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Nonlinear geometric optics for reflecting uniformly stable pulses

Jean-Francois Coulombel∗, Mark Williams†

March 28, 2013

Abstract

We provide a justification with rigorous error estimates showing that the leading term in
weakly nonlinear geometric optics expansions of highly oscillatory reflecting pulses is close to
the uniquely determined exact solution for small wavelengths ε. Pulses reflecting off fixed
noncharacteristic boundaries are considered under the assumption that the underlying boundary
problem is uniformly spectrally stable in the sense of Kreiss. There are two respects in which
these results make rigorous the formal treatment of pulses in Majda and Artola [MA88], and
Hunter, Majda and Rosales [HMR86]. First, we give a rigorous construction of leading pulse
profiles in problems where pulses traveling with many distinct group velocities are, unavoidably,
present; and second, we provide a rigorous error analysis which yields a rate of convergence of
approximate to exact solutions as ε→ 0. Unlike wavetrains, interacting pulses do not produce
resonances that affect leading order profiles. However, our error analysis shows the importance
of estimating pulse interactions in the construction and estimation of correctors. Our results
apply to a general class of systems that includes quasilinear problems like the compressible Euler
equations; moreover, the same methods yield a stability result for uniformly stable Euler shocks
perturbed by highly oscillatory pulses.
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1 Introduction

We study highly oscillatory pulse solutions for a general class of hyperbolic equations that includes
quasilinear systems like the compressible Euler equations. Our main objective is to construct leading
order weakly nonlinear geometric optics expansions of the solutions (which are valuable because, for
example, they exhibit important qualitative properties), and to rigorously justify such expansions,
that is, to show that they are close in a precise sense to true exact solutions.

A single pulse colliding with a fixed noncharacteristic boundary in an N ×N hyperbolic system
will generally give rise to a family of reflected pulses traveling with several distinct group velocities.
We study this situation when the underlying boundary problem is assumed to be uniformly spec-
trally stable in the sense of Kreiss. A formal treatment of this problem was given in Majda-Artola
[MA88], building on an earlier treatment of nonlinear geometric optics for pulses in free space in
Hunter-Majda-Rosales [HMR86]. In the papers [MA88, HMR86], systems of nonlinear equations
for leading order profiles were derived, but their solvability was not discussed. Morever, the ques-
tions of the existence of exact solutions on a fixed time interval independent of the wavelength of
oscillations (or pulse width) ε, and of the relation between exact and approximate solutions, were
not studied there. In this paper, we give a rigorous construction of leading pulse profiles in problems
where pulses traveling with many distinct group velocities are, unavoidably, present. In addition,
we construct exact solutions on a fixed time interval independent of ε, and provide a rigorous error
analysis which yields a rate of convergence of approximate to exact solutions as ε→ 0.

Rigorous treatments of the short-time propagation of a single pulse in free space were given
in Alterman-Rauch [AR03] and Guès-Rauch [GR06]1. The methods (e.g., conormal estimates in
[AR03, GR06], high-order approximate solutions in [GR06]) used in the constructions of exact
solutions and in the error analyses of these papers do not readily extend to problems involving
many pulses with distinct group velocities. The method we use here to construct exact solutions
and justify leading term expansions involves replacing the original system (1.1) with an associated
singular system (1.3) involving coefficients of order 1

ε and a new unknown Uε(x, θ0). Exact solutions
Uε to the singular system yield exact solutions to the original system by a substitution

uε(x) = Uε

(
x,
φ0(x′)

ε

)
,

where φ0(x′) = x′ ·β is the “boundary phase” as in (1.1). Both the singular system and the system
of profile equations satisfied by the leading profile U0(x, θ0, ξd) are solved by Picard iteration.

1The paper [GR06] considered “fronts” as well as pulses.

2



The error analysis is based on “simultaneous Picard iteration”, a method first used in the
study of geometric optics for wavetrains in free space in [JMR95]. The idea is to show that for
every n, the n-th profile iterate U0,n(x, θ0,

xd
ε ) converges as ε → 0 in an appropriate sense to the

n-th exact iterate Unε (x, θ0), and to conclude therefrom that U0(x, θ0,
xd
ε ) is close to Uε(x, θ0) for

ε small. Unlike wavetrains, interacting pulses do not produce resonances that affect leading order
profiles. However, our error analysis shows the importance of estimating pulse interactions in the
construction and estimation of correctors. Another key tool in the error analysis, discussed further
in section 1.4, is the machinery of moment-zero approximations developed in section 4.1. This last
argument is borrowed and adapted from [AR03].

1.1 Exact solutions and singular systems

In order to study geometric optics for nonlinear problems with highly oscillatory solutions it
is important first to settle the question of whether exact solutions exist on a fixed time interval
independent of the wavelength (ε in the notation below). A powerful method for studying this
problem, introduced in [JMR95] for initial value problems and extended to boundary problems in
[Wil02], is to replace the original system with an associated singular system.

On Rd+1
+ = {x = (x′, xd) = (t, y, xd) = (t, x′′) : xd ≥ 0}, consider the N × N quasilinear

hyperbolic boundary problem:

d∑
j=0

Aj(vε) ∂xjvε = f(vε)

b(vε)|xd=0 = g0 + εG

(
x′,

x′ · β
ε

)
vε = u0 in t < 0,

(1.1)

where x0 = t is time, G(x′, θ0) ∈ C∞(Rd × R1,Rp) decays to zero as |θ0| → ∞, with supp G ⊂
{x0 ≥ 0}, and the boundary frequency β ∈ Rd \ {0}2. Here the coefficients Aj ∈ C∞(RN ,RN2

),
f ∈ C∞(RN ,RN ), and b ∈ C∞(RN ,Rp).

Looking for vε as a perturbation vε = u0 + εuε of a constant state u0 such that f(u0) = 0,
b(u0) = g0, we obtain for uε the system (with slightly different Aj ’s)

(a) P (εuε, ∂x)uε :=

d∑
j=0

Aj(εuε) ∂xjuε = F(εuε)uε on xd ≥ 0

(b) B(εuε)uε|xd=0 = G

(
x′,

x′ · β
ε

)
(c) uε = 0 in t < 0,

(1.2)

where B(v) is a C∞ p×N real matrix defined by

b(u0 + εuε) = b(u0) +B(εuε)εuε

and F is defined similarly. We assume that the boundary {xd = 0} is noncharacteristic, that
is, Ad(0) is invertible. The other key assumptions, explained in section 1.2, are that P (v, ∂x)
is hyperbolic with characteristics of constant multiplicity for v in a neighborhood of the origin

2Wavetrains instead of pulses are obtained by taking G(x′, θ0) to be periodic in θ0.
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(Assumption 1.1) and that (P (0, ∂x), B(0)) is uniformly stable in the sense of Kreiss (Assumption
1.6).

For any fixed ε0 > 0, the standard theory of hyperbolic boundary problems (see e.g., [CP82,
Kre70]) yields solutions of (1.2) on a fixed time interval [0, Tε0 ] independent of ε ≥ ε0. However,
since Sobolev norms of the boundary data blow up as ε→ 0, the standard theory yields solutions
uε of (1.2) only on time intervals [0, Tε] that shrink to zero as ε → 0. In section 2, exact (and

necessarily unique) solutions to (1.2) of the form uε(x) = Uε(x,
x′·β
ε ) are constructed on a time

interval independent of ε ∈ (0, ε0] for ε0 sufficiently small, where Uε(x, θ0) satisfies the singular

system derived by substituting Uε(x,
x′·β
ε ) into (1.2):

d∑
j=0

Aj(εUε) ∂xjUε +
1

ε

d−1∑
j=0

Aj(εUε)βj ∂θ0Uε = F(εUε)Uε,

B(εUε)(Uε)|xd=0 = G(x′, θ0),

Uε = 0 in t < 0.

(1.3)

As explained in [Wil02], the study of singular systems is greatly complicated by the presence
of a boundary. Even if one assumes that the matrices Aj are symmetric (as we do not here), there
is no way to obtain an L2 estimate uniform in ε by a simple integration by parts because of the
boundary terms that arise3. The blow-up examples of [Wil00] show that, at least in the wavetrain
case, for certain boundary frequencies β it is impossible to estimate solutions of (1.3) uniformly
with respect to ε in C(xd, H

s(x′, θ0)) norms, or indeed in any norm that dominates the L∞ norm4.
We do not know if analogous blow-up examples exist in the pulse case, but it is clear that the
proofs of this paper do not apply when β lies in the glancing set (Definition 1.3).

In [CGW12] a class of singular pseudodifferential operators, acting on functions U(x′, θ0) de-
caying in θ0 and having the form

ps(Dx′,θ0)U :=

∫
Rd×R

eix
′ξ′+iθ0k p

(
εV (x′, θ0), ξ′ +

k β

ε
, γ

)
Û(ξ′, k) dξ′ dk, γ ≥ 1,(1.4)

was introduced to deal with these difficulties. Observe that after multiplication by A−1
d (εUε) and

setting Ãj := A−1
d Aj , F := A−1

d F , (1.3) becomes

∂xdUε +
d−1∑
j=0

Ãj(εUε)

(
∂xj +

βj∂θ0
ε

)
Uε

≡ ∂xdUε + A
(
εUε, ∂x′ +

β∂θ0
ε

)
Uε = F (εUε)Uε,

B(εUε)(Uε)|xd=0 = G(x′, θ0),

Uε = 0 in t < 0,

(1.5)

where A
(
εUε, ∂x′ +

β∂θ0
ε

)
is a (differential) operator that can be expressed in the form (1.4). Kreiss-

type symmetrizers rs(Dx′,θ0) in the singular calculus can be constructed for the system (1.5) as in

3The class of symmetric problems with maximal strictly dissipative boundary conditions provides an exception to
this statement, but that class is too restrictive for some important applications; for example, the boundary problem
that arises in the study of multi-D shocks does not lie in this class.

4The problem occurs only for β in the glancing set (Definition 1.3), as the examples of [Wil00] together with the
results of [Wil02] show.

4



[Wil02] under the assumptions given below. With these one can prove L2(xd, H
s(x′, θ0)) estimates

uniform in ε for the linearization of (1.5). The main difference with [Wil02] is that we use here the
singular calculus of [CGW12] that is convenient for pulses (θ0 lies in an unbounded set) while the
analysis of [Wil02] relied on a singular calculus for wavetrains (θ0 lies in the torus, a fact that is
used in several places for proving symbolic calculus rules in [Wil02]).

To progress further and control L∞ norms, the boundary frequency β must be restricted to
the complement of the glancing set (Definition 1.3). With this extra assumption the singular

calculus was used in [Wil02] to block-diagonalize the operator A
(
εUε, ∂x′ +

β∂θ0
ε

)
and thereby

prove estimates uniform with respect to ε in the spaces

EsT = C(xd, H
s
T (x′, θ0)) ∩ L2(xd, H

s+1
T (x′, θ0)).(1.6)

These spaces are algebras and are contained in L∞ for s > d+1
2 . For large enough s, as determined

by the requirements of the calculus, existence of solutions to (A.6) in EsT on a time interval [0, T ]
independent of ε ∈ (0, ε0] follows by Picard iteration (see Theorem 1.12). We follow the same
arguments here, based on the singular calculus of [CGW12], the results of which being recalled in
Appendix A.

1.2 Assumptions and main results

Before continuing with an overview of the strategies for constructing profiles and for showing
that approximate solutions are close to exact solutions, we now give a precise statement of our
assumptions and main results.

We make the following hyperbolicity assumption on the system (1.2):

Assumption 1.1. The matrix A0 = I. For an open neighborhood U of 0 ∈ RN , there exists an
integer q ≥ 1, some real functions λ1, . . . , λq that are C∞ on U × Rd \ {0} and homogeneous of
degree 1 and analytic in ξ, and there exist some positive integers ν1, . . . , νq such that:

det
[
τ I +

d∑
j=1

ξj Aj(u)
]

=

q∏
k=1

(
τ + λk(u, ξ)

)νk
for u ∈ U and ξ = (ξ1, . . . , ξd) ∈ Rd \ {0}. Moreover the eigenvalues λ1(u, ξ), . . . , λq(u, ξ) are
semi-simple (their algebraic multiplicity equals their geometric multiplicity) and satisfy λ1(u, ξ) <
· · · < λq(u, ξ) for all u ∈ U , ξ ∈ Rd \ {0}.

We restrict our analysis to noncharacteristic boundaries and therefore make the following:

Assumption 1.2. For u ∈ U the matrix Ad(u) is invertible and the matrix B(u) has maximal
rank, its rank p being equal to the number of positive eigenvalues of Ad(u) (counted with their
multiplicity).

In the normal modes analysis for the linearization of (1.2) at 0 ∈ U , one first performs a Laplace
transform in the time variable t and a Fourier transform in the tangential space variables y. We
let τ − i γ ∈ C and η ∈ Rd−1 denote the dual variables of t and y. We introduce the symbol

A(ζ) := −i A−1
d (0)

(τ − iγ) I +

d−1∑
j=1

ηj Aj(0)

 , ζ := (τ − iγ, η) ∈ C× Rd−1 .
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For future use, we also define the following sets of frequencies:

Ξ :=
{

(τ − iγ, η) ∈ C× Rd−1 \ (0, 0) : γ ≥ 0
}
, Σ :=

{
ζ ∈ Ξ : τ2 + γ2 + |η|2 = 1

}
,

Ξ0 :=
{

(τ, η) ∈ R× Rd−1 \ (0, 0)
}

= Ξ ∩ {γ = 0} , Σ0 := Σ ∩ Ξ0 .

Henceforth we suppress the u in λk(u, ξ) when it is evaluated at u = 0 and write λk(0, ξ) = λk(ξ).
Two key objects in our analysis are the hyperbolic region and the glancing set that are defined as
follows:

Definition 1.3. • The hyperbolic region H is the set of all (τ, η) ∈ Ξ0 such that the matrix
A(τ, η) is diagonalizable with purely imaginary eigenvalues.

• Let G denote the set of all (τ, ξ) ∈ R × Rd such that ξ 6= 0 and there exists an integer
k ∈ {1, . . . , q} satisfying:

τ + λk(ξ) =
∂λk
∂ξd

(ξ) = 0 .

If π(G) denotes the projection of G on the d first coordinates (in other words π(τ, ξ) =
(τ, ξ1, . . . , ξd−1) for all (τ, ξ)), the glancing set G is G := π(G) ⊂ Ξ0.

We recall the following result that is due to Kreiss [Kre70] in the strictly hyperbolic case (when all
integers νj in Assumption 1.1 equal 1) and to Métivier [Mét00] in our more general framework:

Proposition 1.4 ([Kre70, Mét00]). Let Assumptions 1.1 and 1.2 be satisfied. Then for all ζ ∈
Ξ \ Ξ0, the matrix A(ζ) has no purely imaginary eigenvalue and its stable subspace Es(ζ) has
dimension p. Furthermore, Es defines an analytic vector bundle over Ξ \ Ξ0 that can be extended
as a continuous vector bundle over Ξ.

For all (τ, η) ∈ Ξ0, we let Es(τ, η) denote the continuous extension of Es to the point (τ, η). The
analysis in [Mét00] shows that away from the glancing set G ⊂ Ξ0, Es(ζ) depends analytically on
ζ, and the hyperbolic region H does not contain any glancing point.

Next we define the hyperbolic operator

L(∂x) := ∂t +
d∑
j=1

Aj(0)∂xj

and recall the definition of uniform stability [Kre70, CP82]:

Definition 1.5. The problem (1.2) is said to be uniformly stable at u = 0 if the linearized operators
(L(∂x), B(0)) at u = 0 are such that

B(0) : Es(τ − iγ, η)→ Cp is an isomorphism for all (τ − iγ, η) ∈ Σ.

Assumption 1.6. The problem (1.2) is uniformly stable at u = 0.

It is clear that uniform stability at u = 0 implies uniform stability at nearby states (and therefore
at all u ∈ U up to restricting U). Thus, there is a slight redundancy in Assumptions 1.2 and 1.6 as
far as the rank of B(0) is concerned.

Boundary and interior phases. We consider a planar real phase φ0 defined on the boundary:

(1.7) φ0(t, y) := τ t+ η · y , (τ , η) ∈ Ξ0 .
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As follows from earlier works (e.g. [MA88]), oscillations on the boundary associated with the phase
φ0 give rise to oscillations in the interior associated with some planar phases φm. These phases are
characteristic for the hyperbolic operator L(∂x) and their trace on the boundary equals φ0. For
now we make the following:

Assumption 1.7. The phase φ0 defined by (1.7) satisfies (τ , η) ∈ H.

Thanks to Assumption 1.7, we know that the matrix A(τ , η) is diagonalizable with purely imaginary
eigenvalues. These eigenvalues are denoted i ω1, . . . , i ωM , where the ωm’s are real and pairwise
distinct. The ωm’s are the roots (and all the roots are real) of the dispersion relation:

det
[
τ I +

d−1∑
j=1

η
j
Aj(0) + ωAd(0)

]
= 0 .

To each root ωm there corresponds a unique integer km ∈ {1, . . . , q} such that τ + λkm(η, ωm) = 0.
We can then define the following real5 phases and their associated group velocities:

(1.8) ∀m = 1, . . . ,M , φm(x) := φ0(t, y) + ωm xd , vm := ∇λkm(η, ωm) .

Let us observe that each group velocity vm is either incoming or outgoing with respect to the space
domain Rd+: the last coordinate of vm is nonzero. This property holds because (τ , η) does not
belong to the glancing set G. We can therefore adopt the following classification:

Definition 1.8. The phase φm is said to be incoming if the group velocity vm is incoming (that is,
∂ξdλkm(β, ωm) > 0), and outgoing if the group velocity vm is outgoing (∂ξdλkm(β, ωm) < 0).

In all that follows, we let I denote the set of indices m ∈ {1, . . . ,M} such that φm is an incoming
phase, and O denote the set of indices m ∈ {1, . . . ,M} such that φm is an outgoing phase. If p ≥ 1,
then I is nonempty, while if p ≤ N − 1, O is nonempty (this follows from Lemma 1.9 below).

Main results. We will use the notation:

L(τ, ξ) := τ I +

d∑
j=1

ξj Aj(0) ,

β = (τ , η), x′ = (t, y), φ0(x′) = β · x′.

For each phase φm, dφm denotes the differential of the function φm with respect to its argument
x = (t, y, xd). It follows from Assumption 1.1 that the eigenspace of A(β) associated with the
eigenvalue i ωm coincides with the kernel of L(dφm) and has dimension νkm . The following well-
known lemma, whose proof is recalled in [CG10], gives a useful decomposition of Es in the hyperbolic
region.

Lemma 1.9. The stable subspace Es(τ , η) admits the decomposition:

(1.9) Es(τ , η) = ⊕m∈I Ker L(dφm) ,

and each vector space in the decomposition (1.9) admits a basis of real vectors.

5If (τ , η) does not belong to the hyperbolic region H, some of the phases φm may be complex, see e.g. [Wil96,
Wil00, Les07, Mar10, Her12]. Moreover, glancing phases introduce a new scale

√
ε as well as boundary layers.
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The next Lemma, also proved in [CG10], gives a useful decomposition of CN and introduces
projectors needed later for formulating and solving the profile equations.

Lemma 1.10. The space CN admits the decomposition:

(1.10) CN = ⊕Mm=1 Ker L(dφm)

and each vector space in (1.10) admits a basis of real vectors. If we let P1, . . . , PM denote the
projectors associated with the decomposition (1.10), then there holds Im A−1

d (0)L(dφm) = Ker Pm
for all m = 1, . . . ,M .

For each m ∈ {1, . . . ,M} we let

rm,k, k = 1, . . . , νkm

denote a basis of kerL(dφm) consisting of real vectors. In section 3, we construct an approximate
solution uaε of (1.2) of the form

uaε(x) =
∑
m∈I

νkm∑
k=1

σm,k

(
x,
φm
ε

)
rm,k,(1.11)

where the σm,k(x, θm) are C1 functions decaying to zero as |θm| → ∞, which describe the propaga-
tion of pulses with group velocity vm (see Proposition 3.6). Observe that if one plugs the expression
(1.11) of uaε into P (εuε, ∂x)uε, the terms of order 1/ε vanish, leaving an O(1) error, regardless of
how the σm,k are chosen. The interior profile equations satisfied by these functions are solvability
conditions that permit this O(1) error to be (at least partially) removed by a corrector that is
sublinear (in fact bounded) as |θm| → ∞. Additional conditions on the profiles come, of course,
from the boundary conditions.

For use in the remainder of the introduction and later, we collect some notation here.

Notations 1.11. (a) Let Ω := Rd+1
+ × R1, ΩT := Ω ∩ {−∞ < t < T}, bΩ := Rd × R1, bΩT :=

bΩ ∩ {−∞ < t < T}, and set ωT := Rd+1
+ ∩ {−∞ < t < T}.

(b) For s ≥ 0 let Hs ≡ Hs(bΩ), the standard Sobolev space with norm 〈V (x′, θ0)〉s.
(c) L2Hs ≡ L2(xd, H

s(bΩ)) with |U(x, θ0)|L2Hs ≡ |U |0,s.
(d) CHs ≡ C(xd, H

s(bΩ)) with |U(x, θ0)|CHs ≡ supxd≥0 |U(., xd, .)|Hs ≡ |U |∞,s (note that
CHs ⊂ L∞Hs).

(e) C0,M (Rd+1
+ ×R) ≡ {V (x′, xd, θ0) ∈ C

(
R+, C

M
b (Rd × R,RN )

)
} where CMb denotes the space

of M times differentiable functions with derivatives up to the order M bounded.
(f) Similarly, Hs

T ≡ Hs(bΩT ) with norm 〈V 〉s,T and L2Hs
T ≡ L2(xd, H

s
T ), CHs

T ≡ C(xd, H
s
T )

have norms |U |0,s,T , |U |∞,s,T respectively.
(g)When the domains of xd and (x′, θ0) are clear, we sometimes use the self-explanatory notation

C(xd, H
s(x′, θ0)) or L2(xd, H

s(x′, θ0)).
(h) For r ≥ 0, [r] is the smallest integer ≥ r.
(i) M0 := 3 d+ 5,

The main result of section 2 is the following theorem, which gives the existence of exact solutions
to the singular system (1.3), or equivalently (1.5), and the original system (1.2) on a time interval
independent of the wavelength ε:
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Theorem 1.12. Under Assumptions 1.1, 1.2, 1.6, 1.7, consider the quasilinear boundary problem
(1.2), where G(x′, θ0) ∈ Hs+1(bΩ), s ≥ [M0 + d+1

2 ], satisfies

Supp G ⊂ {t ≥ 0} .

There exist ε0 > 0, T0 > 0 independent of ε ∈ (0, ε0], and a unique Uε(x, θ0) ∈ CHs
T0
∩ L2Hs+1

T0
satisfying the singular problem (1.5), so that

uε(x) := Uε

(
x,
x′ · β
ε

)
,

is the unique C1 solution of (1.2) on ωT0.

Remark 1.13. The regularity requirement s ≥ [M0 + d+1
2 ] in the above theorem is needed in order

to apply the singular pseudodifferential calculus introduced in [CGW12].

We can now state the main result of this paper. This theorem is actually a corollary of the
result for singular systems given in Theorem 4.16.

Theorem 1.14. Under the same assumptions as in Theorem 1.12, there exists T0 > 0 and func-
tions σm,k(x, θm) ∈ C1(ΩT0) satisfying the leading order profile equations (5.3) and defining an
approximate solution uaε as in (1.11) such that

lim
ε→0

uε − uaε = 0 in L∞(ωT0),

where uε ∈ C1(ωT0) is the unique exact solution of (1.2). In fact we obtain the rate of convergence

|uε − uaε |L∞(ωT0 ) ≤ C ε
1

2M1+5 , where M1 :=

[
d

2
+ 3

]
.

Theorem 1.14 can be recast in a form where the pulses originate in initial data at t = 0 and
reflect off the boundary {xd = 0}. This requires a discussion similar to that given in section 3.2
of [CGW11] to justify the reduction of the initial boundary value problem with data prescribed
at t = 0 to a forward boundary problem (with data identically zero in t < 0), so we omit that
discussion here.

1.3 Profile equations

In d space variables (x′′, xd), consider the quasilinear problem equivalent to (1.2)

∂duε +
d−1∑
j=0

Ãj(εuε)∂juε = F (εuε)uε in xd ≥ 0

B(εuε)uε = G(x′, θ0)|
θ0=

φ0
ε

on xd = 0

uε = 0 in t < 0,

where G(x′, θ0) decays to 0 like 〈θ0〉−k (for some k ≥ 2 to be specified later) as |θ0| → ∞. For ease
of exposition we will begin by considering the 3×3 case, which contains all the main difficulties. In
section 5, we describe the changes needed to treat the general case. We define the boundary phase
φ0 := β · x′, the real eigenvalues ωm of A(β), and the phases φm := φ0 + ωm xd as in (1.8), where
β ∈ H. We assume that the eigenvalues ωm are pairwise distinct. For the sake of clarity, we also

9



assume that ω1 and ω3 are incoming (or causal) and ω2 is outgoing. (The same kind of arguments
would apply if two of the phases were outgoing and only one was incoming.) The corresponding
right and left eigenvectors of the real matrix −iA(β) are denoted rj and lj , j = 1, 2, 3.

Below we frequently suppress ε-dependence in the notation. For functions U(x, θ0, ξd) and
V(x, θ0, ξd), define

L̃(∂θ0 , ∂ξd) := ∂ξd +
d−1∑
j=0

βj Ãj(0) ∂θ0 = ∂ξd + Ã(β) ∂θ0 and L̃(∂) := ∂d +
d−1∑
j=0

Ãj(0) ∂j ,

M(U , ∂θ0V) :=
d−1∑
j=0

βj (dÃj(0) · U) ∂θ0V .

Formally looking for a corrected approximate solution of the form

ucε(x) =
[
U0(x, θ0, ξd) + εU1(x, θ0, ξd)

]
|
θ0=

φ0
ε
, ξd=

xd
ε

,

we obtain interior profile equations

ε−1 : L̃(∂θ0 , ∂ξd)U
0 = 0 ,

ε0 : L̃(∂θ0 , ∂ξd)U
1 + L̃(∂)U0 +M(U0, ∂θ0U0) = F (0)U0 ,

(1.12)

and the boundary equation

(1.13) ε0 : B(0)U0|xd=0,ξd=0 = G(x′, θ0) .

Consider the first equation in (1.12). A function U0(x, θ0, ξd), taking values in R3 and assumed
to be C1 for the moment, can always be written

U0 = σ̃1(x, θ0, ξd) r1 + σ̃2(x, θ0, ξd) r2 + σ̃3(x, θ0, ξd) r3 .

Using the matrix [r1 r2 r3] to diagonalize Ã(β), we find that the scalar σ̃i must satisfy

(∂ξd − ωi ∂θ0) σ̃i = 0, i = 1, 2, 3, in {(x, θ0, ξd) : θ0 ∈ R, ξd ≥ 0}.

This implies that the σ̃i’s have the form

σ̃i(x, θ0, ξd) = σi(x, θ0 + ωiξd) for some σi(x, θi).

Using (1.13), we find

B(0)

∑
i=1,3

σi(x
′, 0, θ0) ri

 = G(x′, θ0)−B(0)(σ2(x′, 0, θ0) r2),(1.14)

Remark 1.15. 1. We expect the σi(x, θi) to decay polynomially to 0 as |θi| → ∞. To prove this
we must formulate and solve profile equations for the σi’s. For this we use an approach inspired by
the formal constructions in [HMR86] and [MR83].

2. Instead of σi(x, θi) we shall sometimes write σi(x, θ) with the understanding that θ is a
placeholder for θ0 + ωi ξd when it appears as an argument of σi.
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To get transport equations for the σi’s, we consider (1.12) (ε0):

L̃(∂θ0 , ∂ξd)U
1 = −

(
L̃(∂)U0 +M(U0, ∂θ0U0)

)
+ F (0)U0 := F(x, θ0, ξd).(1.15)

The corrector U1 can be written as

U1 = t1(x, θ0, ξd)r1 + t2(x, θ0, ξd)r2 + t3(x, θ0, ξd)r3.

Diagonalizing again we find that the ti’s must satisfy

(∂ξd − ωi∂θ0)ti(x, θ0, ξd) = li · F := Fi(x, θ0, ξd), i = 1, 2, 3.(1.16)

The general solution to (1.16) is

ti(x, θ0, ξd) = τ∗i (x, θ0 + ωiξd) +

∫ ξd

0
Fi(x, θ0 + ωi(ξd − s), s) ds,(1.17)

where τ∗i is arbitrary. This can be rewritten

ti(x, θ0, ξd)

= τ∗i (x, θ0 + ωiξd) +

∫ ∞
0
Fi(x, θ0 + ωi(ξd − s), s) ds+

∫ ξd

∞
Fi(x, θ0 + ωj(ξd − s), s) ds

= τi(x, θ0 + ωiξd) +

∫ ξd

∞
Fi(x, θ0 + ωi(ξd − s), s) ds ,

(1.18)

provided the integrals in (1.18) exist.
We will need the following modification of a classical lemma due to Lax [Lax57]. We refer to

[CGW11, Lemma 2.11] for the proof.

Proposition 1.16. Let W (x, θ0, ξd) =
∑3

i=1wi(x, θ0, ξd)ri be any C1 function. Then

L̃(∂)W =
3∑
i=1

(Xφiwi) ri +
3∑
i=1

(∑
k 6=i

V i
kwk

)
ri ,

where Xφi is the characteristic vector field6

Xφi := ∂xd +
d−1∑
j=0

−∂ξjωi(β)∂xj ,

and V i
k for k 6= i is the tangential vector field

V i
k :=

d−1∑
l=0

(li Ãl(0) rk) ∂xl .

6This vector field is a scalar multiple of ∂t +∇λki(η, ωi) · ∇x′′ that describes propagation at the group velocity
vi; see (1.8).
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We see from (1.15) that Fi(x, θ0, ξd) has the form

Fi(x, θ0, ξd) = −Xφi σ̃i −
∑
k

cik σ̃k ∂θ0 σ̃k −
∑
l 6=m

dil,m σ̃l ∂θ0 σ̃m +
∑
k

eik σ̃k −
∑
k 6=i

V i
k σ̃k ,(1.19)

where we recall σ̃p(x, θ0, ξd) = σp(x, θ0 + ωpθd). The coefficients in (1.19) are defined by7

cik := li

d−1∑
j=0

βj (dÃj(0) · rk) rk , dil,m := li

d−1∑
j=0

βj (dÃj(0) · rl) rm , eik := li F (0) rk .

Thus, we compute

Fi(x, θ0 + ωi(ξd − s), s)
= −(Xφiσi + cii σi ∂θσi − eii σi)(x, θ0 + ωiξd)

−
∑
k 6=i

cik σk(x, θ0 + ωiξd + s(ωk − ωi)) ∂θσk(x, θ0 + ωiξd + s(ωk − ωi))

−
∑
m6=i

dii,m σi(x, θ0 + ωiξd) ∂θσm(x, θ0 + ωiξd + s(ωm − ωi))

−
∑
l 6=i

dil,i σl(x, θ0 + ωiξd + s(ωl − ωi)) ∂θσi(x, θ0 + ωiξd)

−
∑

l 6=m,l 6=i,m 6=i
dil,m σl(x, θ0 + ωiξd + s(ωl − ωi)) ∂θσm(x, θ0 + ωiξd + s(ωm − ωi))

+
∑
k 6=i

(eik − V i
k )σk(x, θ0 + ωiξd + s(ωk − ωi)) .

(1.20)

We look for functions σi(x, θ) that decay at least at the rate 〈θ〉−2. So we assume now and
verify later that they have this property. Then the integral∫ ξd

0
Fi(x, θ0 + ωi(ξd − s), s) ds(1.21)

is sublinear in (θ0, ξd) (a condition that must be satisfied by U1 if εU1 is to make sense as a
corrector) if and only if the sum of the first three terms on the right in (1.20) is 0. In that case the
integral (1.21) is actually bounded, since the remaining terms in (1.20) have good decay in s. This
sublinearity condition gives the profile equations for the σi’s:

Xφiσi + cii σi ∂θiσi − e
i
i σi = 0, i = 1, 2, 3

(σi(x
′, 0, θ0), i = 1, 3) = B

(
G(x′, θ0), σ2(x′, 0, θ0)

)
,

σi = 0 in t < 0.

(1.22)

where B is a well-determined linear function of its arguments whose existence is given by Lemma
1.9 and the uniform stability assumption (the matrix [B(0) r1 B(0) r3] in (1.14) is invertible). As
expected from the general rule of thumb, pulses of different families do not interact at the leading
order, meaning that the evolution equations for the amplitudes σi’s are decoupled. In Proposition
3.6, we show that system (1.22) is uniquely solvable on some time interval [0, T1], that σ2 = 0 and
that σi, i = 1, 3, decay at the rate 〈θ〉−k for some k ≥ 2 to be determined.

7We refer to section 5 for the general case. Here the precise expression of the coefficients is useless somehow.
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Remark 1.17. The equations (1.22) and our assumption that the σi decay at least at the rate
〈θ〉−2 imply that the integrals in (1.18) all do exist. This argument is made more precise below.

Next we introduce an averaging operator E and a solution operator R∞ that will be useful
in the error analysis of the next paragraph. Motivated by the form of Fi in (1.19), we make the
following definition.

Definition 1.18 (Type F functions). Suppose

F (x, θ0, ξd) =

3∑
i=1

Fi(x, θ0, ξd) ri,(1.23)

where each Fi has the form

Fi(x, θ0, ξd) =

3∑
k=1

f ik(x, θ0 + ωk ξd) +

3∑
l≤m=1

gil,m(x, θ0 + ωl ξd)h
i
l,m(x, θ0 + ωm ξd),(1.24)

where the functions f ik(x, θ), g
i
l,m(x, θ), hil,m(x, θ) are real-valued, C1, and decay along with their

first order partials at the rate O(〈θ〉−2) uniformly with respect to x. We then say that F is of type
F . For such F define

EF (x, θ0, ξd) :=
3∑
j=1

(
lim
T→∞

1

T

∫ T

0
lj · F (x, θ0 + ωj (ξd − s), s) ds

)
rj .

Remark 1.19. 1.) For F as in (1.23)-(1.24), we have

EF =
3∑
i=1

F̃i(x, θ0 + ωi ξd) ri, where F̃i(x, θ) := f ii (x, θ) + gii,i(x, θ)h
i
i,i(x, θ) .(1.25)

2.) Observe that F as defined in (1.15) is of type F (hence the terminology), provided the σi’s
have sufficiently regularity and decay in θ. In that case, we obtain

EF(x, θ0, ξd) = −
3∑
i=1

(
Xφiσi + cii σi ∂θiσi − e

i
i σi
)
ri , where σi = σi(x, θ0 + ωi ξd).

Remark 1.20. The definition of E can be extended to more general functions. For example, if

F =

3∑
i=1

Fi(x, θ0 + ωi ξd) ri,

where the Fi(x, θ) are arbitrary continuous functions, the limits that define EF exist and we have
EF = F . For another example, suppose F is of type F and satisfies EF = 0. Define

R∞F (x, θ0, ξd) :=
3∑
i=1

(∫ ξd

∞
Fi(x, θ0 + ωi(ξd − s), s) ds

)
ri .(1.26)

Then the limits defining R∞F and ER∞F exist and we have ER∞F = 0.
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Proposition 1.21. Suppose F is of type F and satisfies EF = 0. Then R∞F is bounded and

L̃(∂θ0 , ∂ξd) R∞F = R∞ L̃(∂θ0 , ∂ξd)F = F = (I −E)F.

Proof. It just remains to show R∞ L̃(∂θ0 , ∂ξd)F = F . This follows by direct computation of the
integrals defining R∞ L(∂θ0 , ∂ξd)F and the fact that when EF = 0, we have Fi(x, θ0 + ωi(ξd −
∞),∞) = 0.

The next Proposition summarizes what we have shown.

Proposition 1.22. Let F (x, θ0, ξd) be a function of type F .
(a) Then the equation L̃(∂θ0 , ∂ξd)U = F has a solution bounded in (θ0, ξd) if and only if EF = 0.
(b) When EF = 0, every C1 solution bounded in (θ0, ξd) has the form

U =
3∑
i=1

τi(x, θ0 + ωi ξd) ri + R∞F with τi(x, θ) ∈ C1 and bounded.

Here EU =
∑3

i=1 τi(x, θ0 + ωi ξd) ri and (I −E)U = R∞F .
(c)If U is of type F then

E L̃(∂θ0 , ∂ξd)U = L̃(∂θ0 , ∂ξd) EU = 0.

Proof. Part (a) follows from the form of the general solution given in (1.17), and the fact that when
a function F of type F satisfies EF = 0, the integrals∫ ∞

0
Fi(x, θ0 + ωi (ξd − s), s) ds

are absolutely convergent. Part (b) follows from Remark 1.19 and ER∞F = 0. Part (c) follows
directly from Remark 1.19.

With the leading pulse profile

U0(x, θ0, ξd) = σ1(x, θ0 + ω1 ξd) r1 + σ2(x, θ0 + ω2 ξd) r2 + σ3(x, θ0 + ω3 ξd) r3 ,

we can rewrite the profile system (1.22) in a form that will be useful for the error analysis as follows:

a) EU0 = U0 ,

b) E
(
L̃(∂)U0 +M(U0, ∂θ0U0)− F (0)U0

)
= 0 ,

c) B(0)U0|xd=0,ξd=0 = G(x′, θ0) ,

d) U0 = 0 in t < 0 .

(1.27)

These equations can also be obtained by applying the operator E to the equations (1.12), and have
the common structure of weakly nonlinear geometric optics equations, see e.g. [Rau12, chapters 7
and 9].
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1.4 Error analysis

We end this introduction with a sketch of the error analysis used to prove Theorem 4.16, which
yields Theorem 1.14 as an immediate consequence. The iteration schemes for the singular system
(A.6) and the profile equations (1.27) are written side by side in (4.14), (4.15). For s large8 and
some T0 > 0, the proof of Theorem 1.12 produces a sequence of iterates Unε (x, θ0), bounded in the
space EsT0 uniformly with respect to n and ε, and such that

lim
n→∞

Unε = Uε in Es−1
T0

uniformly with respect to ε ∈ (0, ε0] ,

where Uε is the solution of the singular system (1.5). On the other hand the construction of profiles
in Proposition 3.6 yields a sequence of profile iterates U0,n(x, θ0, ξd) bounded in EsT0 (see Definition

4.1) and converging in Es−1
T0

to a solution U0 of the leading profile equations (1.27). By Proposition

4.3 this implies that the rapidly varying functions U0,n
ε (x, θ0) := U0,n(x, θ0,

xd
ε ) satisfy

lim
n→∞

U0,n
ε = U0

ε in Es−1
T0

uniformly with respect to ε ∈ (0, ε0] .

Thus, in order to conclude |U0
ε (x, θ0) − Uε(x, θ0)|Es−3

T0

≤ C ε
1

2M1+5 and thereby complete the proof

of Theorem 1.14, it would suffice to show:

There exists C such that for every n, |U0,n
ε − Unε |Es−3

T0

≤ C ε
1

2M1+5 .(1.28)

The statement (1.28) is proved by induction in section 4. It is natural to try to apply the estimate
of Proposition 4.17 to the difference U0,n+1

ε −Un+1
ε , but the problem is that for any given n, U0,n+1

ε

does not by itself provide a very good approximate solution to the boundary problem (4.14) that
defines Un+1

ε . Indeed, substitution of U0,n+1
ε into (4.14)(a) yields an error, call it Rn+1

ε (x, θ0), that
is O(1) in Es−3

T0
. Since U0,n+1 satisfies (4.15), the main contribution to Rn+1

ε (x, θ0) is given by

Rn+1(x, θ0,
xd
ε ) where

Rn+1 := (I −E)
(
L̃(∂x)U0,n+1 +M(U0,n, ∂θ0U0,n+1)− F (0)U0,n

)
.(1.29)

One would like to solve away the main error term in (1.29) by using Proposition 1.21 and con-
structing a corrector U1,n+1(x, θ0, ξd) such that

L̃(∂θ0 , ∂ξd)U
1,n+1 = −Rn+1 ,(1.30)

and then use a corrected approximate solution of (4.14)(a) of the form

U0,n+1
ε + εU1,n+1

ε .

While such a corrector is given explicitly by U1,n+1 = R∞(−Rn+1), it is not suitable for the error
analysis because, although bounded, U1,n+1

ε does not lie in any of the EsT0 spaces.
To see the reason for this, note that U0,n has the form

U0,n(x, θ0, ξd) =

3∑
i=1

σni (x, θ0 + ωi ξd) ri.(1.31)

8We take s > 1 + [M0 + d+1
2

] in Theorem 4.16.
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Since the primitive
∫ θ
∞ f(s) ds of a function f that decays (say like |s|−2) as |s| → ∞ itself decays

to zero as |θ| → ∞ if and only if f has moment zero (
∫∞
−∞ f(s) ds = 0). Since neither U0,n+1

nor the term M(U0,n, ∂θ0U0,n+1) in (1.29) has moment zero9, the definition of R∞ shows that this
choice of U1,n+1

ε generally cannot lie in any EsT0 space. We first try to remedy this problem using
an idea inspired by an argument in [AR03]. We replace U0,n (and similarly U0,n+1) by a function
U0,n
p defined by functions σni,p with vanishing first moments, where

σ̂ni,p(x,m) := χp(m) σ̂ni (x,m), 0 < p < 1 ,

and χp(m) is a low frequency cutoff function vanishing on a neighborhood of 0 of size O(|p|) and
equal to one outside a slightly larger neighborhood10. We show the estimate

|U0,n − U0,n
p |Es−1

T0

≤ C√p.

These “moment zero approximations” (Definition 4.4) are the pulse analogues of the trigonometric
polynomial approximations, which can be viewed as produced by high frequency cutoffs, used in
the error analysis in the wavetrain case in [CGW11, section 2.5]. With this change the contribution
to U1,n+1

ε from

−R∞ (I −E)
(
L̃(∂x)U0,n+1

p − F (0)U0,n
p

)
lies in a suitable ErT0 space, but there is a problem due to “self-interaction terms” of the form

σni,p(x, θ) ∂θσ
n+1
i,p (x, θ)

coming from the M term in (1.29), which do not have moment zero. Thus, we replace these terms
by (σni,p ∂θσ

n+1
i,p )p as in (4.28). The nontransversal interaction terms σni,p ∂θσ

n+1
j,p , i 6= j already yield

contributions in an ErT0 space.
Using moment-zero approximations introduces errors that blow up as p → 0, of course, but

taking p = εb for an appropriate b > 0, one can hope to control these errors using the factor ε
in εU1,n+1. Indeed, this works and by the process outlined above we obtain a corrector U1,n+1

p,ε

which, though it does not solve away Rn+1
ε , solves away “all but O(

√
p+ ε

pM1+2 )” of Rn+1
ε in Es−3

T0

(see (4.35) for more details). Setting p = εb and choosing the exponent b so that
√
p = ε

pM1+2 (so

b = 2
2M1+5), we are able to apply the estimate of Proposition (4.17) to conclude

|U0,n+1
ε − Un+1

ε |Es−3
T0

≤ C ε
1

2M1+5 where M1 =

[
d

2
+ 3

]
.

Remark 1.23 (Uniformly stable shocks). There is an analogue of Theorem 1.14 for uniformly
stable shock waves perturbed by pulses. Uniform stability for the shock waves problem is an
extension of Definition 1.5 and dates back to Majda [Maj83]. The case of shocks perturbed by
highly oscillatory wavetrains was studied in [CGW11, section 3]. In that case there is a separate
expansion for the oscillating shock front (a free boundary)

ψε(x
′) ∼ σ x0 + ε

(
χ0(x′) + ε χ1

(
x′,

φ0(x′)

ε

))
,(1.32)

9More precisely, we refer here to the moments of profiles like σni (x, θ) or products of profiles that appear in these
terms.

10The cutoff renders harmless the small divisor that appears when one writes the Fourier transform of the θ-primitive
of σni,p in terms of σ̂ni,p(x,m).
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in addition to an expansion for the solution on each side of the front. An important difference in
the pulse case is that the term χ0(x′) is absent in (1.32), and of course χ1(x′, θ0) is now decaying
instead of periodic in θ0. The expansions of the reflected waves on either side of the front are
similar to (1.11).

The singular shock problem has the same form as in the wavetrain case (see equations (3.39)
of [CGW11] and [Wil99]), and the profile equations again take the form of equations (3.60) in
[CGW11], except that every occurrence of χ0(x′) is replaced by 0. The solution of the large system
for the leading profiles is now considerably simpler than equations (3.68) of [CGW11], since all the
interaction integrals in that equation are now absent. This reflects the fact that pulses of different
families do not interact at the leading order while wavetrains do. However, it is necessary to estimate
interaction integrals in the error analysis. As in the pulse problem with fixed boundaries, one can
in the shock problem obtain a rate of convergence of approximate solutions to exact solutions as
ε→ 0.

2 Exact solution of the singular problem

The goal of this section is to prove Theorem 1.12 and solve the singular system (1.5). This is
achieved, as in [Wil02, section 7], by solving the sequence of linear problems

a) ∂xdU
n+1
ε +

d−1∑
j=0

Ãj(εU
n
ε )

(
∂xj +

βj∂θ0
ε

)
Un+1
ε = F (εUnε )Unε ,

b) B(εUnε )Un+1
ε |xd=0 = G(x′, θ0) ,

c) Un+1
ε = 0 in t < 0.

(2.1)

As for the case of hyperbolic boundary value problems, that is without the singular parameter 1/ε
in the differential operator, see e.g. [BGS07, CP82], the solvability of each linear system (2.1) relies
on some a priori estimates. Our main focus here is the derivation of a priori estimates that are
uniform with respect to the wavelength ε. For the reasons detailed in the introduction of [Wil02], the
appropriate functional setting in which one can derive uniform estimates is provided by the spaces
EsT defined in (1.6). The main difficulty is to obtain uniform L∞ estimates, because the system (2.1)
seems only to provide with uniform tangential L2 estimates. Much of the analysis in this section is
similar to [Wil02, sections 5 and 7], except that we use here the singular pseudodifferential calculus11

of Appendix A. This introduces some minor modifications for the regularity assumptions in the
results below but the main arguments are the same. This is the reason why we shall often refer to
[Wil02] in order to keep the exposition as short as possible.

11The results of Appendix A are completely similar to the corresponding ones in [Wil02], but the proofs can be
significantly different since [Wil02] uses several times the fact that in the periodic case the variable θ lies in a compact
space. The extension to the pulse case, where θ lies in R, requires other ingredients such as the Calderón-Vaillancourt
Theorem, see [CGW12].
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2.1 Main estimate for the linearized singular problem

We consider a linearized problem of the form

a) ∂xdUε +
d−1∑
j=0

Ãj(εVε)

(
∂xj +

βj∂θ0
ε

)
Uε = fε ,

b) B(εVε)Uε|xd=0 = gε ,

c) Uε = 0 in t < 0,

(2.2)

where (Vε)ε∈(0,1] is a given family of functions, and (fε, gε) represent some source terms. Our first
main result is the analogue of [Wil02, Theorems 5.1 and 5.2] and proves unique solvability with a
uniform L2 energy estimate for (2.2). The main point is to keep track of the regularity assumptions
on the coefficients Vε.

Theorem 2.1. Let s0 := [(d + 1)/2] + 1. There exists δ > 0 such that, for all K ≥ 1, there exist
some constants γ0(K) ≥ 1 and C0(K) > 0 such that the following property holds: if the coefficients
(Vε)ε∈(0,1] in (2.2) satisfy

(2.3) |ε Vε|L∞(Ω) ≤ δ , |Vε|C0,M0 (Ω) + |Vε|C(Hs0 (Rd×R)) + |ε ∂xdVε|L∞(Ω) ≤ K ,

then for all T > 0, for all source terms fε ∈ L2(ΩT ), gε ∈ L2(bΩT ) vanishing for t < 0, there exists
a unique solution Uε ∈ L2(ΩT ) to (2.2) vanishing for t < 0, and this solution satisfies

(2.4) |e−γ tUε|0,0,T +
1
√
γ
〈e−γ tUε|xd=0〉0,T ≤ C0(K)

(
1

γ
|e−γ tfε|0,0,T +

1
√
γ
〈e−γ tgε〉0,T

)
,

for all γ ≥ γ0(K).

In Theorem 2.1, the space C0,M0(Ω) denotes the space of functions v(x, θ) such that for all
xd ≥ 0, v(·, xd, ·) is bounded on Rd ×R with all derivatives up to the order M0 bounded, and with
all bounds that are uniform in xd. The norm is defined by

|v|C0,M0 (Ω) := sup
xd≥0

sup
|α|≤M0

‖∂αx′,θv(·, xd, ·)‖L∞(Rd×R) .

For fixed xd, the (x′, θ)-regularity of a symbol enables us to use some of the symbolic calculus rules
listed in Appendix A.

Proof. The first main step in the proof of Theorem 2.1 is to show a global in time a priori estimate.
In other words, we consider a smooth function Uε solution to (2.2), and wish to show the estimate
(2.4) with T = +∞. We begin with the following result.

Theorem 2.2 (Kreiss, Métivier [Kre70, Mét00]). There exists δ > 0 such that, if Bδ denotes the
closed ball of radius δ in RN , there exists an m×m matrix-valued function

R ∈ C∞(Bδ × Rd × (0,∞)),

homogeneous of degree zero in (ξ′, γ) and satisfying:
(a) R(v, ξ′, γ) = R(v, ξ′, γ)∗;
(b) there exist C > 0, c > 0 such that for all (v, ξ′, γ):

R(v, ξ′, γ) + C B∗(v)B(v) ≥ c I;(2.5)
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(c) there exist finite sets of C∞ matrices on Bδ ×Rd× (0,∞), denoted Tl, Hl, and El such that

(i) Re (R(v, ξ′, γ)A(v, ξ′, γ)) =
∑
l

Tl(v, ξ
′, γ)

(
γ Hl(v, ξ

′, γ) 0
0 El(v, ξ

′, γ)

)
T ∗l (v, ξ′, γ);

(ii) Tl, Hl are homogeneous of degree zero in (ξ′, γ), El is homogeneous of degree one;
(iii) Hl(v, ξ

′, γ) = H∗l (v, ξ′, γ), El(v, ξ
′, γ) = E∗l (v, ξ′, γ);

(iv) there exists c > 0 such that∑
l

Tl(v, ξ
′, γ)T ∗l (v, ξ′, γ) ≥ c I, Hl(v, ξ

′, γ) ≥ c I, El(v, ξ′, γ) ≥ c (|ξ′|+ γ) I.

The dimensions of Hl and El can vary with l.

The parameter δ is fixed according to Theorem 2.2. We then define the following singular
symmetrizer for the boundary value problem (2.2):

Rε,γ := Opε,γ(R(εVε, ξ
′, γ)) ,

where singular pseudodifferential operators Opε,γ(a) associated with a symbol a are defined in
Appendix A. We observe, as in [Wil02, remark 5.2] that our symmetrizer is not self-adjoint on
L2(Ω). However, the remainder Rε,γ −R∗ε,γ is O(1/γ) as an operator on L2, uniformly in ε.

Under the regularity assumptions (2.3) of Theorem 2.1, the results given in Appendix A and
the arguments in [Wil02, pages 164-165] give the following properties for the symmetrizer Rε,γ :

(a) |Rε,γW |0,0 ≤ C(K) |W |0,0 ,
(b) |[∂xd ,Rε,γ ]W |0 ≤ C(K) |W |0 ,
(c) Re ((Rε,γ Aε,γ +A∗ε,γ Rε,γ)W,W ) ≥ c(K) γ |W |20,0 ,
(d) Re 〈Rε,γW,W 〉+ C(K) 〈B(εVε)W 〉20 ≥ c(K) 〈W 〉20 ,

(2.6)

where Aε,γ denotes the operator

−γ Ã0(εVε)−
d−1∑
j=0

Ãj(εVε)

(
∂xj +

βj∂θ0
ε

)
.

Let us focus for instance on property (d) in (2.6). Since R∗ε,γ = Rε,γ +O(1/γ), G̊arding’s inequality
(Theorem A.1) shows that it is sufficient to prove that the symbol R(εVε, ξ

′, γ) +C B∗(εVε)B(εVε)
is positive definite, and this property is given by (2.5). Other properties in (2.6) are obtained by
similar arguments (applying Propositions A.7, A.8 or A.9), see [Wil02, pages 164-165] for more
details.

We perform the change of function Uε → e−γ tUε in (2.2), multiply (2.2) a) by Rε,γ and take
the real part of the L2 scalar product with e−γ tUε. The estimates (2.6) yield12

|e−γ tUε|0,0 +
1
√
γ
〈e−γ tUε|xd=0〉0 ≤ C(K)

(
1

γ
|e−γ tfε|0,0 +

1
√
γ
〈e−γ tgε〉0

)
,

for γ sufficiently large, that is for all γ ≥ γ0(K).
A similar uniform a priori estimate is valid for the dual problem (which satisfies the backward

uniform Lopatinskii condition). Then the arguments of [BGS07, CP82], namely existence of a weak

12The detailed computations can be found in [Wil02, corollary 5.2], and are the singular analogue of [BGS07, CP82].

19



solution and ”weak=strong” by tangential mollification, yields well-posedness of the boundary value
problem (2.2). Localization in time is achieved as usual by showing a causality principle (”future
does not affect the past”), which holds in our context since the constant C(K) in our energy
estimate is independent of γ.

The uniform L2 estimate (2.4) enables us to show an estimate in the space E0 defined in (1.6).
The result is similar to [Wil02, Corollary 7.1] with a slight improvement with respect to the norm
in which the source term fε is estimated.

Theorem 2.3. Let s0 := [(d + 1)/2] + 1. There exists δ > 0 such that, for all K ≥ 1, there exist
some constants γ1(K) ≥ 1 and C1(K) > 0 such that the following property holds: if the coefficients
(Vε)ε∈(0,1] in (2.2) satisfy (2.3), then for all T > 0, for all source terms fε ∈ L2(H1(bΩT )),
gε ∈ H1(bΩT ) vanishing for t < 0, there exists a unique solution Uε ∈ H1(ΩT ) to (2.2) vanishing
for t < 0, and this solution satisfies
(2.7)

|e−γ tUε|∞,0,T + |e−γ tUε|0,1,T +
1
√
γ
〈e−γ tUε|xd=0〉1,T ≤ C1(K)

(
1

γ
|e−γ tfε|0,1,T +

1
√
γ
〈e−γ tgε〉1,T

)
,

for all γ ≥ γ1(K).

Proof. The regularity of the solution Uε can be obtained by using the same arguments as in [CP82,
chapter 7], that is by commuting the system (2.2) with a mollified version of the Fourier multiplier
of symbol (γ2 + |ξ′|2 + k2)1/2. The argument shows that the ∂x′ and ∂θ derivatives of Uε are in
L2, and (2.2) then shows that the ∂xd derivative of Uε also belongs to L2. We thus only show the
estimate (2.7).

1. L2 estimate of tangential derivatives. Commuting (2.2) with a tangential derivative
∂tan ∈ {∂x0 , . . . , ∂xd−1

, ∂θ0}, we need to control the commutators

d−1∑
j=0

[Ãj(ε Vε), ∂tan]

(
∂xj +

βj∂θ0
ε

)
Uε =

d−1∑
j=0

(
dÃj(ε Vε) · ∂tanVε

) (
ε ∂xj + βj ∂θ0

)
Uε .

When multiplied by e−γt, this source term is bounded in L2(ΩT ) by a constant times |e−γ tUε|0,1,T
and can therefore be absorbed from right to left by choosing γ large. At this stage, we have

(2.8) |e−γ tUε|0,1,T +
1
√
γ
〈e−γ tUε|xd=0〉1,T ≤ C1(K)

(
1

γ
|e−γ tfε|0,1,T +

1
√
γ
〈e−γ tgε〉1,T

)
,

for all γ large enough.
2. L∞(L2) estimate, part 1. We extend fε and gε beyond time T , which does not affect

the solution Uε up to time T . Doing so, we just need to prove the L∞(L2) estimate (2.7) for
T = +∞. We consider a cut-off function χe in the extended singular calculus, that is a smooth
function satisfying the conditions (A.3) given in Appendix A. The L∞(L2) estimate is first proved
on (1 − χes(D)) (e−γ tUε), where we let from now on χes(D) denote the Fourier multiplier whose
symbol is

χe
(
ξ′,
k β

ε
, γ

)
.

Since |k β|/ε is dominated by (γ2 + |ξ′|2)1/2 on the support of 1 − χe, the same arguments as in
[Wil02, page 173] yield

|(1− χes(D)) (e−γ tUε)|∞,0 ≤ C(K)
(
|e−γ tfε|0,0 + |e−γ tUε|0,1

)
≤ C(K)

(
1

γ
|e−γ tfε|0,1 +

1
√
γ
〈e−γ tgε〉1

)
.(2.9)
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3. L∞(L2) estimate, part 2. It remains to estimate |χes(D) (e−γ tUε)|∞,0, which uses the fact
that β is a hyperbolic frequency. More precisely, we can fix some parameters δ > 0 and δ2 > 0 such
that for all v in the ball of radius δ and for all (z, η) that are δ2-close to β, there holds

Q(v, z, η)−1A(v, z, η)Q(v, z, η) = diag (λ1(v, z, η), . . . , λN (v, z, η)) ,

for a suitable invertible matrix Q, and the λj ’s satisfy

Re λj(v, z, η)

{
≤ −c γ , if j = 1, . . . , p,

≥ c γ , if j = p+ 1, . . . , N .

Moreover, Assumption 1.6 shows that the (square) matrix whose column vectors are

B(v)Q1(v, z, η), . . . , B(v)Qp(v, z, η) ,

is invertible (here the Qj ’s denote the columns of Q).
With the above notation, we can follow the proof of [Wil02, Proposition 7.3], and write

χes(D) (e−γ tUε) under the form
χes(D) (e−γ tUε) = r0W ,

where, here and from now on, r0 denotes a bounded operator on L2(Ω) whose operator norm is
independent of ε, γ, and where each component Wj of W satisfies a transport equation

(2.10) ∂xdWj − λj(ε Vε, Ds)Wj = r0(e−γ tfε) + r0(e−γ tUε) .

In (2.10), λj(ε Vε, Ds) denotes the singular pseudodifferential operator of symbol λj(ε Vε, z, η) (as
described in Appendix A).

In the outgoing case (j = p + 1, . . . , N), we multiply (2.10) by Wj , integrate from xd to +∞
and apply G̊arding’s inequality (Theorem A.1), obtaining

〈Wj(xd)〉20 + γ

∫ +∞

xd

〈Wj(y)〉20 dy

≤ C
∫ +∞

xd

〈Wj(y)〉0 〈e−γ tfε(y)〉0 dy + C

∫ +∞

xd

〈Wj(y)〉0 〈e−γ tUε(y)〉0 dy .

The contribution of Wj on the right-hand side can be absorbed on the left by using Young’s
inequality, and Theorem 2.1 enables us to control the L2 norm of Uε. We thus get

(2.11) sup
j=p+1,...,N

|Wj |2∞,0 ≤ C(K)

(
1

γ
|e−γ tfε|20,0 +

1

γ2
〈e−γ tgε〉20

)
.

The estimates in the incoming case are similar, except that we integrate from 0 to xd. We thus
get

sup
j=1,...,p

|Wj |2∞,0 ≤ sup
j=1,...,p

〈Wj |xd=0〉20 + C(K)

(
1

γ
|e−γ tfε|20,0 +

1

γ2
〈e−γ tgε〉20

)
.

Using the same arguments as in [Wil02, page 178], we can use the uniform Lopatinskii condition
and write W1|xd=0

...
Wp|xd=0

 = r0

Wp+1|xd=0
...

WN |xd=0

+ r0 (e−γ tgε) +
1

γ
r0 (e−γ tUε|xd=0) ,

21



from which we derive the estimate

sup
j=1,...,p

〈Wj |xd=0〉20 ≤ C(K) sup
j=p+1,...,N

|Wj |2∞,0 + C(K) 〈e−γ tgε〉20 +
C(K)

γ3
|e−γ tfε|20,0 .

We combine the latter inequality with (2.11), and recall χes(D) (e−γ tUε) = r0W, so we get

|χes(D) (e−γ tUε)|∞,0 ≤ C(K)

(
1
√
γ
|e−γ tfε|20,0 + 〈e−γ tgε〉20

)
.

Adding with (2.9) and (2.8), we complete the proof of Theorem 2.3.

2.2 Construction of the exact solution

We use the iteration scheme (2.1) to solve the nonlinear system (1.5). As usual, the convergence
of the iteration scheme follows from the combination of two arguments: a uniform boundedness in
a ”high norm” (here in the space Es given in (1.6)), and a contraction property in a ”low norm”
(here in E0). The estimate of a solution in E0 will be provided by Theorem 2.3 above, and we
indicate below how we obtain the estimate of a solution in Es, s ∈ N.

Proposition 2.4. Let s0 := [(d + 1)/2] + 1 and let k ∈ N. There exists δ > 0 such that, for all
K ≥ 1, there exist some constants γk(K) ≥ 1 and Ck(K) > 0 such that the following property holds:
if the coefficients (Vε)ε∈(0,1] in (2.2) satisfy (2.3) and belong to L2(Hk+1(bΩT )) ∩ L∞(Hk(bΩT )),

then for all T > 0, for all source terms fε ∈ L2(Hk+1(bΩT )), gε ∈ Hk+1(bΩT ) vanishing for t < 0,
there exists a unique solution Uε ∈ L2(Hk+1(bΩT )) ∩ L∞(Hk(bΩT )) to (2.2) vanishing for t < 0,
and this solution satisfies

(2.12) |e−γ tUε|∞,k,T + |e−γ tUε|0,k+1,T +
1
√
γ
〈e−γ tUε|xd=0〉k+1,T ≤ Ck(K)

(
1

γ
|e−γ tfε|0,k+1,T

+
1
√
γ
〈e−γ tgε〉k+1,T + |Uε|L∞(W 1,∞(bΩT ))

(
|e−γ tVε|0,k+1,T

γ
+
|e−γ tVε|xd=0|k+1,T√

γ

))
,

for all γ ≥ γk(K).

Proof. The proof is exaclty the same as that of [Wil02, Theorem 7.2]. One commutes (2.2) with
a tangential derivative ∂α of order 1 ≤ |α| ≤ k, and applies (tangential) Gagliardo-Nirenberg
inequalities. When the additional fast variable θ lies in the torus R/Z, these inequalities are given
in [Wil02, Lemma 7.3], and we claim that the exact same inequalities are valid when the fast
variable lies in R.

When commuting (2.2) with a tangential derivative ∂α, one applies Theorem 2.3 and needs to
control the commutator [

Ãj(εVε)

(
∂xj +

βj∂θ0
ε

)
; ∂α
]
Uε ,

in the norm |e−γ t · |0,1,T . The ε factor in front of Vε cancels the singular 1/ε factor and we obtain
the estimate∣∣∣∣e−γ t [Ãj(εVε) (∂xj +

βj∂θ0
ε

)
; ∂α
]
Uε

∣∣∣∣
0,1,T

≤ C(K) |e−γ tUε|0,k+1,T

+ C(K) |Uε|L∞(W 1,∞(bΩT )) |e−γ tVε|0,k+1,T .

The |e−γ tUε|0,k+1,T term on the right hand-side is absorbed by choosing γ large enough, and we
are left with (2.12). (Estimates on the boundary are similar.)
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We can then deduce the main estimate in the space EkT defined in (1.6) (the proof is the same
as that of [Wil02, Corollary 7.2] and is based on the choice T = 1/γ in Proposition 2.4).

Corollary 2.5. Let k ≥ M0 + [d+1
2 ] and K1,K2 ≥ 1. Then there exist a constant C(K1,K2) > 0,

a parameter ε0(K1,K2) ∈ (0, 1] and a time T (K1,K2) > 0 satisfying the following property: if
T ≤ T (K1,K2), if the coefficients (Vε)ε∈(0,1] in (2.2) belong to EkT and satisfy

(2.13) |Vε|∞,k,T + |Vε|xd=0|k+1,T ≤ K1 , |ε ∂xdVε|L∞(ΩT ) ≤ K2 ,

and if ε ≤ ε0(K1,K2), then for all source terms fε ∈ L2(Hk+1(bΩT )), gε ∈ Hk+1(bΩT ) vanishing
for t < 0, there exists a unique solution Uε ∈ EkT to (2.2) vanishing for t < 0, and this solution
satisfies

(2.14) |Uε|∞,k,T + |Uε|0,k+1,T +
√
T 〈Uε|xd=0〉k+1,T ≤ Ck(K1,K2)

(
T |fε|0,k+1,T +

√
T 〈gε〉k+1,T

)
.

The parameter ε0 in Corollary 2.5 is chosen so that (2.13) implies |ε Vε|L∞(ΩT ) ≤ δ where δ is
as in Proposition 2.4.

We are now in a position to prove our main existence result for the singular system (1.5). The
norm in the space EkT is defined by

|v|EkT := |v|∞,k,T + |v|0,k+1,T .

Theorem 2.6. Let K > 0 and let k ≥ M0 + [d+1
2 ]. Then there exists a constant K ′ > 0, a

parameter ε0(K) ∈ (0, 1] and a time T (K) > 0 satisfying the following property: the iteration (2.1)
with U0

ε ≡ 0 is well-defined for 0 < T ≤ T (K) and satisfies

∀n ∈ N , ∀ε ≤ ε0(K) , |Unε |EkT + |Unε |xd=0|k+1,T ≤ K , |ε ∂xdU
n
ε |L∞(ΩT ) ≤ K ′ .

Moreover, the sequence (Unε ) converges towards a function Uε in Ek−1
T , uniformly with respect to

ε ∈ (0, ε0(K)]. The limit Uε belongs to EkT and is a solution to (1.5).

Proof. The constant K ′ is chosen such that, if |Unε |EkT ≤ K, and if furthermore |Vε|EkT ≤ K, then
one has

(2.15)

∣∣∣∣∣∣ε F (εUnε )Unε −
d−1∑
j=0

Ãj(εU
n
ε )(ε ∂xj + βj ∂θ0)Vε

∣∣∣∣∣∣
L∞(ΩT )

≤ K ′ ,

independently of ε ∈ (0, 1]. Then the parameter ε0 is chosen as ε0(K,K ′) given by Corollary 2.5.
The time T (K,K ′) > 0 is chosen accordingly. Assuming that the induction assumption

∀ j ≤ n , ∀ ε ≤ ε0(K) , |U jε |EkT + 〈U jε |xd=0〉k+1,T ≤ K , |ε ∂xdU
j
ε |L∞(ΩT ) ≤ K ′ ,

holds (this is trivially true for n = 0), we can apply the estimate (2.14) of Corollary 2.5 to the
system (2.1) and obtain

|Un+1
ε |EkT +

√
T 〈Un+1

ε |xd=0〉k+1,T ≤ Ck(K,K ′)
(
T |F (εUnε )Unε |0,k+1,T +

√
T 〈G〉k+1,T

)
≤ Ck(K,K ′)

(
T C(K) +

√
T 〈G〉k+1,T

)
.
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Since 〈G〉k+1,T tends to zero as T tends to zero, we can choose the time T small enough so that
the induction assumption implies

∀ ε ≤ ε0(K) , |Un+1
ε |EkT + 〈Un+1

ε |xd=0〉k+1,T ≤ K .

Our choice of K ′ in (2.15) implies that the induction assumption propagates from the rank n to
the rank n+ 1 because |ε ∂xdUn+1

ε |L∞(ΩT ) ≤ K ′.
The convergence in Ek−1

T is obtained by showing a contraction estimate in E0
T , which is obtained

by applying Theorem 2.3. We refer to [Wil02, page 184] for the details. The limit Uε of the iteration
scheme (2.1) is a solution to (1.5), which yields toe regularity Uε ∈ EkT (see [BGS07, chapter 9] for
similar arguments).

3 Construction of the leading pulse profiles

Observe that we can solve the system (1.22) by solving instead

Xφiσi + cii σi ∂θσi − eii σi = 0, i = 1, 2, 3

(σi(x
′, 0, θ), i = 1, 3) = B

(
G(x′, θ), σ2(x′, 0, θ)

)
,

σi = 0 in t < 0.

(3.1)

where all occurrences of θi or θ0 are now replaced by θ. To solve (3.1) we use the iteration scheme

(a) Xφiσ
n+1
i + cii σ

n
i ∂θσ

n+1
i = eii σ

n
i , i = 1, 2, 3

(b) (σn+1
i (x′, 0, θ), i = 1, 3) = B

(
G(x′, θ), σn+1

2 (x′, 0, θ)
)
,

(c) σn+1
i = 0 in t < 0.

(3.2)

We will prove estimates for (3.2) in a class of Sobolev spaces weighted in θ. These weights are
introduced in order to get an explicit decay rate in θ at infinity.

Definition 3.1. For s ∈ N and γ ≥ 1 define the spaces

Γs :=
{
a(x, θ) ∈ L2(Rd+1

+ × R) : (θ, ∂x, ∂θ)
βa ∈ L2 for |β| ≤ s, and a = 0 in t < 0

}
,

and Γsγ := eγt Γs ,

with respective norms

(3.3) |a|s :=
∑

|β|=|(β1,β2,β3)|≤s

|θβ1 ∂β2x ∂β3θ a|L2(x,θ) and |a|s,γ := |e−γta|s.

We will let Hs and Hs
γ denote the usual Sobolev spaces with norms defined just as in (3.3) but

without the θ weights. These spaces and those below have the obvious meanings when a is vector-
valued.

Remark 3.2. We have

|a|s,γ ∼
∑
|β|≤s

γs−|β| |e−γt θβ1 ∂β2x ∂β3θ a|L2(x,θ) ∼
∑
|β|≤s

|e−γt θβ1 ∂β2x ∂β3θ a|L2(x,θ),

where “∼” denotes an equivalence of norms with constants independent of γ ≥ 1. The second
equivalence follows from

(∂t + γ) (e−γt a) = e−γt ∂ta.
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The next proposition is helpful for estimating the commutators that arise when deriving Γs

estimates of solutions to the linearization of the profile system (1.22). Define

Λs :=
{
a ∈ L2(Rd+1

+ × R) : θβ1 a ∈ L2 for |β1| ≤ s, ∂β2x a ∈ L2 for |β2| ≤ s,

∂β3θ a ∈ L2 for |β3| ≤ s, a = 0 in t < 0
}
,

with
|a|Λs :=

∑
|β1|≤s

|θβ1 a|L2 +
∑
|β2|≤s

|∂β2x a|L2 +
∑
|β3|≤s

|∂β3θ a|L2 ,

and let define Λsγ := eγt Λs with the norm |a|Λsγ := |e−γta|Λs accordingly.

Proposition 3.3. The spaces Γs and Λs are equal, and the norms |a|s and |a|Λs are equivalent:
there exists a constant Cs such that

|a|Λs ≤ |a|s ≤ Cs |a|Λs .(3.4)

Proof. Clearly, |a|Λs ≤ |a|s. The remaining inequality is proved by induction on s. The case s = 0
is clear. The square |a|2s is a sum of terms∫

(θβ1 ∂β2x ∂β3θ a) (θβ1 ∂β2x ∂β3θ a) dx dθ ,(3.5)

where |β| = |β1|+ |β2|+ |β3| ≤ s. The terms with |β| < s are dominated by C|a|2Λs by the induction
assumption.

Consider now a term like (3.5) with |β| = s > 0. Either 2 |β1| ≥ s or 2 |β2, β3| ≥ s. Suppose
2 |β2, β3| ≥ s. Perform integrations by parts to obtain terms of the form

(3.6) C

∫
∂α1

(x,θ) a · (θ, ∂x, ∂θ)
α2 a dx dθ ≤ Cδ |∂α1

(x,θ) a|
2
L2 + δ |(θ, ∂x, ∂θ)α2 a|2L2 , |αi| = s, i = 1, 2 ,

and other terms (where powers of θ are differentiated) that can be estimated using the induction
assumption. The second term on the right in (3.6) can be absorbed by |a|2s. Integrations by parts
show that the first term on the right is dominated by the sum of a multiple of |a|2Λs and a term
that can be absorbed by |a|2s.

The remaining case 2|β1| ≥ s is handled similarly.

Remark 3.4. 1) The spaces Γs, Γsγ , Λs, and Λsγ all have obvious analogues when L2(Rd+1
+ ×R) is

replaced by L2(ΩT ) in the definitions, where we recall the notation

ΩT =
{

(x, θ) ∈ Rd+1
+ × R : t < T

}
.

The corresponding norms are denoted by adding the subscript T : |a|s,T , |a|s,γ,T , |a|ΛsT , etc. The
equivalence (3.4) continues to hold for the norms restricted to ΩT , as can be seen by a standard
argument using Seeley extensions [CP82].

2) The analogous norms of functions of b(x′, θ) defined on Rd × R or on bΩT are denoted with
brackets: 〈b〉s,T , 〈b〉s,γ,T , etc. We denote the corresponding spaces by bΓsT , bΛsT , etc.

3) By Sobolev embedding it follows that if the functions σj appearing in (1.19) lie in ΓsT for
s > d+2

2 + 3, then F as in (1.15) is of type F . Indeed, we then have, for example, θ2
j ∂θjσj ∈ Ht

T

for an index t > d+2
2 .

4) More generally, if the functions f ik, g
i
l,m, hil,m appearing in (1.24) lie in ΓsT for s > d+2

2 + 2,
then F as in (1.23) is of type F .
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We set |a|∞ := |a|L∞(ΩT ) when the domain ΩT makes no possible confusion, and we define

W 1,∞
T :=

{
a(x, θ) : |a|1,∞ :=

∑
|α|≤1

|∂αx,θa|∞ <∞
}
.

Estimates for the coupled systems. We can now state the main existence result for solutions

V0,n+1(x, θ) = (σn+1
1 , σn+1

2 , σn+1
3 )(3.7)

to the sequence of linear systems (3.2).

Proposition 3.5. Let T > 0, m > d+2
2 + 1 and suppose that G ∈ bΓmT and V0,n ∈ ΓmT both vanish

in t ≤ 0. Then the system (3.2) has a unique solution V0,n+1 ∈ ΓmT vanishing in t ≤ 0 with
σn+1

2 ≡ 0. Moreover, there exist increasing functions, γ0(K) and C(K) of K := |V0,n|m,T such that
for γ ≥ γ0(K) we have

|V0,n+1|m,γ,T +
〈V0,n+1〉m,γ,T√

γ
≤ C(K)

(
〈G〉m,γ,T√

γ
+
|V0,n|m,γ,T

γ

)
.(3.8)

Proof. 1. L2 estimate. Anticipating the extra forcing terms that arise in the higher derivative
estimates, we first prove an L2 a priori estimate in the case where a forcing term fi(x, θ) vanishing
in t ≤ 0 is added to the right side of each interior equation in (3.2). Setting F (x, θ) := (f1, f2, f3)
we claim

|V0,n+1|0,γ,T +
〈V0,n+1〉0,γ,T√

γ
≤ C(K ′)

(
|F |0,γ,T

γ
+
〈G〉0,γ,T√

γ
+
|V0,n|0,γ,T

γ

)
,(3.9)

where K ′ := |V0,n|1,∞. The latter estimate is obtained by considering the weighted function
e−γt V0,n+1, and by performing straightforward energy estimates on (3.2)(a). The traces of σn+1

i ,
i = 1, 3, are directly estimated by using (3.2)(b).

2. Higher order estimates. We use again the system (3.2) in its original form. Using the
equivalence of norms established in Proposition 3.3, we first apply the L2 estimate to the problems
satisfied by θk σi, where k ≤ m. The forcing term in this case is

−cii [σni ∂θ, θ
k]σn+1

i = −cii k σni θk−1 σn+1
i .

Clearly we may assume |θ| ≥ 1. Applying (3.9) we can absorb the terms on the right involving
σn+1
i to obtain

|θk V0,n+1|0,γ,T +
〈θk V0,n+1〉0,γ,T√

γ
≤ C(K ′)

(
〈G〉m,γ,T√

γ
+
|V0,n|m,γ,T

γ

)
for γ ≥ γ0(K ′).(3.10)

Next we estimate ∂αx′σ
n+1
i for |α| ≤ m. The forcing term in the problem satisfied by ∂αx′σ

n+1
i is

now

−cii [σni ∂θ, ∂
α
x′ ]σ

n+1
i .

The commutator is a finite linear combination of terms of the form

(∂α1
x′ σ

n
i ) (∂α2

x′ ∂θσ
n+1
i ), |α1|+ |α2| = |α|, |α1| ≥ 1.(3.11)

We estimate these terms using the following two observations:
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A. Suppose m1 + m2 >
d+2

2 , mi ≥ 0. Then the product (a(x, θ), b(x, θ)) → a · b is continuous
from Hm1

T ×Hm2
T → H0

T .
B. Suppose |α1|+ |α2| ≤ |α| ≤ m. Then

|e−γt ∂α1
x,θu(x, θ)||α2|,T ≤ |u|m,γ,T .

By A (with m1 = m− |α1|, m2 = |α1| − 1) and B we have

|(3.11)|0,γ,T ≤ C |σni |m,T |σn+1
i |m,γ,T ≤ C K |σn+1

i |m,γ,T .

Applying (3.9) and absorbing terms from the right, we obtain an estimate like (3.10) for ∂αx′V0,n+1

with C(K ′) replaced by C(K).
The θ derivatives ∂kθσi, k ≤ m, are estimated similarly. Derivatives involving ∂xd are estimated

in the customary way using the tangential estimates and the fact that xd = 0 is noncharacteristic
for Xφi .

3. Existence and uniqueness. This follows easily from the above estimates since the principal
part of the system (3.2) is given by three decoupled vector fields. One can therefore integrate along
characteristics. Equations (3.2)(a),(c) and the fact that Xφ2 is outgoing imply σn+1

2 = 0.

Next we show convergence of the iterates V0,n to a short time solution of the nonlinear profile
equations (3.1).

Proposition 3.6. Consider the profile equations (3.1), where G ∈ bΓmT , m > d+2
2 +1, and vanishes

in t ≤ 0. For some 0 < T0 ≤ T the system has a unique solution V0 ∈ ΓmT0 with σ2 = 0.

Proof. 1. The iteration scheme (3.2) defines a sequence (V0,n) in ΓmT . Fixing K > 0 we claim that
for T ∗ > 0 small enough,

|V0,n|m,T ∗ + 〈V0,n〉m,T ∗ < K for all n.(3.12)

Indeed, first observe that

|u|m,γ,T ≤ C1 |u|m,T ≤ C2 eγT |u|m,γ,T ,

and fix γ > γ0(K) such that
√
γ ≥ 2C(K)C1 for γ0(K) and C(K) as in Proposition 3.5. Assuming

(3.12) holds for n ≤ n0, we find that it holds for n0 + 1 after shrinking T ∗ if necessary, using the
estimate (3.8) and the fact that G vanishes in t ≤ 0. This new choice of T ∗ works for all n.

2. Convergence of the iterates in Γ0
T0

to some V0 for a possibly smaller T0 > 0 now follows
from (3.12) by applying (3.8) when m = 0 to the problem satisfied by (V0,n+1 − V0,n). In view of
(3.12) and a classical argument involving weak convergence and interpolation, we thereby obtain
a solution V0 ∈ ΓmT0 with, in fact, a trace that lies in bΓmT0 . This argument shows that the iterates

V0,n converge to V0 in Γm−1
T0

.

4 Error analysis

Next we carry out the error analysis sketched in section 1.4. In section 4.1 we define and
derive estimates for moment-zero approximations. In section 4.2 we estimate interaction integrals
involving both transversal and nontransversal interactions of pulses; these estimates are used later
to estimate the first corrector U1

p,ε. Finally, in section 4.3 we complete the proof of Theorem 1.14
by proving the stronger result, Theorem 4.16.
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4.1 Moment-zero approximations to U0

When constructing a corrector to the leading term in the approximate solution we must take
primitives in θ of functions σ(x, θ) that decay to zero as |θ| → ∞. A difficulty is that such
primitives do not necessarily decay to zero as |θ| → ∞, and this prevents us from using those
primitives directly in the error analysis. The failure of the primitive to decay manifests itself on
the Fourier transform side as a small divisor problem. To get around this difficulty we work with
the primitive of a moment-zero approximation to σ, because such a primitive does have the desired
decay.

We will use the following spaces:

Definition 4.1. 1.) For s ≥ 0, we recall the notation (1.6), that is EsT := {U ∈ C(xd, H
s
T (x′, θ0))∩

L2(xd, H
s+1
T (x′, θ0))}. This space is equipped with the norm

|U(x, θ0)|EsT := |U |∞,s,T + |U |0,s+1,T .

2.) Let EsT := {U(x, θ0, ξd) : |U|EsT := supξd≥0 |U(·, ·, ξd)|EsT <∞}.

Proposition 4.2. For s > (d+ 1)/2 the spaces EsT and EsT are Banach algebras.

Proof. This is a consequence of the Sobolev embedding Theorem and the fact that L∞(bΩT ) ∩
Hs(bΩT ) is a Banach algebra for s ≥ 0.

The proofs of the following two propositions follow directly from the definitions.

Proposition 4.3. (a) For s ≥ 0, let σ(x, θ) ∈ EsT and set σ̃(x, θ0, ξd) := σ(x, θ0 + ω ξd), ω ∈ R.
Then σ̃ ∈ EsT and

|σ̃|EsT ≤ C|σ|Hs+1
T

.

(b) For σ̃ ∈ EsT , set σ̃ε(x, θ0) := σ̃(x, θ0,
xd
ε ). Then

|σ̃ε|EsT ≤ |σ̃|EsT .

Definition 4.4 (Moment-zero approximations). Let 0 < p < 1, and let φ ∈ C∞(R) have supp φ ⊂
{m : |m| ≤ 2} with φ = 1 on {|m| ≤ 1}. Set φp(m) := φ(mp ) and χp := 1−φp. For σ(x, θ) ∈ L2(ΩT ),
define the moment zero approximation to σ, σp(x, θ) by

σ̂p(x,m) := χp(m) σ̂(x,m),(4.1)

where the hat denotes the Fourier transform in θ.

Proposition 4.5. For s ≥ 1 suppose σ(x, θ) ∈ Γs+2
T , and define σ̃(x, θ0, ξd) := σ(x, θ0 +ωξd). Then

a) |σ̃ − σ̃p|EsT ≤ C |σ|Γs+2
T

√
p,

b) |∂xd σ̃ − ∂xd σ̃p|Es−1
T
≤ C |σ|Γs+2

T

√
p.

Proof. 1. Recall that σ ∈ ΓsT ⇔ θβ1 ∂β2x ∂β3θ σ(x, θ) ∈ L2(x, θ) for |β| ≤ s, which is also equivalent

to ∂β1m ∂β2x mβ3 σ̂(x,m) ∈ L2(x,m) for |β| ≤ s. It follows that

σ ∈ Γs+2
T ⇒ σ̂(x,m) ∈ Hs+2

T (x,m) ⊂ H1(m,Hs+1(x)) ⊂ L∞(m,Hs+1(x)).(4.2)

28



2. We have

|σ − σp|2Hs+1
T
∼

∑
|α|+k≤s+1

|∂αx mk σ̂(x,m) (1− χp(m))|2L2(x,m)

=
∑

|α|+k≤s+1

∫
|m|≤2p

∫
|∂αx mk σ̂(x,m)φp(m)|2 dx dm

≤ C
∫
|m|≤2p

|σ̂(x,m)|2Hs+1(x) dm ≤ C |σ|2
Γs+2
T

(2p),

where the last inequality uses (4.2). The conclusion now follows from Propostion 4.3.
3. The proof of inequality b) in Proposition 4.5 is essentially the same.

Proposition 4.6. Let σ(x, θ) ∈ Hs
T , s ≥ 0, and let σp be a moment-zero approximation to σ. We

have

(a) |σp|Hs
T
≤ C |σ|Hs

T
,

(b) If σ ∈ ΓsT , then |σp|ΓsT ≤
C

ps
|σ|ΓsT .

Proof. Part b) follows from (4.1). Indeed, for |β| ≤ s,

|∂β1m ∂β2x mβ3 σ̂p(x,m)|L2
T
≤ C

pβ1
|σ|ΓsT ,

since |∂β1m χp| ≤ C/pβ1 . Taking β1 = 0 we similarly obtain part a).

Next we consider primitives of moment-zero approximations.

Proposition 4.7. Let σ(x, θ) ∈ ΓsT , s > d
2 + 3. Let σ∗p(x, θ) be the unique primitive of σp in θ that

decays to zero as |θ| → ∞. Then σ∗p ∈ ΓsT with moment zero, and

(a) |σ∗p|Hs
T
≤ C

|σp|Hs
T

p
,

(b) |σ∗p|ΓsT ≤ C
|σp|ΓsT
ps+1

.

(4.3)

Proof. 1. Since σp(x, θ) ∈ ΓsT , s > d
2 + 3, we have |σp(x, θ)| ≤ C 〈θ〉−2 for all (x, θ). The unique

θ-primitive of σp decaying to zero as |θ| → ∞ is thus

σ∗p(x, θ) = −
∫ ∞
θ

σp(x, s) ds =

∫ θ

−∞
σp(x, s) ds.

Moreover, we have

∂θσ
∗
p = σp ⇒ im σ̂∗p = σ̂p = χp σ̂, so σ̂∗p =

χp
im

σ̂.(4.4)

Since |m| ≥ p on the support of χp, this gives

|σ̂∗p(x,m)| ≤ C |σ̂(x,m)|
p

(4.5)
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and (4.3)(a) follows directly from this. From (4.4) we also obtain σ̂∗p(x, 0) = 0.
2. The proof of (4.3) (b) is almost the same, except that now one uses∣∣∣∂sm (χpm )∣∣∣ ≤ C

ps+1
.

Proposition 4.8. Let σ(x, θ) and τ(x, θ) belong to Hs
T , s > d+2

2 . Then

|σ τ − (σ τ)p|Hs
T
≤ C |σ|Hs

T
|τ |Hs

T

√
p.(4.6)

Proof. With ∗ denoting convolution in m we have

|σ τ − (σ τ)p|2Hs
T
∼

∑
|α|+k≤s+1

|∂αx mk (σ̂ ∗ τ̂)(x,m) (1− χp(m))|2L2(x,m)

≤ C
∫
|m|≤2p

|(σ̂ ∗ τ̂)(x,m)|2Hs(x) dm

≤ C
∫
|m|≤2p

(∫
|σ̂(x,m−m1)|Hs(x) |τ̂(x,m1)|Hs(x) dm1

)2

dm

≤ C p |σ̂(x,m)|2L2(m,Hs(x)) |τ̂(x,m)|2L2(m,Hs(x)) ≤ C p |σ|
2
Hs
T
|τ |2Hs

T
.

Proposition 4.9. Let σ(x, θ) and τ(x, θ) belong to ΓsT , s > d
2 + 3 and let (στ)∗p denote the unique

primitive of (στ)p that decays to zero as |θ| → ∞. Then

|(σ τ)∗p|Hs
T
≤ C

|σ|Hs
T
|τ |Hs

T

p
.

Proof. Since ΓsT is a Banach algebra, Proposition 4.7 implies (στ)∗p ∈ ΓsT with moment zero and

|(σ τ)∗p|Hs
T
≤ C

|(σ τ)p|Hs
T

p
.

Since Hs
T is a Banach algebra, the result now follows from Proposition 4.6(a).

4.2 Estimates of interaction integrals

Pulses do not interact to produce resonances that affect the leading order profiles as in the
wavetrain case. However, interaction integrals must be estimated carefully in order to do the error
analysis.

The following propositions will be used in the error analysis for estimating terms related to
U1 as in (1.30), where the Fi appearing there are given by (1.20); in particular, we must estimate
primitives of products of pulses. In some of the estimates below we must introduce moment-zero
approximations to avoid errors that are too large to be useful in the error analysis. We begin with
an estimate of “transversal interactions”.
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Proposition 4.10. Let t be the smallest integer greater than d
2 + 3 and let s ≥ 0. Let σ1(x, θ),

σ2(x, θ) belong to ΓtT ∩H
s+1
T and define

u(x, θ0, ξd) :=

∫ ξd

∞
σ1(x, θ0 + ω ξd + α s)σ2(x, θ0 + ω ξd + s) ds,(4.7)

where ω, α are real and α /∈ {0, 1}. With uε(x, θ0) := u(x, θ0,
xd
ε ) we have

|uε|EsT ≤ C (|σ1|Hs+1
T
|σ2|ΓtT + |σ2|Hs+1

T
|σ1|ΓtT ).

uniformly for ε ∈ (0, 1].

Proof. 1. For fixed xd and ε we first estimate

(4.8)∣∣∣∣∣
∫ xd/ε

∞
σ1 σ2 ds

∣∣∣∣∣
Hs
T (x′,θ0)

∼
∑
|α|≤s

∣∣∣∣∣
∫ xd/ε

∞
∂αx′ (σ1 σ2) ds

∣∣∣∣∣
L2(x′,θ0)

+
∑
k≤s

∣∣∣∣∣
∫ xd/ε

∞
∂kθ0 (σ1 σ2) ds

∣∣∣∣∣
L2(x′,θ0)

:= As(xd) +Bs(xd).

Here and below σ1, σ2 and their derivatives are evaluated at the points indicated in (4.7) with
ξd = xd

ε , unless explicitly stated otherwise.
2. To estimate As(xd) we consider for |α1|+ |α2| = |α|:∣∣∣∣∣
∫ xd/ε

∞
∂α1
x′ σ1 ∂

α2
x′ σ2 ds

∣∣∣∣∣
L2(x′,θ0)

≤

∣∣∣∣∣
∫ xd/ε

∞

∣∣∂α1
x′ σ1 ∂

α2
x′ σ2

∣∣
L2(x′)

ds

∣∣∣∣∣
L2(θ0)

≤
∣∣∣∣∫ ∞
−∞

(|σ1|L∞(x′) |σ2|Hs(x′) + |σ1|Hs(x′) |σ2|L∞(x′)) ds

∣∣∣∣
L2(θ0)

≤ A1,s(xd) +A2,s(xd),

where we have used a Moser estimate in the x′ variable. Setting z = θ0 + ω xd
ε + α s, we obtain

A1,s(xd) = C

∣∣∣∣∣
∫ ∞
−∞
|σ1(x, z)|L∞(x′)

∣∣∣∣σ2

(
x, (θ0 + ω

xd
ε

)(1− 1

α
) +

z

α

)∣∣∣∣
Hs(x′)

dz

∣∣∣∣∣
L2(θ0)

≤ C
∫ ∞
−∞
|σ1(x, z)|L∞(x′) |σ2|L2(θ,Hs(x′)) dz

= C |σ2|L2(θ,Hs(x′))

∫ ∞
−∞
|σ1(x, z)|L∞(x′) 〈z〉2

dz

〈z〉−2

≤ C |σ2|L2(θ,Hs(x′)) |σ1(x, z)〈z〉2|L∞(x,z) ≤ C |σ2|Hs
T (x′,θ) |σ1|ΓtT ,(4.9)

where the last inequality uses Remark 3.4. The estimate of A2,s(xd) is similar.
3. Recalling the definition of the EsT norm and using

|σ2|C(xd,H
s
T (x′,θ)) ≤ C |σ2|H1(xd,H

s
T (x′,θ)) ≤ C |σ2|Hs+1

T (x,θ) ,

we obtain from (4.9):

|A1,s(xd)A2,s(xd)|C(xd) + |A1,s+1(xd)A2,s+1(xd)|L2(xd) ≤ C (|σ1|Hs+1
T
|σ2|ΓtT + |σ2|Hs+1

T
|σ1|ΓtT ).

(4.10)
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4. To estimate Bs(xd) in (4.8) we consider for k1 + k2 = k:∫ xd/ε

∞
∂k1θ0 σ1 ∂

k2
θ0
σ2 ds = ±

∫ xd/ε

∞
(∂kθ0σ1)σ2ds+ (boundary terms).

Each boundary term has the form ∂m1
θ0
σ1 ∂

m2
θ0
σ2, m1 + m2 < k, where s is evaluated at xd/ε. We

estimate such terms using Moser estimates as follows:

|∂m1
θ0
σ1 ∂

m2
θ0
σ2|L2(x′,θ0) ≤ C (|σ1|L∞(x,θ) |σ2|Hs−1(x′,θ0) + |σ1|Hs−1(x′,θ0) |σ2|L∞(x,θ0)).(4.11)

For the integral term setting z = θ0 + ω xdε + s, we have

∣∣∣∣∣
∫ xd/ε

∞
(∂kθ0σ1)σ2 ds

∣∣∣∣∣
L2(x′,θ0)

≤ C
∣∣∣∣∫ ∞
−∞
|∂kθ0σ1

(
x, (θ0 + ω

xd
ε

)(1− α) + αz
)
σ2(x, z)|L2(x′) dz

∣∣∣∣
L2(θ0)

≤ C
∣∣∣∣∫ ∞
−∞
|∂kθ0σ1

(
x, (θ0 + ω

xd
ε

)(1− α) + αz
)
|L2(x′) |σ2(x, z)|L∞(x) dz

∣∣∣∣
L2(θ0)

≤ C |σ1|L2(x′,Hs(θ)) |σ2(x, z)〈z〉2|L∞(x,z) ≤ C |σ1|Hs
T (x′,θ) |σ2|ΓtT .

(4.12)

From (4.11) and (4.12), we obtain parallel to (4.10):

|Bs(xd)|C(xd) + |Bs+1(xd)|L2(xd) ≤ C (|σ1|Hs+1
T
|σ2|ΓtT + |σ2|Hs+1

T
|σ1|ΓtT ),

completing the proof.

The previous estimate of transversal interactions did not require the use of moment-zero ap-
proximations. However, nontransversal interactions of pulses can produce errors that are too big
to be helpful in the error analysis. Thus, we are forced to use a moment-zero approximation in the
next proposition.

Proposition 4.11. Let σ(x, θ) and τ(x, θ) belong to ΓsT , s > d
2 + 3. For α, ω ∈ R, α 6= 0 set

f(x, θ0, ξd) :=

∫ ξd

∞
(σ τ)p(x, θ0 + ω ξd + α s) ds.

Then ∣∣∣f(x, θ0,
xd
ε

)
∣∣∣
Es−1
T

≤ C
|σ|Hs

T
|τ |Hs

T

p
.

Proof. The integral equals
alpha−1 (σ τ)∗p(x, θ0 + ξd(ω+α)) so the estimate follows first by applying Proposition 4.9 and then
by applying Proposition 4.3.

Corollary 4.12. Let σ(x, θ), τ(x, θ), and ω, α be as in Proposition 4.11 and set

g(x, θ0, ξd) :=

∫ ξd

∞
(σp τp)p(x, θ0 + ω ξd + α s) ds.

Then ∣∣∣g(x, θ0,
xd
ε

)
∣∣∣
Es−1
T

≤ C
|σ|Hs

T
|τ |Hs

T

p
.
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Proof. First apply Proposition 4.11 and then Proposition 4.6(a).

Proposition 4.13. For s > d
2 + 3 let σ(x, θ) ∈ Hs

T , τ(x, θ) ∈ Γs+1
T . With ω, α ∈ R, α 6= 0 set

h(x, θ0, ξd) := σ(x, θ0 + ω ξd)

∫ ξd

∞
∂θ0τ(x, θ0 + ω ξd + α s) ds.

Then ∣∣∣h(x, θ0,
xd
ε

)
∣∣∣
Es−1
T

≤ C |σ|Hs
T
|τ |Hs

T
.

Proof. The integral is equal to α−1 τ(x, θ0 + ξd(ω + α)) so the estimate follows from the fact that
Es−1
T is a Banach algebra together with Proposition 4.3.

In the next Proposition we must use a moment-zero approximation since τ(x, θ) may not have
moment zero.

Proposition 4.14. For s > d
2 + 3 let σ(x, θ) ∈ Hs

T , τ(x, θ) ∈ ΓsT . With ω, α ∈ R, α 6= 0 set

j(x, θ0, ξd) := ∂θ0σ(x, θ0 + ω ξd)

∫ ξd

∞
τp(x, θ0 + ω ξd + α s) ds.

Then ∣∣∣j(x, θ0,
xd
ε

)
∣∣∣
Es−2
T

≤ C
|σ|Hs

T
|τ |Hs−1

T

p
.

Proof. The integral is equal to α−1 τ∗p (x, θ0 + ξd(ω + α)). The estimate follows by the argument of
Proposition 4.13, except that now we also need Proposition 4.7(a) and Proposition 4.6(a).

The proof of the next Proposition is evident from the proof of Proposition 4.14.

Proposition 4.15. For s > d
2 + 3 and ω, α ∈ R, α 6= 0, let σ ∈ ΓsT and set

k(x, θ0, ξd) =

∫ ξd

∞
σp(x, θ0 + ωξd + αs)ds.

Then ∣∣∣k(x, θ0,
xd
ε

)
∣∣∣
Es−1
T

≤ C
|σ|Hs

T

p
.

4.3 Proof of Theorem 1.14

Now we are ready to prove Theorem 1.14, which shows that the approximate solution uaε(x)
converges in L∞ to the exact solution uε of Theorem 1.12 as ε → 0. In this section we prove the
following more precise Theorem, which implies Theorem 1.14 as an immediate corollary. As before
we focus on the 3 × 3 strictly hyperbolic case to ease the exposition. The mostly minor changes
needed to treat N ×N systems satisfying Assumptions 1.1, 1.2, and 1.6 are described in section 5.

Theorem 4.16. For M0 = 3d+ 5 and s ≥ 1 + [M0 + d+1
2 ], let G(x′, θ0) ∈ bΓs+1

T and suppose G = 0
in t ≤ 0. Let Uε(x, θ0) ∈ EsT0 be the exact solution to the singular system (1.5) for 0 < ε ≤ ε0
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given by Theorem 1.12, let V0 = (σ1, σ2, σ3) ∈ Γs+1
T0

be the profile given by Proposition 3.6, and let

U0 ∈ EsT0 be defined by

U0(x, θ0, ξd) :=
3∑
j=1

σj(x, θ0 + ωj ξd) rj .

Here 0 < T0 ≤ T is the minimum of the existence times for the quasilinear problems (1.5) and
(1.27). Define

U0
ε (x, θ0) := U0(x, θ0,

xd
ε

).

The family U0
ε is uniformly bounded in EsT0 for 0 < ε ≤ ε0; moreover, there exists 0 < T1 ≤ T0 and

C > 0 such that

|Uε − U0
ε |Es−3

T1

≤ Cε
1

2M1+5 ,(4.13)

where M1 is the smallest integer > d
2 + 3.

The proof of Theorem 4.16 will use the strategy of simultaneous Picard iteration first used by
Joly, Métivier, and Rauch in [JMR95] to justify leading term expansions for initial value problems
on domains without boundary. Consider the iteration schemes for the quasilinear problems (1.5)
and (1.27):

a) ∂xdU
n+1
ε +

d−1∑
j=0

Ãj(εU
n
ε )

(
∂xj +

βj∂θ0
ε

)
Un+1
ε = F (εUnε )Unε ,

b) B(εUnε )Un+1
ε |xd=0 = G(x′, θ0),

c) Un+1
ε = 0 in t < 0,

(4.14)

and

a) EU0,n+1 = U0,n+1

b) E
(
L̃(∂)U0,n+1 +M(U0,n, ∂θ0U0,n+1)

)
= E (F (0)U0,n)

c) B(0)U0,n+1|xd=0,ξd=0 = G(x′, θ0)

d) U0,n+1 = 0 in t < 0,

(4.15)

where U0,n(x, θ0, ξd) :=
∑3

j=1 σ
n
j (x, θ0 + ωj ξd) rj for σnj as constructed in Proposition 3.5. Setting

U0,n
ε (x, θ0) := U0,n(x, θ0,

xd
ε

),

we observe that to prove the theorem it suffices to prove boundedness of the family U0
ε in EsT0 along

with the following three statements:

(a) lim
n→∞

Unε = Uε in Es−1
T0

uniformly with respect to ε ∈ (0, ε0]

(b) lim
n→∞

U0,n
ε = U0

ε in Es−1
T0

uniformly with respect to ε ∈ (0, ε0]

(c) There exist positive constants T1 ≤ T0 and C1, independent of n, such that for every n

|Unε − U0,n
ε |Es−3

T1

≤ C1 ε
1

2M1+5 .

(4.16)
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The first statement, together with uniform boundedness of the families Unε , Uε in EsT0 , is proved
in Theorem 2.6 by showing convergence of the scheme (4.14) using the following linear estimate
(which is a consequence of Proposition 2.4).

Proposition 4.17. Let s ≥ [M0 + d+1
2 ] and consider the problem (4.14), where G ∈ Hs+1 vanishes

in t ≤ 0, and where the right side of (4.14)(a) is replaced by F ∈ EsT . Suppose Unε ∈ EsT and that
for some K > 0, ε1 > 0, we have

|Unε |EsT + |ε ∂xdU
n
ε |L∞ ≤ K for ε ∈ (0, ε1].

Then there exist constants T0(K) and ε0(K) ≤ ε1 such that for 0 < ε ≤ ε0 and T ≤ T0 we have

|Un+1
ε |EsT +

√
T 〈Un+1

ε |xd=0〉s+1,T ≤ C(K)
(
T |F|EsT +

√
T 〈G〉s+1,T

)
.

Proof of Theorem 4.16. 1. The boundedness of U0
ε in EsT0 and (4.16)(b) follow directly from Propo-

sition 4.3, together with the fact that V0 ∈ Hs+1
T0

and V0,n → V0 in Hs
T0

. (In fact, the proof of

Proposition 3.6 shows that the V0,n are bounded in Γs+1
T0

and V0,n → V0 in ΓsT0 .)

2. The approximate solution U0,n
ε is by itself too crude; in order to prove (4.13) using Propo-

sition 4.17 we must construct a corrector εU1
p,ε that lies in some ErT0 space. To achieve this we

first approximate U0,n and U0,n+1 by moment-zero approximations U0,n
p and U0,n+1

p . For now we
fix 0 < p < 1 and define for each n

U0,n
p (x, θ0, ξd) =

3∑
j=1

σnj,p(x, θ0 + ωjξd) rj ,

where σnj,p is the moment-zero approximation to σnj defined by (4.1). Thus we have U0,n
p (x, θ0, ξd) =

EU0,n
p (x, θ0, ξd) and by Proposition 4.5

(4.17) |U0,n − U0,n
p |Es−1

T0

≤ C√p , and |∂xdU
0,n+1 − ∂xdU

0,n+1
p |Es−2

T0

≤ C√p ,

for C independent of n13.
3. For now we express the induction assumption as: there exists 0 < a < 1 (to be determined)

and positive constants C1, T1 ≤ T0 such that

|Unε − U0,n
ε |Es−3

T1

≤ C1 ε
a.(4.18)

The boundedness of the family Unε in EsT0 together with (4.18) imply

|F (εUnε )Unε − F (0)U0,n
ε |Es−3

T0

≤ C εa.

In view of (4.17) and Proposition 4.3 this implies

|F (εUnε )Unε − F (0)U0,n
p,ε |Es−3

T0

≤ C (
√
p+ εa).(4.19)

4. Define
Gp := L̃(∂x)U0,n+1

p +M(U0,n
p , ∂θ0U0,n+1

p ).

13Constants C,C1... appearing in this proof are all independent of n and ε.
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We claim that

|EGp −E(F (0)U0,n
p )|Es−2

T0

≤ C√p.(4.20)

Indeed, from (4.17) and the explicit formula (1.25) for the action of E on functions of type F , we
have

|E
(
F (0)U0,n − F (0)U0,n

p

)
|Es−1
T0

≤ C√p.

But E(F (0)U0,n) is given by the left side of (4.15)(b), so (4.20) follows by observing that (4.17)
and Proposition 4.2 imply∣∣∣E(L̃(∂x)

(
U0,n+1 − U0,n+1

p

))∣∣∣
Es−2
T0

≤ C√p

|E
(
M(U0,n, ∂θ0U0,n+1)−M(U0,n

p , ∂θ0U0,n+1
p )

)
|Es−2
T0

≤ C√p.
(4.21)

Here we have used the fact that the arguments of E in (4.21) are functions of type F , so the formula
(1.25) can be applied.

5. Next define the operator

L0 := L̃(∂x) +
1

ε
L̃(dφ0)∂θ0 +M(U0,n

p,ε , ∂θ0),

which is an approximation to the operator appearing on the left side of (4.14)(a) that will allow us
to use Proposition 1.21 to construct a useful corrector U1

p . Indeed, we claim

|L0U
n+1
ε − F (εUnε )Unε |Es−3

T0

≤ C(
√
p+ εa).(4.22)

This follows from (4.14)(a) and the estimates

|Ãj(εUnε )∂xjU
n+1
ε − Ãj(0)∂xjU

n+1
ε |Es−1

T0

≤ Cε ,∣∣∣∣1ε Ãj(εUnε )βj ∂θ0U
n+1
ε −

(
1

ε
Ãj(0)βj ∂θ0U

n+1
ε + dÃj(0) · Unε βj ∂θ0Un+1

ε

)∣∣∣∣
Es−1
T0

≤ C ε ,∣∣∣dÃj(0) · (Unε − U0,n
p,ε )βj ∂θ0U

n+1
ε

∣∣∣
Es−3
T0

≤ C |Unε − U0,n
p,ε |Es−3

T0

≤ C (
√
p+ εa).

(4.23)

6. Construction of the corrector. First observe that since L̃(∂θ0 , ∂ξd)U
0,n+1
p = 0, we have

L0 U0,n+1
p,ε = Gp,ε ,

and thus

L0U0,n+1
p,ε − F (0)U0,n

p,ε = Gp,ε − F (0)U0,n
p,ε =(

E(Gp − F (0)U0,n
p )

)
ε

+
(
(I −E)(Gp − F (0)U0,n

p )
)
ε
.

(4.24)

We have

|
(
E(Gp − F (0)U0,n

p )
)
ε
|Es−2
T0

≤ C√p ,(4.25)
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by (4.20), the formula (1.25) for E, and Proposition 4.3. The second term on the right in (4.24)
is not small, so we construct U1

p to solve (most of) it away. By Proposition 1.21 the function

Ũ1
p := −R∞

(
(I −E)(Gp − F (0)U0,n

p )
)

satisfies

L̃(∂θ0 , ∂ξd)Ũ
1
p = −(I −E)(Gp − F (0)U0,n

p ).(4.26)

However, this choice of Ũ1
p is too large to be useful in the error analysis.

7. To remedy this problem we replace (I − E)Gp by a modification [(I − E)Gp]mod defined as
follows. First, using (1.19) and Remark 1.19 we have

(I −E)Gp =

3∑
i=1

−∑
k 6=i

V i
kσ

n+1
k,p +

∑
k 6=i

cikσ
n
k,p∂θ0σ

n+1
k,p +

∑
l 6=m

dil,mσ
n
l,p∂θ0σ

n+1
m,p

 ri,(4.27)

where σnq,p = σnq,p(x, θ0 + ωqξd). The problem is caused by the nontransversal interaction terms
given by the middle sum over k 6= i, so we define

[(I −E)Gp]mod =
3∑
i=1

−∑
k 6=i

V i
kσ

n+1
k,p +

∑
k 6=i

cik(σ
n
k,p∂θ0σ

n+1
k,p )p +

∑
l 6=m

dil,mσ
n
l,p∂θ0σ

n+1
m,p

 ri,(4.28)

and we set

U1
p := −R∞

(
[(I −E)Gp]mod − (I −E)F (0)U0,n

p )
)
.(4.29)

Instead of (4.26) we have

L̃(∂θ0 , ∂ξd)U
1
p = −[(I −E)Gp]mod + (I −E)F (0)U0,n

p .(4.30)

For later use we set
D(x, θ0, ξd) := (I −E)Gp − [(I −E)Gp]mod

and estimate

|D(x, θ0,
xd
ε

)|Es−3
T
≤ C√p.(4.31)

Indeed, using Propositions 4.8 and 4.6(a) we have

|
(
σnk,p∂θ0σ

n+1
k,p − (σnk,p∂θ0σ

n+1
k,p )p

)
(x, θ0 + ωk

xd
ε

)|Es−3
T

≤ |σnk,p∂θ0σ
n+1
k,p − σ

n
k,p∂θ0σ

n+1
k,p )p|Hs−2

T
≤ |σnk |Hs−2

T
|σn+1
k |Hs−1

T

√
p.

8. Estimate of |U1
p,ε|Es−2

T
. By (4.29),(4.28) and the formula (1.26) for R∞, for i = 1, 2, 3 we
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must estimate |bi(x, θ0,
xd
ε )|Es−2

T
, where bi(x, θ0, ξd) =

∑
k 6=i

cik

∫ ξd

∞

(
σnk,p∂θ0σ

n+1
k,p

)
p

(x, θ0 + ωiξd + s(ωk − ωi)) ds+

∑
m 6=i

dii,m

∫ ξd

∞
σni,p(x, θ0 + ωiξd)∂θ0σ

n+1
m,p (x, θ0 + ωiξd + s(ωm − ωi)) ds+

∑
l 6=i

dil,i

∫ ξd

∞
σnl,p(x, θ0 + ωiξd + s(ωl − ωi))∂θ0σ

n+1
i,p (x, θ0 + ωiξd) ds+

∑
l 6=m,l 6=i,m 6=i

dil,m

∫ ξd

∞
σnl,p(x, θ0 + ωiξd + s(ωl − ωi))∂θ0σn+1

m,p (x, θ0 + ωiξd + s(ωm − ωi)) ds+

∑
k 6=i

eik

∫ ξd

∞
σnk,p(x, θ0 + ωiξd + s(ωk − ωi)) ds−

∑
k 6=i

∫ ξd

∞
V i
kσ

n
k,p(x, θ0 + ωiξd + s(ωk − ωi)) ds =

6∑
r=1

bi,r(x, θ0, ξd),

(4.32)

where bi,r, r = 1, . . . , 6 are defined by the respective lines of (4.32). Since V0,n is bounded in Hs+1
T ,

using Corollary 4.12 we find

|bi,1(x, θ0,
xd
ε

)|Es−2
T
≤ C

∑
k 6=i

|σnk |Hs−1
T
|∂θσn+1

k |Hs−1
T

p
≤ C/p .

Similarly, from Propositions 4.13 and 4.14 we get respectively

|bi,2(x, θ0,
xd
ε

)|Es−2
T
≤ C , |bi,3(x, θ0,

xd
ε

)|Es−2
T
≤ C/p .

Since V0,n is actually bounded in Γs+1
T , Proposition 4.10 on transversal interactions implies

|bi,4(x, θ0,
xd
ε

)|Es−2
T
≤ C

pt+1
,

where we have used Proposition 4.6(b) to estimate

|σn+1
m,p |Γt+1

T
≤ C

pt+1
|σn+1
m |Γt+1

T
.

By Proposition 4.15 we have |bi,5(x, θ0,
xd
ε )|Es−2

T
≤ C, and the estimate of bi,6 is the same, so

adding up we obtain

|U1
p,ε|Es−2

T
≤ C

pt+1
.(4.33)

To estimate (∂xdU1
p )ε we differentiate (4.32) and estimate as above to find

|(∂xdU
1
p )ε|Es−3

T
≤ C

pt+2
.(4.34)
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9. We claim

|L0

(
U0,n+1
p,ε + εU1

p,ε

)
− F (0)U0,n

p,ε |Es−3
T0

≤ C
(
√
p+

ε

pt+2

)
.(4.35)

Indeed, we have

L0(εU1
p,ε) = (L̃(∂θ0 , ∂ξd)U

1
p )ε + (L̃(∂)εU1

p )ε +M(U0,n
p,ε , ∂θ0)(εU1

p,ε),

so by (4.24) and (4.30) we find

L0

(
U0,n+1
p,ε + εU1

p,ε

)
− F (0)U0,n

p,ε =(
E(Gp − F (0)U0,n

p )
)
ε

+D(x, θ0,
xd
ε

) + (L̃(∂)εU1
p )ε +M(U0,n

p,ε , ∂θ0)(εU1
p,ε).

The estimate (1.22) now follows from (4.25), (4.31), (4.33), and (4.34).
Using (4.19), (4.22), and (4.35), we obtain

(4.36)
∣∣L0

(
Un+1
ε − (U0,n+1

p,ε + εU1
p,ε)
)∣∣
Es−3
T0

≤ C (
√
p+ εa +

ε

pt+2
) .

10. Next we claim that the following estimates hold:

(a)

∣∣∣∣(∂xd + A(εU0,n
p,ε , ∂x′ +

β ∂θ0
ε

)

)(
Un+1
ε − (U0,n+1

p,ε + εU1
p,ε)
)∣∣∣∣
Es−3
T0

≤ C (
√
p+ εa +

ε

pt+2
) ,

(b)
∣∣B(εU0,n

p,ε )
(
Un+1
ε − (U0,n+1

p,ε + εU1
p,ε)
)∣∣
Hs−2
T0

≤ C (
√
p+ εa +

ε

pt+2
).

(4.37)

Indeed, (4.37)(a) follows from (4.36) by estimates similar to (4.23), while (4.37)(b) is a simple
consequence of (4.14)(b) and (4.15)(c). Applying Proposition 4.17 we find

|Un+1
ε − (U0,n+1

p,ε + εU1
p,ε)|Es−3

T0

≤ C
√
T0 (
√
p+ εa +

ε

pt+2
) ,

and thus
|Un+1
ε − U0,n+1

ε |Es−3
T0

≤ C
√
T0 (
√
p+ εa +

ε

pt+2
) .

Recall that t is fixed and equals M1 in the notation of Theorem 4.16. Setting p = εb we compute√
p = ε

pt+2 when b = 2
2t+5 , so we take a = b

2 = 1
2t+5 and complete the induction step by shrinking

T0 to a small enough T1 if necessary. This completes the proof of Theorem 4.16.

5 Extension to the general N ×N case

Here we describe the relatively minor changes needed to treat N × N systems satisfying As-
sumptions 1.1, 1.2, and 1.6. We first describe the construction of profiles in the general N × N
case. For each m ∈ {1, . . . ,M}, let

`m,k, k = 1, . . . , νkm ,
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denote a basis of real vectors for the left eigenspace of the real matrix iA(β) associated to the real
eigenvalue −ωm and chosen to satisfy

`m,k · rm′,k′ =

{
1, if m = m′ and k = k′ ,

0, otherwise.

For v ∈ CN we set

Pm,k v := (`m,k · v) rm,k (no complex conjugation here).

Functions of type F (see Definition 1.18) have the form

F (x, θ0, ξd) =
M∑
m=1

νkm∑
k=1

Fm,k(x, θ0, ξd) rm,k(5.1)

where each scalar function Fm,k is decomposed as

(5.2) Fm,k =
∑
m′

fm,km′ (x, θ0 + ωm′ ξd)

+
∑

m′,k′,m′′,k′′

gm,km′,k′,m′′,k′′(x, θ0 + ωm′ ξd)h
m,k
m′,k′,m′′,k′′(x, θ0 + ωm′′ ξd) .

In (5.2), m′ ∈ {1, . . . ,M}, k′ ∈ {1, . . . , νkm′}, and similarly for (m′′, k′′); moreover, the functions

fm,km′,k′ etc. have the same properties as the corresponding functions in Definition 1.18. The averaging
operator E is given by

EF :=
∑
m,k

(
lim
T→∞

1

T

∫ T

0
Fm,k(x, θ0 + ωm (ξd − s), s) ds

)
rm,k ,

and for F as in (5.1), it follows that EF =
∑

m,k F̃m,k rm,k where

F̃m,k := fm,km (x, θ0 + ωm ξd) +
∑
k′,k′′

gm,km,k′,m,k′′(x, θ0 + ωm ξd)h
m,k
m,k′,m,k′′(x, θ0 + ωm ξd).

On functions of type F such that EF = 0, the action of the operator R∞ is given by

R∞F :=
∑
m,k

(∫ ξd

∞
Fm,k(x, θ0 + ωm(ξd − s), s) ds

)
rm,k .

The general form of the profile equations (1.27) still applies. With

W (x, θ0, ξd) =
∑
m,k

wm,k(x, θ0, ξd) rm,k,

the decomposition of Proposition 1.16 now has the form

L̃(∂)W =
∑
m,k

(Xφmwm,k) rm,k +
∑
m,k

 ∑
m′ 6=m,k′

V m,k
m′,k′ wm′,k′

 rm,k,
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where V m,k
m′,k′ is the tangential vector field

V m,k
m′,k′ :=

d−1∑
j=0

(`m,k Ãj(0) rm′,k′) ∂xj .

In place of (1.31) and (3.7) we now have

U0,n(x, θ0, ξd) =
M∑
m=1

νkm∑
k=1

σnm,k(x, θ0 + ωm ξd) rm,k ,

V0,n+1(x, θ) =
(
σn+1
m,k (x, θ)

)
m=1,...,M ; k=1,...,νkm

.

The argument that led to the profile system (3.2) now gives14

(a) Xφmσ
n+1
m,l +

d−1∑
j=0

νkm∑
k,k′=1

bk,k
′

m,l,j σ
n
m,k ∂θσ

n+1
m,k′ =

νkm∑
k=1

ekm,l σ
n
m,k ,

(b)
(
σn+1
m,k (x′, 0, θ),m ∈ I, k = 1, . . . νkm

)
= B

(
G(x′, θ), σn+1

m,k (x′, 0, θ),m ∈ O, k = 1, . . . νkm

)
,

(c) σn+1
m,k = 0 in t ≤ 0 for all m, k,

(5.3)

where the coefficients bk,k
′

m,l,j are defined by

bk,k
′

m,l,j := `m,l · βj (dÃj(0) rm,k) rm,k′ .(5.4)

Remark 5.1. There is a potentially serious obstacle to proving estimates for the system (5.3). If
one takes the L2 pairing of (5.3)(a) with σn+1

m,l (x, θ), it is not clear how to use integration by parts
in θ to move the θ−derivative in the sum on the left onto the n-th iterate. This problem does not
arise in the estimate for (3.2). The next Proposition, which is [CGW11, Proposition 2.18], removes
this difficulty by showing that there is a symmetry in the coefficients that appears after regrouping.

Definition 5.2. For u near 0 let −ωm(u), m = 1, . . . ,M , be the eigenvalues of

iA(u, β) := A−1
d (u)

τ I +
d−1∑
j=1

η
j
Aj(u)

 ,

and Pm(u) the corresponding projectors.

The functions ωm(u) and Pm(u) are C∞ for u near 0 since β then belongs to the hyperbolic
region of A(u, ξ′).

Proposition 5.3. Let w ∈ RN be expanded as w =
∑

m,k wm,krm,k =
∑

mwm and define

(5.5) Bm
l,k′(w) :=

d−1∑
j=0

νkm∑
k=1

bk,k
′

m,l,j wm,k ,

14The nonlinear equations for the functions σm,l are, of course, obtained from (5.3) by removing the superscripts
n and n+ 1.
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where the bk,k
′

m,l,j are defined in (5.4). Then there holds

(5.6) Bm
l,k′(w) =

{
−dωm(0) · wm if k′ = l,

0 otherwise.

Proof. We differentiate the equationωm(u) I +
d−1∑
j=0

βj Ãj(u)

 Pm(u) = 0 ,

with respect to u in the direction wm, evaluate at u = 0, and apply Pm := Pm(0) on the left to
obtain

Pm

d−1∑
j=0

βj

(
dÃj(0) · wm

)
Pm = (−dωm(0) · wm)Pm .(5.7)

The second equality in (5.5) and (5.7) imply (5.6).

Proposition 5.3 allows us to write

d−1∑
j=0

νkm∑
k,k′=1

bk,k
′

m,l,j σ
n
m,k ∂θσ

n+1
m,k′ = Bm

l,l(W0,n) ∂θσ
n+1
m,l ,(5.8)

where W0,n :=
∑

m,k σ
n
m,k rm,k; hence we can shift the θ−derivative and integrate by parts as

discussed in Remark 5.1. Using (5.8), we deduce from (5.3) that σn+1
m,k = 0 when m ∈ O. Otherwise

the proof of Proposition 3.5 goes through as before. The statement of Proposition 3.6 is thus
unchanged, except that in the second sentence we have σm,k = 0 when m ∈ O now.

The formulation of Theorem 4.16 is exactly as before except now

U0(x, θ0, ξd) =
M∑
m=1

νkm∑
k=1

σm,k(x, θ0 + ωmξd) rm,k , V0(x, θ) =
(
σm,k(x, θ)

)
m=1,...,M ;k=1,...,νkm

.

The error analysis in the proof of Theorem 4.16 goes through with the obvious minor changes. For
example, the troublesome self-interaction terms cik σ

n
k,p ∂θ0σ

n+1
k,p , k 6= i, in (4.27) are now replaced by

terms of the form cim,k,k′ σ
n
m,k,p ∂θ0σ

n+1
m,k′,p, m 6= i, where the index p as before denotes a moment-zero

approximation. These terms are handled just as before by introducing [(I − E)G]mod, see (4.28),
in which they are replaced by cim,k,k′ (σ

n
m,k,p ∂θ0σ

n+1
m,k′,p)p. The contribution of these terms to the

corrector U1
p,ε is estimated as before using Corollary 4.12.

A Singular pseudodifferential calculus for pulses

Here we summarize the parts of the singular pulse calculus constructed in [CGW12] that are
needed in this article. First we define the singular Sobolev spaces used to describe mapping prop-
erties.

42



The variable in Rd+1 is denoted (x, θ), x ∈ Rd, θ ∈ R, and the associated frequency is denoted
(ξ, k). In this context, the singular Sobolev spaces are defined as follows. We consider a vector
β ∈ Rd \ {0}. Then for s ∈ R and ε ∈ ]0, 1], the anisotropic Sobolev space Hs,ε(Rd+1) is defined by

Hs,ε(Rd+1) :=
{
u ∈ S ′(Rd+1) / û ∈ L2

loc(Rd+1)

and

∫
Rd+1

(
1 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣2
)s ∣∣û(ξ, k)

∣∣2 dξ dk < +∞
}
.

Here û denotes the Fourier transform of u on Rd+1. The space Hs,ε(Rd+1) is equipped with the
family of norms

∀ γ ≥ 1 , ∀u ∈ Hs,ε(Rd+1) , ‖u‖2Hs,ε,γ :=
1

(2π)d+1

∫
Rd+1

(
γ2 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣2
)s ∣∣û(ξ, k)

∣∣2 dξ dk .

When m is an integer, the space Hm,ε(Rd+1) coincides with the space of functions u ∈ L2(Rd+1)
such that the derivatives, in the sense of distributions,(

∂x1 +
β1

ε
∂θ

)α1

. . .

(
∂xd +

βd
ε
∂θ

)αd
u , α1 + · · ·+ αd ≤ m,

belong to L2(Rd+1). In the definition of the norm ‖ · ‖Hm,ε,γ , one power of γ counts as much as one
derivative.

A.1 Symbols

In this Appendix, O denotes an open set and nolonger denotes the set of outgoing phases. Our
singular symbols are built from the following sets of classical symbols.

Definition A.1. Let O ⊂ RN be an open subset that contains the origin. For m ∈ R, we let Sm(O)
denote the class of all functions σ : O ×Rd × [1,∞)→ CM , M ≥ 1, such that σ is C∞ on O ×Rd
and for all compact sets K ⊂ O:

sup
v∈K

sup
ξ∈Rd

sup
γ≥1

(γ2 + |ξ|2)−(m−|ν|)/2 |∂αv ∂νξ σ(v, ξ, γ)| ≤ Cα,ν,K .

Let Ckb (Rd+1), k ∈ N, denote the space of continuous and bounded functions on Rd+1, whose
derivatives up to order k are continuous and bounded. Let us next define the singular symbols.

Definition A.2 (Singular symbols). Fix β ∈ Rd \ {0}, let m ∈ R and let n ∈ N. Then we let Smn
denote the set of families of functions (aε,γ)ε∈]0,1],γ≥1 that are constructed as follows:

(A.1) ∀ (x, θ, ξ, k) ∈ Rd+1 × Rd+1 , aε,γ(x, θ, ξ, k) = σ

(
ε V (x, θ), ξ +

k β

ε
, γ

)
,

where σ ∈ Sm(O), V belongs to the space Cnb (Rd+1) and where furthermore V takes its values in a
convex compact subset K of O that contains the origin (for instance K can be a closed ball centered
round the origin).

All results below extend to the case where in place of a function V that is independent of ε,
the representation (A.1) is considered with a function Vε that is indexed by ε, provided that we
assume that all functions ε Vε take values in a fixed convex compact subset K of O that contains
the origin, and (Vε)ε∈(0,1] is a bounded family of Cnb (Rd+1). Such singular symbols with a function
Vε are exactly the kind of symbols that we manipulated in the construction of exact solutions to
the singular system (1.3).
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A.2 Definition of operators and action on Sobolev spaces

To each symbol a = (aε,γ)ε∈]0,1],γ≥1 ∈ Smn given by the formula (A.1) and with values in CN×N , we
associate a singular pseudodifferential operator Opε,γ(a), with ε ∈ ]0, 1] and γ ≥ 1, whose action
on a function u ∈ S(Rd+1;CN ) is defined by

(A.2) Opε,γ(a)u (x, θ) :=
1

(2π)d+1

∫
Rd+1

ei (ξ·x+k θ) σ

(
ε V (x, θ), ξ +

k β

ε
, γ

)
û(ξ, k) dξ dk .

Let us briefly note that for the Fourier multiplier σ(v, ξ, γ) = i ξ1, the corresponding singular
operator is ∂x1 + (β1/ε) ∂θ. We now describe the action of singular pseudodifferential operators on
Sobolev spaces.

Proposition A.3. Let n ≥ d + 1, and let a ∈ Smn with m ≤ 0. Then Opε,γ(a) in (A.2) defines a
bounded operator on L2(Rd+1): there exists a constant C > 0, that only depends on σ and V in the
representation (A.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)u‖0 ≤
C

γ|m|
‖u‖0 .

The constant C in Proposition A.3 depends uniformly on the compact set in which V takes its
values and on the norm of V in Cd+1

b . For operators defined by symbols of order m > 0 we have:

Proposition A.4. Let n ≥ d + 1, and let a ∈ Smn with m > 0. Then Opε,γ(a) in (A.2) defines a
bounded operator from Hm,ε(Rd+1) to L2(Rd+1): there exists a constant C > 0, that only depends
on σ and V in the representation (A.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)u‖0 ≤ C ‖u‖Hm,ε,γ .

The next proposition describes the smoothing effect of operators of order −1.

Proposition A.5. Let n ≥ d + 2, and let a ∈ S−1
n . Then Opε,γ(a) in (A.2) defines a bounded

operator from L2(Rd+1) to H1,ε(Rd+1): there exists a constant C > 0, that only depends on σ and
V in the representation (A.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖0 .

Remark A.6. In applications of the pulse calculus, we verify the hypothesis that for V as in (A.1),
V ∈ Cnb (Rd+1), by showing V ∈ Hs(Rd+1) for some s > d+1

2 + n.

A.3 Adjoints and products

For proofs of the following results we refer to [CGW12]. The two first results deal with adjoints of
singular pseudodifferential operators while the last two deal with products.

Proposition A.7. Let a = σ(εV, ξ + k β
ε , γ) ∈ S0

n, n ≥ 2 (d + 1), where V ∈ Hs0(Rd+1) for some

s0 > d+1
2 + 1, and let a∗ denote the conjugate transpose of the symbol a. Then Opε,γ(a) and

Opε,γ(a∗) act boundedly on L2 and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for
all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖H1,ε,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.
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Proposition A.8. Let a = σ(εV, ξ + k β
ε , γ) ∈ S1

n, n ≥ 3 d + 4, where V ∈ Hs0(Rd+1) for some

s0 > d+1
2 + 1, and let a∗ denote the conjugate transpose of the symbol a. Then Opε,γ(a) and

Opε,γ(a∗) map H1,ε into L2 and there exists a family of operators Rε,γ that satisfies

• there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Rε,γ u‖0 ≤ C ‖u‖0 ,

• the following duality property holds

∀u, v ∈ S(Rd+1) , 〈Opε,γ(a)u, v〉L2 − 〈u,Opε,γ(a∗) v〉L2 = 〈Rε,γ u, v〉L2 .

In particular, the adjoint Opε,γ(a)∗ for the L2 scalar product maps H1,ε into L2.

Proposition A.9. (a) Let a, b ∈ S0
n, n ≥ 2 (d + 1), and suppose b = σ(εV, ξ + k β

ε , γ) where

V ∈ Hs0(Rd+1) for some s0 > d+1
2 + 1. Then there exists a constant C ≥ 0 such that for all

ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a) Opε,γ(b)u−Opε,γ(a b)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a) Opε,γ(b)u−Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.
(b) Let a ∈ S1

n, b ∈ S0
n or a ∈ S0

n, b ∈ S1
n, n ≥ 3 d + 4, and in each case suppose b =

σ(εV, ξ + k β
ε , γ) where V ∈ Hs0(Rd+1) for some s0 > d+1

2 + 1. Then there exists a constant
C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a) Opε,γ(b)u−Opε,γ(a b)u‖0 ≤ C ‖u‖0 .

Our final result is G̊arding’s inequality.

Theorem A.1. Let σ ∈ S0 satisfy Reσ(v, ξ, γ) ≥ CK > 0 for all v in a compact subset K of O.
Let now a ∈ Sn0 , n ≥ 2 d+ 2 be given by (A.1), where V ∈ Hs0(Rd+1) for some s0 >

d+1
2 + 1 and is

valued in a convex compact subset K. Then for all δ > 0, there exists γ0 which depends uniformly
on V , the constant CK and δ, such that for all γ ≥ γ0 and all u ∈ S(Rd+1), there holds

Re 〈Opε,γ(a)u;u〉L2 ≥ (CK − δ) ‖u‖20 .

A.4 Extended calculus

In our proof of L∞(xd;L
2(x′, θ0)) estimates for the linearized singular system (Theorem 2.3),

we use a slight extension of the singular calculus. For given parameters 0 < δ1 < δ2 < 1, we choose
a cutoff χe(ξ′, k βε , γ) such that

0 ≤ χe ≤ 1 ,

χe
(
ξ′,
k β

ε
, γ

)
= 1 on

{
(γ2 + |ξ′|2)1/2 ≤ δ1

∣∣∣∣k βε
∣∣∣∣} ,

suppχe ⊂
{

(γ2 + |ξ′|2)1/2 ≤ δ2

∣∣∣∣k βε
∣∣∣∣} ,

(A.3)

and define a corresponding Fourier multiplier χeD in the extended calculus by the formula (A.2)

with χe(ξ′, k βε , γ) in place of σ(εV,X, γ). Composition laws involving such operators are proved in
[CGW12], but here we need only the fact that part (a) of Proposition A.9 holds when either a or
b is replaced by an extended cutoff χe.
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