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Polynomial Systems Solving by Fast Linear Algebra.

Jean-Charles Faugère† Pierrick Gaudry‡ Louise Huot† Guénaël Renault†

Abstract

Polynomial system solving is a classical problem in mathematics with a wide range of applications.
This makes its complexity a fundamental problem in computer science. Depending on the context,
solving has different meanings. In order to stick to the most general case, we consider a representation
of the solutions from which one can easily recover the exact solutions or a certified approximation of
them. Under generic assumption, such a representation is given by the lexicographical Gröbner basis
of the system and consists of a set of univariate polynomials. The best known algorithm for computing
the lexicographical Gröbner basis is in Õ(d3n) arithmetic operations where n is the number of variables
and d is the maximal degree of the equations in the input system. The notation Õ means that we neglect
polynomial factors in n. We show that this complexity can be decreased to Õ(dωn) where 2 ≤ ω <
2.3727 is the exponent in the complexity of multiplying two dense matrices. Consequently, when the
input polynomial system is either generic or reaches the Bézout bound, the complexity of solving a
polynomial system is decreased from Õ(D3) to Õ(Dω) where D is the number of solutions of the
system. To achieve this result we propose new algorithms which rely on fast linear algebra. When the
degree of the equations are bounded uniformly by a constant we propose a deterministic algorithm. In
the unbounded case we present a Las Vegas algorithm.

1 Introduction

Context. Polynomial systems solving is a classical problem in mathematics. It is not only an important
problem on its own, but it also has a wide spectrum of applications. It spans several research disciplines
such as coding theory [15,35], cryptography [10,29], computational game theory [14,43], optimization [27],
etc. The ubiquitous nature of the problem positions the study of its complexity at the center of theoretical
computer science. Exempli gratia, in the context of computational geometry, a step of the algorithm by
Safey el Din and Schost [2], the first algorithm with better complexity than the one by Canny [12] for
solving the road map problem, depends on solving efficiently polynomial systems. In cryptography, the
recent breakthrough algorithm due to Joux [29] for solving the discrete logarithm problem in finite fields
of small characteristic heavily relies on the same capacity. However, depending on the context, solving

a polynomial system has different meanings. If we are working over a finite field, then solving generally
means that we enumerate all the possible solutions lying in this field. On the other hand, if the field is
of characteristic zero, then solving might mean that we approximate the real (complex) solutions up to a
specified precision. Therefore, an algorithm for solving polynomial systems should provide an output that is
valid in all contexts. In this paper we present an efficient algorithm to tackle the PoSSo (Polynomial Systems

Solving) problem, the ouput of which is a representation of the roots suitable in all the cases. The precise
definition of the problem is as follows:
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Problem 1 (PoSSo). Let K be the rational field Q or a finite field Fq. Given a set of polynomial equations

with a finite number of solutions which are all simple

S : {f1 = · · · = fs = 0}

with f1, . . . , fs ∈ K[x1, . . . , xn], find a univariate polynomial representation of the solutions of S i.e.

h1, . . . , hn ∈ K[xn] such that the system {x1 − h1 = · · · = xn−1 − hn−1 = hn = 0} have the same

solutions as S .

It is worth noting that enumerating the solutions in a finite field or approximating the solutions in the
characteristic zero case can be easily done once the underlying PoSSo problem is solved. Actually, from a
given univariate polynomial representation {x1 − h1 = · · · = xn−1 − hn−1 = hn = 0} one just have to
find the (approximated) roots of the univariate polynomial hn. The algorithms to compute such roots have
their complexities in function of D, the degree of hn, well handled and in general they are negligible in
comparison to the cost of solving the PoSSo problem. Note that D is also the total number of solutions of
the polynomial system. For instance, if K = Fq is a finite field, the enumeration of the roots lying in Fq

of hn can be done in Õ(D) arithmetic operations where the notation Õ means that we neglect logarithmic
factors in q and D, see [45]. In the characteristic zero case, finding an approximation of all the real roots of
hn can also be done in Õ(D) where, in this case, we neglect logarithmic factors in D, see [40].

A key contribution to the PoSSo problem is the multivariate resultant introduced by Macaulay in the
beginning of the 20th century [36]. The next major achievement on PoSSo appeared in the 1960s when
Buchberger introduced, in his PhD thesis, the concept of Gröbner bases and the first algorithm to compute
them. Since then, Gröbner bases have been extensively studied (see for instance [4, 13, 33, 43]) and have
become a powerful and a widely used tool to solve polynomial systems. A major complexity result related
to the PoSSo problem has been shown by Lakshman and Lazard in [33] and states that this problem can be
solved in a simply exponential time in the maximal degree d of the equations i.e. in O(dO(n)) arithmetic
operations where n is the number of variables. As the number of solutions can be bounded by an exponential
in this degree thanks to the Bézout bound, this result yields the first step toward a polynomial complexity in
the number of solutions for the PoSSo problem. In our context, the Bézout bound can be stated as follows.

Bezout’s bound: Let f1, . . . , fs ⊂ K[x1, . . . , xn] and let d1, . . . , ds be their respective degree. The PoSSo
problem has at most

∏s
i=1 di solutions in an algebraic closure of K and counted with multiplicities.

The Bézout bound is generically reached i.e. D =
∏s

i=1 di. We mean by generically that the system
is generic that is to say, given by a sequence of dense polynomials whose coefficients are unknowns or any
random instantiations of these coefficients.

Whereas for the particular case of approximating or computing a rational parametrization of all the
solutions of a polynomial system with coefficients in a field of characteristic zero there exist algorithms
with sub-cubic complexity in D (if the number of real roots is logarithmic in D then Õ(12nD2) for the

approximation, see [39], and if the multiplicative structure of the quotient ring is known O
(
n2nD

5
2

)
for

the rational parametrization, see [7]). To the best of our knowledge, there is no better bound than O(nD3)
for the complexity of computing a univariate polynomial representation of the solutions. According to the
Bézout bound the optimal complexity to solve the PoSSo problem is then polynomial in the number of
solutions. One might ask whether the existence of an algorithm with (quasi) linear complexity is possible.
Consider the simplest case of systems of two equations {f1 = f2 = 0} in two variables. Solving such a
system can be done by computing the resultant of the two polynomials with respect to one of the variables.
From [45], the complexity of computing such a resultant is polynomial in the Bézout bound with exponent
strictly greater than one. In the general case i.e. more than two variables, the PoSSo problem is much
more complicated. Consequently, nothing currently suggests that a (quasi) linear complexity is possible.
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The main goal of this paper is to provide the first algorithm with sub-cubic complexity in D to solve the
PoSSo problem, which is already a noteworthy progress. More precisely, we show that when the Bézout
bound is reached, the complexity to solve the PoSSo problem is polynomial in the number of solutions with
exponent 2 ≤ ω < 3, where ω is the exponent in the complexity of multiplying two dense matrices. Since
the 1970s, a fundamental issue of theoretical computer science is to obtain an upper bound for ω as close
as possible to two. In particular, Vassilevska Williams showed in 2011 [44] that ω is upper bounded by
2.3727 i.e. 2 ≤ ω < 2.3727. By consequence, our work tends to show that a quadratic complexity in the
number of solutions for the PoSSo problem can be expected. A direct consequence of such a result is the
improvement of the complexity of many algorithms requiring to solve the PoSSo problem, for instance in
asymmetric [20, 25] or symmetric [9, 10] cryptography.

Related works. In order to reach this goal we develop new algorithms in Gröbner basis theory. Let S be
a polynomial system in K[x1, . . . , xn] verifying the hypothesis of Problem 1, i.e. with a finite number of
solutions in an algebraic closure of K which are all simple. A Gröbner basis is to S what row echelon form
is to a linear system. For a fixed monomial ordering, given a system of polynomial equations, its associ-
ated Gröbner basis is unique after normalization. From an algorithmic point of view, monomial orderings
may differ: some are attractive for the efficiency whereas some others give rise to a more structured output.
Hence, the fastest monomial ordering is usually the degree reverse lexicographical ordering, denoted DRL.
However, in general, a DRL Gröbner basis does not allow to list the solutions of S . An important ordering
which provides useful outputs is the lexicographical monomial ordering, denoted LEX in the sequel. Actu-
ally, for a characteristic 0 field or with a sufficiently large one, up to a linear change of the coordinates, a
Gröbner basis for the LEX ordering of the polynomial system S gives a univariate polynomial representa-
tion of its solutions [26,32]. That is to say, computing this Gröbner basis is equivalent to solving the PoSSo
problem 1. It is usual to define the following: the ideal generated by S is said to be in Shape Position when
its LEX Gröbner basis if of the form {x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)} where h1, . . . , hn−1

are univariate polynomials of degree less than D and hn is a univariate polynomial of degree D (i.e. one
does not need to apply any linear change of coordinates to get the univariate polynomial representation). In
the first part of this paper, we will avoid the consideration of the probabilistic choice of the linear change of
coordinates in order to be in Shape Position, thus we assume the following hypothesis.

Hypothesis 1. Let S ⊂ K[x1, . . . , xn] be a polynomial system with a finite number of solutions which are

all simple. Its associated LEX Gröbner basis is in Shape Position.

From a DRL Gröbner basis, one can compute the corresponding LEX Gröbner basis by using a change
of ordering algorithm. Consequently, when the associated LEX Gröbner basis of the system S is in Shape

Position i.e. S satisfies Hypothesis 1 the usual and most efficient algorithm is first to compute a DRL
Gröbner basis. Then, the LEX Gröbner basis is computed by using a change of ordering algorithm. This is
summarized in Algorithm 1.

Algorithm 1: Solving polynomial systems

Input : A polynomial system S ⊂ K[x1, . . . , xn] which satisfies Hypothesis 1.
Output: The LEX Gröbner basis of S i.e. the univariate polynomial representation of the solutions of

S .
1 Computing the DRL Gröbner basis of 〈S〉;
2 From the DRL Gröbner basis, computing the LEX Gröbner basis of 〈S〉;
3 return The LEX Gröbner basis of S;

The first step of Algorithm 1 can be done by using F4 [17] or F5 [18] algorithms. The complexity
of these algorithms for regular systems is well handled. For the homogeneous case, the regular property
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for a polynomial system {f1, . . . , fs} ⊂ K[x1, . . . , xn] is a generic property which implies that for all
i ∈ {2, . . . , s}, the polynomial fi does not divide zero in the quotient ring K[x1, . . . , xn]/〈f1, . . . , fi−1〉.
There is an analogous definition for the affine case, see Definition 4. For the particular case of the DRL
ordering, computing a DRL Gröbner basis of a regular system in K[x1, . . . , xn] with equations of same
degree, d, can be done in Õ(dωn) arithmetic operations (see [1, 34]). Moreover, the number of solutions D
of the system can be bounded by dn by using the Bézout bound. Since, this bound is generically (i.e. almost
always) reached i.e. D = dn, computing a DRL Gröbner basis can be done in Õ(Dω) arithmetic operations.
Hence, in this case the first step of Algorithm 1 has a polynomial arithmetic complexity in the number of
solutions with exponent ω.

The second step of Algorithm 1 can be done by using a change of ordering algorithm. In 1993, Faugère
et al. showed in [21] that change of ordering for zero dimensional ideals is closely related to linear algebra.
Indeed, they proposed a change of ordering algorithm, denoted FGLM in the literature, which proceeds in
two stages. Let G>1 be the given Gröbner basis w.r.t. the order >1 of an ideal in K[x1, . . . , xn]. First, we
need for each i ∈ {1, . . . , n} a matrix representation, Ti, of the linear map of K[x1, . . . , xn]/ 〈G>1〉 →
K[x1, . . . , xn]/〈G>1〉 corresponding to the multiplication by xi. The matrix Ti is called multiplication
matrix by xi. These matrices are constructed by computing O(nD) matrix-vector products (of size D ×
D times D × 1). Hence, the first stage of FGLM algorithm (Algorithm 2) has an arithmetic complexity
bounded by O(nD3). Once all the multiplication matrices are computed, the second Gröbner basis w.r.t. the
new monomial order >2 is recovered by testing linear dependency of O(nD) vectors of size D × 1. This
can be done in O(nD3) arithmetic operations. This algorithm is summarized in Algorithm 2. Therefore,
in the context of the existing knowledge, solving regular zero-dimensional systems can be done in O(nD3)
arithmetic operations and change of ordering appears as the bottleneck of PoSSo.

Algorithm 2: FGLM
Input : The Gröbner basis w.r.t. >1 of an ideal I .
Output: The Gröbner basis w.r.t. >2 of I .

1 Computing the multiplication matrices T1, . . . , Tn; // O(nD) matrix-vector products

2 From T1, . . . , Tn computing the Gröbner basis of I w.r.t. >2; // O(nD) linear dependency tests

Fast Linear Algebra. Since the second half of the 20th century, an elementary issue in theoretical com-
puter science was to decide if most of linear algebra problems can be solved by using fast matrix multi-
plication and consequently bound their complexities by that of multiplying two dense matrices i.e. O(mω)
arithmetic operations where m×m is the size of the matrix and 2 ≤ ω < 2.3727. For instance, Bunch and
Hopcroft showed in [11] that the inverse or the triangular decomposition can be done by using fast matrix
multiplication. Baur and Strassen investigated the determinant in [3]. The case of the characteristic polyno-
mial was treated by Keller-Gehrig in [30]. Although that the link between linear algebra and the change of
ordering has been highlighted for several years, relating the complexity of the change of ordering with fast
matrix multiplication complexity is still an open issue.

Main results. The aim of this paper is then to give an initial answer to this question in the context of
polynomial systems solving i.e. for the special case of the DRL and LEX orderings. More precisely,
our main results are summarized in the following theorems. First we present a deterministic algorithm
computing the univariate polynomial representation of a polynomial system verifying Hypothesis 1 and
whose equations have bounded degree.

Theorem 1.1. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a polynomial system verifying Hypothesis 1 and

let K be the rational field Q or a finite field Fq. If the sequence (f1, . . . , fn) is a regular sequence and if
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the degree of each polynomial fi (i = 1, . . . , n) is uniformly bounded by a fixed integer d then there exists

a deterministic algorithm solving Problem 1 in Õ(dωn + Dω) arithmetic operations where the notation Õ
means that we neglect logarithmic factors in D and polynomial factors in n and d.

Then we present a Las Vegas algorithm extending the result of Theorem 1.1 to polynomial systems not
necessarily verifying Hypothesis 1 and whose equations have non fixed degree.

Theorem 1.2. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a polynomial system and let K be the rational

field Q or a finite field Fq. If the sequence (f1, . . . , fn) is a regular sequence where the degree of each

polynomial is uniformly bounded by a non fixed parameter d then there exists a Las Vegas algorithm solving

Problem 1 in Õ(dωn+Dω) arithmetic operations; where the notations Õ means that we neglect logarithmic

factors in D and polynomial factors in n.

If K = Q the probability of failure of the algorithm mentioned in Theorem 1.2 is zero while in the case
of a finite field Fq of characteristic p, it depends on the size of p and q, see Section 7.2.

As previously mentioned, the Bézout bound allows to bound D by dn and generically this bound is
reached i.e. D = dn. By consequence, Theorem 1.1 (respectively Theorem 1.2) means that if the equa-
tions have fixed (respectively non fixed) degree then there exists a deterministic (respectively a Las Vegas)
algorithm computing the univariate polynomial representation of generic polynomial systems in Õ(Dω)
arithmetic operations.

To the best of our knowledge, these complexities are the best ones for solving the PoSSo Problem 1.
For example, in the case of field of characteristic zero, under the same hypotheses as in Theorem 1.1, one
can now compute a univariate polynomial representation of the solutions in Õ(Dω) without assuming that
the multiplicative structure of K[x1, . . . , xn] is known. This can be compared to the method in [7] which,
assuming the multiplicative structure of the quotient ring known, computes a parametrization of the solutions

in O
(
n2nD

5
2

)
. Noticing that under the hypotheses of Theorem 1.1, n is of the order of log2(D) and the

algorithm in [7] has a complexity in Õ
(
D

7
2

)
.

Importance of the hypotheses. The only two hypotheses which limits the applicability of the algorithms
in a meaningful way is that (up to a linear change of variables) the ideal admits a LEX Gröbner basis in
Shape Position and that the number of solutions in an algebraic closure of the coefficient field counted
with multiplicity is finite. The other hypotheses are stated either to simplify the paper or to simplify the
complexity analysis. More precisely, the hypothesis that the solutions are all simple is minor. Indeed, it is
sufficient to get the required hypothesis about the shape of the LEX Gröbner basis but not necessary. The
hypothesis stating the regularity of the system is required to get a complexity bound on the computation of
the first (DRL) Gröbner basis. Indeed, without this hypothesis the computation of the first Gröbner basis
is possible but there is no known complexity analysis of such a computation. It is a common assumption
in algorithmic commutative algebra. The assumption on the degree of the equations in the input system is
stated in order to obtain a simply form of the complexity of computing the first Gröbner basis i.e. Õ(dωn).
Finally, the hypothesis of genericity (i.e. the Bézout bound is reached) is required to express the complexity
of the computation of the first Gröbner basis in terms of the number of solutions i.e. Õ(dωn) = Õ(Dω). We
would like to precise that all the complexities in the paper are given in the worst case for all inputs with the
required assumptions.

Outline of the algorithms. In 2011, Faugère and Mou proposed in [23] another kind of change of or-
dering algorithm to take advantage of the sparsity of the multiplication matrices. Nevertheless, when the
multiplication matrices are not sparse, the complexity is still in O(D3) arithmetic operations. Moreover,
these complexities are given assuming that the multiplication matrices have already been computed and
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the authors of [23] do not investigate their computation whose complexity is still in O(nD3) arithmetic
operations. In FGLM, the matrix-vectors products (respectively linear dependency tests) are intrinsically
sequential. This dependency implies a sequential order for the computation of the matrix-vectors products
(respectively linear dependency tests) on which the correctness of this algorithm strongly relies. Thus, in
order to decrease the complexity to Õ (Dω) we need to propose new algorithms.

To achieve result in Theorem 1.1 we propose two algorithms in Õ(Dω), each of them corresponding to
a step of the Algorithm 2.

We first present an algorithm to compute multiplication matrices assuming that we have already com-
puted a Gröbner basis G. The bottleneck of the existing algorithm [21] came from the fact that nD normal
forms have to be computed in a sequential order. The key idea is to show that we can compute simultane-

ously the normal form of all monomials of the same degree by computing the row echelon form of a well
chosen matrix. Hence, we replace the nD normal form computations by log2(D) (we iterate degree by
degree) row echelon forms on matrices of size (n D)×(nD+D). To compute simultaneously these normal
forms we observe that if r is the normal form of a monomial m of degree d− 1 then m− r is a polynomial
in the ideal of length at most D + 1; then we generate the Macaulay matrix of all the products xim − xir
(for i from 1 to n) together with the polynomials g in the Gröbner basis G of degree exactly d. We recall
that the Macaulay matrix of some polynomials [34, 36] is a matrix whose rows consist of the coefficients
of these polynomials and whose columns are indexed with respect to the monomial ordering. Computing a
row echelon form of the concatenation of all the Macaulay matrices in degree less or equal to d enable us to
obtain all the normal forms of all monomials of degree d. This yields an algorithm to compute the multipli-
cation matrices of arithmetic complexity O(δnωDω) where δ is the maximal degree of the polynomials in
G; note that this algorithm can be seen as a redundant version of F4 or F5.

In order to prove Theorem 1.2 we use the fact that, in a generic case, only the multiplication matrix by
the smallest variable is needed. Surprisingly, we show (Theorem 7.1) that, in this generic case, no arithmetic

operation is required to build the corresponding matrix. Moreover, for non generic polynomial systems, we
prove (Corollary 3) that a generic linear change of variables bring us back to this case.

The second algorithm (step 2 of Algorithm 2) we describe is an adaptation of the algorithm given in [23]
when the ideal is in Shape Position. Once again only the multiplication matrix by the smallest variable

is needed in this case. When the multiplication matrix T of size D × D is dense, the O(D3) arithmetic
complexity in [23] came from the 2D matrix-vector products T ir for i = 1, . . . , 2D where r is a col-
umn vector of size D. To decrease the complexity we follow the Keller-Gehrig algorithm [30]: first, we
compute T 2, T 4, . . . , T 2⌈log2 D⌉

using binary powering; second, all the products T ir are recovered by com-
puting log2D matrix multiplications. Then, in the Shape Position case, the n univariate polynomials of
the lexicographical Gröbner basis are computed by solving n structured linear systems (Hankel matrices) in
O(nD log22(D)) operations. We thus obtain a change of ordering algorithm (DRL to LEX order) for Shape

Position ideals whose complexity is in O (log2(D) (Dω + n log2(D)D)) arithmetic operations.

Organization of the paper. The paper is organized as follows. In Section 2 we first introduce some
required notations and backgrounds. Then, an algorithm to compute the LEX Gröbner basis given the
multiplication matrices is presented in Section 3. Next, we describe the algorithm to compute multiplication
matrices in Section 4. Afterwards, their complexity analysis are studied in Section 5 where we obtain
Theorem 1.1. Finally, in Section 7 we show how to deduce (i.e. without any costly arithmetic operation) the
multiplication matrix by the smallest variable. According to this construction we propose another algorithm
for polynomial systems solving which allows to obtain the result in Theorem 1.2. In Appendix A we discuss
about the impact of our algorithm on the practical solving of the PoSSo problem.

The authors would like to mention that a preliminary version of this work was published as a poster in
the ISSAC 2012 conference [19].
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2 Notations and preliminaries

Throughout this paper, we will use the following notations. Let K denote a field (for instance the rational
numbers Q or a finite field Fq of characteristic p), and A = K[x1, . . . , xn] be the polynomial ring in n
variables with x1 > · · · > xn. A monomial of K[x1, . . . , xn] is a product of powers of variables and a term
is a product of a monomial and a coefficient in K. We denote by LT<(f) the leading term of f w.r.t. the
monomial ordering <.

Let I be an ideal of A; once a monomial ordering < is fixed, a reduced Gröbner basis G< of I w.r.t. <
can be computed.

Definition 1 (Gröbner basis). Given a monomial ordering < and an ideal I of A, a finite subset G< =
{g1, . . . , gs} of I is a Gröbner basis of I w.r.t. the monomial ordering < if the ideal {LT<(f) | f ∈ I} is

generated by {LT<(g1), . . . ,LT<(gs)}. The Gröbner basis G< is the unique reduced Gröbner basis of I
w.r.t. the monomial ordering < if g1, . . . , gs are monic polynomials and for any gi ∈ G< all the terms in gi
are not divisible by a leading term of gj for all gj ∈ G< such that j 6= i.

We always consider reduced Gröbner basis so henceforth, we omit the adjective “reduced”. For instance,
Gdrl (resp. Glex) denotes the Gröbner basis of I w.r.t. the DRL order (resp. the LEX order). In particular, a
Gröbner basis G< = {g1, . . . , gs} of an ideal I = 〈f1, . . . , fm〉 is a basis of I . Hence, solving the system
{g1, . . . , gs} is equivalent to solve the system {f1, . . . , fm}.

Definition 2 (Zero-dimensional ideal). Let I be an ideal of A. If I has a finite number of solutions, counted

with multiplicities in an algebraic closure of K, then I is said to be zero-dimensional. This number, denoted

by D, is also the degree of the ideal I . If I is zero-dimensional, then the residue class ring VI = A/I is a

K-vector space of dimension D.

From G< one can deduced a vector basis of VI . Indeed, the canonical vector basis of VI is B = {1 =
ǫ1 < · · · < ǫD} where ǫi are irreducible monomials (that is to say for all i ∈ {1, . . . ,D}, there is no g ∈ G<

such that LT<(g) divides ǫi).

Definition 3 (Normal Form). Let f be a polynomial in A. The normal form of f is defined w.r.t. a monomial

ordering < and denoted NF<(f): NF<(f) is the unique polynomial in A such that no term of NF<(f) is

divisible by a leading term of a polynomial in G< and there exists g ∈ I such that f = g + NF<(f).
That is to say, NF< is a (linear) projection of A on VI . We recall that for any polynomials f, g, h we have

NF<(fg) = NF<(NF<(f)g) = NF<(NF<(f)NF<(g)).

Let ψ be the representation of VI as a subspace of KD associated to the canonical basis B:

ψ :

(
VI → KD

∑D
i=1 αiǫi 7→ [α1, . . . , αD]

t .

)

We call multiplication matrices, denoted T1, . . . , Tn, the matrix representation of the multiplication by
x1, . . . , xn in VI . That is to say, the ith column of the matrix Tj is given by ψ(NF<(ǫixj)) = [c

(j)
i,1 , . . . , c

(j)
i,D]

t

hence, Tk =
(
c
(k)
i,j

)
i,j=1,...,D

.

The LEX Gröbner basis of an ideal I has a triangular form. In particular, when I is zero-dimensional,
its LEX Gröbner basis always contains a univariate polynomial. In general, the expected form of a LEX
Gröbner basis is the Shape Position. When the field K is Q or when its characteristic p is sufficiently large,
almost all zero-dimensional ideals have, up to a linear change of coordinates, a LEX Gröbner basis in Shape

Position [31]. A characterization of the zero-dimensional ideals that can be placed in shape position has
been given in [6]. A less general result [26,32] usually called the Shape Lemma is the following: an ideal I
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is said to be radical if for any polynomial in A, fk ∈ I implies f ∈ I . Up to a linear change of coordinates,
any radical ideal has a LEX Gröbner basis in Shape Position. From now on, all the ideals considered in
this paper will be zero-dimensional and will have a LEX Gröbner basis in Shape Position. Moreover, we
fix the DRL order for the basis of VI that is to say that B = {ǫ1, . . . , ǫD} will always denote the canonical
vector basis of VI w.r.t. the DRL order. Since for Shape Position ideals the LEX Gröbner basis is described
by n univariate polynomials we will call it the “univariate polynomial representation” of the ideal or, up to
multiplicities, of its variety of solutions.

In the following section, we present an algorithm to compute the LEX Gröbner basis of a Shape Posi-

tion ideal. This algorithm assumes the DRL Gröbner basis and a multiplication matrix to be known. The
computation of the multiplication matrices is treated in Section 4.

3 Univariate polynomial representation using structured linear algebra

In this section, we present an algorithm to compute univariate polynomial representation. This algorithm
follows the one described in [23]. The main difference is that this new algorithm and its complexity study
do not take into account any structure of the multiplication matrices (in particular any sparsity assumption).

Let Glex = {hn(xn), xn−1 − hn−1(xn), . . . , x1 − h1(xn)} be the LEX Gröbner basis of I . Given the
multiplication matrices T1, . . . , Tn, an algorithm to compute the univariate polynomial representation has to
find the n univariate polynomials h1, . . . , hn. For this purpose, we can proceed in two steps. First, we will
compute hn. Then, by using linear algebra techniques, we will compute the other univariate polynomials
h1, . . . , hn−1.

Remark 1. In this section, for simplicity, we present a probabilistic algorithm to compute the univariate

polynomial representation. However, to obtain a deterministic algorithm it is sufficient to adapt the de-

terministic algorithm for radical ideals admitting a LEX Gröbner basis in Shape Position given in [22] in

exactly the same way we adapt the probabilistic version.

3.1 Computation of hn

To compute hn we have to compute the minimal polynomial of Tn. To this end, we use the first part of the
Wiedemann probabilistic algorithm which succeeds with good probability if the field K is sufficiently large,
see [46].

Let r be a random column vector in KD and 1 = ψ(1)t = [1, 0, . . . , 0]t. If a = [a1, . . . , aD] and
b = [b1, . . . , bD] are two vectors of KD, we denote by (a, b) the dot product of a and b defined by (a, b) =∑D

i=1 aibi. If r1, . . . , rk are column vectors then we denote by (r1| . . . |rk) the matrix with D rows and k
columns obtained by joining the vectors ri vertically.

Let S = [(r, T j
n1) | j = 0, . . . , 2D − 1] be a linearly recurrent sequence of size 2D. By using for

instance the Berlekamp-Massey algorithm [37], we can compute the minimal polynomial of S denoted µ. If
deg(µ(xn)) = D then we deduce that µ(xn) = hn(xn) ∈ Glex since µ is a divisor of fn.

In order to compute efficiently S, we first notice that (r, T j
n1) = (T jr,1) where T = T t

n is the trans-
pose matrix of Tn. Then, we compute T 2, T 4, . . . , T 2⌈log2 D⌉

using binary powering with ⌈log2D⌉ matrix
multiplications. Similarly to [30], the vectors T jr for j = 0, . . . , (2D − 1) are computed by induction in
log2D steps:

T 2(T r | r) = (T 3r | T 2r)
T 4(T 3r | T 2r | T r| r) = (T 7r | T 6r | T 5r | T 4r)

...

T 2⌈log2(D)⌉
(T 2⌈log2(D)⌉−1r | · · · | r) = (T 2D−1r | T 2D−2r | · · · | T 2⌈log2(D)⌉

r) .

(3a)
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3.2 Recovering h1, . . . , hn−1

We write hi =
∑D−1

k=0 αi,kx
k
n for i = 1, . . . , n−1 where αi ∈ K are unknown. We have for i = 1, . . . , n−1:

xi − hi ∈ Glex is equivalent to 0 = NFdrl

(
xi −

D−1∑

k=0

αi,kx
k
n

)
= Ti1−

D−1∑

k=0

αi,kT
k
n1 .

Multiplying the last equation by T j
n for any j = 0, . . . , (D − 1) and taking the scalar product we deduce

that:

0 = (r, T j
n(Ti1))−

D−1∑

k=0

αi,k(r, T
k+j
n 1) = (T jr, Ti1)−

D−1∑

k=0

αi,k(T
k+jr,1) (3b)

Hence, we can recover hi, for i = 1, . . . , n− 1 by solving n− 1 structured linear systems:




(T 0r, Ti1)
(T 1r, Ti1)

...
(TD−1r, Ti1)


 =




(T 0r,1) (T 1r,1) . . . (TD−1r,1)
(T 1r,1) (T 2r,1) . . . (TDr,1)

...
...

. . .
...

(TD−1r,1) (TDr,1) . . . (T 2D−2r,1)







ci,0
ci,1

...
ci,D−1




bi H ci

(3c)

Note that the linear system (3c) has a unique solution since from [28] the rank of H is given by the
degree of the minimal polynomial of S which is exactly D in our case. The following lemma tell us that we
can compute Ti1 without knowing Ti.

Lemma 1. The vectors Ti1 for i = 1, . . . , n − 1 can be read from Gdrl.

Proof. We have to consider the two cases NFdrl (xi) 6= xi or NFdrl (xi) = xi.
First, if NFdrl (xi) 6= xi then there exists g ∈ Gdrl such that LTdrl (g) divides xi. This implies that g is

a linear equation:

xi +

n∑

j>i

αi,jxj + αi,0 with αi,j ∈ K . (3d)

Hence, we have NFdrl (xi) = −
∑n

j>i αi,jxj − αi,0 and Ti1 = −[αi,0, 0, . . . , 0, αi,i+1, . . . , αi,n, 0, . . .]
t.

Otherwise, NFdrl (xi) = xi so that Ti1 = [0, . . . , 0, 1, 0, . . . , 0]t.

Hence, once the vectors T jr have been computed for j = 0, . . . , (2D − 1), we can deduce directly the
Hankel matrix H with no computation but scalar products would seem to be needed to obtain the vectors bi.
However, by removing the linear equations from Gdrl we can deduce the bi without arithmetic operations.

Linear equations in Gdrl. Let denote by L the set of polynomials in Gdrl of total degree 1 (usually L is
empty). We define L = {j ∈ {1, . . . , n − 1} such that NFdrl (xj) 6= xj} and Lc = {1, . . . , n − 1}\L so
that {xi | i ∈ L} = LTdrl (L). In other words there is no linear form in Gdrl with leading term xi when
i ∈ Lc.

We first solve the linear systems (3c) for i ∈ Lc: we know from the proof of Lemma 1 that Ti1 =
[0, . . . , 0, 1, 0, . . . , 0]t. Hence, the components (T jr, Ti1) of the vector bi can be extracted directly from
the vector T jr. By solving the corresponding linear system we can recover hi(xn) for all i ∈ Lc.
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Now we can easily recover the other univariate polynomials hi(xn) for all i ∈ L: by definition of L we
have

li = xi +
∑

j∈Lc

αi,jxj + αi,nxn + αi,0 ∈ L ⊂ Gdrl with αi,j ∈ K.

Hence, the corresponding univariate polynomial hi(xn) is simply computed by the formula:

hi(xn) = −
∑

j∈Lc

αi,jhj(xn)− αi,nhn(xn)− αi,0 .

Thus, we have reduced the number of linear systems (3c) to solve from n− 1 to n−#L− 1.
We conclude this section by summarizing the algorithm to compute univariate polynomial representation

in Algorithm 3. For a deterministic version of Algorithm 3, we refer the reader to Remark 1. In the next
section, we discuss how to compute the multiplication matrices.

Algorithm 3: Univariate polynomial representation
Input : The multiplication matrix Tn and the DRL Gröbner basis Gdrl of an ideal I .
Output: Return the LEX Gröbner basis Glex of I or fail.

1 Compute T 2i for i = 0, . . . , log2D and compute T jr for j = 0, . . . , (2D − 1) using induction (3a).
Deduce the linearly recurrent sequence S and the Hankel matrix H ;

2 hn(xn) := BerlekampMassey(S) ;
3 if deg(hn) = D then

4 Let Lc = {j ∈ {1, . . . , n− 1} such that NFdrl (xj) = xj} and L = {1, . . . , n− 1}\Lc;
5 for j ∈ Lc do

6 Deduce Tj1 and bj then solve the structured linear system H cj = bj ;

7 hj(xn) :=
∑D−1

i=0 cj,ix
i
n where cj,i is the ith component of the vector cj ;

8 for j ∈ L do

9 hj(xn) := −
∑

i∈Lc αj,ihi(xn)− αj,nhn(xn)− αj,0 where αj,i is the ith coefficient of the
linear form whose leading term is xj;

10 return [x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)];

11 else return fail;

4 Multiplication matrices

4.1 The original algorithm in O(nD3)

To compute the multiplication matrices, we need to perform the computation of the normal forms of all
monomials ǫixj where 1 ≤ i ≤ D and 1 ≤ j ≤ n.

Proposition 1 ( [21]). Let F = {ǫixj | 1 ≤ i ≤ D, 1 ≤ j ≤ n} \ B be the frontier of the ideal. Let

t = ǫixj ∈ F then

I. either t = LTdrl (g) for some g ∈ Gdrl hence, NFdrl (t) = t− g;

II. or t = xk t
′ with t′ ∈ F and deg(t′) < deg(t). Hence, if NFdrl (t

′) =
∑s

l=1 αlǫl with ǫs <drl t
′,

NFdrl (t) = NFdrl (xk NFdrl (t
′)) =

∑s
l=1 αl NFdrl (ǫlxk).
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From this proposition, it is not difficult to see that the normal form of all the monomials ǫixj can be
easily computed if we consider them in increasing order. Indeed, let t = ǫixj for some i ∈ {1, . . . ,D}
and j ∈ {1, . . . , n}. Assume that we have already computed the normal form of all monomials less than
t and of the form ǫi′xj′ . If t is in B or is a leading term of a polynomial in Gdrl then its normal form is
trivially known. If t is of type (II) of Proposition 1 then t = xkt

′ with t′ <drl t hence NFdrl (t
′) =

∑s
i=l αlǫl

is known. Finally, NFdrl (t) =
∑s

l=1 αl NFdrl (xkǫl) with xkǫl <drl xkt
′ = t for all l = 1, . . . , s. Thus

the normal forms of xkǫl are known for all l = 1, . . . , s and we can compute NFdrl (t) in D2 arithmetic
operations. This yields the algorithm proposed in [21]. However, since the cardinal of the frontier F can be
bounded by nD the overall complexity is O(nD3) arithmetic operations.

4.2 Computing the multiplication matrices using fast linear algebra

Another way to compute the normal form of a term t is to find the unique polynomial in the ideal whose
leading term is t and the other terms correspond to monomials in B. Hence, to compute the multiplication
matrices, we look for the polynomial t−NFdrl (t) for any t in the frontier F (see Proposition 1). Therefore,
to compute these polynomials we proceed in two steps. First, we construct a polynomial in the ideal whose
leading term is t. If t is the leading term of a polynomial g in Gdrl then the desired polynomial is g itself.
Otherwise, t is of type II of Proposition 1 and t = xkt

′ with t′ ∈ F and deg(t′) < deg(t). We will proceed
degree by degree so that we can assume we know a polynomial f ′ in the ideal whose leading term is t′; then
the desired polynomial is f = xkf

′. Next, once we have all the polynomials f with all possible leading
terms t of some degree d, we can recover the canonical form t − NFdrl (t) by reducing f with respect
to the other polynomials whose leading terms are less than t. By computing a reduced row echelon form
of the Macaulay matrix (the matrix representation) of all these polynomials, we can reduced all of them
simultaneously.

Following the idea presented above, we can now describe Algorithm 4 for computing all the multipli-
cation matrices Ti. Assuming that F is sorted in increasing order w.r.t. <drl, we define the linear map
φ:

φ :

(
A → KD+#F

∑D
i=1 αiǫi +

∑#F
j=1 βjtj 7→ (β#F , . . . , β1, α1, . . . , αD) .

)

Let M be a row indexed matrix by all the monomials in F . Let m be a monomial in F and i the position of
m in F , M [m] denotes the row of M of index m i.e. the (#F − i+1)th row of M containing a polynomial
of leading term m. If T is a matrix, T [∗, i] denotes the ith column of T .

Proposition 2. Algorithm 4 is correct.

Proof. The key point of the algorithm is to ensure that for each monomial in F its normal form is computed
and stored in NF before we use it. We will prove the following loop invariant for all d in {dmin, . . . , dmax}.

Loop invariant: at the end of step d, all the normal forms of the monomials of degree d in the frontier F
are computed and are stored in NF. Moreover, the mth row of the matrix M contains φ(m−NFdrl (m)) for

any monomial m ∈ Fd.

First, we assume that d = dmin. Then, each monomial t of degree d in F is of type (I) of Proposition 1.
Indeed, if t was of type (II) then there exists t′ in F of degree d − 1 which divides t. This is impossible
because t′ ∈ Fdmin−1 = ∅. Hence, the normal form of t for t ∈ Fdmin

, is known and M [t] contains φ(g) with
g the unique element of Gdrl such that LTdrl (g) = t. Hence, M [t] = φ(g) = φ(t− NFdrl (t)). Moreover,
since Gdrl is a reduced Gröbner basis , the matrix M is already in reduced row echelon form. Thus, the loop
in Line 9 updates NF[t] for all t ∈ Fd.

Let d > dmin, we now assume that the loop invariant is true for any degree less than d. For all t ∈ Fd

the tth row of M contains either φ(t − NFdrl (t)) if t is of type (I) or φ(t − xkNF[t′]) if t is of type (II).
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Algorithm 4: Building multiplication matrices (in the following || does not mean parallel code but
gives details about pseudo code on the left side).

Input : The DRL Gröbner basis Gdrl of an ideal I .
Output: The n multiplication matrices T1, . . . , Tn.

1 Compute B = {ǫ1 < · · · < ǫD} and F = {xiǫj | i = 1, . . . , n and j = 1, . . . ,D} \B, S := #F ;
2 dmin := min({deg(t) | t ∈ F}); dmax := max({deg(t) | t ∈ F}); NF := [];
3 M := the zero matrix of size nD × (n+ 1)D row indexed by all the monomials in F ;
4 for d = dmin to dmax do

5 Fd := Sort({t ∈ F | deg(t) = d}, <drl) ;
6 for m ∈ Fd do

7

Check if we can find:
(i)g ∈ Gdrl such that LTdrl (g) = m

(ii) t′ ∈ F such that m = xkt
′

Add the corresponding row to the matrix M ;

if m = LTdrl (g) then

M [m] := φ(g);

else

Find xk and t′ ∈ Fd−1 such that m = xkt
′;

M [m] := φ(m− xkNF[t′]);

8 M := ReducedRowEchelonForm(M) ;
9 for i = 1 to sd do

10 Read NFdrl (m) from M ; NF[m] := −
∑D

j=1M [m, S + j] ǫj ;

11 Construct T1, . . . , Tn from NF;

for ǫ in B do NF[ǫ] := ǫ;
for t in F ∪ B do

for xi s.t. xi divides t and t
xi

= ǫj ∈ B do

Ti[∗, j] := ψ(NF[t]);

return T1, . . . , Tn;

Since deg(t′) = d − 1, by induction its normal form is known and in NF. Hence NF[t′] = NFdrl (t
′) and

M [t] = φ(xk(t
′ − NFdrl (t

′)). A first consequence is that, before Line 8, since we sort Fd at each step, M
is an upper triangular matrix with M [t, t] = 1 for all t ∈ Fd, see Figure 1. Note that sorting Fd is required
only to obtain this triangular form. Let f be the polynomial NFdrl (t

′). Writing f =
∑D

j=1 λjǫj we have

that λj = 0 if deg(ǫj) ≥ d since deg(NFdrl (t
′)) ≤ deg(t′) = d − 1. So that f =

∑k
j=1 λjǫj such that

deg(ǫj) < d when j ≤ k. Now for all j such that 1 ≤ j ≤ k we are in one of the following cases:

1. xkǫk ∈ B so that NFdrl (xkǫk) = xkǫk is already reduced.

2. xkǫk ∈ F . Since d′ = deg(xkǫk) ≤ d it implies that xkǫk ∈ Fd′ so that the row M [xkǫk] has been
added to M .

Moreover, since each row of the matrix M contains polynomial in the ideal 〈Gdrl〉 after the computation
of the row echelon form, the rows of the matrix M contain also polynomials in 〈Gdrl〉 being linear combi-
nation of the previous polynomials. Hence, after the computation of the row echelon form of M , the row
M [t] is equal to φ(t−NFdrl (t)).

By induction, this finishes the proof of the loop invariant and then of the correctness of Algorithm 4.

5 Polynomial equations with fixed degree: the tame case

The purpose of this section, is to analyze the asymptotic complexity of Algorithm 3 and Algorithm 4 when
the degrees of the equations of the input system are uniformly bounded by a fixed integer d > 1 and to
establish the first main result of this paper.
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5.1 General Complexity analysis

We first analyse Algorithm 3 to compute the univariate polynomial representation given the last multiplica-
tion matrix.

Proposition 3. Given the multiplication matrix Tn and the DRL Gröbner basis Gdrl of an ideal in Shape

Position, its LEX Gröbner basis can be probabilistically computed inO(log2(D)(Dω+n log2(D)D)) where

D is the number of solutions. Expressed with the input parameters of the system to solve the complexity is

O(ndωn) where d > 1 is a (fixed) bound on the degree of the input polynomials.

Proof. As usual T = T t
n is the transpose matrix of Tn. Using the induction (3a), the vectors T jr can be

computed for all j = 0, . . . , (2D−1) inO(log2(D)Dω) field operations. Then the linear recurrent sequence
S and the matrix H can be deduced with no cost. The Berlekamp-Massey algorithm compute the minimal
polynomial of S in O(D log22(D)) field operations [8, 28].

As defined in Section 3.2, L = {j ∈ {1, . . . , n− 1} such that NFdrl (xj) 6= xj} and Lc = {1, . . . , n−
1}\L. The right hand sides of the linear systems bi can be computed without field operations when i ∈
Lc. Since the matrix H is a non singular Hankel matrix, the #Lc linear systems (3c) can be solved in
O(#Lc log22(D)D) = O(n log22(D)D) field operations. Then, to recover all the hi(xn) for i ∈ L we
perform O(#L#LcD) = O(n2D) multiplications and additions in K.

Since the Bézout bound allows to bound D by dn with d a fixed integer we have log2(D) ≤ n log2(d)
and the arithmetic complexity of Algorithm 3 is O(log2(D)(Dω + n log2(D)D)) which can be expressed
in terms of d and n as O(ndωn).

Note that the deterministic version, mentioned in Remark 1 have a complexity in O(log2(D)Dω +
D2(n + log2(D) log2(log2(D)))) arithmetic operations, thanks to induction (3a) and section 3.2.2 in [22].
This deterministic version computes the LEX Gröbner basis of the radical of the ideal in input when the
ideal is in Shape Position,. In our case, this is not restricting since in Problem 1 we assume that all the roots
of the system are simple which is equivalent to say that the ideal generated by the polynomial is radical.

Proposition 4. Let Tn be the multiplication matrix and Gdrl be the DRL Gröbner basis of a radical ideal

I in Shape Position. There is a deterministic algorithm which computes the LEX Gröbner basis of I in

O(log2(D)Dω +D2(n+ log2(D) log2(log2(D)))) (or in O(ndωn)) arithmetic operations in K.

Now, to complete the first algorithm, we deal with the complexity of Algorithm 4 to compute the mul-
tiplication matrices. Note that in proposition 3 and 4 only the last matrix Tn is needed. Before to consider
the complexity of Algorithm 4, we first discuss about the complexity of computing B and F .

Lemma 2. Given Gdrl (resp. B) the construction ofB (resp. F ) requires at mostO(n3D2) (resp. O(nD2+
n2D)) elementary operations which can be decreased to O(nD) (resp. O(n2D)) elementary operations if

a hash table is used.

Proof. It is well known that the canonical basis B can be computed in polynomial time (but no arithmetic
operations). Nevertheless, in order to be self contained we describe an elementary algorithm to compute B.
We start with the monomial 1 and we multiply it by all the variables xi which gives n new monomials to
consider. If the new monomials are not divisible by a leading term of a polynomial in Gdrl then we keep it
otherwise we discard it. At each step we multiply by the variables xi only the monomials of highest degree
that we have kept and we proceed until the step where all the new monomials are discarded. Hence, we
have to test the irreducibility of all the elements in F ∪ B whose total number is bounded by (n + 1)D.
Since LTdrl (Gdrl) ⊂ F we can bound the number of elements of Gdrl by nD. Therefore, to compute B we
have to test the divisibility of (n + 1)D monomials by at most nD monomials. Hence, the construction of
B can be done in O(n3D2) elementary operations. Note that by using a hash table and assuming we have
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no memory limit, for each monomial we can test its divisibility by a leading term of polynomials in Gdrl in
O(1) operations. In that case B can be constructed in O(nD) elementary operations.

From B, the construction of F requires nD monomials multiplications i.e. n2D additions of integers.
Moreover, removing B of F can be done by testing if (n + 1)D monomials are in B in at most O(nD2)
elementary operations which can be decreased to O(nD) if we use a hash table.

Now we seen how constructing B and F , the complexity of Algorithm 4 is treated in the following
proposition.

Proposition 5. Given the DRL Gröbner basis Gdrl of an ideal, we can compute all the multiplication

matrices in O((dmax − dmin)n
ωDω) (or in O((dmax − dmin)n

ωdωn)) arithmetic operations in K where

dmax (resp. dmin) is the maximal (resp. the minimal) degree of all the polynomials in Gdrl.

Proof. Algorithm 4, computes all the multiplication matrices incrementally degree by degree. The frontier
F can be written as the union of disjoint sets Fδ = {t ∈ F | deg(t) = δ} so that we define sδ := #Fδ and
Sδ := sdmin

+ · · ·+ sδ. The cost of the loop at Line 4 is, at each step, given by the complexity of computing
the reduced row echelon form of M . In degree δ the shape of the matrix M is depicted on Figure 1 where
Id(Sδ−1) is the Sδ−1 × Sδ−1 identity matrix, 0(Sδ−1) is the Sδ−1 × sδ zero matrix, T is a sδ × sδ upper
triangular matrix and B,C,D are dense matrices of respective size sδ × Sδ−1, sδ ×D, Sδ−1 ×D.

M =

t ∈ Fδ t ∈ Fδ−1 ∪ · · · ∪ Fdmin
t ∈ B

1 ⋆ · · · ⋆ ⋆ · · · ⋆ ⋆ · · · ⋆

0 1 · · · ⋆ ⋆ · · · ⋆ ⋆ · · · ⋆

... T
. . .

...
... B

...
... C

...
0 0 · · · 1 ⋆ · · · ⋆ ⋆ · · · ⋆

0 0 · · · 0 1 · · · 0 ⋆ · · · ⋆

... 0(Sδ−1, sδ)
... Id(Sδ−1)

. . .
... D

...
0 0 · · · 0 0 · · · 1 ⋆ · · · ⋆

Figure 1: Shape of the matrix M of Algorithm 4.

Consequently the reduced row echelon form of M can be obtained from the following formula:

ReducedRowEchelonForm(M) =




T−1(C −BD)
Id(Sδ) −−−−−−−

D


 .

Since sδ ≤ Sδ ≤ Sdmax ≤ nD we can bound the complexity of computing the reduced row echelon form of
M by O(nωDω). From Lemma 2, the costs of the construction of B and F are negligible in comparison to
the cost of loop in Line 4 which therefore gives the complexity of Algorithm 4: O((dmax − dmin)n

ωDω))
arithmetic operations. Since D ≤ dn, this complexity can be written as O((dmax − dmin)n

ωdωn).

5.2 Complexity for regular systems

Regular systems form an important family of polynomial systems. Actually, the complexity of computing
a Gröbner basis of a regular system is well understood. Since the property of being regular is a generic
property this also the typical behavior of polynomial systems.

Definition 4. A sequence of non zero homogeneous polynomials (f1, . . . , fm) ∈ Am is regular if for all

i = 1, . . . ,m − 1, fi+1 does not divide 0 in A/ 〈f1, . . . , fi〉. A sequence of non zero affine polynomials is

regular if the sequence (fh1 , . . . , f
h
m) is regular where fhi is the homogeneous part of highest degree of fi.
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For regular systems we can bound accurately the values of dmax which is the maximal degree of Gdrl

and we can prove the first main result of this paper.

Theorem 5.1. Let S = {f1, . . . , fn} be a polynomial system generating a radical ideal admitting a LEX

Gröbner basis in Shape Position. Assume that (f1, . . . , fn) is a regular sequence of polynomials whose

degrees are uniformly bounded by a fixed integer d i.e. deg(fi) ≤ d for i = 1, . . . , n. The univariate

polynomial representation of all the solutions of S can be computed using a deterministic algorithm in

O(ndωn + (dnω+1 + log2(D))Dω) arithmetic operations in K.

Proof. For regular systems dmax can be bounded by the Macaulay bound [1, 34]: dmax ≤
∑n

i=1(deg(fi)−
1) + 1 ≤ n(d− 1) + 1 . Given the system S the complexity of computing the DRL Gröbner basis of 〈S〉 is
bounded by [1]:

O

(
n

(
n+ dmax

n

)ω)
= O

(
n

(
nd+ 1

n

)ω)
= O(ndωn)

arithmetic operations.
From this DRL Gröbner basis, according to Proposition 5, the multiplication matrix Tn can be computed

in O(dnω+1Dω) arithmetic operations.
Finally, from Tn and the DRL Gröbner basis, thanks to Proposition 4 the univariate polynomial represen-

tation can be computed by a deterministic algorithm in O(log2(D)Dω +D2(n+ log2(D) log2(log2(D))))
arithmetic operations. Since, F4 [17], F5 [18] and Algorithm 4 are deterministic algorithms this finishes the
proof.

In particular, a generic system is regular. Let di = deg(fi) for all i = 1, . . . , n. Since the Bézout bound
allows to bound the number of solutions D by

∏n
i=1 di ≤ dn and since this bound is generically reached,

we have generically that D =
∏n

i=1 di ≤ dn and we get the following corollary.

Corollary 1. Let K be the rational field Q or a finite field Fq. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be

a generic polynomial system generating an ideal I = 〈S〉 of degree D. If I admits a LEX Gröbner basis

in Shape Position and if the degree of each polynomial in S is uniformly bounded by a fixed integer d then

there exists a deterministic algorithm which computes the univariate polynomial representation of the roots

of S in Õ(dωn) = Õ(Dω) arithmetic operations where the notation Õ means that we neglect logarithmic

factors in D and polynomial factors in n.

In the next section, we study a first step towards the generalization of Theorem 5.1 to polynomial systems
with equations of non fixed degree. More precisely, we are going to discuss what happens if one polynomial
have a non fixed degree i.e. its degree depends on a parameter (for instance the number of variables). In this
case, Theorem 5.1 does not apply but we present other arguments in order to obtain a similar complexity
results for computing Glex given Gdrl and new ideas for its generalization.

6 A worst case ultimately not so bad

We consider, for instance, the following pathological case: deg(h1) = · · · = deg(hn−1) = 2 and deg(hn) =
2n. Then, D = 22n−1, dmin = 2 and dmax = 2n + n − 1. In this context, the complexity of computing
Glex given Gdrl seems to be in O(logω2 (D)Dω+ 1

2 ) arithmetic operations. However, we will show that an
adaptation of Algorithm 4 allows to decrease this complexity.

In [38], Moreno-Socias studied the basis of the residue class ring A/I , w.r.t. the DRL ordering, for
generic ideals. In particular, he shows that when the smallest variable xn is in abscissa any section of the
stairs of I has steps of height one and of depth two. That is to say, for any variable xi with i < n and for all
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xi

xn0 µ

(defined in Prop. 6)

LTdrl (g) for some g ∈ Gdrl

Element of B

×
xi

xn

depth 2

height 1

Figure 2: Section of the stairs of generic ideals with deg(xj) fixed for all j ∈ {1, . . . , n− 1} \ i.

instantiations of the other variables ({x1, . . . , xn−1} \ {xi}) the associated section of the stairs of I has the
shape in Figure 2.

This shape is summarized in Proposition 6.

Proposition 6 (Moreno-Socias [38]). Let B̃i = {m = xα1 · · · x
αn−1

n−1 |mxin ∈ B}. Let δ =
∑n

i=1(deg(hi)−

1), δ∗ =
∑n−1

i=1 (deg(hi)− 1) and σ = min
(
δ∗, ⌊ δ2⌋

)
. Let µ = δ − 2σ, then

1. B̃0 = · · · = B̃µ and B̃i = B̃i+1 for µ < i < δ and i 6≡ δ mod 2;

2. The leading term of polynomials in Gdrl of degree 0 in xn have degree at most σ + 1 = σ̄;

3. The leading term of polynomials in Gdrl of degree α in xn with µ < α ≤ δ + 1 with α 6≡ δ mod 2
are all of total degree d+α where d = max(deg(m) |m ∈ B̃α−1). Moreover, all these leading terms

are exactly given by t = mxαn for all m ∈ B̃α−1 of degree d;

4. There is no leading term of polynomials in Gdrl of degree 1, . . . , µ in xn or of degree α in xn with

α > δ + 1 or µ ≤ α ≤ δ and α ≡ δ mod 2.

In our case, we have dmax = δ + 1, δ∗ = n − 1, δ = 2n + n − 2, σ = n − 1 and µ = 2n − n. We
can note that in this particular case, µ is very large which implies that a large part of the monomials of the
form ǫixj are actually in B. We will show that in Algorithm 4 instead of computing the loop in Line 4 for
d = dmin, . . . , dmax we can perform it only on restricted subset d = dmin, . . . , σ(n−1)+1, µ+1, . . . , dmax.
By consequence, the complexity of computing Glex given Gdrl will be in O((dmax − µ + σ(n − 1) −
dmin)n

ωDω) = O(logω+2
2 (D)Dω) with dmax − µ+ σ(n − 1)− dmin = n2 − 2 ∼ log22(D).

Lemma 3. Given the normal form of all monomials in F of degree less or equal to σ(n − 1) + 1 we can

compute all the normal forms of all monomials in F of degree less or equal than µ in less than O(nD2)
arithmetic operations.

Suppose that we know the normal form of the monomials of the forms ǫixj of degree less than µ which
are not divisible by xn. From these normal forms, the idea of the proof is to show that the normal form of all
the monomials of the form ǫixj of degree less than µ and of degree αn > 0 in xn is given by xαn

n NFdrl (t)
where NFdrl (t) is assumed to be known.

Proof. Let t ∈ F of degree less or equal to µ. First, assume that xn does not divide t. As I is zero dimen-
sional, there exists η1, . . . , ηn−1 ∈ N such that xηii is a leading term of a polynomial in Gdrl. Moreover,
from Proposition 6, ηi ≤ σ̄. Hence, for all ǫ ∈ B̃0, deg(ǫ) ≤ σ(n−1). The monomials in F not divisible by
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xn are all of the form xiǫ with i = 1, . . . , n−1 and ǫ ∈ B̃0. Thus deg(t) ≤ σ(n−1)+1 and by hypothesis,
its normal form is known.

Suppose now that xn divides t and t is of type II of Proposition 1. We can write t = xαnt
′ where α ∈ N∗

such that xn ∤ t′. From Proposition 6 item (4), t′ is a leading term of a polynomial in 〈Gdrl〉. Moreover,
t ∈ F so t = xiǫ with ǫ ∈ B. Suppose that i = n hence, t

xn
= ǫ = xα−1

n t′ ∈ 〈Gdrl〉 which is impossible.
Thus, i 6= n and we have, t′ = t

xα
n
= xiǫ

′ ∈ F with ǫ′ = ǫ
xα
n
∈ B. Therefore, from the first part of this proof,

NFdrl (t
′) =

∑s
i=1 αiǫi, αi ∈ K is known. Finally, NFdrl (t) =

∑s
i=1 αiNFdrl (x

α
nǫi) with deg(xαnǫi) ≤ µ.

Let ki be such that xkin |ǫi and xki+1
n ∤ ǫi as B̃ki = B̃ki+α then xαnǫi ∈ B and NFdrl (t) =

∑s
i=1 αix

α
nǫi.

By consequence, computing the normal form of t can be done in less than D arithmetic operations. As
usual, we can bound the size of F by nD which finishes the proof.

One can notice that Algorithm 3 – which computes univariate polynomial representation – takes as
input only the multiplication matrix by the smallest variable. Thus in the proof of Theorem 5.1 we did not
fully take advantage of this particularity. Hence, the next section is devoted to study if this matrix can be
computed more efficiently than computing all the multiplication matrices. By studying the structure of the
basis of the K-vector space A/I we will show that, up to a linear change of variables, Tn can be deduced
from Gdrl. In the previous results, the algorithm restricting the order of magnitude of the degrees of the
equations is Algorithm 4 to compute the multiplication matrices. Since, we need only Tn which can be
computed very efficiently, the impact of such a result is that there exists a Las Vegas algorithm extending
the result of Theorem 5.1 to polynomial systems whose equations have non fixed degree.

7 Polynomial equations with non-fixed degree: the wild case

In this section, in order to obtain our main result, we consider initial and generic ideals. The initial ideal
of I , denoted in<(I), is defined by in<(I) = {LT<(f) | f ∈ I}. A minimal set of generators of in<(I)
is denoted E (I), and is given by the leading terms of the polynomials in the Gröbner basis of I w.r.t. the
monomial ordering <. To compute the multiplication matrix Tn we need to compute the normal forms of
all monomials ǫixn for i = 1, . . . ,D with ǫi ∈ B. As mentioned in Section 4 a monomial of the form ǫixn
can be either in B or in E (I) or in in<(I) \ E (I). As previously shown, the difficulty to compute Tn
lies in the computation of the normal forms of monomials ǫixn that are in in<(I) \ E (I)). In this section,
thanks to the study of the stairs, i.e. B, of generic ideals by Moreno-Socias, see Section 6, we first show
that for generic ideals, i.e. ideals generated by generic systems (as defined in Section 5.2), all monomials of
the form ǫixn are in B or in E (I)). Hence, the multiplication matrix Tn can be computed very efficiently.
Then, we show that, up to a linear change of variables, this result can be extended to any ideal. According
to these results, we finally propose an algorithm for solving the PoSSo problem whose complexity allows to
obtain the second main result of this paper.

7.1 Reading directly Tn from the Gröbner basis

In the sequel, the arithmetic operations will be the addition or the multiplication of two operands in K that
are different from ±1 and 0. In particular we do not consider the change of sign as an arithmetic operation.

Proposition 7. Let I be a generic ideal. Let t be a monomial in E (I) i.e. a leading term of a polynomial

in the DRL Gröbner basis of I . If xn divides t then for all k ∈ {1, . . . , n− 1}, xkt
xn

∈ indrl (I).

Proof. This result is deduced from the shape of the stairs of I (see Figure 2 for a representation in dimension
2). Let t = xα1

1 · · · xαn
n be a leading term of a polynomial in Gdrl divisible by xn i.e. αn > 0 and

m = xα1
1 · · · x

αn−1

n−1 . We use the same notations as in Proposition 6.
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From Proposition 6 item (4), since t ∈ E(I) and αn > 0 we have αn > µ and αn 6≡ δ mod 2.
Then, from Proposition 6 item (3), deg(m) is the maximal degree reached by the monomials in B̃αn−1 .

Thus xkm /∈ B̃αn−1 for all k ∈ {1, . . . , n − 1}. As a consequence, for all k ∈ {1, . . . , n − 1} we have
xkt
xn

∈ indrl (I).

Consequently, from the previous proposition, we obtain the following result.

Theorem 7.1. Given Gdrl the DRL Gröbner basis of a generic ideal I , the multiplication matrix Tn can be

read from Gdrl with no arithmetic operation.

Proof. Suppose that there exists i ∈ {1, . . . ,D} such that t = xnǫi is of type (II). Hence, t = m LTdrl (g)
for some g ∈ Gdrl and deg(m) > 1 with xn ∤ m (otherwise ǫi /∈ B). Then, there exists k ∈ {1, . . . , n− 1}

such that xk | m. By consequence, from Proposition 7, we have ǫi = m
xk

· xk LTdrl(g)
xn

∈ indrl (I) which
yields a contradiction. Thus, all monomials t = xnǫi are either in B or in E(I) and their normal forms are
known and given either by t (if t ∈ B) or by changing the sign of some polynomial g ∈ Gdrl and removing
its leading term. Note that by using a linked list representation (for instance), removing the leading term of
a polynomial does not require arithmetic operation.

Thanks to the previous theorem, Algorithm 3 can be used to compute the LEX Gröbner basis of a generic
ideal:

Corollary 2. Let I be a generic ideal in Shape Position. From the DRL Gröbner basisGdrl of I , its LEX

Gröbner basis Glex can be computed in O(log2(D)(Dω+n log2(D)D)) arithmetic operations with a prob-

abilistic algorithm or O(log2(D)Dω +D2(n + log2(D) log2(log2(D)))) arithmetic operations with a de-

terministic algorithm.

However, polynomial systems coming from applications are usually not generic. Nevertheless, this
difficulty can be bypassed by applying a linear change of variables. Let g ∈ GL(K, n) the ideal g · I is
defined as follows g · I = {f(g ·X) | f ∈ I} where X is the vector [x1, . . . , xn]. By studying the structure
of the generic initial ideal of I – that is to say, the initial ideal of g · I for a generic choice of g – we will
show that results of Proposition 7 and Theorem 7.1 can be generalized to non generic ideals, up to a random
linear change of variables. Indeed, in [24] Galligo shows that for the characteristic zero fields, the generic
initial ideal of any ideal satisfies a more general property than Proposition 7. Later, Pardue [41] extends this
result to the fields of positive characteristic.

Definition 5. Let K be an infinite field and I be an homogeneous ideal of K[x1, . . . , xn]. There exists a

Zariski open set U ⊂ GL(K, n) and a monomial ideal J such that indrl (g · I) = J for all g ∈ U . The

generic initial ideal of I is denoted Gin(I) and is defined by J .

The next result, is a direct consequence of [5, 24, 41] and summarized in [16, p.351–358]. This result
allows to extend, up to a linear change of variables, Proposition 7 to non generic ideals.

Theorem 7.2. Let K be an infinite field of characteristic p ≥ 0. Let I be an homogeneous ideal of

K[x1, . . . , xn] and J = Gin(I). For the DRL ordering, for all generators m of J , if xti divides m and

xt+1
i does not divide m then for all j < i, the monomial

xj

xi
m is in J if t 6≡ 0 mod p.

Let f =
∑d

i=0 fi be an affine polynomial of degree d of A where fi is an homogeneous polynomial of
degree i. The homogeneous component of highest degree of f , denoted fh, is the homogeneous polynomial
fd. Let I be an affine ideal i.e. generated by a sequence of affine polynomials. In the next proposition we
highlight an homogeneous ideal having the same initial ideal than I . This allows to extend the result of
Theorem 7.2 to affine ideals.
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Proposition 8. Let I = 〈f1, . . . , fs〉 be an affine ideal. If (f1, . . . , fs) is a regular sequence, then there

exists a Zariski open set Ua ⊂ GL(K, n) such that for all g ∈ Ua, E (g · I) = E
(
Gin

(
Ih
))

.

Proof. Let f be a polynomial. We denote by fh the homogeneous component of highest degree of f
and fa = f − fh. Let t ∈ indrl (I), there exists f ∈ I such that LTdrl (f) = t. Since, f ∈ I and
(fh1 , . . . , f

h
s ) is assumed to be a regular sequence then there exist h1, . . . , hs ∈ K[x1, . . . , xn] such that

f =
∑s

i=1 hifi =
∑s

i=1 hif
h
i +

∑s
i=1 hif

a
i with deg(hifi) ≤ deg(f) for all i ∈ {1, . . . , s} and there exists

j ∈ {1, . . . , s} such that deg(hjfj) = deg(f). By consequence, 0 6=
∑s

i=1 hif
h
i ∈ Ih where Ih is the

ideal generated by {fh1 , . . . , f
h
s } and LTdrl (f) = LTdrl

(∑s
i=1 hif

h
i

)
. Thus, indrl (I) ⊂ indrl

(
Ih
)
. It is

straightforward that indrl
(
Ih
)
⊂ indrl (I) hence indrl

(
Ih
)
= indrl (I).

For all g ∈ GL(K, n), since g is invertible the sequence (g · f1, . . . , g · fs) is also regular. Indeed, if
there exists i ∈ {1, . . . , s} such that g · fi is a divisor of zero in K[x1, . . . , xn]/ 〈g · f1, . . . , g · fi〉 then fi is
a divisor of zero in K[x1, . . . , xn]/ 〈f1, . . . , fi〉. Hence,

indrl (g · I) = indrl
(
(g · I)h

)
.

Moreover, g is a linear change of variables thus it preserves the degree. Hence, for all f ∈ I , we have
(g · f)h = g · fh. Finally, let Ua be a Zariski open subset of GL(K, n) such that for all g ∈ Ua, we have
the equality indrl

(
g · Ih

)
= Gin(Ih). Thus, for all g ∈ Ua, we then have indrl (g · I) = indrl

(
(g · I)h

)
=

indrl
(
g · Ih

)
= Gin(Ih).

Hence, from the previous proposition, for a random linear change of variables g ∈ GL(K, n) we have
indrl (g · I) = Gin

(
Ih
)
. Thus from Theorem 7.2, for all generators m of indrl (g · I) (i.e. m is a leading

term of a polynomial in the DRL Gröbner basis of g · I) if xtn divides m and xt+1
n does not divide m then for

all j < n we have xj

xn
m ∈ indrl (g · I) if t 6≡ 0 mod p. Therefore, in the same way as for generic ideals,

the multiplication matrix Tn of g · I can be read from its DRL Gröbner basis. This is summarized in the
following corollary.

Corollary 3. Let K be an infinite field of characteristic p ≥ 0. Let I be a radical ideal of K[x1, . . . , xn].
There exists a Zariski open subset U of GL(K, n) such that for all g ∈ U , the arithmetic complexity of com-

puting the multiplication matrix by xn of g · I given its DRL Gröbner basis can be done without arithmetic

operation. If p > 0 this is true only if degxn
(m) 6≡ 0 mod p for all m ∈ E (g · I). Consequently, under

the same hypotheses, computing the LEX Gröbner basis of g ·I given its DRL Gröbner basis can be bounded

by O(log2(D)(Dω + n log2(D)D)) arithmetic operations.

Following this result, we propose another algorithm for polynomial systems solving.

7.2 Another algorithm for polynomial systems solving

Let S ⊂ K[x1, . . . , xn] be a polynomial system generating a radical ideal denoted I . For any g ∈ GL(K, n),
from the solutions of g · I one can easily recover the solutions of I . Let U be the Zariski open subset of
GL(K, n) such that for all g ∈ U , indrl (g · I) = Gin(Ih). If g is chosen in U then the multiplication
matrix Tn can be computed very efficiently. Indeed, from Section 7.1 all monomials of the form ǫixn
for i = 1, . . . ,D are in B or in E (g · I) and their normal are easily known. Moreover, as mentioned in
Section 2, there exists U ′ a the Zariski open subset of GL(K, n) such that for all g ∈ U ′ the ideal g · I
admits a LEX Gröbner basis in Shape Position. If g is also chosen in U ′ then we can use Algorithm 3 to
compute the LEX Gröbner basis of g · I . Hence, we propose in Algorithm 5 a Las Vegas algorithm to solve
the PoSSo problem. A Las Vegas algorithm is a randomized algorithm whose output (which can be fail) is
always correct. The end of this section is devoted to evaluate its complexity and its probability of failure i.e.

when the algorithm returns fail.
Algorithm 5 successes if the three following conditions are satisfied
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Algorithm 5: Another algorithm for PoSSo.

Input : A polynomial system S ⊂ K[x1, . . . , xn] generating a radical ideal.
Output: g in GL(K, n) and the LEX Gröbner basis of 〈g · S〉 i.e. a univariate parametrization of the

solutions of S or fail.
1 Choose randomly g in GL(K, n);
2 Compute Gdrl the DRL Gröbner basis of g · S;
3 if Tn can be read from Gdrl then

4 Extract Tn from Gdrl;
5 From Tn and Gdrl compute Glex using Algorithm 3;
6 if Algorithm 3 succeeds then return g and Glex;
7 else return fail;

8 else return fail;

1. g ∈ GL(K, n) is chosen in a non empty Zariski open set U ′ such that for all g ∈ U ′, g · I has a LEX
Gröbner basis in Shape Position;

2. g ∈ GL(K, n) is chosen in a non empty Zariski open set U such that for all g ∈ U , indrl (g · I) =
Gin(Ih);

3. p = 0 or p > 0 and for all m ∈ E(g · I), degxn
(m) 6≡ 0 mod p.

The existence of the non empty Zariski open subset U ′ is proven in [26]. Conditions (1) and (2) are
satisfied if g ∈ U ∩ U ′. Since, U and U ′ are open and dense, U ∩ U ′ is also a non empty Zarisky open set.

7.2.1 Probability of failure of Algorithm 5

Usually, the coefficient field of the polynomials is the field of rational numbers or a finite field. For fields of
characteristic zero, if g is chosen randomly then the probability that the condition (1) and (2) be satisfied is
1. By consequence, the probability of failure of Algorithm 5, in case of field of characteristic zero, is 0.

For finite fields Fq, the Schwartz-Zippel lemma [42, 47] allows to bound the probability that the condi-
tions (1) and (2) do not be satisfied by d

q
where d is the degree of the polynomial defining U ∩ U ′. Thus, in

order to bound this failure probability we recall briefly how are constructed U and U ′.

Construction of U ′. Let I = 〈f1, . . . , fn〉 be a radical ideal of K[x1, . . . , xn]. Since I is radical, all its
solutions are distinct. Therefore, let {ai = (ai,1, . . . , ai,n) ∈ K

n
| fj(a1, . . . , an) = 0, j = 1, . . . , n} be

the set of solutions of I (recall that its cardinality is D). Let g be a given matrix in GL(K, n). We denote by
vi = (vi,1, . . . , vi,n) the point obtained after transformation of ai by g, i.e vi = g · ati. To ensure that g · I
admits a LEX Gröbner basis in Shape Position, g should be such that vi,n 6= vj,n for all couples of integers
(i, j) verifying 1 ≤ j < i ≤ D. Hence, let g = (gi,j) be a (n×n) matrix of unknowns, the polynomial PU ′

defining the Zariski open subset U ′ is then given as the determinant of the Vandermonde matrix associated
to vi,n for i = 1, . . . ,D where vi = (vi,1, . . . ,vi,n) = g · ati. Therefore, we know exactly the degree of

PU ′ which is D(D−1)
2 .

Construction of U . The Zariski open subset U is constructed as the intersection of Zariski open subsets
U1, . . . , Uδ of GL(K, n) where δ is the maximum degree of the generators of Gin(Ih). Let d be a fixed
degree. Let K[x1, . . . , xn]d = Rd be the set of homogeneous polynomials of degree d of K[x1, . . . , xn]. Let
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{f1, . . . , ftd} be a vector basis of Ih
d = Ih ∩ Rd. Let g = (gi,j) be a (n × n) matrix of unknowns and let

M be a matrix representation of the map Ih
d → g · Ih

d defined as follow:

m1 · · · mN

⋆ · · · ⋆ g · f1

M = (Mi,j) =
...

. . .
...

...
⋆ · · · ⋆ g · ftd

where Mi,j is the coefficient of mj in g · fi and {m1, . . . ,mN} is the set of monomials in Rd. In [5, 16],
the polynomial PUd

defining Ud is constructed as a particular minor of size td of M . Since each coefficient
in M is a polynomial in K[g1,1, . . . ,gn,n] of degree d, the degree of PUd

is d · td. Finally, since Ud is open
and dense for all d = 1, . . . , δ we deduce that U = ∩δ

i=1Ud is a non empty Zariski open set whose defining
polynomial, PU , is of degree

∑δ
d=1 d · td ≤ δ

∑δ
i=1 td. Moreover, D = dimK(K[x1, . . . , xn]/I

h) =∑δ
d=0 dimK(Rd/I

h
d ). Thus,

∑δ
d=0 dimK(I

h
d ) =

∑δ
d=0 dimK(Rd) − D =

(
n+δ
n

)
− D. By consequence,

deg(PU ) ≤ δ
((

n+δ
n

)
−D

)
.

For ideals generated by a regular sequence (f1, . . . , fn), thanks to the Macaulay’s bound, δ can be
bounded by

∑n
i=1(deg(fi) − 1) + 1. Note that the Macaulay’s bound gives also a bound on degxn

(m)
for all m ∈ E(g · I). To conclude, if p >

∑n
i=1(deg(fi)− 1) + 1 then condition (3) is satisfied and for any

p the probability that conditions (1) and (2) be satisfied is greater than

1−
1

q

(
D(D − 1)

2
+

(
n∑

i=1

(deg(fi)− 1) + 1

)((∑n
i=1 deg(fi) + 1

n

)
−D

))
.

7.2.2 Complexity of Algorithm 5

As previously mentioned, the matrix Tn can be read from Gdrl (test in Line 3 of Algorithm 5) if all the
monomials of the form ǫixn are either in B or in E(〈Gdrl〉). Let Fn = {ǫixn | i = 1, . . . ,D}, the test
in Line 3 is equivalent to test if Fn ⊂ B ∪ E (〈Gdrl〉). Since Fn contains exactly D monomials and
B ∪ E (〈Gdrl〉) contains at most (n + 1)D monomials; in a similar way as in Lemma 2 testing if Fn ⊂
B ∪ E (〈Gdrl〉) can be done in at most O(nD2) elementary operations which can be decreased to O(D)
elementary operations if we use a hash table. Hence, the cost of computing B, Fn (see Lemma 2) and the
test in Line 3 of Algorithm 5 are negligible in comparison to the complexity of Algorithm 3. Hence, the
complexity of Algorithm 5 is given by the complexity of F5 algorithm to compute the DRL Gröbner basis
of g · I and the complexity of Algorithm 3 to compute the LEX Gröbner basis of g · I . From [34], the
complexities of computing the DRL Gröbner basis of g · I or I are the same. Since it is straightforward to
see that the number of solutions of these two ideals are also the same we obtain the second main result of
the paper.

Theorem 7.3. Let K be the rational field Q or a finite field Fq of sufficiently large characteric p. Let

S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a polynomial system generating a radical ideal I = 〈S〉 of degree

D. If the sequence (f1, . . . , fn) is a regular sequence such that the degree of each polynomial is uniformly

bounded by a fixed or non fixed parameter d then there exists a Las Vegas algorithm which computes the

univariate polynomial representation of the roots of S inO(ndωn+log2(D)(Dω+n log2(D)D)) arithmetic

operations.

As previously mentioned, the Bézout bound allows to bound the number of solutions D by the product
of the degrees of the input equations. Since this bound is generically reached we get the following corollary.

21



Corollary 4. Let K be the rational field Q or a finite field Fq of sufficiently large characteric p. Let S =
{f1, . . . , fn} ⊂ K[x1, . . . , xn] be a generic polynomial system generating an ideal I = 〈S〉 of degree D.

If the degree of each polynomial in S is uniformly bounded by a fixed or non fixed parameter d then there

exists a Las Vegas algorithm which computes the univariate polynomial representation of the roots of S in

Õ(Dω) = Õ(dωn) arithmetic operations where the notation Õ means that we neglect logarithmic factors in

D and polynomial factors in n.
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A Impact of Algorithm 5 on the practical resolution of the PoSSo problem

in the worst case

In this appendix we discuss about the impact of Algorithm 5 on the practical resolution of the PoSSo prob-
lem. Note that Algorithm 3 to compute the LEX Gröbner basis given the multiplication matrix Tn is of
theoretical interest. Hence, in practice we use the sparse version of Faugère and Mou [23]. In Table 1, we
give the time to compute the LEX Gröbner basis using the usual algorithm (Algorithm 1) and Algorithm 5.
This time is divided into three steps, the first is the time to compute the DRL Gröbner basis using F5 algo-
rithm, the second is the time to compute the multiplication matrix Tn and the last part is the time to compute
the LEX Gröbner basis given Tn using the algorithm in [23]. Since, this algorithm takes advantage of the
sparsity of the matrix Tn we also give its density. We also give the number of normal forms to compute (i.e.

the number of terms of the form ǫixn that are not in B or in E (I) (or in E (g · I)).
The experiments are performed on a worst case for our algorithm in the sense that the system in input is

already a DRL Gröbner basis. Thus, while the usual algorithm does not have to compute the DRL Gröbner
basis, our algorithm need to compute the DRL Gröbner basis of g · I . The system in input is of the form
S = {f1, . . . , fn} ⊂ F65521[x1, . . . , xn] with LTdrl (fi) = x2i . Hence, the monomials in the basis B are all
the monomials of degree at most one in each variable. The degree of the ideal D is then 2n. The monomials
ǫixn that are not in B or in E (〈S〉) are of the form x2nm where m is a monomial in x1, . . . , xn−1 of total
degree greater than zero and linear in each variable. By consequence, using the usual algorithm we have to
compute 2n−1 − 1 normal forms to compute only Tn.

n D Algorithm
First Build

# NF Density
Compute Total

GB Tn h1, . . . , hn PoSSo

7 128
usual 0s 0s 63 34.20% 0s 0s

This work 0s 0s 0 26.57% 0s 0s

9 512
usual 0s 13s 255 32.81% 0s 13s

This work 0s 0s 0 23.68% 0s 0s

11 2048
usual 0s 7521s 1023 31.93% 23s 7544s

This work 5s 0s 0 21.53% 0s 5s

13 8192
usual 0s > 2 days 4095 > 2 days

This work 157s 2s 0 19.86% 26s 185s

15 32768
usual 0s > 2 days 16383 > 2 days

This work 5786s 46s 0 18.52% 1886s 7718s

16 65536
usual 0s > 2 days 32767 > 2 days

This work 38067s 195s 0 18.33% 14297s 52559s

Table 1: A worst case example: comparison of the usual algorithm for solving the PoSSo problem and Algorithm 5,
the proposed algorithm. Computation with FGb on a 3.47 GHz Intel Xeon X5677 CPU.

One can note that in the usual algorithm the bottleneck of the resolution of the PoSSo problem is the
change of ordering due to the construction of the multiplication matrix Tn. Since our algorithm allows to
compute very efficiently the matrix Tn (for instance for n = 11, 0 seconds in comparison to 7544 seconds
for the usual algorithm), the most time consuming step becomes the computation of the DRL Gröbner basis.
However, the total running time of our algorithm is far less than that of the usual algorithm. For instance,
for n = 13 the PoSSo problem can now be solved in approximately three minutes whereas we are not allow
to solve this instance of the PoSSo problem using the usual algorithm.

Moreover, using Algorithm 5 the density of the matrix Tn is decreased (which implies that the running
time of Faugère and Mou algorithms is also decreased). This can be explained by the fact that the dense
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columns of the matrix Tn comes from monomials of the form xnǫi that are not in B i.e. in the frontier. Since
Algorithm 5 allows to ensure that the monomials xnǫi are either in B or in E (g · I) then the number of
dense columns in Tn is potentially decreased.
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