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Abstract

The wave finite element method (WFE) is investigated for tbmgutation of the
acoustic radiation of stiffened or non-stiffened rectdagplates under arbitrary bound-
ary conditions. The method aims at computing the forcedmesp of periodic waveg-
uides (e.g. rectangular plates that are homogeneous ocdhtin a periodic distri-
bution of stiffeners) using numerical wave modes. A WFEebastrategy is proposed
which uses the method of elementary radiators for exprgdbim radiation efficien-
cies of stiffened or non-stiffened baffled rectangularggammersed in a light acous-
tic fluid. In addition, a model reduction strategy consigtin using reduced wave
bases for computing these radiation efficiencies with si@RU times is proposed.
Numerical experiments highlight the relevance of the stias.

Keywords: wave finite elements, model reduction, mid-frequenciesustic radia-
tion.

1 Introduction

The wave finite element (WFE) method is investigated for tbmpgutation of the
acoustic radiation of stiffened or non-stiffened rectdagplates under arbitrary bound-
ary conditions. The method aims at numerically providirgwaves traveling in pos-
itive and negative directions along periodic waveguides,elastic structures that are
assumed to be modeled by means of identical substructureected along a main
axis (namely, the direction of propagation). In fact, stiéd or non-stiffened rect-
angular plates that are meshed periodically along thegtkebelong to that class of
waveguides. The WFE method uses the finite element (FE) noddetypical sub-
structure to compute numerical wave modes. These are toderstnod as particular
shapes of the displacement and force fields over the systess-section, “travel-
ing” with different velocities along the waveguide. The WHRtethod enables the



propagating, evanescent and complex wave modes to be edptuer the low and
mid-frequency range. Using these wave modes as representstses constitutes
an efficient means for computing the forced response of wadeg under arbitrary
boundary conditions [1].

In this work, a WFE-based strategy that uses the aforentediovave modes for
expressing the radiation efficiencies of stiffened or nbifesed rectangular plates is
proposed. Such plates are assumed to be surrounded by atein§id baffle while
radiating in a light acoustic fluid. The radiation efficieegiare computed using the
method of elementary radiators [2], which requires us terdisze the plates into
small surfaces while expressing the normal velocities es¢helementary surfaces in
terms of wave modes. In comparison to the classic FE metthedfeiature of the
proposed WFE formulation is that it exhibits matrices whathnot depend on the
waveguide boundary conditions (i.e. over the limiting emttere reflection of waves
occur), meaning that it can be reused with less computdtiona to address changes
of those boundary conditions.

In addition, a model order reduction (MOR) strategy comsisin using reduced
wave bases for computing these radiation efficiencies ipqgeed. The motivation
behind this work is to reduce significantly the computatidimes compared to the
case when the full wave bases are used in the WFE matrix fatrook (it is worth
noting that, even in the WFE framework, the CPU times reguite compute the
radiation efficiency of a plate at many discrete frequencees be substantial). For
any waveguide, a norm-wise error analysis is proposed fioiazitly reducing the size
of the wave basis involved in the description of the dynanaicdvior. The proposed
MOR strategy has been fully investigated in a previous w8tk The key idea behind
the strategy is to invoke a finite number of forward / backwaassings of waves along
the waveguide for expressing the wave amplitudes. Thislyigie error induced for
expressing the displacements and forces of the waveguigebounded by means of
matrix norms that are not necessarily decreasing functbtise number of retained
wave modes. The resulting error bound is found to be segedithat is, it increases)
when the wave basis tend to be oversized. It is shown that ihieneim of this error
bound provides the exact number of wave modes to be retasméioef computation of
the forced response of the waveguide.

The rest of the paper is organized as follows. In Section @ WE framework
is recalled. The WFE-based strategy for computing the tiadiafficiencies of stiff-
ened or non-stiffened baffled rectangular plates radidating light acoustic fluid is
proposed in Section 3. The WFE-based MOR strategy whickyittle radiation effi-
ciencies of these plates to be described in terms of reduaed bases of small sizes is
proposed in Section 4. Numerical experiments are brougieation 5; the accuracy
and relevance of the proposed strategies are highlightegbaed to the classic FE
method as well as analytical theories.



2 WFE method

2.1 Theory

The WFE method aims at numerically describing the wave<liray along periodic
structures [4]. Such structures are called periodic in #ress that their FE models
is described by means of identical substructures that areexded along a main axis
x (namely, the direction of wave propagation). Rectangulates which are meshed
“periodically” along their length{—direction) belong to that class of structures. In
the present study, these plates are supposed to be elassipative (considering a
loss factorn) and subjected to harmonic disturbance under frequene@y (w being
the pulsation). A rectangular plate with a periodic FE measshiown in Figure 1. The
related substructures have the same ledgtinile their left and right boundaries (i.e.
the edges coincident with thg—direction) contain the same number of degrees of
freedom (DOFs), namely (cf. Figure 1).
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Figure 1: lllustration of waves traveling along a rectarguilate ¢—direction); FE
model of a representative substructure.

Within the WFE framework, the waves traveling along thedirection of the struc-
ture are to be described. The computation of the so-calle@ weodes follows from
Bloch’s theorem, considering the FE model of a represemtagubstructure of the
whole system (see Figure 1). Once the dynamic stiffnessixratthe substructure
is known (e.g. using a commercial FE software), a state veefmesentation [5] that
links the kinematic / mechanical fields — i.e. the transltaiand rotational displace-
ments, as well as the forces and moments — between the lefgfy boundaries of
two adjacent substructurésandk — 1 can be expressed as [1]

u) = sul~b), (1)

whereS is a2n x 2n symplectic matrix. Alsoun is to be understood a2a x 1 state
vector expressed as

u:[i‘ﬂ, 2)



whereq andF aren x 1 vectors which denote, respectively, the translationatd-ro
tional displacements and the forces / moments over thersighste boundaries. The
sign ahead' results from the convention made for expressing the forogb®left or
right boundaries of the substructures: in the present ¢thsesonventions-F (resp.
F) will be used to denote the left (resp. right) boundary ofresubstructure.

What states Bloch’s theorem is that the eigenvalues enamely{,}, — can be
expressed age*%?},, where{3;}; have the meaning of wavenumbers. Also, the
terms{®,}, are the eigenvectors & — also known as wave shapes —, which relate
the spatial distribution of the kinematic and mechanicati§ever the width of the
plate (i.e. along thg—direction). The wave modes usually refer to the set of param-
eters{(u;, ®;)};, or simply the wave shapg®, },. Considering that the matri& is
symplectic (see above) yield$.,, ®,)}, to be split inton incident andn reflected
wave modes, i.en waves traveling towards and waves traveling away from the
right (or left) boundary of the waveguide. These inciderd egflected wave modes
are denoted a$(u;*c, ®3°°)}; and {(ui**, ®3°7)};; they are usually defined so that
57| < 1and|uE**| > 1 Vj (such a consideration follows from the fact titats a
symplectic matrix —i.e. its eigenvalues come in pairgad /1) — while it is assumed
that the structure is damped).

Convention. The notationd ®;*}; and{®%** } ; will be used throughout the paper to
denote the waves modes traveling towards and away fromdheboundaryof the
waveguide. In contrast, the notatiofi;>** }; and{ ®3°* } ; will be used to denote the
incident / reflected wave modes with regard tol#feboundaryof the waveguide (see
Figure 1). Those wave modes are simply linkedbgs™ = ®7°* and 7 = Pi=°
Vj. This convention is introduced here as a means to simpléystibsequent devel-
opments made in the paper.

Finally, Bloch’s theorem states that the vectors of dispaentsy and forces / mo-
mentst+F, over any substructure bounddryi.e. either a coupling interface between
two consecutive substructurgs- 1 andk, or a limiting edge of the waveguide), can
be expanded in terms of wave modes as [1]

q(k) _ ‘I)(ilaninc(k) + (I)geeref(k) 7 :l:F(k) _ (I)}i:nCQinc(k) + (I);ef(gref(k)7 (3)

where® ™, 7°f, o andPie* are squares x n matrices constituted from the dis-
placement and force / moment components of the incidenteftetted wave shapes;
also,Q¥) andQt*) aren x 1 vectors of wave amplitudes whose variation along
the waveguide is governed as [1]

Qinc(k) _ uQinc(k—l) 7 Qref(k) _ [,l,_lQref(k_l), (4)

wherep is an x n matrix defined age = diag{u;*°};, such that|u|ls < 1 (||.|[2

being the2—norm)?. Considering the aforementioned convention regardiniglémnt

The fact that|u||> < 1 is readily proved sincg.i*| < 1Vj (see above).



/ reflected waves, yields the wave mode expansion (3) to betremwas
q(k:) _ @;ef*Qref*(k)_|_¢;eeref(k:) 7 j:F(k) _ @;ef*Qref*(k)_‘_(I)§eeref(k)7 (5)

where &*** and Q***(*) refer to the wave modes which are reflected by the left

boundary of the waveguide (see above), with the convediisft = ¢ andQret**) =
Qinc*(k).

2.2 Forced response computation: application to plates uret ar-
bitrary boundary conditions excited by a point force

The forced response computation of rectangular platesegkbly a point force and
whose edges are subjected to arbitrary boundary condisonsestigated using the
WFE method. As an example, simply supported rectanguldepl@vhose related
FE model is depicted in Figure 2) represent a particular kinstructures addressed
within the present study. As discussed in the previous@edthe FE models of these
structures are assumed to be periodic in the sense they aasbebed by means of
identical substructures (say, whose total numbe¥)salong a specificz:—direction
(see Figure 2). It is worth noting that, in the present case substructures are sup-
posed to exhibit the same boundary conditions as the whnaletste on the edges
parallel to ther—direction (say along the lengtt).

Figure 2: Wave-based description of a simply supportecrggtlar plate excited by
a point force and FE model of a representative substructure.

The WFE method aims at describing the kinematic and mechkintds of such a
rectangular plate, excited by a point force, in terms of waeegles (see above). The
procedure consists in partitioning the whole structure tato connected waveguides
1 and2 —i.e. two subplates respectively defined from the left agdtrboundaries of
the whole structure, until the abscissahere the point force applies —which are com-
posed from/N; and N, substructures, respectively. Such a partitioning is Igtéd
in Figure 2.



Let us denote aq andF ) the vectors of displacements and forces / moments
(respectively) expressed over the substructure boundasy any waveguide (i =
1, 2). The substructure boundaries for waveguidessp. waveguide) are numbered
from 1 to N; + 1 from the left end (resp. the right end) until the locationué point
force. The boundary conditions of waveguideand?2 — i.e. over the left end of
waveguidel and the right end of waveguide— are supposed to be expressed under
the following general form:

(LiaV =0 |, (LepFY =0 | (L)al) =0 , (Lp)oFY =0, (6)

where(L,); and(Lr); are two incidence matrices used to denote the particular dis
placement / force components that are equal to ZeAdso, it is implicitly supposed
that the other boundary conditions of the waveguides —ver their edges parallel to
thex—direction — are expressed by means of Eq. (6). On the othet; liae coupling
conditions between the two waveguides are expressed as

R T R )
whereF ., is an x 1 vector (2 being the number of DOFs used for discretizing any
substructure boundary) which denotes the forces appligdeocoupling interface. In
the present case where one single force occurs, only onearaanpofF ., is different
from zero. In Eq. (7)F"™™ andF{™™™ are to be understood as the vectors of
internal forces respectively defined on the right bound&myaveguidel and the left
boundary of waveguidg.

Within the WFE framework, a wave mode expansion of the forjngsonsidered
for each waveguide(: = 1, 2) as

ql ((I)ref*)ZQref* (q)gef)iQ;ef(ki), (8)
+F® = (@20, Q™ 4 (@°0),Q1 ™ k=1, N, +1 i=1,2

whereQ™*** andQ™**"**) are then x 1 vectors of wave amplitudes for waveguide
1, defined at the substructure boundayyi.e. either a coupling interface between two
substructures, or one limiting edge of the waveguide), eWf#;**), = (®:**), and
(®ret*), = (P£°*);. Notice that wave modes traveling along the two waveguides a
similar. The only change concerns the vectors of wave augag which, due to the
discontinuity of the internal force field across the integavhere excitation source
occurs, are to be considered different between the two wedeg. Considering the
aforementioned wave mode expansion enables the boundadijtioos and coupling
conditions of these two waveguides to be expressed in waseebform. For this task,
the following simplified notations are introduced:

Qref (N;+1) Qref Qref*(l Qref* i—1.9 (9)
7 ) — 3 .

2For instance, considering simply supported boundary ¢immai yields both transverse displace-
ments and bending moments to be zero; in this case, onghas= (Lq)2 and(Lr)1 = (Lr)2).



Expressing Eqgs. (6) and (7) in wave-based form while usiegstmplified notations
provided by Eq. (9) and the governing equations (4) resnults i

(Lq)i [(F)iQF + (25 )in™ Qi) = (10)
(Le)s [(®F): Q7 + (<I> i Qref}z i=1,2.
and
[(‘I);ef*) NlQref* ( ef)1 :{ef}
[((I);ef*)l NlQ]{ef* ( : )IQ]{ef}

In matrix form, these relationships yield

[(E@) ] o[ EME T g iZ12 a2

[((I)gef*) NgQref* ( . )ZQref} (11)
[(@;ef*) N1Qref* ( ef)2 ref]+Fex

and

[ (q);ef)l _(‘I)gef)2 :| |: Qref :| B [ (@gef*)l _(q,gef*)z :| [ “NlQJi”ef* :|_[ 0 :|
_(@;ef)l (@;ef)2 gef _((I)Il;ef*)l (@;ef*h MNQQléef* Fem .

(13)

Invoking matrix inverses enables these equations to beesgpd in the following
compact forms:

ref N1 yrefx
Qe -t -1z | gl el g
2 p2 Q5
whereC; is an x n matrix whose components denote the reflection coefficiehnts o
wave modes, at the left end of waveguidécase when = 1) and the right end of
waveguide2 (case when = 2). This matrix is expressed as

. (Lq)i(®E); } [ (La)i(®5),; } |
C, = 1 4 - 1 2 15
[ Eiabe ] | EhE ] )
Also, in Eq. (14),C is a2n x 2n matrix expressed as
oo I (q)ref) ((I)ref) -1 (q)ref) ((I)ref*) ((I)ref) ((I)ref*)
- ((I)ref) ((I)ref) I ((I)ref) ((I)ref*)l ((I)ref) ((I)ref*)
(16)
The matrixC can be partitioned as
(Cll C12
C= 17
{ Car Co } (7

whereC,; andC,, aren x n matrices whose components represent the reflection coef-
ficients of wave modes at the coupling interface, wiiile andC,; aren x n matrices



whose components represent the transmission coefficiéntave modes traveling
along waveguide$ and2 (respectively) towards the coupling interface. Finally, i
Eq. (14),F is a2n x 1 vector expressed as

_ I _((I)crlef>1—1<¢,gef)2 ]—1 [ 0 }
F = [ _(@;ef);l(@;ef)l I (q,;ef)z—lFer . (18)

The vectorF is to be understood as a vector of generalized excitatiorcart be
partitioned as

_ |
F= [ F, } (19)
wherelF; is an x 1 vector whose components denote generalized excitatioribdo

wave modes of waveguides
Considering Egs. (14), (17), (19) yields the following nratormulation:

T —CipM| o 0 Qe 0
—Cyy ™ I 0 —Cyap? Qi ¥y

N N ref = |7 |- (20)
—Co ™ 0 I —Coop™ 5 IFy
0 0 |-G 1 et 0

Solving this matrix formulation yields the wave amplitud€¥:e*, Qi Qref, Qiet*}
to be expressed. The calculation of the displacements dachal forces /moments
along the waveguides — i.e. over any substructure boundafy= 1, 2) — follows
from the consideration of the governing equations (4) aedahve mode expansion
(8). The feature of the formulation (20) is that the matripegring in the left hand
side term is likely to be well conditioned. This is explaingsithe matrix involves
identity submatrices on its diagonal, while the fact of tigtultiplying matrices of the
form C by pv (with ||u||s < 1) results in a filtering effect for spurious high order
modes (additional discussions can be found in ref. [1]).

3 Acoustic radiation

The strategy for computing the acoustic radiation of st or non-stiffened rectan-
gular plates, using the WFE method, is proposed in this@ectn the present study,
those plates are supposed to be surrounded by an infinitelr&dile while radiating

in an acoustic fluid (air). Also, the plates are supposed texioséed by a point force
(see previous section) while subjected to arbitrary bogndanditions of the form

(6). The vibroacoustic system involving a radiating regtaar plate is depicted in
Figure 3. The fluid is supposed to be inviscid and light, indtiese that its loading on
the plates is neglected.



Acoustic fluid Elementary radiator

Figure 3: lllustration of a rectangular plate surroundedlgid baffle and radiating
in a light acoustic fluid.

Within the WFE framework, the dynamic behavior of a stifféroe non-stiffened
rectangular plate vibratingn vacuois to be expressed from the strategy depicted in
the previous section. Then the resulting normal velocityl fté the plate is used for
describing its acoustic radiation. For this kind of probjenrelevant approach is to
compute the radiating power or, equivalently, the radragfficiency. For this task,
the method of elementary radiators can be used [2]. Thisesiggo “discretize” the
plate into elementary surfaces of same a¥ga....,, and constant normal velocities,
and to compute the radiation efficiency as

HD
o= 4, Ra, , 1)
pOCOSplate < (qn)z >

whereq,, is the vector of normal velocities of the elementary radigtexpressed as
4. = iwq, Whereq, is the vector of normal displacements; also{q,)* > is the
mean quadratic velocity averaged over all the elementaligtars, defined as

1 1 Nrad
< (@) >= 53— 2 @l (22)
ra k=1

where N, .4 is the total number of elementary radiators that are usedigaretizing
the plate, whilg(q, ), is the normal velocity of a given radiatér Also, in Eq. (21),
Spiate 1S the area of the plate whiR is a full square matrix whose components are

2 Sz - . ]{f ) 2 52 .
Rst _ W PoR radiator Sll’l( 07" t) (8 % t) 7 Rss _ W= pPo radzator’ (23)
47'('00 kO'rst 47TCO

wherek, = w/c¢q is the acoustic wavenumber ang is the distance between two
radiatorss andt. A typical elementary radiator is depicted in Figure 3. Tloenmal



velocity of each radiator is supposed to be constant and ¢ojtlze normal velocity
at its mid node (cf. Figure 3). In the present framework, thEBAmethod can be
used for describing the vector of normal displacements {lansithe vector of normal
velocities) over any substructure boundary of waveguidasd?2 (see Section 2) as
()i = L£'(®4):Q; (i = 1,2) where(®,), = [(B°)(@2),], Q; = [QTQ;**"]"

is the vector of wave amplitudes addis an incidence matrix for capturing the normal
displacements at the relevant DOFs. Thus, the numerat@agipg in the right hand
side of EQ. (21) can be written as

@R, =Y S QF @I R L (@ V| Qi (29)
i s>1
12233 Y e {Q! [ I @) LR L (@) V] Qi
i s>1 t>s
2023 S Re {QIF [T (@I LR L (@e)on V] Qo
s>1 t>1

whereQ; (resp. Q) is to be understood as the vector of wave amplitudes for the
radiators located at the left end of waveguidgesp. right end of waveguidy; also,

p' is a diagonal matrix with componen{g; }; ({;;}; being the wave parameters
already introduced in Section 2.1), whetds an integer that “scales” the length

of a plate substructure (see Figure 1) to the length of a t@dli&inally, R,; is a
square matrix extracted from the matRx(see above) and which relates the coupling
between two rows of radiatorsandt of a same waveguide R, is a square matrix
extracted from the matriR (see above) and which relates the coupling between two
rows of radiators andt¢ belonging, respectively, to waveguidesind2. Otherwise,
expressing the denominator on the right hand side of Eq.i2eans of WFE wave
modes does not add any more difficulty.

Regarding Eg. (24), the feature of the WFE approach is tleatrtatrix terms in-
side the square brackets do not depend on the boundary icorschf waveguides (i.e.
over the left and right edges of the plate) as well as theiplog conditions. In other
words, once these terms have been computed, the compubétibe radiation effi-
ciency can be achieved many times with small CPU times, e deal with parametric
analysis involving several kinds of boundary and excitationditions of the plate.

4 Model reduction

The idea behind the MOR strategy is to approximate the veabdisplacements
q§ and internal forcei‘(k of each waveguide (: = 1,2), over any substructure
boundaryk; (k; = 1,...,N; + 1, N; being the number of substructures used for
describing the waveguid'ea by means of a reduced wave ba§i®;);} ;1. 2m, (With

a same numbem < n of incident and reflected modes). In this framework, the

aim is to compute the forced response of the coupled stricging a reduced matrix
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formulation of small siz&m compared to the conventional matrix formulation (whose
size is2n) obtained when the full wave bases are considered (cf E).(20

A MOR strategy that enables a reduced basis to be constriactedch waveguidée
in terms of the relevant wave modes — i.e. which effectivelytabute for expressing
the behavior of the coupled system — has been recently pedposref. [3]. Here
we apply this strategy to the present case involving rectinglates excited by a
point force (see previous sections). In the work [3], it iswh that the relative error
made for expressing the displacements and internal foroesnents of such structure
involving two coupled waveguides (see previous sectioas)lie assessed by means
of the following error bound:

A’ 1+ [|A%]]
gs — E E H A A
max{{(el+62)+1_||As||(el +€e5) A
E* |, E* [A]] ax | an | 1 [[A"]
Sl i L i il 25
|i(€1 +€2 )+1_HA*SH(€1 +€2 ) 1_HA*SH ) ( )
where
B B —LE|| 5 |ILEJ] s [AL-LAY|| 5 [[LALY)
6 = —7 6 = 7 6 - Y 6 = 77 (26)
! || E| 2B ||As]] ? ||As]]
o _ B = LELN pe  NISECN] s [IAML = LA 4 [I£ALT]
1 * 2 T * [ S *S )2 T *S
|[Ex]] |[Ex]| || Axs]] || Ax]]

In Eq. (26),£ and.L, are two incidence matrices used for the selection of théneda
wave modes (i.e. the wave modes to be used in the computdtioa fmrced response
of the system) and the residual wave modes, respectidebnd A* are two2n x 2n
matrices expressed as

A { Cip"Cupyt Cipy ' Cropy® } A — { Ciipy ' Cipy' Crapy*Copasy”
Cipy"Corpy’ Copy*Coppy® |7 Cop?" Cipy" Coopiy* Cipa3”
(27)

Also, in Eqg. (26) E,; andE? are two2n x 1 vectors expressed as

s—1 s—1
E, = (Z A”) B , E= (Z A*p> B* Vs> 1, (28)
p=0

p=0
where
IR F
B=| M B = 1] 29
[ Cip"F, } ’ { F, (29)
Also note that the vectols, andE? (Eq. (28) can be partitioned as:
_ Eq * __ E§1
Es— |:Es2:| 9 Es_ |:E:2:|7 (30)



whereE,; andE?, aren x 1 vectors associated to waveguidg = 1, 2). The afore-
mentioned matrices and vectors (Egs. (27-29)) have beeéveddry expressing the
vectors of wave amplitudes that result from the considenadif s forward and back-
ward passings of waves along the waveguides. When deriengrror bound, (Eq.
(25)), it is assumed that the spectral radii of the matrikeend A* are less than one,
meaning that there exists two integegsand s such thaf|A®|| < 1 for s > s, and
[|A**|| < 1fors > s§. Inref. [3], it has been shown thatcan be chosen as

s = max {u > max{so, s5} : [|A"|]| > 0.1, |[|A*|| > 0.1}. (31)

Also, in Eq. (26), the tilde sign means that matrices andoredbtave been formu-
lated using a reduced wave basis (for each waveguide) thstiethe full wave ba-
sis. As an additional requirement, the following assumigA®|| < ||A®|| and
|A**|| < ||A**|| have to be made.

The strategy for selecting the wave modes, as proposed.ifBietan be stated as
follows:

1. Check thap(A) < 1 andp(A*) < 1 (see above);
2. Choose integeraccording to Eq. (31);

3. Rank the wave modes of each waveguide= 1, 2) with respect to the magni-
tudes of the components of vectds; andE”;;

s1?

4. Compute the error boung, by means of Eq. (25) at the highest frequency
considered within the studied frequency band, as a fundion (i.e. the first
m wave modes for both waveguidésnd2, as ranked in step 3);

5. Define the domain of validity of;, i.e. when||A®|| < ||A®|| and||]A*|| <
||A*|| (see above);

6. ldentify the minimum value of ..

It is worth emphasizing that all these steps are to be adehlesdy at the highest fre-
guency considered within the studied frequency band.

5 Numerical experiments

5.1 Plate characteristics and numerical setup

The WFE-based formulation proposed in section 3 has bediedpp investigate the
radiation efficiencies of baffled plates subjected to haimtwading. For validation
purposes, the characteristics of the plates are simildra®etchosen by Bergt alin
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ref. [6]. We consider rectangular baffled steel plates ofaffigiong).38 m x0.455 m
x0.001m respectively in the-, y- andz directions (see Figure 1), which can be either
clamped or simply supported on their four edges. The chossrrial properties are
the following: densityp = 7850 kg.m*, Young’s modulust = 2 x 10'!Pa, Poisson’s
ratior = 0.28 and loss factor, = 0.01. As already mentioned, the baffled plates
are surrounded by an acoustic fluid and the fluid loading effecthe structure is
neglected.

Each plate is subjected to a harmonic point force of unitarglaude in the normal
z-direction, applied at its center. As stated in section 8Ugh a force is taken into
account within the WFE method by splitting the plate into tmeveguides connected
at the force location (the plate center in the present c&®h waveguides are mod-
eled using a same number of substructukgs= N, = 10, of lengthd = 0.019 m
in thex-direction and width).455 m. The number of DOFs contained over the left or
right edges of each substructurenis= 109 for the clamped plate, and = 113 for
the simply supported plate. A finer discretization is alsnsidered to improve the
accuracy of the WFE-based numerical model, using substnesbdf half length (i.e.,
d = 0.0095, that isN; = N, = 20) having more DOFs (i.en, = 221 for the clamped
plate,n = 225 for the simply-supported plate).

The forced vibrations of the plates as well as their radma&tiiciencies are com-
puted over the frequency rang®[Hz ; 3000 Hz] with a precision of 1 Hz up t@00
Hz and2 Hz afterwards.

5.2 Forced response computation and model reduction

For each set of boundary conditions, the displacemsntthe z-direction at any point
of the plate is computed using Egs. (20), (3), (4). The aayuoch the WFE method
to retrieve classical results of FE simulations with redlcemputational time, which
has been highlighted in previous papers (cf. [1] for inségnis again verified in the
present cases. For example, Figure 4 compares the quagkktoities obtained with
the WFE method and the FE method at the center of the platg itentical meshes.
A perfect correspondence is seen between the results oivtheéethods for each set
of boundary conditions. The comparison of Figures 4(a) gbjl élearly shows that
the resonance frequencies and vibration levels of the platstrongly affected by its
boundary conditions. The values fiff = 52 Hz andf;; = 28 Hz - mentioned in ref.
[6] for the resonance frequencies of the first mode, respagtfor the clamped and
the simply supported plate - are retrieved.

The latter results have been obtained using full te WFE fdatian with wave
bases, thatis = 109 incident (or reflected) modes for the clamped plate,;and113
incident / reflected modes for the simply supported platestated in section 4, com-
putational times may be even more reduced when applying duehorder reduction
strategy, which provides appropriate reduced wave basés. sfrategy focuses on
the consideration of an error bouidwhose minimum indicates the number of wave
modes to be retained [3]. The evolution &f (in %) as a function of the number
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Figure 4: Center point quadratic velocityf|w|*: (- -) FE computation;{-) WFE
computation; (a) clamped plate, (b) simply supported plate

of retained wave modes is shown on Figure 5(a) consideriaglédmped plate with
coarse mesh. The error is seen to be minimized (reachingua wdD.16 %) when
the firstm = 57 modes of the ordered full basis are retained in the reducsd bar
each waveguide. It has to be noted that this minimum liesengtieen shaded area,
which represents the validity domain defined in sectioné,(jlA®|| < ||A?|| and

[JA=]] < [|A*]]).
10°
10"
8S
10°
B 57
10 | | | | | |
10 20 30 40 50 60 70 80 9 100

Number of wave modes

Figure 5:&, (%) evolution for the clamped plate with coarse mesh=(109).

This valuem = 57 represents the optimal number of wave modes required to
retrieve the solution provided by the full wave basis, withoverestimating the size of
the reduced basis. The quadratic velocities computed tisengeduced basis defined
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by the MOR algorithm are indeed exactly superimposed withitfitial quadratic
velocities, as displayed in Figure 6 at the plate center. ¥amgple of solution obtained
using a reduced basis not provided by the MOR strategy is liswn on Figure

6; in this case, the last 10 modes have been removed from bheakis, i.e., the
reduced basis contairt® wave modes. Non negligible variations are observed at
some frequencies, for instance between 2000 Hz and 240nHpite of this higher
number of wave modes, the results are therefore less aedheat when using the 57
wave modes of the reduced basis provided by the MOR algorithm
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Figure 6: Center plate quadratic velocity|w|?*: (—-) full basis (109 wave modes);
(—) reduced basis provided by the MOR algorith# (vave modes); . -) reduced
basis obtained by removing 10 modés (vave modes).

5.3 Acoustic radiation computation

The acoustic radiation resulting from the forced vibrasiofhthe clamped and simply-
supported plates is investigated using the WFE-based fation developed in section
3. As explained, the radiation efficiency is obtained by sungnthe contributions of
elementary radiators uniformly distributed over the pkigace. Various numbers of
radiators may be taken into account in the acoustic compuatatiepending on the
chosen substructure discretization. In the following, 18660 radiators have been
used, corresponding respectively to the initial and finesimes described in section
5.1. Radiation efficiencies computations have been peddrusing full modal bases
as well as reduced bases provided by the MOR strategy (seersB). The use of
the reduced bases has proved to decrease substantialynipeiational costs [3]. In
the present case, a global time reductiorm®f has been achieved regardless of the
retained number of radiators or the boundary conditions.

Figure 7 presents the radiation efficiency obtained for tlagepclamped on its
four edges, taking into account 560 radiators. The pressniltris compared to the
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Figure 7: Radiation efficiency of the clamped plate:-{ from Berryet al[6]; ()
using the present approach with 560 radiators.

radiation efficiency shown by Berrgt alin [6] for the same configuration. A very
good agreement is found in the low-frequency range. At ufeeuencies however,
the radiation efficiency computed with the present methondde¢o be underestimated
as compared to the levels found by Beetyal..

The same trends are observed when considering the case sifrthly supported
plate, shown in Figure 8. The radiation efficiency obtainethwi40 radiators has
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Figure 8: Radiation efficiencies of the simply supportedela —) from Berry et
al.[6]; (— . - using the present approach (140 radiators)) (using the present ap-
proach (560 radiators) .
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been displayed to investigate the influence of the numbeadifitors. Differences
are negligible at low frequencies, while above 1 kHz it appdlaat the levels may be
overestimated when less information is taken into account.

Analyzing the radiation efficiencies displayed in Figureand 8 also enables us to
raise conclusions regarding the influence of the boundamgitions on the acoustic
behavior of the plate. As expected, the radiation efficier@@aches higher levels in
the case of clamped boundary conditions, although the tubordevels are slightly
reduced. For example, the magnitude of the first radiatifinieficy peak for the
clamped plate, arounfl= 120 Hz is for instance 1.7 times higher that of the simply-
supported plate (arounfl = 90 Hz). The same approximate ratio holds for the high
frequency levels.

5.4 Acoustic radiation of stiffened plates

The effect of stiffeners on the acoustic radiation of a piaievestigated for the case
of the simply supported plate. The stiffeners are modelegeasngular beams with
cross-sectional areg6.25 mm x 10 mm, aligned with thex-direction of wave prop-
agation. Examples of stiffened plates are shown in Figuréh# stiffenings consist
respectively of four beams spaced13f) mm for the first configuration (Figure 9(a)),
and ten beams spaced B¥.5 mm for the second one (Figure 9(b)). It is worth not-
ing that the substructures used to compute the stiffenadgplabrations within the
WFE method are therefore complex and of varying thicknessgsrespect to the
position in they-direction. Both configurations provide the same number©@f® on
the substructure boundary,= 109, as for the non-stiffened plate.

(@) (b)

y
® L ® .

X

inc ref
Q FAVAVAVAV S WMQ

Figure 9: Stiffened plate configurations: (a) four stiffen€b) ten stiffeners

The influence of the stiffeners on the vibrational behavidhe plate is illustrated
on Figure 10, which compares the quadratic velocities atémers of the stiffened
plates and the initial non-stiffened plate. As expected,pgiesence of stiffeners sup-
presses the vibrations at the lowest frequencies whileedsarg the vibrating levels
over most of the frequency range. The attenuation effeceases with the number
of stiffeners. Those results are in accordance with thelteepuesented by Nicolas
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Figure 10: Center point quadratic velocities: §) non-stiffened plate;«. —) plate
with 4 stiffeners; {-) plate with 10 stiffeners.

and Berry in ref. [7], where a similar plate but differentffetners sizes, shapes and
positions were considered.

The influence of stiffeners on the acoustic radiation ofgdas finally investigated
by computing the radiation efficiencies of the above stéfiplates. The trends found
in ref. [7] are again retrieved: the stiffeners are seen twserably increase the
radiation efficiency of the plate, the radiating power ldseihg therefore reduced to a
lesser extent than the vibrational level. For example, tagmitudes of the first peaks
visible in Figure 11 are respectiveby2 and6.3 times higher for the plates withand
10 stiffeners than for the non-stiffened plate, while rati626 and7.4 are found for
the mean radiation efficiencies over the whole frequencgedretween the stiffened
and non-stiffened plates.

6 Conclusion

In this paper, a formulation based on the WFE method has beeiaped to inves-
tigate point force driven vibrations of various rectangyséates and their radiated
sound. For this purpose the plates are modeled as wavegthdess to say periodical
repetitions of a characteristic substructure in one dwaabdf propagation. The main
features of this method include:
— the computation of wave mode bases from the finite elemenehaddhe given
substructure, the maximum number of modes being linkeddaltbcretization

of the substructure;
— a matrix formulation that links the DOFs at the substruchodes (namely the
normal displacements and internal forces) to the boundargitions and exter-

nal excitations;
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Figure 11: Radiation efficiencies= () non-stiffened plate;«. —) plate with 4 stiff-
eners; {-) plate with 10 stiffeners.

— the computation of the plate radiation efficiency from thenmal velocities of
elementary radiators uniformly distributed over the plat®se velocities are
obtained from the aforementioned matrix formulation.

A model order reduction strategy has been implemented sidaginvolving matrix
norm-based criteria, the algorithm provides a reduced wasge basis which enables
substantial computational time savings while obtainimgilsir results as when using
the full basis.

The above methods have been applied to various plates ofdiareasions but dif-
ferent boundary conditions (namely fully clamped or simplypported plates), possi-
bly equipped with beam stiffeners. The results in terms bfational levels as well
as radiation efficiencies are found in good agreement wébrttical results from ref.
[6] or provided by commercial software. The clamped boupdanditions is seen to
slightly increase the plate resonance frequencies andtradliefficiency while reduc-
ing the vibration level, as compared with the simply-supgdtboundary condition.
A similar trend is observed when adding stiffeners to theeplto a greater extent.
The proposed method is therefore seen to provide an efficiaptof addressing vi-
broacoustic issues involving complex periodic structuvel reduced computational
costs.
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