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A KD-TREE ALGORITHM TO DISCOVER THE BOUNDARY OF A

BLACKBOX HYPERVOLUME
OR HOW TO PEEL POTATOES BY RECURSIVELY CUTTING THEM IN HALVES

JEAN-BAPTISTE ROUQUIER∗, ISABELLE ALVAREZ† , ROMAIN REUILLON‡ , AND PIERRE-HENRI

WUILLEMIN§

Abstract. Given a subset of Rn of non-zero measure, de�ned through a blackbox function (an oracle), and
assuming some regularity properties on this set, we build an e�cient data structure representing this set. The
naive approach would consists in sampling every point on a regular grid. As compared to it, our data structure
has a complexity close to gaining one dimension, both in terms of space and in number of calls to the oracle.
This data structure produces a characteristic function (i.e. a function that can be used in lieu of the oracle),
allows to measure the volume of the set, and allows to compute the distance to the boundary of the set for any
point.

Key words. kd-tree, octree, quadtree, blackbox, oracle, hyper-surface, hyper-volume, numerical integration,
boundary approximation

1. Introduction.

1.1. Motivation. Viability theory is a set of mathematical and algorithmic methods pro-
posed for analyzing the evolutions of controlled dynamical systems inside a set of admissible
states K, called the viability constraint set ([1]). The research described in this paper has been
motivated by a problem that arose when numerically exploring the phase space of a complex
(for instance biological) dynamic model in such viability analysis, as in [12]. The main concepts
of the viability theory are the following:

• Viable state: A point inK is called viable if there exists at least one control function such
that a trajectory starting from that point and following this control function remains
in K until time T (or inde�nitely). See Figure 1.1.

• Viability kernel: The set of all viable states is called the viability kernel and is denoted
V iab(K).

Figure 1.1. A trajectory inside a viability kernel.

A frequent problem that occurs during viability analysis is the computation of the viability
kernel and its representation since the complexity of these tasks is exponential with space or
time for complex dynamical systems ([10], [4]).

In this paper, we focus on a method to represent the viability kernel. In order to allow
application to various models and ensure maximum generality, we consider the dynamical model
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as a blackbox that maps one point to the point at the next time step. Given the set at one time
step, we can tell if a point is viable at the previous time step simply by testing if its image by
the blackbox is within the current set.

We call f the function that tells if a point is viable (the oracle), and V the set of viable
points at a given time step. We thus need a way to

• represent the sets encountered at each time step, starting with the �nal states at time
horizon T ,

• given one set and the model, compute the set V at the previous time step.
The naive way would be to sample the phase space along a (�ne) grid, and store the coordi-

nates of all viable points, but this is costly in terms of time and memory, especially because the
number of variables, i.e. the dimension n, can be high. Indeed, each point of the phase space,
or search space, is a possible con�guration of those n variables.

Instead of this representation in extension of the set V , we develop compact representation
(in intension) of the function f .

The �eld of machine learning gives another point of view on this problem. Indeed, our
problem consists in learning a classi�cation function that is compatible with an oracle f . More
precisely, this problem can be seen as an active learning problem as in [7], where the computation
of the oracle function f is considered very costly. The authors optimize the choice of examples
to label with the oracle function. But in their settings, examples are to be chosen among a given
�nite set.

Our case is special in the following respect:
1. The oracle f is complete: in other words, a hypothesized learning database would

contain all points of the search space. However, the computation of f may be resource
intensive, thus we need to minimize the number of calls to the oracle. In that sense, our
problem is close to the domain of active learning [11], i.e. the learning process implies a
sub-task of choosing the samples to be labeled by the oracle. We can choose any point
of Rn, we are not restricted to a given set of vectors.

2. We need to provide a guarantee on generalization. Precisely, we bound a distance
between the oracle and our learned function: if a point P is classi�ed as viable, there is
a viable point at most at a constant (independent from P ) distance. Nearest neighbour
classi�cation also gives this type of bound, but the bound is not constant (it depends on
the point). Statistical methods classically provide a bound on average, while we need a
bound for each point.

3. As opposed to methods that are tolerant on outliers, we look for an exact method.
Indeed, as we will chain the learned functions (i.e. we will iterate our algorithm), one
learned function being the oracle for the next one, we want to propagate the guarantees,
transitively.

In the framework of viability theory, we can take into account the properties of V induced by
the properties of the set of constraints K. In particular, when the dynamic is su�ciently regular
(for example such that the boundary ∂V is di�erentiable) and when K is a simply connected
closed set, then V is also a simply connected closed set. The exact properties we assume are
formalized in Section 4, which allows us to provide some guarantees on generalization.

The same problem has been addressed in [5], using SVM to encodes the boundary of V (t).
Unfortunately, it is not possible with SVM to have any guarantee on the distance between the
boundary of V and the boundary of the SVM. To ful�ll the need for a guarantee, we suggest to
use a well-know data structure for the representation of a set of points in high dimension: the
kd-tree.

1.2. Representing f with kd-trees. Kd-trees, proposed by [2], are a data structure
designed to store a set of points in a n-dimensional space. It is a binary search tree where each
node represents a region of the space. Each node is either a leaf or has its region partitioned in
two, each sub-region being associated to a child. This partition of the node region is always done
along one of the n dimensions. To �nd which leaf region contains a given point P , one simply
descends the tree, choosing at each node the very child representing the region containing P .

Kd-trees have been used to store a dynamic set of points and tell if a given point belongs
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to the set, �nd the nearest neighbor of a given point, �nd all points in a given portion of the
space, etc. See [8] for a more detailed introduction.

There are numerous applications to kd-trees, including databases [3], clustering [6], or geom-
etry: computer graphics (especially ray-tracing) [14] and collision detection. While the former
applications are about a �nite set of points, our approach is closer to the geometry application:
here, the tree is used to represent a continuous set of points, i.e. a 3D volume, or in our case a
hyper-volume. To do so, the tree represents the boundary of this set, i.e. a hyper-surface.

Hence, our approach is to subdivide the search space with a kd-tree that is �ne on the
boundary of V and coarse elsewhere. This kd-tree yields a guaranteed approximation of the
boundary: we provide a set containing V and a set contained in V . Figure 1.2 illustrates the
use of a kd-tree to approximate V , focusing on its boundary.

The main di�erence between this problem and the application of kd-trees to computer
graphics is that in the latter the boundary is known, whereas in our case we want to discover
this boundary by sampling the n-dimensional space. A close problem is addressed in [9] where
the aim is to discover an unknown iso-surface from a set of measurements, each measurement
consisting in 3D coordinates and an intensity. But those 3D coordinates are imposed, while in
our setting we can choose the sampling points.

• Viable points are red,
• non viable points are blue,
• the ground truth is in the background (light
red or blue),

• divisions made by the algorithm are black,
• points used to label the zones are in bright
red or blue.

Figure 1.2. Example run of our algorithm for a viable 2D-disk (color online).

2. De�nitions and notations.

2.1. Problem description. Formally, the inputs of our problem are
1. a search space, namely a hypercube of dimension n and side length c,
2. a blackbox function f : [0, c]n → {0, 1}.
The output is a characteristic function g that approximates f . Building g is done by the

user as a preprocessing step; we try to minimize the number of calls to f during this step. Then,
the user can call g on many P ∈ [0, c]n (to label P as viable or not), while f is not needed any
more. Indeed, evaluating g(P ) is much faster than f(P ), which accelerate viability algorithms
that were limited by the evaluation time of f .

A naive approach to build g would be to sample f on every point of a regular grid of step
ε. But in practical applications, this has proven to be too costly in terms of space and number
of calls to f . Instead, we propose to build g as a kd-tree. Each node in the kd-tree requires
exactly one call to f to be built. Thus, the complexity, both in terms of space an in number of
model calls, is the number of nodes in the tree.

Recall that V = {P ∈ [0, c]n, f(P ) = 1}; the points of this set are called viable. Our
algorithm requires that V is su�ciently regular. Precisely, we assume1 that V is a bounded

1Section 4 gives a more formal speci�cations of these assumptions.
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simply connected set, and has no �too thin tentacles� since our approximation algorithm could
miss the regions connected by these tentacles.

2.2. Notations. In this paper, we use these notations:

• n the dimension of the search space,
• c the length of one side of the hypercube bounding the search space,
• f : [0, c]n → {0, 1} the oracle.
• g : [0, c]n → {0, 1} the approximation of f that we build,
• V = {P | f(P ) = 1} the input set to approximate, V { the set of non-viable points,
• W = {P | g(P ) = 1} the set of points labeled as viable by our algorithm, i.e. the set
of points belonging to a leaf labeled as viable,

• ∂V the boundary of V , ∂W the one of W ,
• ε the parameter for the stopping criterion, explained in the next section. The user
should choose ε to ensure the regularity properties of V , see Section 4.

2.3. Sketch of the method. The kd-tree is a way to divide the search space into zones.
Each node of the binary tree is associated with a zone, and the root node is associated with
the whole search space. If a node is an internal node (i.e. not a leaf), then its associated zone
is divided in two halves along one dimension. The two resulting zones are associated with the
children of the node.

Note that, as opposed to the usual kd-trees, a zone is always divided in the middle.

In each zone, a point is drawn at random, labeled as viable or not thanks to f , and this
label is used to label the whole zone. Then, computing g(P ) is simply �nding the leaf zone
containing P and returning its label.

To build the tree, the algorithm consists in re�ning the zones that need to, until the desired
precision ε. Precisely, we divide the pairs of zones that are adjacent, undivided, and have
opposite label. By adjacent, we mean �distinct and sharing a common border of dimension
n− 1�. We call those pairs critical pairs.

We call mdn (for �Maximally Divided Node�) a node that will not be divided anymore,
because it meets the stopping criterion: all its sides are of length at most ε. (An mdn is thus
necessarily a leaf.) At the end of the execution, all critical pairs are composed of two mdn.

3. Algorithm. As sketched in the previous section, the algorithm to build the kd-tree is
simply:

1. Start with a tree of only one node. We require a viable point as input, this point is used
to label the root node.

2. Find the critical pairs (see below).
3. Divide once each zone belonging to a critical pair, unless it is an mdn. A zone is always

divided according to its longest dimension.
4. If no zone has been divided, stop, else iterate from point 2.

Note that even if a zone belongs to several critical pairs, it is divided only once per iteration.

To break ties in Step 3, one can either follow a cyclic order among directions (as in usual kd-
trees) and gain some storage space (since there is then no need to store the division direction),
or choose the direction of adjacency (see Section 3.1.1), which experimentally yields a small
complexity gain (roughly 4% less nodes, according to �rst experiments).

The hard part is step 2, which we now explain.

3.1. Find critical pairs. The algorithm to �nd critical pairs is composed of three func-
tions, described in Sections 3.1.2 to 3.1.4. Those functions are recursive and walk down the tree
from the root to the leaves.

But �rst, we need to describe how to determine if two zones are adjacent.

3.1.1. How to determine if two zones are adjacent.

z1

z2

A zone is represented as a vector of n half-open intervals. Those
intervals are computed by successive divisions: one starts with [0; c) and
divides in the middle recursively. In particular, two of those intervals can
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never overlap: either one is included (or equal) in the other, or they are
disjoint.

Two zones (z1, z2) are adjacent if and only if, on each coordinate, one
interval is included (or equal) in the other, except for one coordinate where
both intervals are adjacent (their closures have exactly one common point). The unit vector
normal to the hyperplane containing the common border (i.e. the intersection of their closures)
is called the adjacency direction. It is oriented from z1 to z2. It is the base vector associated to
this coordinate, or its opposite, depending on which interval is to the left of the other.

3.1.2. Find critical pairs in a subtree.

The function pairs_in_node(node) returns the critical
pairs in the subtree rooted at node. This is the main
function: the user will simply call it on the root of the
kd-tree.
As an example, on the opposite �gure where viable zones
are gray and non viable ones are light gray (i.e. the thick
line represents ∂W ), this function returns the critical pairs
represented by dashed lines.
See Algorithm 1 for implementation. One auxiliary
function is needed, namely pairs_between_nodes(node1,
node2), which we now describe.

n
o
d
e

Algorithm 1: pairs_in_node(node)

if node is a leaf then
return ∅

else

(node1, node2) := node.children
result :=∅
result ∪= pairs_in_node(node1)
result ∪= pairs_in_node(node2)
result ∪= pairs_between_nodes(node1, node2)
return result

Inspired by the notation x+= y of the language C, the notation X ∪=Y means
X := X ∪ Y .

3.1.3. Find critical pairs between two given nodes.
The function pairs_between_nodes(node1, node2) returns
the critical pairs (z1, z2) such that z1 is a descendant of node1
(or node1 itself), and z2 a descendant of node2 (or node2 it-
self). It thus assumes that node1 and node2 are adjacent.
The opposite �gure has the same conventions as the previous
one.
See Algorithm 2 for implementation. One auxiliary function
is needed, namely borders_of_node(node, direction, label),
which we now describe. node1 node2

3.1.4. Find nodes next to a border. The function borders_of_node(node, direction,
label) returns the list of descendants of node, with label label, which furthermore are on the
border of node in direction direction.

n
o
d
e

For instance, on the opposite �gure, borders_of_node(node, west,
1) returns the zones drawn with thick borders (but in this example,
not the light gray zone, since its label is not 1).

See Algorithm 3 for implementation.
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Algorithm 2: pairs_between_nodes(node1, node2)

result := ∅
if node1 and node2 are leaves then

if node1.label 6= node2.label then
result := {(node1,node2)}

else result := ∅
else if node1 and node2 are internal nodes then

foreach pair of adjacent nodes (node1', node2') where node1' is a child of node1 and
node2' a child of node2 do

result ∪= pairs_between_nodes(node1', node2')

else if node1 is a leaf and node2 an internal node then
label := 1− node1.label
direction := adjacency direction between node1 and node2

foreach node' in borders_of_node(node2, direction, label) do
if node1 and node' are adjacent then result ∪= {(node1, node')}

else if node2 is a leaf and node1 an internal node then
/* this is symmetrical to the previous case */
/* (in particular, direction is the opposite) */
label := 1− node2.label
direction := adjacency direction between node2 and node1

foreach node' in borders_of_node(node1, direction, label) do
if node2 and node' are adjacent then result ∪= {(node2, node')}

return result

Algorithm 3: borders_of_node(node, direction, label)

if node is a leaf then
if node.label = label then

return {node}
else

return ∅
else

foreach child node' of node touching the boundary of node in direction direction (if
node is divided in direction direction there is only one such child, else both children of
node are such nodes) do

result ∪= borders_of_node(node', direction, label)

return result

3.1.5. Usage. The entry point of this algorithm is the main func-
tion pairs_in_node. The user will thus simply call pairs_in_node on
the root node.

We assume that points outside the search space are not viable.
Thus, also call borders_of_node(root,direction,1) for each direction, to �nd viable zones on the
border of the search space, that also need to be divided.

Alternatively, one can decide to extend the search space whenever there is a viable zone
on the border of the search space. Note that even if there is no such zone at one point in
the execution, dividing a zone can make such a zone appear. To test if the search space
must be extended, note that there is such a zone in direction direction if and only if bor-
ders_of_node(root,direction,1) returns a non empty list. To extend the search space, replace
the root node by a new node having two children: the original root and a new leaf node,
associated to a zone as big as the zone of the original root node, and adjacent to it.
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If one chooses to extend the search space, one must ensure that the viable set is bounded,
to ensure termination of the algorithm.

3.2. Clean the tree and produce a characteristic function. Now, to compute g(P ),
we use the kd-tree as a decision tree: one simply follows a branch of the tree, at each node
choosing the children that contains P . Once a leaf is reached, the label of the leaf is returned.

7→

The tree produced by the algorithm can have a few
divisions that are not necessary to compute g. It is a
small optimization to clean the tree, and it is necessary
for section 6.2. Cleaning the tree simply consists in, while
a node has two leaf children of the same label, replacing
this node with a leaf of that label. The cleaned tree
clearly yields the same characteristic function.

4. Proof of correctness. We now prove that g is indeed an approximation of f : g con-
verges to f in the sense of Theorem 4.1.

Let B(P, ε) be the ball of center P and radius ε. We assume the following properties:

H1: A point M ∈ V is known.
H2: Θ := {P | B(P, ε

√
n) ⊆ V } is path connected.

H3: Each point of V is at a distance at most εn of a point of Θ.

The same conditions are assumed for V {. Additionally we assume that V is simply connected.

H1 is used to initialize the algorithm. H2 and H3 ensure that V has no thin tentacles
(possibly leading to a large region).

The gap from ε
√
n to εn between H2 and H3 allows V to be a rectangular parallelotope

(e.g. a rectangle if n = 2, a rectangular parallelepiped if n = 3). Using ε
√
n instead of εn in

H3 would impose rounded corners with radius ε
√
n.

We now prove that the boundary as seen by the algorithm, ∂W , and the real boundary ∂V
are not far from each other:

Theorem 4.1. At the end of the execution,

1. any point of ∂W is at distance at most ε
√
n of ∂V ;

2. any point of ∂V is at distance at most εn of ∂W .

Section 4.1 proves the �rst claim, Section 4.2 the second one.

4.1. Final critical zones are not far from the boundary.

Let us consider a critical pair (z, z′). z and z′ have have
all their sides of length ε. Let A and B be the points
from which z and z′ are labeled. Since (z, z′) is a critical
pair, g(A) 6= g(B), so there exists a point C ∈ [A,B]
that belongs to ∂V . Since C ∈ z ∪ z′, any point of the
boundary between z and z′ is at distance at most ε

√
n of

C.
Note further that any point of a critical zone is at distance
at most

√
(n− 1)ε2 + (2ε)2 of C, i.e. at distance at most

ε
√
n+ 3 of ∂V .

z z′

ε

ε

A

B

C

∂V

4.2. Points of the boundary are not far from a �nal critical zone.
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Let P be a point of ∂V . If P ∈ ∂W then the
claim is established.
Else, there is γ > 0 such that γ < d(P, ∂W ).
Since P ∈ ∂V , there is a point P ′ ∈ V such
that d(P, P ′) < γ < d(P, ∂W ), i.e. such that
g(P ) = g(P ′).
By symmetry, we can assume without loss of
generality that P /∈ W . By hypothesis H3,
there is a point Q ∈ Θ such that d(P ′, Q) 6 εn.
Thanks to H1, there is a point M such that
g(M) 6= g(P ′). Thanks to H3, there is a point
M ′ ∈ Θ such that g(M ′) = g(M) 6= g(P ).
Thanks to H2, Θ is path-connected, so there is
a path fM ′Q ⊆ Θ from M ′ to Q. Concatenating
it with the segment [QP ′] yields a path from
M ′ to P ′. Since g(P ′) 6= g(M ′) there is a point
R ∈ ∂W on this path.
Let (z, z′) be the critical pair containing R, i.e.
g(z) 6= g(z′), z and z′ are zones with all sides
of length ε, and R belongs to the boundary of
both z and z′. Since z and z′ have all their sides
of length ε, z ∪ z′ ⊆ B(R, ε

√
n).

.
Q

ε
√
n

.P

.P
′

.
M ′

.R

ε √
n

z z′

∂W

V { V

∂V

γ f
M

′Q

Let us assume for a moment that R ∈ fM ′Q. This implies R ∈ Θ i.e. B(R, ε
√
n) ⊆ V . Which

means z and z′ are both included in V and must have the same label, which is a contradiction.
So, R ∈ [P ′Q]. It follows that d(P ′, R) 6 d(P ′, Q).

Since R ∈ ∂W , d(P, ∂W ) 6 d(P,R) 6 d(P, P ′) + d(P ′, R) 6 γ + εn.
Since γ can be arbitrarily small, d(P, ∂W ) 6 εn.

5. Complexity. Let Sε be the set of points that are at distance at most ε
√
n+ 3 of ∂V ,

and µ(Sε) the Lebesgue measure of its volume.
Proposition 5.1. The complexity of the algorithm is

Θ

(
µ(Sε)

εn
n log

c

ε

)
(5.1)

Proof. Let us consider a point of a critical zone. Section 4.1 proved that it is included in
Sε.

Because of the measure of their volume, the number of mdns is at most m = O(µ(Sε)/ε
n).

When a node A is divided by the algorithm, it means this node is a member of a critical
pair (A,B): the border currently seen by the algorithm touches both A and B. After dividing
those zones, the border seen by the algorithm touches at least one of A and B. Recursively, the
border seen by the algorithm at the end of the execution touches at least one of A and B, which
then contains a member of a critical pair (there may be several such critical pairs, we arbitrarily
choose one). We associate A and B with this critical pair.

Let h be the height of the tree at the end of execution. Since the measure of the volume
of an mdn is Θ(εn), and the measure of the volume of a zone at depth p is cn/2p, the height is
h = Θ(n log c

ε ). Each critical pair has been associated with at most 2h nodes: all its ancestors,
plus one node per ancestor. Thus, there are at most 2mh divided nodes (or inner nodes).

Now, like in any binary tree, the number of leaves is one more than the number of inner
nodes. The number of nodes, which is the number of calls to the oracle, is thus O(mh), or
Θ
(
µ(Sε)/ε

n n log c
ε

)
.

Furthermore, this bound is optimal. It is indeed reached when V is contained in one mdn:
µ(Sε) = O(εn), there is only one zone labeled as viable and the tree is degenerated, containing
only O(1) mdn. Formula (5.1) reduces to Θ(n log(c/ε)) = Θ(h), and precisely the tree contains
Θ(h) nodes.
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5.1. Discussion. To get an intuition of what this complexity represents, let us consider a
few cases of regular ∂V . Let H be the n − 1 dimensional Hausdor� measure (e.g. the area if
n = 3), as in [13]. (The n dimensional Hausdor� measure coincides with the Lebesgue measure
in n dimensional space). If ∂V is for instance the border of the search space, or the maximal
sphere included in it, then µ(Sε) = O(εH(∂V )) = O(εcn−1). The �nal complexity is then

O

(( c
ε

)n−1
n log

c

ε

)
This is close to gaining one dimension as compared to the naive algorithm doing one model call
for each point of the regular grid: the complexity of the naive algorithm is O

(
( c
ε )n
)
.

But in the worst case, Sε can �ll the entire search space, for instance if ∂V is a thin cylinder
bent along a Hilbert curve of some �nite order. In this case, Sε = Θ(cn) and the overhead of the
algorithm, which is n log c

ε , makes it worse than the naive approach. By making the cylinder
arbitrarily thin, we can even have H(∂V ) arbitrarily small.

5.2. Simulation. As an illustration of this complexity, Table 5.1 shows the results of a
few runs of the algorithm.

complexity volume

n c t ε = 2−c theoretical observed ratio theoretical observed ratio

2 3 6 0.125 32 57 0.6 0.50265482 0.5 1.005

2 6 12 0.01563 519 715 0.7 " 0.50561523 0.994

2 10 20 0.00098 13 858 12 087 1.1 " 0.50264835 1.00001

2 15 30 0.00003 665 220 388 671 1.7 " 0.50265487 0.99999991

3 3 9 0.125 341 354 1.0 0.2680825 0.265625 1.009

3 6 18 0.01563 43 722 28 056 1.6 " 0.2678566 1.001

3 10 30 0.00098 18 655 049 7 141 724 2.6 " 0.2680832 0.999998

4 3 12 0.125 2 472 1 900 1.3 0.1263309 0.1228027 1.029

4 4 16 0.0625 26 375 15 715 1.7 " 0.1258392 1.004

4 5 20 0.03125 263 759 125 472 2.1 " 0.1264514 0.9990

4 6 24 0.01563 2 532 093 995 029 2.5 " 0.1263195 1.00009

5 3 15 0.125 14 098 8 387 1.7 0.053901 0.052734 1.02

5 4 20 0.0625 300 769 126 597 2.4 " 0.053787 1.002

5 5 25 0.03125 6 015 380 1 969 206 3.0 " 0.053904 0.99994

6 3 18 0.125 67 649 33 717 2.0 0.02117 0.02123 0.997

6 4 24 0.0625 2 886 368 948 750 3.0 " 0.02119 0.9988

7 3 21 0.125 283 966 122 570 2.3 0.007741 0.007734 1.001

7 4 28 0.0625 24 231 817 6 387 377 3.8 " 0.007738 1.0003

8 3 24 0.125 1 069 314 420 511 2.5 0.0026599 0.0026444 1.006

9 3 27 0.125 3 676 073 1 336 702 2.8 0.000864 0.000859 1.006

10 3 30 0.125 11 686 396 3 988 135 2.9 0.000267 0.000264 1.01

Table 5.1

Simulation of the algorithm. c is the number of cuts along each of the n dimensions: the search space
is sampled up to 2c times along each dimension. t = nc is the kd-tree height. According to Equation (5.1),

the theoretical complexity is proportional to
2π

n
2

Γ(n/2)

√
n+ 3 0.4n

1

εn−1
n log

1

ε
while the theoretical volume is

2π
n
2

Γ(n
2

)

0.4n

n
.

The toy model (the set of viable points) used is a hyper-sphere of radius .4, slightly o�set
from the center of the search space.

The observed complexity is the number of calls to the oracle; the theoretical formula only
give a number proportional to the number of calls in the worst case. Thus, the fact that the ratio
is close to one is a coincidence. The fact that it is slightly increasing with depth and dimension
(i.e. simulation time gets better than predicted) suggests that the average case is better than
the worst case.

About the volume, we do expect the ratio to converge to one as ε→ 0.
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6. Other applications of the data-structure. Once the kd-tree is built, one can use it
to compute other properties of V .

6.1. Measure of the volume. Computing the Lebesgue volume µ(W ) of W is easy: it is

simply
∑

z viable

µ(z).

Now, let us show that this is a good approximation of µ(V ). Similarly to the de�nition of
Sε in Section 5, let T be the set of points at distance at most εn of ∂W .

Proposition 6.1.

µ(Wr T ) 6 µ(V ) 6 µ(W ∪ T )

Proof. Thanks to Proposition 4.1 Item 2, W ∪ T contains ∂V . This means that W ∪ T
contains either V or V {, but thanks to algorithm initialization, the latter is not possible. Thus,
µ(V ) 6 µ(W ∪ T ).

Likewise, W { ∪ T contains ∂V , V contains Wr T and µ(Wr T ) 6 µ(V ).

6.2. Distance to ∂V . Given a point P ∈ V , the kd-tree can be used to e�ciently compute
d(P, ∂W ). This is an approximation of d(P, ∂V ):

Proposition 6.2. Let P ∈ V ,

d(P, ∂W )− εn 6 d(P, ∂V ) 6 d(P, ∂W ) + ε
√
n

Proof. Direct application of Theorem 4.1.
To compute d(P, ∂W ), let us assume without loss of generality that P ∈ W , so we are

looking for a point Q /∈ W minimizing d(P,Q). This can be done with a classic branch and
bound algorithm: branching consists in descending to the children of a node; bounding on zone
z consists in computing the minimum and maximum of d(P, z).

7. Conclusion and perspectives. We have detailed an algorithm to store the boundary
of an n-dimensional hyper-volume, and to work with it: test if a point belongs to it, compute
its volume, compute the distance of a point to the boundary.

This algorithm works by iteratively re�ning zones containing the boundary, as if to peel a
potato one would cut it in half, keep the pieces containing some skin, and iterate until the kept
pieces are small enough.

We have proved the complexity, and the convergence of the approximated boundary to the
actual boundary.

Future work may include:
• �nding an algorithm to compute the distance to ∂V for all nodes at once,
• �nding a point P ∈ V that maximizes d(P, ∂V ),
• benchmarking on real viability problems,
• computing not only an approximation of µ(V ), but also the bounds of Proposition 6.1,
• computing the viability kernel, i.e. the set of points that are viable for any number of
iterations of f .

Figure 1.2 illustrate the execution of the algorithm on a simple oracle. Additional material
(illustrations, source code) can be found at http://www.rouquier.org/jb/research/papers/
2011_kdtrees/
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