,

uα(xS , xd) = usca

(
xS ,

xd
α

)
=
∑
n∈N

A+
n (0;usca)u+

n (xS) eiβn
xd
α , xS ∈ S, xd ∈ [0,+∞).

One immediately remarks that the analytic continuation is expressed as a coordinate transformation in the (infinite)
layer Ω+, which may thus be seen as made of some homogeneous artificial anisotropic medium. As a consequence,
the equations defining problem (10) are replaced by the following system,

−ρω2u− div(σ(u)) = f in Ω0,

−ρω2uα − divα(σα(uα)) = 0 in Ω+,

σ(u)n = 0 on ∂Ω0 ∩ ∂Ω,

σα(uα)n = 0 on ∂Ω+ ∩ ∂Ω,

(11)

supplemented by the transmission conditions on the interface Σ+ = ∂Ω0 ∩ ∂Ω+

u− uinc = uα on Σ+,

σ(u− uinc)ed = σα(uα)ed on Σ+,
(12)
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whose unknowns are the total displacement field u in the bounded domain Ω0, and the field uα in Ω+. The
equations in the layer have been modified to account for the coordinate transformation by making the substitution

∂

∂xd
→ α

∂

∂xd

in the expressions of the differential operators, which are therefore indexed by α. For instance, one has

σα(v) = λ divα(v) I + µ
(
∇αv + (∇αv)

T
)
,

with

divα(v) = divS(vS) + α
∂vd
∂xd

and ∇αv =

∇SvS α
∂vS
∂xd

∇Svd α
∂vd
∂xd

 .

The scattered field being analytically continued in Ω+, the solution to the above system of equations remains,
when compared to the solution to (10), unchanged in the domain Ω0, and no reflection occurs at the interface
between Ω0 and Ω+: the layer is said to be perfectly matched.

Next, for the layer to be truncated at finite distance, the complex medium also has to act as an absorbing
material, so that the quantity uα(x) decays exponentially in the layer as xd increases. In other words, any
stretched rightgoing mode of the form

un(xS) ei βnα xd , n ∈ N,

has to decay exponentially in the domain Ω+ as xd increases ; obviously, this holds if

Im

(
βn
α

)
> 0, ∀n ∈ N. (13)

Let us examine which values of the coefficient α should be used in practice to achieve the above inequality. On
the one hand, a propagative mode being such that its associated wavenumber is real, its decay in the layer depends
crucially on the sign of its wavenumber. In the most common case, a rightgoing propagative mode corresponds to
a wavenumber βn which is positive (which means that the mode has a positive phase velocity ω

βn
). Hence, choosing

the complex coefficient α with a negative imaginary part ensures that the stretched mode is evanescent in the layer.
We may therefore set from now on α = |α| e−iθ, with 0 < θ < π

2 . This choice is consistent with the one usually
made in the literature, stemming from time-dependent applications, for which the coefficient α is a function of the
form

α =
−iω

−iω + σ
,

where σ is an increasing positive, possibly constant, function of the variable xd. Unfortunately, a peculiar feature
of elastic waveguides is the existence, in some frequency bands depending on the material, of some backward
propagating modes, for which the group velocity and the phase velocity have opposite signs (see Figure 2 for an
example). As a consequence, any value of the coefficient α that makes the forward propagative modes exponentially
decreasing in the layer will also make the backward modes exponentially increasing. This very difficulty2 is the
motivation behind the present work.

On the other hand, the evanescent rightgoing modes have to remain exponentially decaying after being stretched.
Since their associated wavenumbers are such that 0 < arg(βn) < π, the condition (13) can be equivalently written

Im(βn) + tan(θ) Re(βn) > 0. (14)

Using the conjecture materialized in (6), we clearly see that the last condition is not satisfied by at most a finite
number, which we denote by N (θ), of rightgoing modes. These are the backward propagating modes (such that
Im(βn) = 0 and Re(βn) < 0) and, possibly, some evanescent modes. One easily checks that the larger the angle
θ, the smaller the integer N (θ), but, in any case, this number is greater than or equal to the number of backward
propagating modes.

2We insist on the fact that it is the coexistence of forward and backward propagating rightgoing modes which does pose a problem.
Indeed, in the case where the real wavenumbers all have the “wrong” sign (like in left-handed materials for instance), the PML technique
can be successfully applied by means of a slight modification (see [28, 29]).
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Figure 2: Dispersion curves, derived from the dispersion relation ω4

cs4
= 4β2αs

2
(

1− αp tan(αph+κ)
αs tan(αsh+κ)

)
, with αp =√

β2 − ω2

cp2
and αs =

√
β2 − ω2

cs2
and where cp =

√
λ+2µ
ρ is the longitudinal (pressure) wave velocity and cs =

√
µ
ρ

is the shear wave velocity, for symmetric (κ = 0, in black) and antisymmetric (κ = π
2 , in red) propagative Rayleigh–

Lamb modes in a plate of thickness 2h made of a material with Poisson’s ratio ν equal to 0.33 (aluminium for
instance), the dimensionless variable ω̃ being equal to ωh

cs
. Inspection of the second and fifth curves associated with

the symmetric modes reveals that backward propagating modes exist at low frequencies.

3.2 Truncation of the layer

When the numberN (θ) is zero (which means in particular that no backward propagating mode exists), the diffracted
field is exponentially decaying in the layer. It may therefore be considered negligible for a sufficiently large xd,
which allows to truncate the layer at some finite distance xd = L > 0. Various conditions can be imposed at the
artificial boundary ΣL+ = S × {L}, such as the vanishing of the displacement uα (that is, a homogeneous Dirichlet
boundary condition) or that of the axial stress σα(uα)ed (a homogeneous Neumann-type boundary condition).
Alternatively, one can also opt for a homogeneous boundary condition on a mixed quantity such as Xα(uα) or
Y α(uα), the advantage, both from a theoretical and numerical point of view, of this latter choice being that it does
not produce mode conversion by reflection on the boundary. In what follows, we set Y α(uα) = 0 on ΣL+, which
means that we impose the vanishing of both the transverse stretched displacement, uαS , and the axial component
of the stretched axial stress, tαd(uα).

The problem to be solved, set in the bounded domain ΩL = Ω0 ∪ ΩL+, where ΩL+ = S × (0, L) is the perfectly
matched layer, then consists of the following set of equations

−ρω2uL − div(σ(uL)) = f in Ω0,

−ρω2uLα − divα(σα(uLα)) = 0 in ΩL+,

σ(uL)n = 0 on ∂Ω ∩ ∂Ω0,

σα(uLα)n = 0 on ∂Ω ∩ ∂ΩL+,

uL − uinc = uLα on Σ+,

σ(uL − uinc)ed = σα(uLα)ed on Σ+,

(uLα)S = 0, tαd(u
L
α) = 0 on ΣL+,

(15)

the unknown in Ω0 being denoted by uL, the one in ΩL+ is by uLα.
The solution to this problem is one of the main ingredients of our method and we formulate the following

hypothesis, which is discussed in section 7.

Assumption 3. Problem (15) is well-posed.

Depending on the absence or the presence of backward propagating modes, the solution uL may or may not be
a valid approximation to the exact solution u to (10) in Ω0, the error being due to the truncation and the non-exact

8



420−2−4

−20

−10

10

20

◦◦ ◦◦ ◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

∗∗ ∗∗
∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

Figure 3: Positions in the complex plane of the first wavenumbers ±βn respectively associated with rightgoing (in
red) and leftgoing (in black) Rayleigh–Lamb modes (the symbols ◦ (resp. ∗) refer to symmetric (resp. antisym-
metric) modes) in an aluminium (ρ = 2700 kg m−1, E = 69 GPa, and ν = 0.33) plate of thickness 2 m at low
frequency (ω = 8833.7825 rad s−1). Two wavenumbers are associated to backward propagating symmetric modes.

boundary condition imposed at the back end of the layer. To measure it, we proceed as in subsection 2.3, starting
by expressing the field uLα in the layer as a superposition of stretched modes,

uLα(x) =
∑
n∈N

(
A+
n (0;uLα)u+

n (xS) ei βnα xd +A−n (0;uLα)u−n (xS) e−i βnα xd
)
, ∀x ∈ ΩL+,

the boundary condition at the end of the layer yielding the following relation between the rightgoing and leftgoing
stretched modes,

A+
n (0;uLα) ei βnα L +A−n (0;uLα) e−i βnα L = 0, ∀n ∈ N. (16)

Introducing the reflection coefficient Rn(α,L), n ∈ N, defined as

A−n (0;uLα) = Rn(α,L)A+
n (0;uLα),

we obtain from (16) the following equality

Rn(α,L) = −e2i βnα L, (17)

which constitutes the basis for the estimation of the error of the method.
We therefore observe that the error manifests itself in the existence of reflected modes in the approximate

solution3. The method will be deemed accurate if these reflections are small or, more properly, if the reflection
coefficients Rn(α,L), ∀n ∈ N, are small, the values of the parameters α and L being fixed. As discussed in the
previous subsection, this depends critically on the behavior, either attenuated or amplified, of the stretched modes
in the PML. Using the classification given in subsection 3.1, suppose that the N (θ) modes which are amplified
correspond to the indices n = 0, 1, . . . ,N (θ)−1. For these, the reflection coefficient Rn(α,L) tends to infinity with

L (or as |α| tends to zero), since the corresponding imaginary part Im
(
βn
α

)
is negative. Reflections on the nth

mode are then not negligible and can even overwhelm the outgoing modes in the approximate solution, rendering
the method completely useless in practice.

3Let us recall that, for the exact solution, one has A−
n (0;u) = 0, ∀n ∈ N.
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On the other hand, for n ≥ N (θ), the value of Rn(α,L) can be made arbitrarily small by taking L large enough
(and/or |α| small enough). Observe nevertheless that very small, but non-zero, values of βn will be detrimental to
the performance of the method, as they produce reflections which may be non negligible unless the layer is quite
thick (and/or |α| is quite small), thus inducing an increase of the computational cost in practice.

As we now see, from a practical point of view, the modes responsible for the error of the method are not only
the backward ones, but also the long ones (that is, those associated with an almost vanishing wavenumber βn).
A prescribed tolerance ε being given and the parameters α and L being fixed, we introduce the number Nε(α,L)
such that, for all n in N,

n ≥ Nε(α,L)⇐⇒ |Rn(α,L)| ≤ ε. (18)

By definition of the reflection coefficients, this is equivalent to

n ≥ Nε(α,L)⇐⇒ Im

(
βn
α

)
≥ |ln(ε)|

2L
,

which shows that Nε(α,L) ≥ N (θ). It is clear that the solution uL cannot be an accurate approximation, that is,
with an error of order of magnitude ε, of the exact solution u whenever Nε(α,L) is non-zero. We present in the
next section a strategy to correct this misbehavior of the PML technique in such cases.

Remark 1. Let us mention that the previous analysis can be easily extended to a PML with a varying (and non
vanishing) coefficient α, function of the variable xd. Following the computation in [30, section 4], we see that (17)
becomes

Rn(α,L) = −e2iβn
∫ L
0

ds
α(s) ,

so that (18) is then equivalent to

n ≥ Nε(α,L)⇐⇒ Im

(
βn

〈
1

α

〉)
≥ |ln(ε)|

2L
,

where
〈

1
α

〉
stands for the mean of 1

α over (0, L),〈
1

α

〉
=

1

L

∫ L

0

ds

α(s)
.

4 Strategy for treating backward and long waves

We suppose from now on that the number Nε(α,L), denoted briefly by Nε in the remainder of the paper, is not
equal to zero.

As explained in the previous section, the solution (uL,uLα) of problem (15) differs a priori largely from the
restriction to ΩL of the solution (u,uα) to problem (11), due to spurious reflections on the Nε “first” guided modes
of the waveguide caused by the truncation of the PML. In order to provide a cure, let us examine problem (15),
keeping problem (11) in perspective.

We first remark that part of the system of equations defining the problem with truncated layers is exactly
satisfied by the restriction of the solution (u,uα) to ΩL. These are the equations set in the domains Ω0 and ΩL+,
the conditions on the boundary of the waveguide, as well as the matching conditions on the interface between Ω0

and ΩL+. These relations, which correspond to the first six equations in (15), are formally summarized in what
follows by the equality

L(uL,uLα) = (f ,uinc),

where L is a linear operator and the fields f and uinc are the data of the problem. The only remaining equation in
(15) not satisfied by (u,uα) is the boundary condition imposed at the end of the layer. This is due to the spurious
reflections on the Nε first modes of the guide, characterized by

A−n (0;uLα) = Rn(α,L)A+
n (0;uLα), n = 0, . . . ,Nε−1,

the reflection coefficient Rn(α,L) being given by (17).
Building on these observations, our aim is to propose a procedure for constructing a new approximation of the

solution, in the form of a pair (ũL, ũLα), related to the previous one, which satisfies

L(ũL, ũLα) = (f ,uinc), (19)
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and also is quasi-outgoing, in the sense that

ũLα(x) =
∑
n∈N

(
A+
n (0; ũLα)u+

n (xS) ei βnα xd +A−n (0; ũLα)u−n (xS) e−i βnα xd
)
, ∀x ∈ ΩL+,

with
A−n (0; ũLα) = 0 if n = 0, . . . ,Nε − 1, (20)

and
A−n (0; ũLα) = Rn(α,L)A+

n (0; ũLα) if n ≥ Nε. (21)

In other words, we want the approximate solution to be completely free of reflections on the first Nε guided modes,
the ones on the other modes being negligible due to a sufficiently effective damping in the PML. In the physical
domain Ω0, the field ũL will thus represent an accurate approximation of the exact solution u, with an error
magnitude of the order of the prescribed tolerance.

To obtain such a feature, let us consider the auxiliary fields (w(k),w
(k)
α ), k = 0, . . . ,Nε−1, respectively defined

as the solutions to the following series of problems

−ρω2w(k) − div(σ(w(k))) = 0 in Ω0,

−ρω2w
(k)
α − divα(σα(w

(k)
α )) = 0 in ΩL+,

σ(w(k))n = 0 on ∂Ω ∩ ∂Ω0,

σα(w
(k)
α )n = 0 on ∂Ω ∩ ∂ΩL+,

w(k) = w
(k)
α − uk,α, σα(w(k))n = σα(w

(k)
α − uk,α)n on Σ+,

(w
(k)
α )S = 0, tαd(w

(k)
α ) = 0 on ΣL+,

where
uk,α(x) = u+

k (xS) ei
βk
α xd , ∀x ∈ ΩL+, k = 0, . . . ,Nε − 1. (22)

It is easy to see that these auxiliary fields are linearly independent and such that

L(w(k),w(k)
α − uk,α) = (0,0),

and
w(k)
α (x) =

∑
n∈N

(
A+
n (0;w(k)

α )u+
n (xS) ei βnα xd +A−n (0;w(k)

α )u−n (xS) e−i βnα xd
)
, ∀x ∈ ΩL+,

with
A−n (0;w(k)

α ) = Rn(α,L)A+
n (0;w(k)

α ) if n ≥ Nε.

The next result shows that (ũL, ũLα) can be expressed as a linear combination involving the solution (uL,uLα) and

the set of auxiliary fields (w(k),w
(k)
α ), k = 0, . . . ,Nε − 1.

Lemma 1. Suppose that the problem defined by (19), (20) and (21) is well-posed. Then, there exist Nε coefficients

µ(k), k = 0, . . . ,Nε − 1, such that the field (ũL, ũLα) given by

ũL = uL +

Nε−1∑
k=0

µ(k)w(k), ũLα = uLα +

Nε−1∑
k=0

µ(k)
(
w(k)
α − uk,α

)
, (23)

satisfies (19), (20) and (21), the coefficients µ(k) being the unique solution of the linear system

A−n (0;uLα) +

Nε−1∑
k=0

µ(k)A−n (0;w(k)
α ) = 0, n = 0, . . . ,Nε − 1. (24)

Proof. By linearity, it is clear that the equations (19) and (21) are satisfied for any value of the coefficients µ(k).
Since A−n (0;uk,α) = 0, k = 0, . . . ,Nε − 1, it is a simple matter, using (23), to see that the equations (20) are
equivalent to the linear system (24).

It remains to prove that this linear system is uniquely solvable. If it were not, there would exist a nontrivial
solution γ(k), k = 0, . . . ,Nε − 1, of the homogeneous system

Nε−1∑
k=0

γ(k)A−n (0;w(k)
α ) = 0, n = 0, . . . ,Nε − 1.

11



Consider then the field (w,wα) given by

w =

Nε−1∑
k=0

γ(k)w(k), wα =

Nε−1∑
k=0

γ(k)
(
w(k)
α − uk,α

)
.

It is easy to check, again by linearity, that (w,wα) is a solution to problem (19)-(20)-(21) with f = 0 and uinc = 0.
This last problem being well-posed, we must have (w,wα) = (0,0). It then follows from the linear independance
of the auxiliary fields that γ(k) = 0, k = 0, . . . ,Nε − 1, which contradicts the supposition.

Remark 2. Let us emphasize that the possible exponential growth of the solution, due to the presence of backward
propagating modes, is taken into account by the fields uk,α, through their dependence with respect to the axial
variable which is analytically known (see (22)). All the other terms involved remain bounded in the computational
domain, including the PML. As a consequence, in our approach, the exponential behavior of the solution does not
raise any numerical issue.

Note that the assumption of well-posedness in lemma 1 is not an unrealistic one, as we conjecture, using
perturbation theory and the fact that the original problem (10) is well-posed, that it is satisfied for any sufficiently
small value of the tolerance ε.

Also, the auxiliary fields used to “correct” (ũL, ũLα) may be defined differently. Observe that they satisfy a
series of problems which are very similar to problem (15). The rationale behind these specific choices will be made
clear in the next section.

5 Practical implementation

Let us give some details regarding the proper implementation of the proposed method of solution using a finite
element approach. Note that other discretization techniques, like finite differences for instance, could certainly be
worked out, albeit differently since much of the present exposition relies on a weak formulation of the problem.

First, it can be shown that the solution to (15) satisfies the following weak formulation of the problem: find
(uL,uLα) in H1(Ω0)d ×H1(ΩL+)d, such that uL − uinc = uLα on Σ+ and, for all v in H1(ΩL)d,∫

Ω0

(
−ρω2 uL · v + σ(uL) : ∇v

)
dx+

∫
ΩL+

1

α

(
−ρω2 uLα · v + σα(uLα) : ∇αv

)
dx

=

∫
Ω0

f · v dx+

∫
Σ+

σ(uinc)n · v dσ. (25)

Likewise, the auxiliary fields (w(k),w
(k)
α ), k = 0, . . . ,Nε − 1, satisfy: find (wα,w

(k)
α ) in H1(Ω0)d ×H1(ΩL+)d, such

that w(k) = w
(k)
α − uk,α on Σ+ and, for all v in H1(ΩL)d,∫

Ω0

(
−ρω2w(k) · v + σ(w(k)) : ∇v

)
dx+

∫
ΩL+

1

α

(
−ρω2w(k)

α · v + σα(w(k)
α ) : ∇αv

)
dx

= −
∫

Σ+

σα(uk,α)n · v dσ. (26)

The data for the last series of problems are guided modes, which are in general not known explicitly. In
the case of Rayleigh–Lamb modes, a closed-form expression of the displacement field can be used, provided that
the associated wavenumbers, which are the zeros of a transcendental equation (see Figure 2), are known. The
determination of these can therefore be achieved with an excellent numerical accuracy(that is, within machine
precision) by solving a discretized linear eigenproblem, followed by a refining process using the Newton–Raphson
rootfinding method (see [31]). In the general three-dimensional case, one can use the SAFE method mentioned
in subsection 2.2 to obtain numerical approximations of the wavenumbers and displacement fields characterizing
the modes of the guide. Note that only the knowledge of the first Nε modes (those inducing a failure of the PML
method with respect to the prescribed tolerance ε) is needed.

Once these quantities are available, problems (25) and (26) can be discretized, using a conforming finite element
space defined over a mesh of the domain ΩL, and subsequently solved, leading to finite element approximations of
the quantities uL and w(k). It should be remarked that the computation of these various numerical approximations
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is not as costly as one would expect at first. Indeed, the structure of problems (25) and (26) being identical, the
algebraic systems associated with their discrete counterparts share the same (sparse) matrix and differ only by their
respective right-hand sides. As a consequence, once the former has been factorized, obtaining the approximations
merely amounts to a succession of assemblies of the latter, followed by forward and backward substitutions.

The effective construction of the approximation ũL according to (23) next entails the determination of the
coefficients µ(k), k = 0, . . . ,Nε − 1, knowing that these are solution to the linear system (24). To compute the
entries of the matrix (resp. right-hand side vector) of this system, one needs to exploit the biorthogonality relations,
which requires to have access to the approximations of the quantities X(wL

α) and Y (wL
α) (resp. X(uLα) and Y (uLα))

on a given cross-section of the bounded domain. Note that it is an easy task to retrieve at no cost the values of
an approximation to uLα and wL

α on a cross-section from their computed finite element approximations as long as
this section is part the mesh boundary and Lagrange finite elements (whose degrees of freedom are attached to
nodes of the simplices constituting the mesh) are used. For this reason, it is particularly convenient to choose the
cross-section as the interface Σ+ between the domains Ω0 and ΩL+. On the contrary, obtaining approximations to
ts(w

L
α) and td(w

L
α) (resp. ts(u

L
α) and td(u

L
α)) on the same interface, that is recovering values of σ(wL

α)n (resp.
σ(uLα)n) since n = ed on a cross-section, is not so straightforward and implies some additional post-processing
(see [32]). Indeed, it follows from the Green formula that the restriction uLα satisfies∫

ΩL+

1

α

(
−ρω2 uLα · v + λ divα(uLα) divα(v) + 2µ εα(uLα) : εα(v)− f · v

)
dx

=

∫
∂ΩL+

1

α

(
σα(uLα)n

)
· v dσ, ∀v ∈ H1(ΩL+)d.

The discrete analogue of this equality allows one, by selecting the test functions to be the basis functions which have
degrees of freedom with support located on Σ+, to obtain the desired values, at the expense of solving a (small)
linear system. It then remains to assemble and solve the system (24) of size Nε to obtain the desired numerical
approximation.

In any case, in order to evaluate the various products appearing in the expression of the modal coefficients, the
quantities Xk and Yk, k = 0, . . . ,Nε − 1, associated with the guided modes are discretized in the finite element
basis and the same quadrature formulas as for the rest of the finite element part of the computations are used.

We may therefore summarize the implementation of the method into the following successive steps.

(1) Computation of a numerical approximation of the solution to problem (25).

(2) Determination of the Nε modes responsible for the PML failure.

(3) Computation of numerical approximations of the auxiliary fields satisfying the family of problems (26).

(4) Post-processing of the computed fields in order to exploit the biorthogonality relations and obtain the entries
of the linear system (24).

(5) Calculation of the coefficients µ(k), k = 0, . . . ,Nε − 1, by solving (24) and construction of the corrected
approximate solution according to (23).

We emphasize that all of the above involve computations which are quite standard for any familiar user of
finite element codes or libraries, allowing the method to be implemented with little programming effort. Besides,
one may also remark that step 2 is unrelated to step 1, and that the problems solved in step 3, while sharing
some common traits with (25) as explained above, are independent of the data f and uinc for the problem solved
in the first step. Therefore, if the geometry of the waveguide and the pulsation ω, as well as the discretization,
are fixed, one can precompute, during an “offline” phase (as in model reduction techniques such as reduced basis
approximation), the auxiliary fields once and for all, a parallel implementation being straightforward. The matrix
of the linear system (24) for the coefficients of the correction can even be assembled and factorized, leaving to the
“online” phase the assembly of the right-hand side of the linear system for every given set of data. The method is
thus particularly efficient when used in such a context, since a major part of its supplementary cost can be factored
out of each time it is applied.

We should also add that, compared to the approach of Skelton et al. in [8], which involves at least two different
PML coefficients (one for the forward propagating modes and one for the backward (or long) ones), our procedure
is only a corrective post-processing of the solution obtained using the PML technique in a classical way.
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We conclude this section by discussing the extension of the method to the case of an infinite waveguide. In
that case, let Ω denote the waveguide, the bounded domain Ω0, presenting variations of the cross section and/or
enclosing the defects and sources, being defined by Ω0 = Ω ∩ {(xS , xd) | − l < xd < l}, with l > 0, and the
two perfectly matched layers being ΩL+ = S × [l, l + L] and ΩL− = S × [−l − L,−l], with respective interfaces Σ+

and Σ− and back ends ΣL+ and ΣL−. As two layers are present in this problem, one has to double the number of

auxiliary fields used to correct the PML solution accordingly. We hence introduce two families (w
(k)
+ ,w

(k)
+,α) and

(w
(k)
− ,w

(k)
−,α), k = 0, . . . ,Nε − 1, which are respectively solutions to

−ρω2w
(k)
+ − div(σ(w

(k)
+ )) = 0 in Ω0,

−ρω2w
(k)
+,α − divα(σα(w

(k)
+,α)) = 0 in ΩL+ ∪ ΩL−,

σ(w
(k)
+ )n = 0 on ∂Ω ∩ ∂Ω0,

σα(w
(k)
+,α)n = 0 on ∂Ω ∩ ∂(ΩL+ ∪ ΩL−),

w
(k)
+ = w

(k)
+,α − uk,α, σα(w

(k)
+ )n = σα(w

(k)
+,α − u+

k,α)n on Σ+,

w
(k)
+ = w

(k)
+,α, σα(w

(k)
+ )n = σα(w

(k)
+,α)n on Σ−,

(w
(k)
+,α)S = 0, tαd(w

(k)
+,α) = 0 on ΣL+ ∪ ΣL−,

and
−ρω2w

(k)
− − div(σ(w

(k)
− )) = 0 in Ω0,

−ρω2w
(k)
−,α − divα(σα(w

(k)
−,α)) = 0 in ΩL+ ∪ ΩL−,

σ(w
(k)
− )n = 0 on ∂Ω ∩ ∂Ω0,

σα(w
(k)
−,α)n = 0 on ∂Ω ∩ ∂(ΩL+ ∪ ΩL−),

w
(k)
− = w

(k)
−,α, σα(w

(k)
− )n = σα(w

(k)
−,α)n on Σ+,

w
(k)
− = w

(k)
−,α − uk,α, σα(w

(k)
− )n = σα(w

(k)
−,α − u−k,α)n on Σ−,

(w
(k)
−,α)S = 0, tαd(w

(k)
−,α) = 0 on ΣL+ ∪ ΣL−,

the approximate solution ũL in Ω0 now being defined by

ũL = uL +

Nε−1∑
k=0

(
µ

(k)
+ w

(k)
+ + µ

(k)
− w

(k)
−

)
,

where the sets of coefficients µ
(k)
+ and µ

(k)
− , k = 0, . . . ,Nε − 1, verify the relations

A−n (l;uLα) +

Nε−1∑
k=0

(
µ

(k)
+ A−n (l;w

(k)
+,α) + µ

(k)
− A−n (l;w

(k)
−,α)

)
= 0, n = 0, . . . ,Nε − 1,

A+
n (−l;uLα) +

Nε−1∑
k=0

(
µ

(k)
+ A+

n (−l;w(k)
+,α) + µ

(k)
− A+

n (−l;w(k)
−,α)

)
= 0, n = 0, . . . ,Nε − 1,

and are thus obtained by solving a block-diagonal linear system of size 2Nε.

6 Numerical results

We present a few numerical results to validate the new method and assert its pertinence for the computation of
solutions in a two-dimensional (infinite) plate by comparing it to a reference solution, which either has a closed form
or is obtained numerically using a finite element method and the extension of the Dirichlet-to-Neumann approach
proposed in [14]. In these numerical experiments, the values ρ = 2700 kg m−1 for the mass density, E = 69 GPa
for the Young modulus and ν = 0.33 for the Poisson ration are used, corresponding to a plate made of aluminium.
The plate itself has thickness 2h, with h = 1 m. In each of the simulations, we used the homogeneous boundary
condition advocated in subsection 3.2 at the end of the layers. Other choices of conditions, like a homogeneous
Dirichlet condition (i.e., uLα = 0 on ΣL+ ∪ ΣL−) or a homogeneous Neumann condition (i.e., σα(uLα)n = 0 on
ΣL+ ∪ ΣL−), have been shown to produce quantitatively and qualitatively similar results.
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Figure 4: Real parts of the horizontal (on the left) and vertical (on the right) components of the symmetric
propagative Rayleigh–Lamb modes for ω = 8833.7825 rad s−1 in a plate of thickness 2 m made of aluminium.
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Figure 5: Real parts of the horizontal (on the left) and vertical (on the right) components of the antisymmetric
propagative Rayleigh–Lamb modes for ω = 8833.7825 rad s−1 in a plate of thickness 2 m made of aluminium.

We first consider the case of an incoming wave composed of a combination of propagative guided modes, one
of them being backward. For ω = 8833.7825 rad s−1 (which corresponds to ω̃ = 2.85, see Figure 2), there exist
five propagative guided modes, associated with the first four dispersion curves in Figure 2, three symmetric ones
(see Figure 4) with respective wavenumbers (in m−1) β = −0.66995 (corresponding to a backward propagating
mode, which we denote by S−1 in what follows), β = 0.93833 (mode S0) and β = 2.61386 (mode S1), and two
antisymmetric ones (see Figure 5) with respective wavenumbers (in m−1) β = 1.43166 (mode A0) and β = 3.19204
(mode A1), all of which are indexed in this order. The incident wave is chosen as the sum of the symmetric
propagative modes. The length of the domain Ω0 is 4 m (that is l = 2 m), while that of the two layers bounding
the computational domain is L = 0.5 m. The argument of the complex parameter α, held constant throughout
the computations, is equal to −π4 . Finally, a nonstructured mesh of the domain ΩL, made of triangles of size
0.05 m, and Lagrange finite elements of second order are used for the finite element computation, giving about 15
discretization points per wavelength in the domain Ω0.

The Figure 6 shows, in a semi-logarithmic plot, the relative error on the computed solution measured in the
discrete H1(Ω0) norm for the classical PML method (curve for Nε = 0) and the novel approach (other curves) as
a function of the modulus of α. As expected, we observe that, due to the presence of a backward mode, the error
for the PML method is more or less constant instead of exponentially decrease as |α| tends to zero. Taking into
account the mode S−1 via the new approach (curve Nε = 1) suffices to retrieve the usual behavior of the method
error: the error diminishes with |α| up to a minimal value and then increases dramatically as the finite element
discretization is unable to properly resolve the highly decreasing and oscillating solution in the PML. Choosing an
adequate value for |α| then allows to compute an accurate approximate solution, with a relative error of less than
a percent. If other propagative modes are added to the post-processing (see the subsequent curves for Nε = 2 to
5, the modes being added as follows: first S−1, then S0, S1, A0 and finally A1), the minimal value can be further
decreased, until all the propagative modes in the solution have been exhausted (indeed, the last three error curves,
that is for Nε = 3 to 5, are indiscernible, which means that the addition of the odd modes does not improve the
approximation), at which point the error of the method is virtually independent of the value of |α| and stagnates
at a level which we interpret4 as the discretization error for the tested case.

When a long mode is present, the situation is different, since the PML method produces a solution that converges
to the exact one as |α| tends to zero. Still, this convergence is very slow and our approach is thus relevant. For
ω = 9738.2379 rad s−1 (which corresponds to ω̃ = 3.1418), there are five propagative guided modes, associated with
the first five dispersion curves in Figure 2, three of which are symmetric, with respective wavenumbers (in m−1)
β = 0.00344 (mode S0), β = 1.43706 (mode S1) and β = 3.04091 (mode S2), and two are antisymmetric, with
respective wavenumbers (in m−1) β = 1.68301 (mode A0) and β = 3.48928 (mode A1). As before, the sum of the

4Using some finer (resp. coarser) meshes, we observed lower (resp. higher) levels of error which are consistent with the convergence
rate of the finite elements used for the experiments.
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Figure 6: Relative error in H1(Ω0)2 norm as a function of |α| when a backward propagating mode is present. The
case Nε = 0 corresponds to the classical PML method.

propagative symmetric modes is used as the incident wave and the same finite element discretization is employed,
meaning that about 13 discretization points per wavelength are used in the domain Ω0 for this simulation.

We see on the Figure 7 that the discretization chosen here does not allow for a clear observation of the very
slow rate of convergence of the PML method in this case. Nevertheless, an improvement appears as soon as the
long mode is taken into account with the new approach. As before, we also see that the method performs better
when more modes are incorporated into the post-processing.

A second and more qualitative numerical experiment deals with the case of a perturbed waveguide, for which
a closed form solution is, a priori, not available. The numerical solutions produced the PML method and the
novel approach are thus compared with an approximation obtained by using a similar finite element discretization
and the transparent boundary conditions developed in [14]. The configuration is identical to that of the first of
the previous simulations, except for the plate, which is now locally perturbed by a single rectangular slot. The
incident wave is the sum of the five (symmetric and antisymmetric) propagative modes and the PML parameter α
has value 0.065(1− i). The real parts of both components of the reference solution for this scattering problem are
presented on Figure 8, while the real parts of the components of the PML and post-processed numerical solutions
(with Nε = 5) are respectively given in Figures 9 and 10. There is a perfect agreement between the numerical
solutions computed respectively by the former and the latter methods, with a relative difference in H1(Ω0)2 norm
equal to 3.45× 10−3. On the contrary, we notice a large discrepancy, which is confirmed by a relative difference in
H1(Ω0)2 norm equal to 3.4824, between the approximation obtained with the PML method alone and these two
solutions.

7 Some open mathematical questions

The method we proposed in this paper depends on several theoretical statements that are now discussed.
First, we extensively used modal decompositions of the elastic field in straight parts of the waveguide, and

the existence of such expansions is not obvious. Indeed, contrary to the simple scalar case (Helmholtz equation
with Dirichlet or Neumann boundary conditions), the eigenproblem for the modes is not selfadjoint, and, as a
consequence, there is no result ensuring that the family of modes forms a basis in some space of vectorial functions
of the variable xS . However, we think this shortcoming could be overcome by using the theory presented in
[33, chapter 5, paragraph 7] for the static case, which instead rely on the use of the Fourier transform in the
axial direction of the guide together with Cauchy’s residue theorem for analytic functions. This approach is quite
intricate and exposing it is clearly beyond the scope of this article.

17



0 0.2 0.4 0.6 0.8 1
10−4

10−3

10−2

10−1

100

101

102 Nε = 0

Nε = 1

Nε = 2

Nε = 3

Nε = 4

Nε = 5
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Nε = 0 corresponds to the classical PML method.
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Figure 8: Real parts of the horizontal (on the left) and vertical (on the right) components of the reference solution
computed using transparent boundary conditions (see [14]).

Second, let us discuss assumption 3, which supposes the well-posedness of problem (15). When the PML
coefficient α is a real number, we can show that this problem is of Fredholm type using Korn’s second inequality.
By a continuity argument, one may infer this is still the case with α taking complex values near the real axis, that
is when arg(α) is small. However, such a restriction does not seem to be necessary in practice and the numerical
method typically works for the choice arg(α) = −π4 . We tried to find an explicit bound on the argument of α
by deriving a Korn-like inequality. Unfortunately, while such an inequality can be easily established for the PML
problem with a Dirichlet boundary condition, we did not succeed in proving a similar result in the present setting
using classical techniques (see [34] for instance). The difficulty here comes from the combination of the free-surface
boundary condition and the complex coefficients, depending on the parameter α, of the underlying differential
operator.

Once the Fredholm nature of problem (15) has been established, proving its well-posedness still requires a
uniqueness result. Using compactness arguments, one can prove that the set of values of ω for which uniqueness of
the solution to (15) does not hold is discrete. One must then distinguish two cases, depending on the existence or
not of backward propagating modes.

• Without backward propagating modes and using the mathematical tools in [33] mentioned above, we should
be able to prove that problem (15) is well-posed for L large enough, its solution converging as L tends to
infinity to the solution of the initial problem (10), which is itself well-posed in virtue of assumption 2 (saying
that there is no trapped mode at the considered frequency).
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Figure 9: Real parts of the horizontal (on the left) and vertical (on the right) components of the solution computed
using perfectly matched layers.
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Figure 10: Real parts of the horizontal (on the left) and vertical (on the right) components of the reference solution
computed using perfectly matched layers and the novel approach with Nε = 5.

• In the presence of backward propagating modes, the situation is more complex. Indeed, in this case, the
solution to problem (15) (if it exists) will converge as L tends to infinity to the solution of a problem in
which the difference u− uinc is no longer a superposition of rightgoing modes, but of modes with a positive
phase velocity. To prove the well-posedness of problem (15) for L large enough, we need this nonphysical
limit problem to be well-posed. Now, it can be shown this problem is ill-posed (in the sense that uniqueness
does not hold) not only when assumption 2 does not hold (that is when trapped modes exist), but also
when an incident backward propagating mode is totally converted into other modes. This can occur for some
particular frequencies and it would be interesting to test the method near such values.
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[14] V. Baronian, A.-S. Bonnet-Ben Dhia, E. Lunéville, Transparent boundary conditions for the harmonic
diffraction problem in an elastic waveguide, J. Comput. Appl. Math. 234 (6) (2010) 1945–1952. doi:

10.1016/j.cam.2009.08.045.

[15] V. Pagneux, A. Maurel, Scattering matrix properties with evanescent modes for waveguides in fluids and
solids, J. Acoust. Soc. Am. 116 (4) (2004) 1913–1920. doi:10.1121/1.1786293.

[16] V. Pagneux, A. Maurel, Lamb wave propagation in elastic waveguides with variable thickness, Proc. R. Soc.
Lond. A 462 (2068) (2006) 1315–1339. doi:10.1098/rspa.2005.1612.

[17] W. B. Fraser, Orthogonality relation for the Rayleigh-Lamb modes of vibration of a plate, J. Acoust. Soc.
Amer. 59 (1) (1976) 215–216. doi:10.1121/1.380851.

[18] L. G. Merkulov, S. I. Rokhlin, O. P. Zobnin, Calculation of the spectrum of wave numbers for Lamb waves in
a plate, Soviet J. Nondestructive Testing 6 (1970) 369–373.

[19] V. Pagneux, Complex resonance and localized vibrations at the edge of a semi-infinite elastic cylinder, Math.
Mech. Solids 17 (1) (2012) 17–26. doi:10.1177/1081286511412439.

[20] W. J. Zhou, M. N. Ichchou, J. M. Mencik, Analysis of wave propagation in cylindrical pipes with local
inhomogeneities, J. Sound Vibration 319 (1-2) (2009) 335–354. doi:10.1016/j.jsv.2008.05.039.

[21] F. Benmeddour, F. Treyssède, L. Laguerre, Numerical modeling of guided wave interaction with non-
axisymmetric cracks in elastic cylinders, Int. J. Solids Structures 48 (5) (2011) 764–774. doi:10.1016/j.

ijsolstr.2010.11.013.

[22] U. Basu, A. K. Chopra, Perfectly matched layers for time-harmonic elastodynamics of unbounded domains:
theory and finite-element implementation, Comput. Methods Appl. Mech. Engrg. 192 (11-12) (2003) 1337–
1375. doi:10.1016/S0045-7825(02)00642-4.

[23] I. Harari, U. Albocher, Studies of FE/PML for exterior problems of time-harmonic elastic waves, Comput.
Methods Appl. Mech. Engrg 195 (29-32) (2006) 3854–3879. doi:10.1016/j.cma.2005.01.024.

[24] J. H. Bramble, J. E. Pasciak, D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic
wave scattering problem, Math. Comp. 79 (272) (2010) 2079–2101. doi:10.1090/S0025-5718-10-02355-0.
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