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ABSTRACT

A complete and detailed knowledge of the structure of the gaseous component in pro-
toplanetary discs is essential to the study of dust evolution during the early phases of
pre-planetesimal formation. The aim of this paper is to determine if three-dimensional
accretion discs simulated by the Smoothed Particle Hydrodynamics (SPH) method can
reproduce the observational data now available and the expected turbulent nature of
protoplanetary discs. The investigation is carried out by setting up a suite of diagnostic
tools specifically designed to characterise both the global flow and the fluctuations of
the gaseous disc. The main result concerns the role of the artificial viscosity implemen-
tation in the SPH method: in addition to the already known ability of SPH artificial
viscosity to mimic a physical-like viscosity under specific conditions, we show how the
same artificial viscosity prescription behaves like an implicit turbulence model. In fact,
we identify a threshold for the parameters in the standard artificial viscosity above
which SPH disc models present a cascade in the power spectrum of velocity fluctua-
tions, turbulent diffusion and a mass accretion rate of the same order of magnitude as
measured in observations. Furthermore, the turbulence properties observed locally in
SPH disc models are accompanied by meridional circulation in the global flow of the
gas, proving that the two mechanisms can coexist.

Key words: accretion, accretion discs – hydrodynamics – turbulence – methods:
numerical – protoplanetary discs.

1 INTRODUCTION

Protoplanetary discs (abbreviated PPD) are discs composed
mainly of gas and dust in quasi-Keplerian rotation around
young stars. They are believed to be the birth place of plan-
ets. The theory of planet formation is complex because sev-
eral scales (from µm to hundreds of thousands of km), sev-
eral forces (e.g. electrostatic, magnetic, gravitational, drag)
and several processes (e.g. turbulence, chemical and thermo-
dynamical transformations, instabilities) are involved. One
of the more poorly understood stages is the evolution of µm-
size dust grains into km-size objects, called planetesimals.

Among the several mechanisms the dust is subject to
(e.g. radial drift and vertical settling), possible large scale
motion and turbulence are expected to be of relevant im-
portance. Large scale motion can lead dust to travel to very
different locations in the disc. Turbulence can have two com-
peting effects mediated by gas drag: stirring up and diffusing
dust particles, impeding their agglomeration, or trapping
them inside eddies, favoring their agglomeration (see e.g.
Cuzzi et al. 1993; Carballido et al. 2008; Cuzzi et al. 2008).

Here we focus on the global flow and on the expected

turbulent behaviour of only the gaseous component of PPD,
which represents the medium in which dust evolves.

In the literature, two large classes of models of turbu-
lent discs are widely used: continuous and discrete models.
Continuous models of viscous discs are directly derived from
the Navier-Stokes equations in presence of the gravitational
potential of the central star, therefore they include the in-
gredients of physical viscosity and star gravity. Among the
most popular models of this type we find the analytic 1D
models by Pringle (1981) and Lynden-Bell & Pringle (1974).
Since the physical molecular viscosity of the gas in PPD is
very low (see e.g. Armitage 2007), high Reynolds numbers
are expected and therefore the gas is believed to be turbu-
lent. The most commonly used model for such discs is the
Shakura & Sunyaev (1973) model (hereafter SS73), which
is a Prandtl model for turbulence: the Navier-Stokes equa-
tions are averaged and the Reynolds stress tensor is mod-
eled by a viscosity called turbulent viscosity. The resulting
total viscosity is the sum of the molecular and the turbulent
viscosities, the former being negligible in PPD. Continuous
models are usually applied to turbulent discs whose source
of turbulence is not known or not explicitly declared; in such
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cases the SS73 relation νT = αsscsH is used to express the
turbulent viscosity parameter. The dimensionless parameter
αss, usually taken as a constant, collects all the ignorance
of the source of turbulence, cs is the gas sound speed and
H the scale height of the disc. Generally, αss-discs are good
models for turbulence and capture its main effects. An ex-
ample is given by the two-dimensional models calculated by
Takeuchi & Lin (2002, hereafter TL02) that show how the
αss prescription is able to describe the mechanism of merid-
ional circulation in discs. However, turbulent fluctuations
are not directly reproduced in such disc models, only their
effect on the dynamics of the global discs can be studied. In
addition, if necessary, turbulent diffusion has to be added to
the basic equations.

A different line of research starts from a proposed ex-
plicit hypothesis concerning the source of turbulence and
derive the corresponding disc evolution. Given the complex
dynamics, numerical simulations are often required, there-
fore these consist of mainly discrete models. Turbulent fluc-
tuations can be resolved down to the resolution scale, which
limits the size of the smallest structures. A first example of
such models are discs produced by Magneto-hydrodynamics
(MHD) simulations where the source of turbulence is the
Magneto-Rotational Instability (MRI) (e.g. Fromang & Nel-
son 2006). The equations at the base of such models are
the Euler equations in presence of an adequate magnetic
field and of the gravitational potential of the central star.
Therefore they include the ingredients of magnetic field and
star gravity, however physical viscosity (included in contin-
uous models) is not present. In addition, turbulent diffusion
(not added a priori) has been found in the outcome of sim-
ulations. A second example of discrete models are systems
produced by simulations of self-gravitating discs where the
source of turbulence is the Gravitational Instability (GI) (e.g
Rice et al. 2005). The equations at the base of such models
are the Euler equations in presence of both self-gravity and
the gravitational potential of the central star. In addition,
the numerical scheme is completed by an artificial viscosity
term. Therefore they include the ingredients of self-gravity,
star gravity and a ‘physical-like’ viscosity.

The nature of the source of turbulence in accretion discs
and particularly in PPD is still an open issue. Even in the ab-
sence of magnetic fields and self-gravity, other mechanisms
can be sources of turbulence, like interactions with exter-
nal objects or pure hydrodynamic and thermal instabilities,
such as the Rossby instability (Lovelace et al. 1999) or the
baroclinic instability (Klahr & Bodenheimer 2003). The pos-
sibility to have a hydrodynamic instability in accretion discs
is still debated. In fact, due to the Rayleigh criterion (see
e.g. Balbus & Hawley 1991; Armitage 2007), Keplerian discs
are believed to be stable with respect to hydrodynamic in-
stabilities. However this is proved only for 1D discs, if the
third dimension is considered the behaviour could change
and there may be the possibility to trigger instabilities (see
e.g. Nelson et al. 2012).

As done in most continuous analytic models, we pre-
fer to model the effects of turbulence (and not its cause)
by the use of an effective viscosity. Here we consider three-
dimensional accretion discs modeled by means of standard
Smoothed Particle Hydrodynamics (SPH, for a review see
Monaghan 2005), which we call SPH disc models, they are
discrete models, such as those of the second class. The SPH

scheme includes an artificial viscosity term (a Von Neumann-
like viscosity) that has been introduced to treat shocks cor-
rectly (see e.g. Cullen & Dehnen 2010). Far from the shock,
the artificial viscosity is usually turned off by a switch. Dif-
ferent flavours of the artificial viscosity term are discussed
in Sect. 2.1.

The aim of the present paper is to answer the following
question: can SPH disc models correctly reproduce both the

observed properties of PPD and the expected effect of tur-

bulence? In order to clarify these two points we present a
detailed characterisation of the properties of the global flow

and particularly of the density and velocity fluctuations of
SPH disc models.

The global flow of SPH models gives us information
about the average properties of the gaseous disc, while the
divergence from the average values defines the SPH fluctu-
ations associated to the considered field (e.g. velocity and
density fields). In particular, SPH fluctuations result from
the combination of standard numerical noise and physical

fluctuations. The former, present in all numerical schemes,
is due in the case of the SPH method both to the discreti-
sation of the continuum equations and to the SPH approx-
imations; it depends on the number of particles and on the
SPH kernel used in the simulations (see Sect. 2.1). The lat-
ter is present if the gas flow is turbulent; it depends on the
Reynolds number of the flow which in turn is related to the
physical viscosity of the gas. Both the numerical noise and
physical fluctuations are related to the artificial viscosity
term in the specific way we will show in this paper.

Turbulence modeling with the SPH method has recently
become an active field of research (see Monaghan 2005, and
references therein). The first effort of implementing turbu-
lence models in the SPH equations (e.g. Violeau & Issa 2007)
is now moving in the direction of quantifying the ability of
the SPH method to intrinsically reproduce turbulence (e.g.
Ellero et al. 2010; Monaghan 2011). A comparison between
SPH and grid methods is presented in Price & Federrath
(2010) and a detailed and clear relation between turbu-
lence and resolution in the SPH method is explained in
Price (2012). In those studies, isotropic homogeneous tur-
bulence in 2D boxes with periodic boundary conditions and
with negligible gravity effects are considered. However, the
case of anisotropic and inhomogeneous turbulence with free

boundary condition such as in 3D gaseous discs, where also
the action of gravity from the central star is relevant, has
been addressed only in a few works (Murray 1996; Lodato
& Price 2010), but without considering the global flow and
the statistics of the velocity and density field and the match
with the available observations for PPD. The present work
aims to contribute in this direction.

In Sect. 2 we describe the main features of the SPH
code we have used to model the accretion discs considered in
the present work, the adopted reference disc model and the
simulations of the different models we performed. In Sect. 3
we present the diagnostics applied to characterise both the
global gas flow and the fluctuations of the velocity field of the
gas, along with the known reference values for PPD. We then
show the results of the applied diagnostics respectively for
the global flow (Sect. 4), the magnitude of SPH fluctuations

(Sect. 5) and the structure of SPH fluctuations (Sect. 6).
The results are discussed in Sect. 7 where we also draw our
conclusions.
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2 SPH MODELS OF ACCRETION DISCS

In this work we focus on a PPD described by given analytic
initial density and locally isothermal sound speed profiles.
The system is not homogeneous nor isotropic. We calculate
the quasi-stationary state of such a disc using different val-
ues of the three numerical parameters N (number of parti-
cles) and α and β (artificial viscosity parameters) controlling
the SPH fluctuations, in order to characterise their effects.

In this section we present the code and the adopted
units, the reference disc model and the sets of simulations
we performed.

2.1 The SPH code

We use the two-phase SPH code described in Barrière-
Fouchet et al. (2005). The two phases represent gas and dust
that interact via aerodynamic drag. The gas is described by
the Euler equations and artificial viscosity.

Here we consider only the gas phase because we are
interested in the characterisation of the global gas flow and
its velocity and density fluctuations. Thus, the momentum
conservation equation takes the form:

dva

dt
= −

∑

b

mb

(

Pa

ρ2a
+

Pb

ρ2b
+Πab

)

∇aW (r,h)

− GM∗

(ra + ǫh)3/2
ra,

(1)

where the usual SPH approximation of replacing integrals
with sums over a finite number of particles N has been per-
formed. The term va is the velocity of SPH particle a, t
the time, m the SPH particle mass, P the pressure, ρ the
mass density, ra the position of particle a with respect to
the central star of mass M∗, ǫ = 0.1 a parameter used to
prevent singularities and W (r, h) the SPH smoothing ker-
nel, with r = |ra − rb| the distance between the particle a
and its neighbour b, and h the smoothing length. Here we
use a cubic-spline kernel truncated at 2h:

W (q) =
σ

hd























1

4
(2− q)3 − (1− q)3 0 6 q < 1;

1

4
(2− q)3 1 6 q < 2;

0 q > 2;

, (2)

where q = r/h, d is the dimension of the simulation (in this
work d = 3) and σ = [2/3, 10/7π, 1/π] is the normalization
constant respectively in 1, 2 and 3 dimensions. The effect of
different kernels will be addressed in a future work.

The smoothing length h is variable and is derived from
the density ρ:

h = η

(

m

ρ

)1/3

(3)

with η = 1.14. This choice of η guarantees a roughly
constant number of neighbours (for 3D simulations:
Nneigh ≈ 50). The smoothing length defines the resolution of
the SPH simulations: for a larger number of particles N the
target number of neighbours is reached inside a smaller vol-
ume (of radius 2h from Eq. 2), implying a smaller smoothing
length. The gas is described by a locally isothermal equa-
tion of state. The artificial viscosity term Πab is described
in Sect. 2.1.1.

2.1.1 The artificial viscosity term

Two different implementations of the artificial viscosity term
are considered. The first one, originally introduced by Mon-
aghan & Gingold (1983) (hereafter MG83) and subsequently
refined by Lattanzio et al. (1985); Monaghan & Lattanzio
(1985); Monaghan (1992), is defined by:

Πij =







1

ρij

(

−αcijµij + βµ2
ij

)

if vij · rij < 0

0 if vij · rij > 0
, (4)

where rij and vij are respectively the relative distance and
relative velocity of particles i and j. The overlined quantities
are averages between particle i and its neighbouring particle
j: cij = (ci + cj)/2, ρij = (ρi + ρj)/2, hij = (hi + hj)/2.
Finally,

µij =
hijvij · rij
r2ij + ǫ2h

2
ij

, (5)

with ǫ2 = 10−2. Different combinations of the two artificial
viscosity parameters have been used so far in different ap-
plications, in particular the combination (α, β) = (1, 2) has
been claimed to give good results (Monaghan 1992, 2005).
We will refer to α = 1 and β = 2 as ‘standard’ values for
the artificial viscosity parameters.

The second implementation of artificial viscosity (here-
after identified as Mu96) is that adopted by Murray (1996)
and Lodato & Price (2010):

Πij = −αcijµij

ρij
. (6)

In contrast to the MG83 implementation, here the artificial
viscosity is applied to all particles (the switch present in the
MG83 version is not applied) and the β term is set to zero.
Therefore, discs with the standard MG83 artificial viscosity
implementation are naturally half as viscous as those with
the Mu96 implementation.

2.1.2 The link to physical viscosity

The reason of the Mu96 choice is to better match the con-
ditions under which the artificial viscosity can represent a
physical viscosity. In fact, Meglicki et al. (1993) showed that
in the 3D continuum limit the Mu96 artificial viscosity has
the form of a physical (shear and bulk) viscous force. The
shear term is equivalent to an αss viscosity (that we call
αcont, where the subscript ‘cont’ refers to continuum) given
by:

αcont,Mu96(R) =
1

10
α
〈h〉θz(R)

H(R)
, (7)

where the average on h is taken along both the azimuthal
and vertical directions and the semi-thickness H of the disc
is defined in Sect. 2.2 (note that this expression is valid
for the cubic spline kernel). However, αcont depends on the
resolution, because of the presence of the smoothing length
(see Lodato & Price 2010).

The SPH equations with the Mu96 artificial viscosity
and with a very large number of particles (high resolution)
are therefore equivalent to those of a viscous fluid with an
αss given by Eq. 7. Thus, artificial viscosity can be used to
control the effective viscosity in the disc and it is expected
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to be responsible of physical fluctuations of the flow when
the gas is in the turbulent regime.

The 3D continuum limit of the MG83 artificial viscosity
is much more complex than the one presented for the Mu96
case and at the moment a simple relation such as that in
Eq. 7 is only available for the α term (Meru & Bate 2012):

αcont,MG83(R) =
1

20
α
〈h〉θz(R)

H(R)
. (8)

The factor of two between the numerical coefficients of Eqs. 7
and 8 naturally arises from the fact that the MG83 artificial
viscosity is applied only to half the particles because of the
presence of the switch (see Eq. 4). Since the Mu96 formula
(developed much earlier than the MG83 formula) is usually
adopted to estimate the effective viscosity in SPH discs inde-
pendently of the particular AV implementation, SPH discs
are generally less viscous than what has been considered
so far. In Sect. 4.4 we present a method to determine the
effective viscosity of an SPH disc with a generic artificial vis-
cosity implementation. It is tested using Eq. 7 in the Mu96
case. It can therefore be used for sampling numerically the
αcont,MG83-α relation in the full (β 6= 0) MG83 case, through
high-resolution simulations.

We note that in the majority of SPH simulations the use
of the artificial viscosity is still preferred to the direct imple-
mentation of the viscous stress tensor to model a pure shear
viscosity. The main reason is that the latter method does
not conserve the total angular momentum exactly (Schäfer
2005; Lodato & Price 2010) as the artificial viscosity term
does. Secondarily, it is more computationally demanding be-
cause of the presence of the second spatial derivative of the
velocities.

2.1.3 The units

The internal units of the code are chosen to be 1 M⊙ for
mass, 100 au (Astronomical Units) for length and to give a
gravitational constant G = 1. With these values the time
unit is therefore 103/2π yr.

2.2 The reference disc model

We consider a typical T Tauri disc of mass Mdisc = 0.01 M⋆

orbiting around a one solar mass star (M⋆ = 1 M⊙). It
extends from Rin = 20 to Rout = 400 au and is characterised
by a density profile given, in cylindrical coordinates, by

ρ(R, z) = ρ0

(

R

R0

)−s

exp

(

− z2

2H2

)

, (9)

(expansion at small z/H , see Laibe et al. 2012 for the rig-
orous expression) with ρ0 = ρ(R0, 0), and s > 0.

H(R) =
cs(R)

Ω(R)
(10)

is the semi-thickness of the disc, related to the sound speed
cs and the angular velocity Ω. The disc is locally isothermal
with a temperature radial profile given by

T (R) = T0

(

R

R0

)−q

(11)

with q > 0, which leads to the sound speed profile

cs(R) = cs0

(

R

R0

)−q/2

. (12)

Note that the sound speed coefficient cs0 and the sound
speed exponent q/2 determine respectively the semi-
thickness of the disc and its radial dependence:

H(R) = H0

(

R

R0

)
3−q

2

, (13)

with H0 = cs0R
3/2
0 /

√
GM⋆. The resulting radial profile of

the surface density is

Σ(R) = Σ0

(

R

R0

)−p

, (14)

with Σ0 =
√
2πρ0H0 the surface density at R0 and

p = s+ (q − 3)/2.
When only the gas phase is considered, all models are

self-similar and different physical scales correspond to the
same dimensionless model. Therefore, in the following, re-
sults are mainly expressed in code units.

The reference values we adopt in the following are
(p, q) = (3/2, 3/4) and R0 = 100 au. At this location, the
disc is slightly flared with H0/R0 = 0.05, Σ0 ≈ 4.58 kgm−2

and cs0 ≈ 149 ms−1 (T0 ≈ 6 K). For reference, the cor-
responding value at 1 au are: Σ0 ≈ 4580 kgm−2 and
T0 ≈ 198 K.

We follow the evolution of the reference disc model,
after pressure equilibrium has been reached, up to time
t = 100 in code units (corresponding to 15.9 orbits at 100
au). All figures are plotted for that time, unless stated oth-
erwise.

2.3 The simulations

The simulations we have performed are listed in Table 1.
The first column gives the name of the simulation, the sec-
ond and third columns display the values of the two artificial
viscosity (AV) parameters α and β, the fourth the number
N of SPH particles used for sampling the disc, the fifth the
kind of artificial viscosity. Simulations can be divided in five
sets. Each simulation can belong to more than one set. Sets
are displayed in the last column of the table. Simulations in
Set A and Set B allow to study the effect of changing the ar-
tificial viscosity parameters for the MG83 and for the Mu96
artificial viscosity respectively. With simulations in Set C it
is possible to study the effect of the different artificial vis-
cosity implementations. In Set D are collected simulations
designed for studying the effect of resolution. Finally, sim-
ulations in Set E are used for testing the αcont-α relations
presented in Eqs. 7 and 8. The role of each set is summarised
in Table 2.

Midplane and vertical cross sections of the density pro-
files of four of the performed simulations are shown in Fig. 1.

3 DIAGNOSTICS AND REFERENCE VALUES

FOR PPD

We consider two kinds of diagnostics which refer to the
global flow and to fluctuations of several quantities, with
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Table 1. Simulation list

Name α β N AV Set

S1 0.1 0.0 2 · 105 MG83 A,C

S2 0.1 0.2 2 · 105 MG83 A

S3 0.1 0.5 2 · 105 MG83 A

S4 0.1 2.0 2 · 105 MG83 A

S5 0.1 10.0 2 · 105 MG83 A

S6 1.0 0.0 2 · 105 MG83 A,C

S7 1.0 2.0 2 · 105 MG83 A,D

S8 1.0 5.0 2 · 105 MG83 A,D

S9 1.0 10.0 2 · 105 MG83 A

S10 2.0 0.0 2 · 105 MG83 A,E

S11 2.0 4.0 2 · 105 MG83 A

S12 2.0 10.0 2 · 105 MG83 A

S13 5.0 0.0 2 · 105 MG83 A

S14 5.0 2.0 2 · 105 MG83 A

S15 5.0 10.0 2 · 105 MG83 A

S16 0.1 0.0 2 · 105 Mu96 B,C

S17 1.0 0.0 2 · 105 Mu96 B,C,D

S18 2.0 0.0 2 · 105 Mu96 B

S19 1.0 2.0 5 · 104 MG83 D

S20 1.0 2.0 1 · 106 MG83 D,C

S21 1.0 5.0 5 · 104 MG83 D

S22 1.0 5.0 1 · 105 MG83 D

S23 1.0 5.0 5 · 105 MG83 D

S24 1.0 5.0 1 · 106 MG83 D

S25 1.0 0.0 1 · 106 Mu96 D,C,E

S26 5.0 0.0 1 · 106 Mu96 E

S27 5.0 0.0 2 · 105 Mu96 E

Table 2. Simulation sets

Set Description

A Changing α and β in MG83 artificial viscosity

B Changing α in Mu96 artificial viscosity

C Changing the artificial viscosity model (MG83, Mu96)

D Changing N

E Testing the αcont-α relations (Eqs. 7 and 8)

particular focus on density and velocity field. We first define
the diagnostic and then give the expected values in some
known cases. In the following, the symbol 〈·〉 represents av-
erage quantities. In this paper we perform both the standard
azimuthal and vertical averages 〈·〉θz and the azimuthal av-
erages only 〈·〉θ, in order to characterise also the vertical
extension.

Figure 1. Disc morphology : volume gas density in midplane and
vertical cross sections for simulations S1, S2, S6, S8 (from top
to bottom and from left to right). The values of the two AV
parameters (α, β) are displayed for each case.

3.1 Diagnostic for the global disc flow

Here, we present the selected quantities used to characterise
the global flow.

(i) Mass distribution. We look at:

(a) the radial profile of the surface density Σ(R),
(b) the density distribution ρ(Rs, z) in the direction

perpendicular to the disc midplane, for a selected radius
Rs.

(ii) Velocity structure. We focus on:

(a) the radial velocity maps vR(R, z), where the radial
component of the velocity field is azimuthally averaged.

(b) the local Mach number of the flow in the midplane
Ma(R) ≡ v(R)/cs(R), where v is the modulus of the local
velocity field.

(iii) Macroscopic turbulence signatures. Four items are
analysed.

(a) The mass accretion rate onto the central star Ṁ0:
we are particularly interested in this quantity for two rea-
sons: (1) it gives indirect information about the turbulent
viscosity coefficient and (2) it is constrained by observa-
tions. For PPD around T Tauri stars the measured values

c© 2013 RAS, MNRAS 000, 1–21



6 S. E. Arena and J.-F. Gonzalez

of mass accretion rates onto the central star are Ṁ ≈ 10−8

M⊙ (Hartmann et al. 1998; Andrews et al. 2009), they can
be reproduced by a value αss ≈ 10−2 (Hartmann et al.
1998; King et al. 2007).

(b) Since Ṁ0 gives an information restricted to the very
inner region of the disc (where our inner boundary condi-
tion is free), we also analyse the radial profile of the local
mass accretion rate: Ṁ(R) = −2πRΣ〈vR〉θz, averaged in
the azimuthal and vertical direction.

(c) The effective viscosity αeff of the gaseous disc (we
express the viscosity in terms of the dimensionless param-
eter αss of the SS73 parametrization) that characterises
the simulated disc.

The effective viscosity in the simulated disc model is
estimated by means of fits to the two-dimensional analytic
models of accretion discs (see details in Appendix B). We
use 2D analytic models because they are well suited for the
azimuthal symmetry present in our simulated discs. For
this reason we call α2D this way of estimating the effective
viscosity αeff . In particular, we derive α2D by comparing
the vertical profile of the radial velocity of the gas flow
to the expression derived by analytic αss-disc models for
different radial positions. We rewrite the vertical profile
of the radial velocity, given by TL02 and Fromang et al.
2011, highlighting the scale height of the disc H(R) at
radial position R:

vR
cs0

=
α2D

2

H(R)

R0

(

R

R0

)−
1+q

2

× (15)

{

6p+ q − 3− (9− 5q)

[

z

H(R)

]2
}

.

Lodato & Price (2010) estimated αeff by fit of the sur-
face density profile of 1D viscous accretion discs (Pringle
1981) and found good agreement with αcont,Mu96 in SPH
simulations of warped discs when the necessary equiva-
lence conditions (large number of particles and Mu96 ar-
tificial viscosity, see Sect. 2.1.2) are met.

(d) Once we know the effective viscosity of the disc, we
can derive the corresponding Reynolds number:

Reeff =
Ma

αeff
. (16)

3.2 Diagnostic for fluctuations

For each simulated disc we have studied both the magnitude
and the structure of the fluctuations present in the disc with
particular attention to the velocity field. Since current ob-
servations have not yet reached the resolution necessary to
directly detect turbulence and study its features in proto-
planetary discs (some progress has been recently claimed by
Hughes et al. 2011 and Guilloteau et al. 2012, who mea-
sured some turbulent velocities in mm observations) the re-
sulting properties of density and velocity fluctuations have
been compared to the typical behaviour observed in turbu-
lence experiments and to results from grid- and particle-
based simulations available in the literature.

The components of the velocity field are identified by vi
and those of the fluctuating velocity field are ui = vi − 〈vi〉
with i = R, θ, z.

3.2.1 Magnitude of velocity fluctuations

Concerning the magnitude of velocity fluctuations, we focus
on the turbulent viscosity coefficient (point M1), the diffu-
sion coefficients (point M2) and the Mach number of velocity
fluctuations (point M3).

(M1) The turbulent viscosity coefficient νT is often de-
rived from Reynolds averages of Navier-Stokes equations
with the turbulent viscosity hypothesis (e.g. Pope 2000) and
is thus related to Reynolds stresses:

νT = −〈uRuθ〉θ
/[

R
∂ (〈vθ〉θ/R)

∂R

]

(17)

(see Appendix A1).
Here we call αRS the corresponding SS73 parameter for a

disc in quasi-Keplerian rotation, it is given by:

αRS(R, z) =
2

3

〈uRuθ〉θ
c2s

, (18)

where Eq. 17 has been combined with the SS73 relation
νT = αsscsH (see Appendix A2). For each radial and ver-
tical position, averages are performed spatially along the
azimuthal direction in order to be able to derive the radial
and vertical dependence of αRS.

The corresponding turbulent Reynolds number is:

ReT =
Ma

αRS
. (19)

In MHD simulations of accretion discs, αss ≈ 10−3 and
includes both the Reynolds and Maxwell stresses (e.g. Fro-
mang & Nelson 2009; Flock et al. 2012), in simulations of
self-gravitating discs, αss ≈ 10−2 and includes both the
Reynolds and gravitational stresses (e.g. Rice et al. 2005,
2011).

(M2) Turbulent flows are often approximated by means
of models where turbulence is described as a diffusive pro-
cess. Here we want to determine if diffusion is present in our
simulations. To this end the method used by Fromang & Pa-
paloizou (2006) in order to calculate the turbulent diffusion

coefficient DT is well suited for Lagrangian codes such as
SPH:

DT(t) =

∫ t

0

Szz(t
′)dt′ (20)

where Szz is the vertical velocity correlation function:

Szz(t) = 〈vz(z, t)vz(z0, 0)〉, (21)

with z0 representing the vertical position of a given particle
at time t = 0 and z the vertical position of the same particle
at time t; in a similar way vz(z0, 0) is the velocity of the
same particle at time t = 0 and vz(z, t) at time t. In order to
compute the diffusion coefficient at a selected radial location
Rs, we average the diffusion coefficient of single particles
that were at Rs at the beginning of the simulation.

A diffusion coefficient DT/(csH) ≈ 5 · 10−3 is found by
Fromang & Papaloizou (2006) in MHD local shearing box
stratified simulations.

(M3) The strength of velocity fluctuations and therefore
their subsonic or supersonic behaviour can be determined
by the corresponding Mach number, defined as the ratio of
the modulus of velocity fluctuations to the gas sound speed:

Maf ≡
|u|
cs

. (22)
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We have computed azimuthal-only and azimuthal and verti-
cal averages in order to present R–z maps and radial profiles.

In the global MHD simulations of stratified discs of Fro-
mang & Nelson (2006) and Flock et al. (2011), the Mach
number of velocity fluctuations is Maf ≈ 0.1 around the
midplane and Maf ≈ 0.4 in the surface layers.

3.2.2 Structure of velocity fluctuations

Concerning the structure of velocity fluctuations, we focus
on the anisotropy vector (point S1), on the power spectrum
(point S2) and on the possible presence of intermittency
(point S3).

(S1) In order to determine the isotropic or anisotropic
character of velocity fluctuations, we define the anisotropy

vector ~δ = (δR, δθ , δz) in terms of the velocity dispersion in
the three spatial directions, in analogy with galactic dynam-
ics (see e.g. Bertin 2000):

δi ≡ 2− σ2
j + σ2

k

σ2
i

, (23)

where the square of the velocity dispersion σ2
i = 〈(vi −

〈vi〉)2〉 = 〈u2
i 〉 = 〈v2i 〉 − 〈vi〉2 and i, j and k refer to the

three cylindrical components. Systems with anisotropy in
the i direction are characterised by a velocity dispersion of
the i component that is larger than that of the other two
components: σi ≫ σj and σi ≫ σk. Therefore, the i compo-
nent of the anisotropy vector will be δi ≈ 2. Averages are
performed along both the vertical and the azimuthal direc-
tion.

From the plots of Fromang & Nelson (2006) and Flock
et al. (2011) we can deduce that σR ≫ σθ ≈ σz, therefore
MHD discs are radially anisotropic and the corresponding
anisotropy vector is ~δ ≈ (2, 0, 0). In contrast, in experiments
of turbulence produced by round jets a corresponding az-
imuthal anisotropy ~δ ≈ (0, 2, 0) has been observed (e.g. Pope
2000).

(S2) The power spectrum is computed along a ring of se-
lected radius Rs, centred on the star and located at the
selected vertical position zs (see Appendix A3):

Pi(Rs, zs; k) = |ûi(k)|2, (24)

with ûi(k) the Fourier transform of the component i of the
velocity fluctuation vector and k = 1/λ the wavenumber
corresponding to length scale λ. We analyse the power spec-
trum of the velocity field in order to determine if an energy
cascade, characteristic of turbulent systems, is present and
if differences related to the position inside the disc are rele-
vant.

(S3) Highly turbulent flows are characterised by intermit-

tency (e.g. Frisch 1996). This feature implies non-Gaussian
probability distribution functions (PDFs) with correspond-
ing non-Gaussian higher order moments. Here we focus on
the density and acceleration PDFs and on their 3rd (skew-
ness, noted S) and 4th (kurtosis, noted K) order moments
(see Appendix A3).

Data are not available for the power spectrum of fluc-
tuations and for the phenomenon of intermittency in accre-
tion discs. In the classical Kolmogorov theory of incompress-
ible homogeneous turbulence the power spectrum of velocity

fluctuations has a power law form P (k) ∼ ks with s = −5/3.
Recent simulations of supersonic compressible gas found a
slope of s ≈ −2 (Price & Federrath 2010, and references
therein). Intermittency, highlighted by non-Gaussian PDFs
and higher order moments, is experimentally found in very
high Reynolds number incompressible flows. In SPH simu-
lations of a simple weakly compressible periodic shear flow,
Ellero et al. (2010) find that the PDF of the particle accel-
eration is in good agreement with non-Gaussian statistics
observed experimentally for incompressible flows.

In simulations of supersonic compressible turbulence
(see e.g. Price & Federrath 2010), log-normal distributions
of the density PDF have been observed:

p(x) =
1

√

2πσ2
p

exp

[

− (x− 〈x〉)2
2σ2

p

]

(25)

with x = ln(ρ/〈ρ〉) and a width controlled by the Mach
number of the fluctuations

σ2
p = ln

(

1 + b2Ma2
)

, (26)

where b ≈ 0.5. The expressions of the skewness and kurtosis
in terms of σp for the log-normal distribution are

{

S =
(

eσ
2
p + 2

)
√

eσ
2
p − 1

K = e4σ
2
p + 2e3σ

2
p + 3e2σ

2
p − 3.

(27)

When σp → 0 the log-normal distribution tends to a Gaus-
sian distribution and the skewness and kurtosis tend to their
gaussian values (0 and 3 respectively).

The results of the application of these diagnostics to the
simulations we performed are described in Sects 4, 5 and 6.

4 THE DISC GLOBAL FLOW

We now consider how the main properties of the global disc
flow (mass distribution, velocity structure, mass accretion
rate and effective disc viscosity) depend on the strength of
artificial viscosity. The convergence of each quantity is also
studied.

4.1 Mass distribution

The position of the peak of the surface density profile Σ(R)
moves towards larger radial distances and its maximum de-
creases (see left panel of Fig. 2), when the two AV parame-
ters α and β are increased: such behaviour is in agreement
with the viscous spreading mechanism that is expected here
due to the existing correlation between artificial and physi-
cal viscosity (see Sect. 2.1.2).

An increase in resolution (see right panel of Fig. 2) has a
qualitatively similar effect to a decrease in viscosity: the sur-
face density peak moves towards the centre of the disc, be-
coming higher (note also that the curve becomes less noisy).
In the central and external regions the projected density pro-
file converges already for a number of particles as small as
5 · 104. In the inner region (R < 10−1Rout), a trend towards
convergence is present, but a higher number of particles,
N & 106, is necessary.

The vertical density profile ρ(Rs, z) at a selected radius
Rs (see insets in Fig. 2 for Rs = 1) follows the expected
Gaussian distribution of Eq. 9, showing that the desired
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Figure 2. Mass distribution. Dependence of the surface density
Σ(R) and vertical density profile ρ(Rs = 1, z) on the AV param-
eters (left: simulations S6, S7, S8, S9 with N = 2 · 105 particles)
and on the resolution (right: simulations S21, S8, S23, S24 with
(α,β)=(1,5)). Values are given in code units.

profile is well reproduced by the sampling procedure and
by numerical thermalisation. It is not significantly affected
by changing α, β or N .

4.2 Velocity structure

4.2.1 Radial velocity maps

Maps of the azimuthally averaged radial velocity 〈vR〉θ in
the R-z plane are displayed in Figs. 3 and 4 for changing
artificial viscosity and resolution respectively.

Effect of artificial viscosity parameters. A transition
from a chaotic to a regular accretion pattern is clearly ob-
served in Fig. 3 when α is increased for a given β (panels
from top to bottom) and as well as when β is increased for
a given α (panels from left to right).

At large radii, a well extended decretion region dom-
inates in all models, as expected from the conservation of
angular momentum. At smaller radii, instead, the struc-
ture of the gas flow strongly depends on the values of the
AV parameters. A decretion flow located around the mid-
plane, associated with an accretion flow in thin surface lay-
ers, appears when (α, β) are increased. Such accretion lay-
ers become thicker for larger AV parameters. Therefore, the
gas flow is characterised by the phenomenon of meridional

circulation. This mechanism has been found in some two-
dimensional viscous disc models (e.g. TL02 that extends the
standard one dimensional SS73 models to two dimensions:
radial and vertical) but is not reproduced by MHD disc sim-
ulations where turbulence is induced by the MRI (Fromang
et al. 2011; Jacquet 2013). The presence of meridional cir-
culation has important implications for the topic of particle
mixing in PPD and is one of the possible mechanisms able
to explain the presence of crystalline solid particles in the
outer regions of T Tauri stars recently observed by Spitzer
(e.g. Sargent et al. 2009). Finally, in the very inner region of
the disc a small and well defined accretion region is present
in all models.

Effect of artificial viscosity implementation. The two
panels in the bottom row of Fig. 4 show the structure of the
radial velocity flow of two discs at different resolution sim-
ulated with the Mu96 artificial viscosity. The resulting flow
structure can be directly compared with the panel above,
which represents the flow structure in an equivalent disc at
the same resolution but simulated with the MG83 artificial

Figure 3. Radial velocity structure of the gaseous disc: changing
AV parameters. Maps of the azimuthally averaged radial velocity
〈vR(R, z)〉θ in the meridian plane for simulations with N = 2·105

particles and the MG83 artificial viscosity implementation. The
colorbar gives the radial velocity: negative values correspond to
gas inflow and positive values to outflow. Values of (α,β) are given
in each subplot.

viscosity. In the simulations at lower resolution (N = 2·105),
the meridional circulation pattern is better reproduced by
the MG83 implementation. However, in the more resolved
discs (N = 106) the two patterns are very similar. The two
small accretion regions present in the outer Mu96 discs are
due to a longer relaxation time-scale for this particular ar-
tificial viscosity implementation (in longer evolution simu-
lations, not shown here, we have observed a net outward
gas flow in agreement with the MG83 case and the expected
viscous spreading).

Effect of resolution. The first row in Fig. 4 shows how
the radial velocity structure has already converged afterN ≈
5 · 105 particles.

TL02 found that the outflow zone around the midplane
shrinks as the radial volume density gradient is reduced (s →
0) and when the condition p+ q < 2, that guarantees a net
accretion of the gas onto the star, is violated. Therefore, we
expect that the thickness of the accretion layers depends
on the values (p, q) of the surface density and temperature
radial profiles of the gaseous disc model. However, a detailed
study of the dependence of the structure of the accretion
layers on the gas density and temperature profiles and the
correlation with the central mass accretion rate is out of the
scope of this paper and will be addressed in a future work.
For the initial profile of the disc model used in this work
we have p + q = 2.25, which implies net decretion but is
very close to the limit between net accretion and decretion.
The surface density of the simulated discs after numerical
relaxation reaches a smooth profile that, in the inner region,
is slightly shallower (implying a slightly smaller p) than the
initially imposed power law, which is characterised by an
inner sharp edge (see Sect. 2.2). This moves the model in
the net accretion region and explains the presence of the
observed thin accretion layers.
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Figure 4. Radial velocity structure of the gaseous disc: chang-
ing resolution and artificial viscosity implementation. The lay-
out is the same as in Fig. 3. The top row shows how the radial
velocity structure changes with resolution for simulations with
the MG83 artificial viscosity, the specific case of simulations with
(α,β)=(1,5) has been chosen as an example: panels from left to
right correspond respectively to N=5 · 104, 2 · 105, 5 · 105, 1 · 106.
The bottom row refers to two simulations with the Mu96 artificial
viscosity implementation (with α = 1) and with N=2 · 105 (left
panel) and N=1 · 106 (right panel).
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Figure 5. Central mass accretion rate Ṁ0. Left panel: depen-
dence on the AV parameters for a given number of particles
(N = 2 · 105), Right panel: dependence on resolution. The mass
accretion rate is displayed in units of M⊙yr−1.

4.2.2 Mach number of the flow

The gas in the disc is supersonic. In fact, since the gas
moves on quasi-Keplerian orbits, the Mach number is ap-
proximated by Ma ≈ vk/cs. With the adopted sound speed
profile it becomes: Ma ≈ R(q−1)/2/cs0. For the values used
here Ma ≈ 20R−1/8, which is approximately in the range of
values 15–25.

4.3 Mass accretion rate

The mass accreted onto the central star (Fig. 5) and the
radial profiles of the mass accretion rate (Figs. 6 and 7) are
two macroscopic signatures of turbulence.

4.3.1 Central mass accretion rate

Effect of artificial viscosity. The left panel in Fig. 5 shows

that Ṁ0 increases with larger α and/or larger β and in the
case of the Mu96 artificial viscosity implementation. The
effect of α is larger, as expected since it controls the first
order in the artificial viscosity term.
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Figure 6. Gas flow in the disc. Surface density radial profile (top
panel) and mass accretion rate radial profile (bottom panel) for
simulation S8.

Effect of resolution. The right panel in Fig. 5 shows
that Ṁ0 decreases with increasing resolution. Such an effect
is due to a decrease of particle noise at higher resolution,
which decreases the numerical dissipation. This is linked to
the dependence of the effective viscosity on resolution (see
Sect. 4.4). In fact, as will be shown in Sect. 6.3.1, the PDFs
of several physical quantities are narrower at higher resolu-
tion, due to the reduced noise. Concerning the central mass
accretion rate we look at the part of the radial velocity distri-
bution corresponding to negative velocities, since only fluid
elements with negative radial velocity are responsible for ac-
cretion. The radial velocity distribution at higher resolution
presents a smaller spread than in the lower resolution case.
In addition, SPH particles in low resolution simulations have
a larger mass than in higher resolution simulations. There-
fore, at lower resolution there is a larger number of more
massive SPH particles with higher inward radial velocity, im-
plying higher accretion rates. The trend of the curve shows
that the central accretion rate is converging, however con-
vergence is not yet reached at one million particles.

For all the considered combinations of (α,β) and N , we
find mass accretion rates consistent with the values observed
for PPD. In addition, we observe a correlation between the
trend of Ṁ0 with respect to (α, β) and the increase of thick-
ness of the accreting layers (net accreting mass flux) ob-
served in Fig. 3. Similarly, the trend with respect to N cor-
relates with the decrease of thickness of the accreting layers
at higher resolution, observed in Fig. 4.

4.3.2 Radial profile of the mass accretion rate

The central mass accretion rate Ṁ0 gives information only
about the region of the disc that is close to the star. In or-
der to have a global picture of the mass flux in the disc, it is
interesting to look at the radial profile of the vertically inte-
grated mass accretion rate Ṁ(R). As an example, the profile
observed in simulation S8 is displayed in the bottom panel of
Fig. 6. The flow is characterised by an inner accreting region
separated, at a radius we call Rt, from an outer decreting
region with small rates at intermediate radii and larger rates
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Figure 7. Radial profiles of the mass accretion rate. The effect of
artificial viscosity is shown for α = 0.1 (top panel) and 1 (middle
panel) and changing β, for simulations with N = 2 · 105 parti-
cles. The effect of resolution is displayed in the bottom panel for
simulations with (α, β) = (1, 5).

at large radii. It can be understood by a comparison to the
surface density profile (top panel of Fig. 6). In the organized
flow of model S8, Rt corresponds to the radial location of
the surface density peak, which moves outwards with time
due to viscous spreading, as the density maximum decreases.
The density peak behaves as a reservoir of gas that supplies
mass both to the inwards and outwards flows, resulting in
an apparent null mass accretion rate at Rt. The varying rate
in the decretion region is due to the vertical structure of the
flow: Fig. 3 shows accretion throughout the disc height for
the inner disc, accretion in the midplane with decretion in
the surface layers at intermediate radii resulting in a slightly
negative radial mass flux, and decretion throughout the disc
height in the very outer regions.

Effect of artificial viscosity. For low values of α and β
fluctuations are so large that the identification of an orga-
nized flow of the fluid is not possible. As shown by the top
panel of Fig. 7, the mass accretion rate profile is very noisy
with a narrow peak in the inner disc, an average value close
to zero in the intermediate regions and negative in the outer
disc. The peak of the surface density profile decreases with
time but less than in the higher (α, β) case and it does not
change position with time. In the vR map (see the top left
corner of Fig. 3) negative and positive regions are clearly
mixed.

Increasing the two AV parameters, the profile becomes
more regular and smooth, following the structure described
above for the specific simulation S8. For α = 1 the profile
tends to converge when β is increased (see the middle panel).
In the Mu96 case we observe similar radial profiles for the
mass accretion rate (not shown).

Effect of resolution. As shown in the bottom panel of
Fig. 7 for the simulations with (α, β) = (1, 5) and increasing
resolution, the peak of the radial profile of the mass accre-
tion rate moves inwards and converges for N & 5 · 105, in
agreement with the convergence observed for the radial ve-
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Figure 8.Determination of α2D. The vertical profile of the radial
velocity extracted from simulations (points with error bars) is
fitted by the two-dimensional αSS-disc model (solid lines). Top:
simulation S7, bottom: simulation S20.

locity maps. The reason of the decrease of the peak in higher
resolution simulations is the same that explains the similar
decreases observed for the central mass accretion rate (see
Sect. 4.3.1).

4.4 The effective viscosity of the SPH disc: α2D

In order to estimate the effective viscosity of the gaseous
disc, we determine the α2D parameter, which is derived by
fitting the vertical profile of the radial velocity expected for a
viscous axisymmetric accretion disc, given by Eq. 15, to that
derived from the simulations (see Appendix B for the fit-
ting procedure). Two examples, characterised by adequately
large AV parameters, are shown in Fig. 8, where the verti-
cal profile of the radial velocity at radial position R = 1 is
displayed for simulation S7 (top panel) and for simulation
S20 (bottom panel).

In Fig. 9 we present the values of α2D obtained by av-
eraging the result of the fit at R=1 and R=2 for the set of
simulated discs. The values are averaged in the radial range
[1, 2]. In simulations with α = 0.1 the vertical profile of ra-
dial velocity cannot be described by the profile in Eq. 15
because the high noise level makes the fit impossible. We
find that simulation profiles can be fitted by a value of α2D

which is roughly the same for the different radial locations
we considered. This shows that the structure of SPH mod-
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Figure 9. Results for α2D. The parameter has been determined
by averaging the values fitted at R=1 and 2 and only for simula-
tions where the noise is low enough to allow the fit.

els is consistent with the 2D version of SS73 accretion disc
models, characterised by a constant αss value.

Effect of artificial viscosity. In the range of AV parame-
ters were the determinations of the effective viscosity is pos-
sible (α > 0.1), the scaling of α2D with the AV parameters
(increase with larger α and/or β in the MG83 implementa-
tion and increase with larger α for the Mu96 implementa-
tion) has the same qualitative behaviour as for the central
mass accretion rate (see Fig. 5). Such a match is what we
expect, since a more viscous disc is characterised by a larger
central accretion rate. The weaker dependence on β is in
agreement with the fact that β is the parameter controlling
the second order term of the MG83 artificial viscosity (see
Eq. 4).

Effect of resolution. The trend of the curves in the right
panel of Fig. 9 is qualitatively similar to that of the central
mass accretion rate (see Fig. 5) and shows that the effec-
tive viscosity is converging. However one million particles is
still not enough in order to reach convergence. The slightly
higher resolution required for the convergence of α2D and Ṁ0

with respect to that required by the radial velocity maps and
by the mass accretion rate radial profile (N ≈ 5 · 105) is due
to the fact that the former two parameters are calculated
from a smaller subset of simulation particles, the numerical
noise is therefore larger.

The result of this subsection is that the effective viscos-
ity α2D in all the SPH models considered here equals a few
10−2, in agreement with the order of magnitude deduced
from observations.

4.4.1 Reynolds number

Once the effective viscosity of the disc is determined
(αeff ≈ α2D), it becomes possible to derive the correspond-
ing Reynolds number Reeff ≈ Re2D = Ma/α2D, shown in
Fig. 10. In accordance with the trend of α2D with respect
to α, β and N , described in the last paragraph, we found
larger Re numbers in less viscous and more resolved discs.

Simulations with one million particles and the MG83
artificial viscosity are closer to, but sill lower than the value
Reeff ≈ 3 · 103, which is considered as a limit for the onset
of the turbulent regime in a box with periodic boundaries
(see Price 2012). Therefore, the dynamics of the discs pre-
sented in this paper is not expected to be dominated by
fully-developed turbulence.
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the symbol sizes and are not displayed, their values are given in
Table 3.

4.4.2 The α2D-αcont connection

Figure 11 shows the relation between the effective viscosity
α2D (computed in the simulations) and the αcont viscosity
(expected when the continuum limit of the SPH equations is
taken) for eight of the performed simulations with β = 0 (S6,
S10, S13, S17, S18, S25, S27). Simulations S1 and S16 (with
α = 0.1) are too noisy to allow the determination of α2D.
Since the ratio 〈h〉/H in the expression of αcont depends on
the radial location inside the disc (see Eqs. 7 and 8), we have
evaluated locally at the radial position R = 1 both αcont and
α2D, whose values are given in Table 3.

We find that both the points concerning the Mu96 case
and those concerning the MG83 case follow the appropriate
analytic relation. We therefore confirm the necessity of re-
ducing the coefficient in the αcont relation in Eq. 8 for the
MG83 case as shown by Meru & Bate (2012) and motivated
by the fact that in the MG83 implementation the artificial
viscosity is applied only to approaching particles. Finally, no
significant difference is observed when resolution is changed
from 2 · 105 to 106 particles, suggesting that already with
2 · 105 particles the continuum approximation can be con-
sidered valid.
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Table 3. Error bars associated to α2D produced by the fitting
procedure.

Simulation αcont α2D

S6 0.0301 0.0490 ± 0.0063

S10 0.0597 0.0668 ± 0.0040

S13 0.1476 0.1453 ± 0.0023

S17 0.0601 0.0759 ± 0.0043

S18 0.1204 0.1249 ± 0.0033

S27 0.3009 0.2949 ± 0.0075

S25 0.0372 0.0500 ± 0.0013

S26 0.1852 0.1776 ± 0.0009
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Figure 12. Radial (left) and vertical (right) profiles of αRS. Ef-
fect of changing the AV parameters.

5 THE MAGNITUDE OF SPH

FLUCTUATIONS

5.1 The Reynolds stress contribution to the SPH

disc viscosity: αRS

We now proceed with the determination of αRS, which is the
αSS parameter derived from the Reynolds stress, in analogy
with turbulence studies and with MHD or self-gravitating
disc simulations. Radial and azimuthal fluctuations are com-
puted from the average velocity field determined locally us-
ing a R–z grid.

The radial profile of the vertically averaged αRS is
shown in the left panel of Fig. 12, where the effect of chang-
ing α and β is highlighted, and of Fig. 13, where the effect
of resolution is shown. In all simulations, the coefficient αRS

is characterised by a similar profile: it tends to be approxi-
mately constant throughout the radial extension of the disc,
with an increase both in the central and in the external ra-
dial region.

The right panel of both figures shows the radially av-
eraged vertical profile (as in Fig. 8, the semi-thickness of
the disc is computed from H(R)=H0(R/R0)

(3−q)/2, see
Sect. 2.2): αRS is approximately constant around the mid-
plane and then increases with height. This behaviour qual-
itatively agrees with that observed in MHD discs by Flock
et al. (2011), even if we observe a broader minimum. In addi-
tion, we have found that the vertical profile is approximately
the same at different radial positions, as shown in Fig. 14
for simulation S24.

Effect of artificial viscosity. The radial and vertical pro-
files of αRS are very sensitive to the AV parameters α and β.
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Figure 13. Radial (left) and vertical (right) profiles of αRS. Ef-
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Figure 14. Vertical profiles of αRS. Comparison at three differ-
ent radial location in the disc for simulation S24.

In fact there is a sharp change in the average value, which
decreases from positive to negative values, when the two AV
parameters are increased. This transition is clearly visible
in both panels of Fig. 12 for α = 1: the increase of β from 0
to 2 shifts the profile of αRS towards smaller values, moving
it in the negative region. A further increase of β leads to
smaller changes, but the behaviour inverts: higher artificial
viscosity now tends to increase the value of the coefficient
αRS (which corresponds to a decrease of its absolute value,
see left panel) and to extend the constant region around the
midplane (see right panel). We find the same trend for other
values of α (not shown).

The change of sign of αRS is due to the mechanism of
meridional circulation that is correctly resolved when ade-
quately high AV parameters are used.

Effect of resolution. For a given combination of AV pa-
rameters, the radial and vertical profiles of the αRS coeffi-
cient do not change with resolution. The only effect of in-
creasing the number of particles of the simulation is a re-
duction of the noise, which implies smoother profiles.

We note that the computation of αRS is very sensitive
to the correct determination of the average velocity field
of the flow, therefore only in simulations with adequately
high values of α and β, where numerical noise and particle
disorder are lower, can it be trusted. The absolute value of
αRS for the present simulations is |αRS| ≈ 10−3. This is
comparable to standard values found in MHD discs (see e.g.
Fromang & Nelson 2006). The difference is that meridional
circulation is present here and the negative value indicates
decretion on average in the midplane, in contrast to the
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Figure 15. Time evolution of the diffusion coefficient.DT/(csH)
computed at R = 2. Left: low artificial viscosity simulations (S1,
S2, S3, S4). Right: higher artificial viscosity (S7, S8, S24 with
MG83 implementation and S17 with Mu96 implementation). Note
the different vertical scales.

positive value of MHD discs (where meridional circulation
is not seen), which is expected for accretion in the midplane.

In conclusion, more viscous discs are characterised by
a smaller modulus of αRS and, for all the simulations we
performed, we find the ratio of the Reynolds stress to the
effective viscosity of the gaseous disc to be αRS/α2D ≈ 10−1.
This means that velocity fluctuations are not the main com-
ponent of the effective viscosity of the disc, in agreement
with the low Reynolds number of the global flow in in the
present simulations (see Sect. 4.4.1). However, the turbulent

Reynolds number, which is associated to the Reynolds stress,
amounts to ReT ≈ 104 (since Ma ≈ 10 and αRS ≈ 10−3),
close to the turbulent limit. Therefore, physical fluctuations,
quantified by the small contribution of αRS to the effective
viscosity, can be expected to exhibit turbulent signatures.
We will show in Sects. 5.2 and 6.2 that it is indeed the case.

An important point to be highlighted is that the de-
termination of αRS is not a sufficient condition in order to
determine the mass accretion rate of the disc, since other
sources can be present in the model.

5.2 Diffusion coefficient

For each simulation, we have computed the diffusion coef-
ficient from Eq. 20 at several radial positions in the disc.
In Fig. 15 we show the evolution with time of the diffusion
coefficient DT, in units of csH , measured at the intermedi-
ate radial position R = 2 for some simulations belonging to
Set A. Except for simulations from S1 to S3, characterised
by larger fluctuations, the diffusion coefficient regularly in-
creases with time and converges to a well-defined value.

For the standard combinations of parameters (α, β) =
(1, 2), DT/(csH) ≈ 5 · 10−3 is in agreement with the value
found by Fromang & Papaloizou (2006) in their MHD local
shearing box stratified simulations. The asymptotic values
of the diffusion coefficient for each performed simulation are
displayed in Fig. 16.

Effect of artificial viscosity. The left panel of Fig. 16
shows that the coefficient decreases with increasing α and
β (except simulations from S1 to S3 which present a diffu-
sion coefficient without a clear trend, due to the higher noise
level) and in the Mu96 case (the artificial viscosity switch
on approaching/receding particles is off, resulting in more
viscous discs). This trend is due to a reduction of the noise
that allows the onset of meridional circulation, which forces
the fluid to be more localised in the vertical direction.

Effect of resolution. From the right panel of Fig.16 we
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Figure 16. Results for DT. Left: effect of artificial viscosity,
right: effect of resolution.

observe that the diffusion coefficient decreases with increas-
ing resolution. The reason of this behaviour is the same that
explains the qualitatively similar trend we have observed
in Sect. 4.3.1 for the central mass accretion rate. In this
case, the PDF of the vertical velocity vz is broader in low
resolution simulations with respect to more resolved sim-
ulations. Therefore, larger vertical velocity are possible in
less resolved discs with resulting higher values (see Eq. 21)
of the diffusion coefficient. The curve shows a converging
trend, however convergence is not yet reached at one mil-
lion particles. As for the central mass accretion rate and for
the effective viscosity fit, convergence requires more reso-
lution because the diffusion coefficient is computed from a
smaller subset of particles than in the case of the radial ve-
locity maps and the mass accretion rate profiles, where an
average on the azimuthal component is taken.

We conclude that the diffusive mechanism is correctly
represented by intermediate/large AV parameters (α, β):
more viscous discs are less diffusive, due to the onset of
meridional circulation and the decrease of αRS. In addition,
for a given (α, β) combination, less resolved discs are more
diffusive: such numerical dependence is of the same type as
the dependence of the central mass accretion rate and of
the effective viscosity on the resolution of the simulation
(see Sect. 4.3.1.)

5.3 Mach number of velocity fluctuations

The azimuthally averaged Mach number of the modulus of
velocity fluctuations is displayed in the R–z plane in the left
panel of Fig. 17 for simulation S23, as an example. The right
panel shows the corresponding radial profile for each velocity
component, vertically and azimuthally averaged. All simu-
lations show qualitatively similar structures and profiles.

Effect of artificial viscosity. The average value of Maf
in the radial range R ∈ [1, 2.5] is displayed in Fig. 18. From
the left panel of the figure, we see that, except for simula-
tion S1, whose fluctuations are close to the sonic regime, all
simulations show subsonic fluctuations with Mach number
significantly smaller than unity. We observe a decrease of the
average Mach number with larger AV parameters. For rela-
tively high α and β, at each given radius the Mach number
increases from a minimum value in the midplane (Maf ≈ 0.1)
to a maximum value in the surface layers (Maf ≈ 0.2), as dis-
played by the left panel of Fig. 17. This behaviour is qualita-
tively in agreement with what is found in MHD simulations
(e.g. Fromang & Nelson 2006; Flock et al. 2011), however
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Figure 18. Results for Maf . Effect of changing the AV parame-
ters and the AV switch (left panel) and resolution (right panel).

we observe smaller values. A global maximum Maf ≈ 0.4
is reached in the inner region, where vR < 0 and the two
accreting layers meet. In addition, two layers with locally
higher fluctuations with Maf ≈ 0.2 are also present at the
interface between the surface accreting layers and the mid-
plane outwards flow.

Effect of resolution. Similarly, as a consequence of noise
reduction, higher resolution leads to a decrease both of the
Mach number and of the extension of the surface layers
where it reaches the local maximum for a given radial po-
sition (with the same qualitative behaviour of the accreting
layers in the vR maps, see Figs. 3 and 4), as expected. We
have found a convergence of the vertically and azimuthally
averaged Mach number for a number of particles N ≈ 5 ·105
(see right panel of Fig.18), in agreement with the value found
for radial velocity maps (which are connected to radial ve-
locity fluctuations and therefore to the radial part of the
Mach number).

Fluctuations tends to be dominant in the regions of the
disc where accreting and decreting flows meet: the cone-
like regions between the accreting surface layers and the
decreting midplane layer, and the region around the inner
disc edge.

6 THE STRUCTURE OF SPH

FLUCTUATIONS

6.1 Anisotropy of velocity fluctuations

We recall that when δR = 2 the system is totally radially
anisotropic, while for negative values the system is domi-
nated by anisotropy in different directions. The same holds
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Figure 19. Results for ~δ, the anisotropy vector of velocity fluctu-

ations. Effect of changing the AV parameters and the AV switch
(MG83 and Mu96), values are averaged vertically, azimuthally
and in the radial domain [1, 2.5]. Note that values of the azimuthal
and vertical anisotropy (middle and right panel) for β = 0 become
highly negative, they fall outside of the displayed area.

for the azimuthal and vertical components. The kind of
anisotropy of the disc is displayed in Fig. 19 for simulations
with changing α and β. We observe that none of the simu-
lated discs is totally anisotropic in one particular direction,
but there is always a component that dominates the other
two.

Effect of artificial viscosity. Discs with smaller AV pa-
rameters are dominated by radial anisotropy. For example,
in the case of simulation S1 with (α,β)=(0.1,0), we see from
Fig. 19 that δR ≈ 1.4, δθ < −1 and δz < −1, it follows that
δR is significantly larger both than δθ and than δz. When α
and/or β are increased, δR decreases and becomes negative
while δθ increases. The vertical anisotropy is always negligi-
ble with respect to the radial or azimuthal anisotropy (it is
always negative in all performed simulations, as shown by
the right panel in Fig. 19).

Effect of resolution More resolved simulations are
slightly more azimuthally anisotropic. As for some of the
previously considered quantities, we observe that the com-
ponents of the anisotropy vector, averaged in the vertical,
azimuthal and in the usual radial range R ∈ [1, 2.5], con-
verge at N ≈ 5·105 (not shown), for the same reason already
outlined several times.

We note that radial anisotropy has been observed in
MHD discs (see e.g. Fromang & Papaloizou 2006; Fromang
& Nelson 2006) where the mechanism of meridional circula-
tion is absent. Here we observe radially dominated discs only
for low AV parameters, for which meridional circulation is
also absent.

6.2 Power spectrum

For each simulation we have computed the power spectrum
of velocity fluctuations in a ring located at different radii
from the central star and at several altitudes, as explained
in Sect. 3.2. As an example, in Figs. 20 and 21 we present
compensated spectra (divided by the Kolmogorov slope of
−5/3, for easy comparison) evaluated at the midplane loca-
tion (R, z)=(2, 0) Different locations in the discs are consid-
ered later on.

Since we are dealing with an anisotropic system, we
look at the one-dimensional power spectrum in the three
directions: radial, azimuthal and vertical, which are given
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Figure 20. Compensated power spectrum k5/3P (k) of the veloc-
ity field. Effect of changing α and β. The three columns from left
to right refer respectively to radial, azimuthal and vertical veloc-
ity components. The power spectrum is computed along a ring
located at R = 2 and z = 0. The circle on each curve marks the
wavenumber corresponding to the scale of the smoothing length.
The number of particles is N = 2 · 105.

respectively in the first, second and third column of each
row of the two figures.

At least three regions can be identified in the power
spectra extracted from simulations. These regions are de-
fined by two wavenumbers: k1 < k2. The smallest scale
corresponds to the resolution limit of the simulation that
is given by the smoothing length at the considered position
h(R, z) (since the discs are axisymmetric there is not depen-
dence on θ) and defines the largest wavenumber k2 (for each
curve, this is marked by a circle in the plots). The region
beyond k2 corresponds to length scales inside the smooth-
ing length, which are below the resolution. Therefore, the
resolved region of the spectrum is to the left of the circle.
The other scale marks the boundary between regions of the
spectrum described by power laws P (k) = P0k

a with a dif-
ferent slope: for k < k1 the slope a1 is close to zero, for
k1 < k < k2 the slope is called a2 and is always negative.

In the case of isotropic turbulence one could identify
k1 with the ‘forcing scale’ and the region between k1 and k2
with the ‘inertial range’. However, in the present anisotropic
case, it is not possible to find a direct link between k1 and the
forcing scale in the disc because of the aliasing phenomenon

present in one-dimensional spectra of turbulent shear-stress
fluids (see e.g. Pope 2000), since the power corresponding
to wavenumber k1 also contains contribution from larger
wavenumbers.

In the following we focus on the qualitative evolution
of the power spectrum with changing artificial viscosity and
resolution.

Effect of artificial viscosity. What is interesting is the
dependence of the shape of the power spectrum on the AV
parameters. Simulations with α . 1 and β . 2 show a pos-
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Figure 21. Compensated power spectrum of the velocity field.
Effect of changing changing the AV switch and the resolution.
The circle on each curve marks the wavenumber corresponding
to the scale of the smoothing length.

itive slope of the compensated spectra with a decrease just
before the resolution scale (k . k2), which mimics the decay
corresponding to the dissipation scale. In this case a cascade
is not clearly identified in any of the three directions. An ex-
ample is given by simulation S1 with (α,β)=(0.1,0) in the
top row of Fig. 20.

For higher AV parameters the behaviour of the power
spectrum depends on the component of the velocity fluctu-
ations, confirming that we are dealing with an anisotropic
system also at intermediate scales. In particular, for radial
velocity fluctuations in the case of α > 1 and β > 2 (e.g.
middle and bottom left panels of Fig. 20) and for the az-
imuthal component when α ≈ 5 and β > 2 (bottom central
panel of Fig. 20), a progressively more extended flat region
(indicating a power spectrum with a slope close to the Kol-
mogorov value) is visible between the positive slope region
on the left and the decay immediately before the resolution
scale on the right. The other azimuthal spectra show a pos-
itive slope (e.g. top and middle central panels), indicating a
sub-Kolmogorov slope. Concerning the vertical component
of the velocity, flat regions start to appear for values of α
close to 1, just above the resolution limit. However, they are
less extended than in the case of the other two components.
For higher α, we observe that larger β leads to a steeper
slope.

In correspondence to the onset of meridional circulation,
we observe the appearance of an approximately flat region
in the compensated spectra for all velocity components and
at the smallest resolved scales. This result suggests that the
system is more isotropic at the small scales above the reso-
lution limit.

Effect of resolution In agreement with previous analy-
ses, we observe a convergence of the power spectrum of ve-
locity fluctuations when a number of particles N ≈ 5 · 105 is
used. In addition, higher resolution discs are characterised
by a cascade that is globally more extended in the wavenum-
ber space than in lower resolution discs because they resolve
smaller length scales, corresponding to larger wavenumbers.
The resolution scale k2 therefore shifts towards larger values
(see Fig. 21).

In numerical simulations of turbulence a pile-up of en-
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Figure 22. Compensated power spectrum of the velocity field.
Effect of changing the location inside the disc. Power spectrum
computed along a ring located at R = 2 and at three different
heights above the midplane for simulation S8 with (α, β) = (1, 5).

ergy (positive slope of the spectrum) is often observed in
the high wavenumber region of the power spectrum (cor-
responding to the pre-dissipative region, close to grid res-
olution) and is probably due to numerical dissipation. We
observe a similar feature only in the power spectrum of ra-
dial velocity fluctuations in intermediate and large viscosity
discs (see left panels in Fig. 20 and 21). The pile-up is re-
duced by increasing resolution (see left panels in the top
two rows in Fig. 21), supporting the numerical origin of the
phenomenon.

Simulations are observed to converge towards a power
spectrum with a cascade close to the Kolmogorov one for
the radial and azimuthal components. The system reflects
its anisotropy in a cascade that is always more extended
for radial fluctuations and very short for vertical velocity
fluctuations. Such a particular feature of the cascade is due
to the different physical scales present in the disc, which is
more radially than vertically extended (the disc is thin).

Changing location in the disc. The trends of the power
spectrum observed with changing artificial viscosity and res-
olution are qualitatively similar at different radial locations
in the disc (not shown). In Fig. 22 spectra at different
heights above the midplane are compared for each of the
three velocity components in the case of simulation S8 where
(α, β) = (1, 5): moving away from the midplane, the slope of
the cascade becomes slightly smaller and the cascade disap-
pears due to decreasing resolution. In fact, at higher altitude
the gas density is lower, implying a larger smoothing length
(i.e. worse resolution). The wavenumber associated to the
larger smoothing length is smaller and therefore it is closer
to the wavenumber of the ‘forcing scale’, shortening the cas-
cade.

We conclude that the power spectrum preserves its
properties throughout the vertical and radial extension of
the disc in the resolved regions of the wavenumber space.

6.3 Intermittency

In order to determine if intermittency is present in the sim-
ulations we analysed the PDF of the density and of the
acceleration in the azimuthal direction (the direction of the
shear) and the 3rd and 4th order moment of the PDF of
several quantities.

1e-02

1e-01

1e+00

1e+01

Natural logarithm of the density

α=0.1 R=2

Azimuthal acceleration

β=0
0.5

2
10

1e-02

1e-01

1e+00

1e+01
α=1

β=0
2
5

10

1e-02

1e-01

1e+00

1e+01

-0.6 -0.3  0  0.3  0.6

ln(ρ/<ρ>)

α=5

-3 -2 -1  0  1  2  3
aθ/<|aθ|>

β=0
2

10
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from the central star. The density PDF is compared to a log-
normal distribution (dashed line) in the top left panel.

6.3.1 Density and azimuthal acceleration PDF

Effect of artificial viscosity. The effects of the AV parame-
ters on the shape of the PDF of the natural logarithm of the
density are shown in the left panel of Fig. 23. The distribu-
tion of ln(ρ/〈ρ〉) is described by a Gaussian distribution.
It follows that the density is characterised by a log-normal
distribution, as observed in simulations of supersonic com-
pressible turbulence (see e.g. Price & Federrath 2010, and
Sect. 3.2.2).

However, in our simulations the standard deviation of
the density logarithm σp, which controls the width of the
distribution, is much smaller, since we are dealing with sub-
sonic physical fluctuations (as shown in Sect. 5.3, Fig. 17
and Eq. 26). In addition, we observe that larger values of α
and/or β lead to a narrower distribution. This behaviour is
explained by the same reason: the Mach number of physical
fluctuations decreases and leads to a smaller σp, which in
turn produces a PDF close to a Gaussian distribution and
gives values of the skewness and kurtosis close to Gaussian
values (as we will show in Sect. 6.3.2 and as expected from
Eq. 27). The effect of changing β for a given α is smaller
than that of changing α for a given β, due to the fact that
β controls the second order term in the MG83 artificial vis-
cosity.

It should be noted here that even for high α and/or β,
although the effective viscosity becomes larger, the Reynolds
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Figure 24. Probability distribution functions. Effect of resolu-
tion. Left: natural logarithm of the density. Right: acceleration.
PDFs are computed at the midplane and at distance R = 2 from
the central star. The density PDF is compared to a log-normal
distribution (dashed line) in the top left panel.

stress is always non zero and still contributes to it. Therefore
physical fluctuations are present and the disc is not laminar.
For example, in our discs when α ≈ 5 the effective viscosity
increases to α2D ≈ 0.1 and the Reynolds stress amounts
to αRS ≈ 10−3, with a corresponding turbulent Reynolds
number ReT ≈ 104, see Sect. 5.1 and Figs. 12 and 13. If the
disc were laminar, one would not expect a distribution of
densities but a single value, and therefore a delta function.

In the right column of Fig. 23 we show the PDF of
the acceleration in the azimuthal direction since it presents
an interesting feature: the distribution shifts towards higher
values when both α and β are increased. This is an effect of
the onset of meridional circulation in discs with high enough
artificial viscosity. In fact, the presence of meridional circu-
lation imposes a net positive radial velocity (outward flow)
to the gas around the midplane that, combined with the
disc rotation, implies a spiral-like flow. The acceleration is
thus characterised by a positive average azimuthal compo-
nent (in contrast to a pure circular flow where the acceler-
ation is only radial). The peak location moves towards the
value aθ/〈|aθ|〉=1 for larger AV parameters, however it does
not reach unity even for the larger AV combination con-
sidered here (α, β)=(5,10) since a fraction of the particles
still presents a small but negative azimuthal component of
the acceleration. Finally, the PDF of the radial and verti-
cal components of the acceleration (not shown here) present
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Figure 25. Higher order moments. Skewness (top) and kurtosis
(bottom) of density distribution (left) and azimuthal acceleration
distribution (right).

the standard features of a pure circular flow: both of them
have a symmetric shape with the peak located around the
non-zero Keplerian value or around zero, respectively.

Effect of resolution. The effect of resolution is shown
in Figure 24. For all the combinations of AV parameters,
more resolved discs are characterised by a narrower density
PDF (left column), due to the reduction in the numerical
noise. The azimuthal acceleration PDF (right column) is
only slightly affected, with the peak shifted towards smaller
acceleration for higher resolution, due to a correspondingly
lower strength of meridional circulation (see Sect. 4.2). As
already found in previous analysed quantities, a number of
particles as large as N ≈ 5 · 105 guarantees a good degree of
convergence.

In conclusion, the PDFs of density fluctuations repro-
duce those expected for non intermittent subsonic turbulent
flows, confirming that the discs are not laminar.

6.3.2 Higher order moments: S and K

Effect of artificial viscosity. For a given α, larger values of
β result in values of the skewness of the density PDF closer
to the Gaussian value S = 0 (top left plot in Fig. 25). The
same effect is observed when β is kept constant and α in-
creased. All other quantities show Gaussian values indepen-
dently of the AV parameter used, an example is given by the
azimuthal component of the acceleration (top right plot in
Fig. 25). Deviations of the kurtosis from the Gaussian value
K = 3 are qualitatively the same as for the skewness.

The simulations with the Mu96 artificial viscosity show
systematically lower values of S and K with respect to simu-
lations with the MG83 artificial viscosity and with the same
α and β = 0. The reason is that for the same α, Mu96 discs
are more viscous than MG83 discs since artificial viscosity
is applied to all particles in contrast to the MG83 case. This
trend is in agreement with that observed in MG83 simu-
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lations with changing AV parameters: more viscous discs
present lower S and K.

Effect of resolution. The values of S and K only show
small fluctuations when the resolution is increased (not
shown), suggesting that convergence for these global quan-
tities is present even for a number of particle as low as
N ≈ 2 · 105.

In conclusion, no significant deviation from a Gaussian
distribution is observed: intermittency is not present. This
result agrees with the intermediate turbulent Reynolds num-
ber ReT proper to the present simulations (see Sect. 5.1). In
fact intermittency is usually observed in very high Reynolds
number flows (e.g. Frisch 1996).

7 DISCUSSION AND CONCLUSION

We have presented the characterisation of the global flow
and of the statistical properties of the fluctuations in the ve-
locity and density field of the gas in SPH disc models, which
are gaseous discs simulated by means of the SPH method.

An essential tool for most of our results is the new
method we have introduced for the determination of the
effective viscosity of three dimensional axisymmetric discs.
It consists in fitting the analytic expression for the radial ve-
locity derived from two dimensional models (see e.g. TL02),
depending both on R and z, to the vertical velocity profile
extracted from the simulation at different radial positions in
the disc.

We have focused on the effects of changing the number
of particles N and the values of the two AV parameters α
and β. The relevant results are summarised in the following
points:

(i) We have confirmed and quantified the numerical role
of the number of particles N , which contributes to the nu-
merical component of the SPH fluctuations (see its defini-
tion in Sect. 1). In fact, for all studied quantities, an increase
in the resolution of the simulation (increase in the number
of particles) has the standard numerical role of convergence
towards the physical solution, and also leads to a more ex-
tended cascade in the power spectrum of velocity fluctua-
tions (smaller scales and therefore higher wavenumbers are
resolved).

(ii) More significantly, we have found that the artificial
viscosity (through the two AV parameters α and β) con-
tributes both to the numerical and to the physical compo-
nent of the SPH fluctuations, in contrast to the behaviour
of N .

There exists a relationship between artificial viscosity
and the following three quantities: (a) physical fluctuations,
quantified by αRS, (b) the effective viscosity of the disc,
quantified by α2D and (c) the numerical noise. In the hy-
pothesis of an ideal noise-free numerical scheme, we expect
that at low (α, β) the effective viscosity is due to turbulent
viscosity, directly produced by physical fluctuations. At in-
termediate (α, β) the effective viscosity has a contribution
not only from physical fluctuations but also from the AV
term, which reproduces the effects of turbulence without di-
rectly modeling eddies and vortices in the spirit of the αSS-
disc model. Finally, in the high (α, β) range, physical fluctu-
ations are negligible and the effective viscosity is dominated

by the AV term. However, numerical schemes are affected
by numerical noise, which masks physical fluctuations.

In our case, noise is related to the AV parameters: only
for (α, β) above a threshold is the noise reduced enough to
allow physical fluctuations to emerge. We have identified the
threshold at (α, β) ≈ (1,2). In fact, in the discs simulated
above this threshold, we have observed a sharp transition
both of the global and of the local behaviour.

• Concerning the global behaviour, we have found that
with increasing artificial viscosity the global flow of the
gaseous disc evolves from a chaotic radial velocity struc-
ture to a more ordered meridional circulation pattern char-
acterised by larger accretion rates and with the Reynolds
number Reeff , associated to the estimated effective viscosity
α2D, below the turbulent limit for all simulations (however
we observe that some of the high resolution simulations are
approaching it).

• Concerning the local behaviour, we observe that, in
parallel to the onset of meridional circulation, the average
Reynolds stress switches abruptly from positive to negative
values and converges to a value that contributes at the 10
per cent level to the effective viscosity (αRS ≈ 0.1α2D), with
an associated turbulent Reynolds number ReT around the
turbulent limit. In particular, we have found that with in-
creasing artificial viscosity, physical fluctuations have the
following properties:

– velocity fluctuations become more and more subsonic
and shift from radial to azimuthal anisotropy;

– a cascade appears in the power spectrum of veloc-
ity fluctuations, which tends towards a Kolmogorov-like
spectrum, particularly for the radial component;

– turbulent diffusion appears at the same time as the
cascade and then the diffusion coefficient tends to de-
crease. Diffusion tends to be damped by the onset of
meridional circulation;

– the presence of meridional circulation leads to a shift
of the peak of the azimuthal acceleration PDF;

– none of the studied SPH disc models presents fluctu-
ations characterised by intermittency.

With these results we can give a first answer to the
question raised in the Introduction: can SPH disc models
correctly reproduce both the observed properties of PPD
and the expected effect of turbulence?

In the case of SPH disc models with the MG83 artifi-
cial viscosity we have found that for AV parameters above
a threshold that approximately corresponds to the standard
values (α ≈ 1 and β ≈ 2), the effective viscosity mainly rep-
resents viscosity due to turbulence (of unknown origin) in
the spirit of the SS73 α-discs where intermediate and large
scale turbulent eddies and vortices are not resolved. How-
ever, at the smallest resolved scales, fluctuations with prop-
erties similar to those present in turbulent flows have been
identified. A meridional circulation pattern and turbulent-
like fluctuations coexist in SPH disc models. The former
shapes the global scale of the flow, reproducing the observed
mass accretion rate onto the star while the latter is present
locally at the smallest resolved scales and contributes to only
10 per cent of the effective viscosity of the disc. The resolved
physical fluctuations reproduce the main effects expected in
a turbulent 3D disc. In fact, the simulated discs are charac-
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terised by: a subsonic fluctuating velocity field presenting a
turbulent-like diffusion and a small Kolmogorov-like cascade
in the power spectrum of velocity fluctuations at the small-
est resolved scales (see e.g. simulations S7 and S8). These
simulations present values of the Reynolds stress and of the
diffusion coefficient that are very close to those observed in
MHD accretion discs (where the source of turbulence is the
MRI). For values of α and β below the threshold, the numer-
ical noise dominates and masks physical fluctuations, these
models should be avoided.

A direct detection of turbulent eddies would require a
reduction of the AV term in order to increase the contribu-
tion of the Reynolds stress. However, we have shown that for
the two AV implementations considered here the numerical
noise dominates and impedes the growth of eddies in the
velocity field when the levels of AV are below the thresh-
old: in such cases the positive effects of the AV terms (par-
ticularly of the β term) in correctly describing SPH par-
ticles trajectories and in avoiding particle interpenetration
are missing. Therefore, in order to reach higher Reynolds
numbers it is necessary both to reduce the effective viscos-
ity of the disc without increasing the numerical noise and to
increase the resolution. This is not possible with the two arti-
ficial viscosity implementation we are analysing in this work
(since reducing the AV coefficients leads to an increase of
the numerical noise). Recently developed artificial viscosity
switches (e.g Morris & Monaghan 1997; Cullen & Dehnen
2010) could help in this direction. However, it is still not
possible to simulate fluids at the high Reynolds numbers
(Reeff ≫ 103) expected in astrophysical flows with the cur-
rent tools and computer power.

We should stress that simulating very high Reynolds
number discs would be necessary if one wanted to investi-
gate the possibility of the existence of pure hydrodynamics
turbulence in 3D accretion discs. (We remind the reader that
1D accretion discs are known to be stable with respect to
hydrodynamics instabilities due to the Rayleigh criterion,
see e.g. Armitage 2007.) However, for our purpose of repro-
ducing the effects of turbulence produced by an unknown
source, the effective viscosity combined with a low and pos-
sibly intermediate Reynols stress is enough. In fact, these
models represent a starting point for the study of dust dy-
namics, which is affected by physical fluctuations at small
scales and meridional circulation at large scales.

In conclusion, in SPH disc models, which a priori in-
clude only the ingredients of star gravity and physical-like-

viscosity, we have found that the artificial viscosity term, in
addition to modeling a physical-like bulk and shear viscos-
ity, can also play the role of an implicit turbulence model.
In our SPH disc models, where we do not add any initial
turbulent velocity field, the implicit turbulence model sus-
tains and organises the random fluctuations present in the
initial conditions of the disc. This result is in agreement
with recent indications that a turbulence model is implicitly
present in the SPH scheme used to simulate homogeneous
and isotropic turbulence with periodic boundary conditions
(see e.g. Shi et al. 2012; Monaghan 2011; Ellero et al. 2010).
Here we have analysed the more complex case of systems
without boundary conditions and where anisotropic turbu-
lence is expected.

The effects of the density and sound speed profiles on
the global and statistical properties of the gas as well as

those of the initial set up, of different SPH kernels and of dif-
ferent artificial viscosity implementations will be addressed
in more detail in a future work.
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Ellero M., Español P., Adams N. A., 2010, Phys. Rev. E,
82, 046702

Flock M., Dzyurkevich N., Klahr H., Turner N., Henning
T., 2012, ApJ, 744, 144

Flock M., Dzyurkevich N., Klahr H., Turner N. J., Henning
T., 2011, ApJ, 735, 122

Frisch U., 1996, Turbulence
Fromang S., Lyra W., Masset F., 2011, A&A, 534, A107
Fromang S., Nelson R. P., 2006, A&A, 457, 343
Fromang S., Nelson R. P., 2009, A&A, 496, 597
Fromang S., Papaloizou J., 2006, A&A, 452, 751
Guilloteau S., Dutrey A., Wakelam V., Hersant F., Se-
menov D., Chapillon E., Henning T., Piétu V., 2012,
A&A, 548, A70

Hartmann L., Calvet N., Gullbring E., D’Alessio P., 1998,
ApJ, 495, 385

Hughes A. M., Wilner D. J., Andrews S. M., Qi C., Hoger-
heijde M. R., 2011, ApJ, 727, 85

Jacquet E., 2013, A&A, in press (arXiv:1301.5817)
King A. R., Pringle J. E., Livio M., 2007, MNRAS, 376,
1740

Klahr H. H., Bodenheimer P., 2003, ApJ, 582, 869
Laibe G., Gonzalez J.-F., Maddison S. T., 2012, A&A, 537,
A61

Lattanzio J. C., Monaghan J. J., Pongracic H., Schwarz
M. P., 1985, MNRAS, 215, 125

Lodato G., 2008, New Astronomy Reviews, 52, 21
Lodato G., Price D. J., 2010, MNRAS, 405, 1212

c© 2013 RAS, MNRAS 000, 1–21



20 S. E. Arena and J.-F. Gonzalez

Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999,
ApJ, 513, 805

Lynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603
Meglicki Z., Wickramasinghe D., Bicknell G. V., 1993, MN-
RAS, 264, 691

Meru F., Bate M. R., 2012, MNRAS, 427, 2022
Monaghan J. J., 1992, ARA&A, 30, 543
Monaghan J. J., 2005, Reports on Progress in Physics, 68,
1703

Monaghan J. J., 2011, European Journal of Mechanics -
B/Fluids, 30, 360

Monaghan J. J., Gingold R. A., 1983, Journal of Compu-
tational Physics, 52, 374

Monaghan J. J., Lattanzio J. C., 1985, A&A, 149, 135
Morris J. P., Monaghan J. J., 1997, Journal of Computa-
tional Physics, 136, 41

Murray J. R., 1996, MNRAS, 279, 402
Nelson R. P., Gressel O., Umurhan O. M., 2012, ArXiv
e-prints

Pope S. B., 2000, Turbulent Flows. Cambridge University
Press

Price D. J., 2007, PASA, 24, 159
Price D. J., 2012, MNRAS, 420, L33
Price D. J., Federrath C., 2010, MNRAS, 406, 1659
Pringle J. E., 1981, Annual review of astronomy and astro-
physics, 19, 137

Rice W. K. M., Armitage P. J., Mamatsashvili G. R.,
Lodato G., Clarke C. J., 2011, MNRAS, pp 1535–+

Rice W. K. M., Lodato G., Armitage P. J., 2005, MNRAS,
364, L56

Sargent B. A., Forrest W. J., Tayrien C., McClure M. K.,
Watson D. M., Sloan G. C., Li A., Manoj P., Bohac C. J.,
Furlan E., Kim K. H., Green J. D., 2009, ApJS, 182, 477
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Tübingen

Shakura N. I., Sunyaev R. A., 1973, in H. Bradt & R. Gi-
acconi ed., X- and Gamma-Ray Astronomy Vol. 55 of
IAU Symposium, Black Holes in Binary Systems: Obser-
vational Appearances. pp 155–+

Shi Y., Ellero M., Adams N. A., 2012, Phys. Rev. E, 85,
036708

Takeuchi T., Lin D. N. C. ., 2002, ApJ, 581, 1344
Violeau D., Issa R., 2007, International Journal for Numer-
ical Methods in Fluids, 53, 277

APPENDIX A: DIAGNOSTIC DETAILS

A1 The turbulent viscosity coefficient νT

From the turbulent viscosity hypothesis (Pope 2000), the
Reynolds stresses are written in Cartesian coordinates as
follows:

〈uiuj〉 = −2νTε̇ij − 2

3
kδij , (A1)

where ε̇ij is the rate of strain:

ε̇ij =
1

2

(

∂〈vi〉
∂xj

+
∂〈vj〉
∂xi

)

(A2)

and k the turbulent kinetic energy:

k =
1

2
〈uiui〉. (A3)

In classical accretion disc theory, only shear viscosity is rel-
evant. Therefore the only non-vanishing component of the
stress tensor is the Rθ component (see e.g Lodato 2008),
which in cylindrical coordinates becomes:

〈uRuθ〉 = −νT

[

R
∂ (〈vθ〉/R)

∂R
+

1

R

∂〈vR〉
∂θ

]

. (A4)

Given the axisymmetry of the disc, the second term on the
right hand side of Eq. A4 vanishes and the turbulent viscos-
ity coefficient becomes:

νT = − 〈uRuθ〉
R (〈vθ〉/R)′

, (A5)

with (·)′ ≡ ∂/∂R.

A2 The αRS coefficient

The SS73 coefficient corresponding to the viscosity of
Sect. A1 is defined by the relation νT = αRScsH that com-
bined with Eq. A5 gives:

αRS = − 〈uRuθ〉
csHR (〈vθ〉/R)′

(A6)

In the case of quasi-Keplerian discs we have:
〈vθ〉 ≈ vk = RΩk, with vk the Keplerian velocity and
Ωk =

√
GMr−3/2 the corresponding angular velocity. For

thin discs, the approximation r ≈ R holds, with r the radial
spherical component and R the radial cylindrical compo-
nent.

Remembering that the scale height of the disc is related
to the sound speed and to the Keplerian angular velocity by
H = cs/Ωk, the αRS coefficient takes the form:

αRS = −〈uRuθ〉
R(Ωk)′

Ωk

c2s
=

2

3

〈uRuθ〉
c2s

. (A7)

A3 The power spectrum, PDFs, S and K

We consider a ring made of Ng points and centred at the
origin of the disc, with selected radius Rs and height zs.
The density and the smoothing length of each grid point are
computed by means of an iterating procedure using the two
coupled equations proper to the SPH scheme:

ρa =
∑

b

mbWab(rab, ha); ha = η

(

ma

ρa

)1/3

, (A8)

where the subscript a refers to the grid point and the sub-
script b to its neighbours.

Once the smoothing length is known, the value of the
desired quantities (e.g. velocity components for the power
spectrum, density and azimuthal acceleration for the PDFs
and higher order moments) at each grid point are computed
by the SPH smoothing technique. Now the one dimensional
list of values is known and used to compute the power spec-
trum of velocity components, the PDFs and the correspond-
ing S and K coefficients.

This procedure is applied to each simulation snapshot,
then values are averaged in time (for 15.9 orbits at 100 au).
For S and K the standard deviation of the distribution of
values in time has also been considered.
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APPENDIX B: PROCEDURE FOR FITTING

THE EFFECTIVE VISCOSITY

The effective viscosity α2D in the disc is derived by fitting
Eq. 15 to the data computed for a given snapshot of the
simulation by means of the following three steps:

(i) Computation of data from the selected simulation
snapshot: radial profile Σ(R) of the surface density, verti-
cal profiles ρ(z) and vR(z) of the volumetric density and
radial velocity at radial position R.

(ii) Determination of the parameters present in Eq. 15.
The surface density power law p at the selected location
R is derived by fit of the surface density profile. The scale
height H of the disc at R and R0 is derived by fit of the
relative vertical density profiles. Note that q is constant,
since simulations are locally isothermal, R0 is the length
unit and cs0 = H0 = H(R0) since R0 = G = M = 1.

(iii) Determination of α2D by fit to the vR data.

All fits are performed by the general least square
method, with χ2 function defined by:

χ2 =
N
∑

i=1

[

yi − f(xi, a)

σi

]2

, (B1)

where (xi, yi) are the N data points from simulations, σi

the associated errors and f(xi, a) the function to be fitted,
which depends on the parameter a.
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