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CROWD DYNAMICS AND CONSERVATION LAWS WITH

NON–LOCAL CONSTRAINTS

BORIS ANDREIANOV, CARLOTTA DONADELLO, AND MASSIMILIANO D. ROSINI

Abstract. In this paper we model pedestrian flows evacuating a narrow corridor through
an exit by a one–dimensional hyperbolic conservation law with a non–local constraint.
Existence and stability results for the Cauchy problem with Lipschitz constraint are
achieved by a procedure that combines the wave–front tracking algorithm with the op-
erator splitting method. The Riemann problem with piecewise constant constraint is
discussed in details, stressing the possible lack of uniqueness, self–similarity and L

1

loc–
continuity. One explicit example of application is provided.
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1. Introduction

The theory for constrained conservation laws was introduced by Colombo and
Goatin in Ref. [8]. Their results are of interest in many real–life applications, such as
vehicular traffic, Refs. [11], [20], pedestrian flows, Refs. [4], [13], telecommunications,
supply–chains, etc.

For pedestrians, constraints are usually caused by a direct capacity reduction (door
or obstacle) and are of fundamental importance in the calculation of evacuation times.
The first macroscopic model for pedestrian evacuations able to reproduce the fall in
the efficiency of an exit when a high density of pedestrians clogs it, was the CR model
proposed in Ref. [13] and developed in Refs. [9], [10], [16], [28]; see also Ref. [29].
There, the maximal outflow allowed through the exit is assumed to be a piecewise
constant function of the density at the exit, and takes two distinct values, one related
to the “standard” case, when the density is less than an assigned threshold, and one
related to the case with “panic”, when the density is greater than the threshold. As
a result, the fall in the efficiency of the exit has a non–realistic behavior since it is in-
stantaneous when the panic reaches the exit. A more realistic model should reproduce
a more gradual decay in the efficiency of the exit as the pedestrians accumulate close
to it, see Refs. [27], [31]. Moreover, according to the CR model, once the efficiency of
the exit falls down, it remains constant until the very last pedestrian is evacuated. On
the contrary, in real life the efficiency of the exit gradually increases as the number
of the remaining pedestrians to be evacuated becomes smaller and smaller.

To avoid these drawbacks of the CR model, in this paper we generalize the results
proved in Ref. [8] and study the Cauchy problem for a one–dimensional hyperbolic
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conservation law with non–local constraint of the form

∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R+ ×R (1a)

f (ρ(t, 0±)) ≤ p

(
∫

R−

w(x) ρ(t, x) dx

)

t ∈ R+ (1b)

ρ(0, x) = ρ0(x) x ∈ R . (1c)

Above, ρ = ρ(t, x) ∈ [0, R] is the (mean) density at time t ∈ R+ of pedestrians moving
along the corridor parameterized by the coordinate x ∈ R−. Then, R ∈ R+ is the
maximal density, f : [0, R] → R is the pedestrian flow with pedestrians moving in the
direction of increasing x, p : R+ → R+ prescribes the maximal flow allowed through
an exit placed in x = 0 as a function of the weighted average density of pedestrians
in a left neighborhood of the exit, w : R− → R+ is the weight function used for the
average density and ρ0 : R → [0, R] is the initial (mean) density. Finally, ρ(t, 0−)
denotes the left measure theoretic trace along the constraint implicitly defined by

lim
ε↓0

1

ε

∫ +∞

0

∫ 0

−ε
|ρ(t, x)− ρ(t, 0−)| φ(t, x) dx dt = 0

for all φ ∈ C∞
c (R2;R). The right measure theoretic trace, ρ(t, 0+), is defined analo-

gously.
Observe that if w is regular enough and limx→−∞w(x) = 0, then the quantity

ξ(t) =

∫

R−

w(x) ρ(t, x) dx (2)

is the solution of the following Cauchy problem for an ordinary differential equation

ξ̇(t) =

∫

R−

ẇ(x) [f (ρ(t, x)) − f (ρ(t, 0−))] dx , ξ(0) =

∫

R−

w(x) ρ0(x) dx .

In real life, when a very high density of pedestrians accumulate near the exit, the
outgoing flow can be very small, but remains strictly positive. For this reason, the
efficiency of the exit p is assumed to be always strictly positive. We assume that the
weight w is an increasing function with compact support because the efficiency of the
exit is more affected by the closest high densities, while it does not take into account
“far” densities. In summary, we assume that:

(F) f ∈ Lip ([0, R]; [0,+∞[), f(0) = 0 = f(R) and there exists ρ̄ ∈ ]0, R[ such that
f ′(ρ) (ρ̄− ρ) > 0 for a.e. ρ ∈ [0, R].

(W) w ∈ L∞(R−;R+) is an increasing map, ‖w‖
L1(R−;R+) = 1 and there exists

iw > 0 such that w(x) = 0 for any x ≤ −iw.
(P0) p takes values in ]0, f(ρ̄)] and is a non–increasing map.

Observe that f(ρ) < f(ρ̄) for any ρ 6= ρ̄ and ξ(t) ∈ [0, R], see Fig. 1. In the present
work we do not take into account the presence of a panic regime since in (F) we
assume that the fundamental diagram [ρ 7→ (ρ, f(ρ))] is bell–shaped. Indeed, the
CR model introduces a flux that results from the juxtaposition of two bell–shaped
sub–fluxes corresponding to the two regimes quiet–panic and, therefore, does not
satisfy the condition (F). The latter assumption (P0) is the minimal requirement
for (1) to be meaningful in the sense of distributions, see Definition 1. While existence
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Figure 1. Examples of functions satisfying conditions (F), (W),
(P0) and (P2).

for the Riemann problem is proved for piecewise constant p, see (P2) in Sec. 4, we
strengthen the assumption on p to a Lipschitz continuity hypothesis when dealing
with the Cauchy problem, see (P1) and Theorem 1 in Sec 2.

We give the definition of solution for problem with nonlocal constraint (1) by
extending the definition of entropy weak solution for a constrained Cauchy problem
of the form

∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R+ × R (3a)

f (ρ(t, 0±)) ≤ q (t) t ∈ R+ (3b)

ρ(0, x) = ρ0(x) x ∈ R . (3c)

Definition 1. Assume conditions (F), (W), (P0). A map ρ ∈ L∞(R+ ×
R; [0, R]) ∩ C0(R+;L

1

loc
(R; [0, R])) is an entropy weak solution to (1) if there exists

q ∈ L∞(R+; [0, f(ρ̄)]) such that the following conditions hold:

(1) For every test function φ ∈ C∞
c (R2;R+) and for every k ∈ [0, R]

∫

R+

∫

R

[|ρ− k|∂tφ+ sign(ρ− k) (f(ρ)− f(k)) ∂xφ] dx dt (4a)

+ 2

∫

R+

[

1−
q (t)

f(ρ̄)

]

f(k) φ(t, 0) dt (4b)

+

∫

R

|ρ0(x)− k| φ(0, x) dx ≥ 0 , (4c)

and

f (ρ(t, 0±)) ≤ q (t) for a.e. t ∈ R+ . (4d)

(2) In addition q is linked to ρ by the relation

q(t) = p

(
∫

R−

w(x) ρ(t, x) dx

)

for a.e. t ∈ R+ . (5)

If q is given a priori, then (4) is the definition of entropy weak solution to prob-
lem (3). This item is precisely the Definition 2.1 in Ref. [1], which is a minor general-
ization of the original Definition 3.2 introduced in Ref. [8]. We refer to Proposition 2.6
in Ref. [1] for a series of equivalent formulations of conditions (4).
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The lines (4a) and (4c) originate from the classical Kružkov Definition 1 in Ref. [22],
in the case of the Cauchy problem with no constraints. Lines (4b) and (4d) account
for the constraint. Let us stress that both left and right traces at x = 0 of an entropy
weak solution exist (see, e.g., Theorem 2.2 in Ref. [1] which is a reformulation of the
results of Refs. [26], [33]).

Our main result is well-posedness for the nonlocal problem (1), see Theorem 1. We
show that under the Lipschitz continuity assumption on p there exists a semigroup
(St)t>0 on L∞(R; [0, R]) such that ρ(t, ·) = St(ρ0) is the unique solution of (1), and
depends continuously on t and ρ0 with respect to the L1

loc
–distance.

The uniqueness result for (1) is a consequence of a stability estimate for the problem
with local constraint (3) with respect to the L1

loc
–distance, of the relation (5) and of

the Gronwall inequality.
The existence result for (1) is achieved through an operator splitting method,

Refs. [6], [7], [14], [15], [18], coupled with the wave–front tracking algorithm, Refs. [8],
[17]. This procedure is chosen for two reasons. First, wave–front tracking schemes are
able to operate also in the case with panic, when nonclassical shocks away from the
constraint have to be taken into account, see Ref. [4]. Second, the operator splitting
procedure allows us to approximate our problem with a problem of type (3), namely
with a “frozen” constraint. This greatly simplify our work because it avoids the
difficulties coming from the Riemann solver for the nonlocally constrained problem.
Indeed, we underline the fact that, differently from the constrained Cauchy problems
studied in Refs. [1], [8], the maximal flow at the constraint for (1) depends on the
solution itself and, in general, it is an unknown variable of the problem. As soon as
p is discretized, i.e. p is approximated by piecewise constant functions, the solution
of the corresponding nonlocally constrained Riemann problem may fail to be unique,
L1

loc
–continuous, consistent and self–similar, as we will show in Sec. 4. Furthermore,

using wave–front tracking for a nonlocal problem is quite delicate because one cannot
merely juxtapose local solutions of Riemann problems, see Remark 1.

The use of wave–front tracking approximation requires the BV functional setting.
As already observed in Ref. [8], the constraint may cause sharp increases in the total
variation TV(ρ) of the solution. To overcome this difficulty, as in Refs. [5], [8], [11],
[32], we rather estimate the total variation of Ψ ◦ ρ, where

Ψ(ρ) = sign(ρ− ρ̄) (f(ρ̄)− f(ρ)) =

∫ ρ

ρ̄

∣

∣

∣
ḟ(r)

∣

∣

∣
dr . (6)

We stress that Ψ is one–to–one, but possibly singular at ρ = ρ̄. Indeed, if ρ is in BV,
then also Ψ ◦ ρ is in BV, while the reverse implication does not hold true. Therefore
we introduce the set

D =
{

ρ ∈ L1 (R; [0, R]) : Ψ(ρ) ∈ BV(R;R)
}

. (7)

In the first step of our construction, we exploit the finite speed of propagation property
for the conservation law (1a) to define St on the domain D by coupling the operator
splitting method with the wave–front tracking algorithm, see Sec 3. Then we extend
St to L∞ by a density argument, see the second part of the proof of Theorem 1.
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The paper is organized as follows. Sec. 2 and 3 are devoted to the constrained
Cauchy problem. In Sec. 4 we study (1) with a Riemann initial datum. In Sec. 5 we
apply the model (1) to describe the evacuation of a corridor through an exit placed
at x = 0. All the technical proofs are in Sec. 6. Conclusions and perspectives are
outlined in Sec. 7.

2. The Cauchy problem with nonlocal constraint

In this section we consider the Cauchy problem (1) under the hypotheses (F), (W)
and the following assumption on p:

(P1) p belongs to Lip ([0, R] ; ]0, f(ρ̄)]) and it is a non-increasing map.

Let us start with the basic properties of entropy weak solutions to (1).

Proposition 1. Let [t 7→ ρ(t)] be an entropy weak solution of (1) in the sense of
Definition 1. Then

(1) It is also a weak solution of (1a), (1c).
(2) Any discontinuity satisfies the Rankine–Hugoniot jump condition.
(3) Any discontinuity away from the constraint is classical, i.e. satisfies the Lax en-

tropy inequalities.
(4) Nonclassical discontinuities, see Refs. [24], [29], may occur only at the constraint

location x = 0, and in this case the flow at x = 0 is the maximal flow allowed by
the constraint. Namely, if the solution contains a nonclassical discontinuity for
all times t ∈ I, I open in R+, then for a.e. t in I

f (ρ(t, 0−)) = f (ρ(t, 0+)) = p

(
∫

R−

w(x) ρ(t, x) dx

)

. (8)

Proof. By taking k = 0, then k = R, in (4), we deduce that any entropy weak
solution to (1) is also a weak solution to (1a), (1c). As a consequence, ρ satisfies
the Rankine–Hugoniot jump condition and, in particular, f (ρ(t, 0−)) = f (ρ(t, 0+)).
By taking in (4) a test function with support in R+ × R−, then in R+ × R+, we see
that ρ is also a classical Kružkov solution to (1a), (1c) in R+ ×R± and therefore the
jumps in ρ located at x 6= 0 satisfy the Lax entropy inequalities. Finally, we prove
property (8). This property was observed at the level of problem (3), see in particular
the description of the “germ” GF in Ref. [1], but it was not explicitly stated in the
works Refs. [1], [8] devoted to problem (3). For the sake of completeness, we give an
explicit proof of property (8) for problem (4). Consider the test function

φ(t, x) =

[

∫ +∞

|x|−ε
δε(z) dz

]

ψ(t) ,

where ψ ∈ C∞
c (R;R+) is such that ψ(0) = 0, while δε is a smooth approximation of

the Dirac mass centered at 0+, δD0+, namely

δε ∈ C∞
c (R;R+), ε ∈ R+, supp(δε) ⊆ [0, ε], ‖δε‖L1(R;R) = 1, δε → δD0+. (9)
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Observe that as ε goes to zero

φ(0, x) ≡ 0 → 0 , ∂tφ(t, x) =

[

∫ +∞

|x|−ε
δε(z) dz

]

ψ̇(t) → 0 ,

φ(t, 0) = ψ(t) → ψ(t) , χ
R±

(x) ∂xφ(t, x) → ∓ δD0±(|x|) ψ(t) .

Then, if we take k = ρ̄ and φ as test function in (4), we obtain as ε goes to zero
∫

R+

[Ψ (ρ(t, 0+)) −Ψ(ρ(t, 0−))]ψ(t) dt+ 2

∫

R+

[f(ρ̄)− p (ξ(t))] ψ(t) dt ≥ 0 ,

where ξ is defined by (2). For the arbitrariness of ψ, we have for a.e. t > 0

Ψ (ρ(t, 0+))−Ψ(ρ(t, 0−)) + 2 [f(ρ̄)− p (ξ(t))] ≥ 0 .

Therefore, if for t ∈ I the solution has a nonclassical discontinuity at the constraint
location x = 0, then by the assumption (F) and the Rankine–Hugoniot jump condi-
tion, ρ(t, 0+) < ρ̄ < ρ(t, 0−) and p (ξ(t)) ≤ f (ρ(t, 0±)) for a.e. t ∈ I. Finally, by the
condition (4d) of Definition 1, it has to be p (ξ(t)) = f (ρ(t, 0±)) for a.e. t ∈ I. �

The following theorem on existence, uniqueness and stability of entropy weak so-
lutions of the constrained Cauchy problem (1) is the main result of this paper.

Theorem 1. Let (F), (W), (P1) hold. Then

(i) For any initial datum ρ0 ∈ L∞(R; [0, R]), the Cauchy problem (1) admits a
unique entropy weak solution ρ in the sense of Definition 1. Moreover, if
ρ̃ = ρ̃(t, x) is the entropy weak solution corresponding to the initial datum
ρ̃0 ∈ L∞(R; [0, R]), then for all T > 0 and L > iw there holds

‖ρ(T )− ρ̃(T )‖
L1([−L,L];R) ≤ eCT ‖ρ0 − ρ̃0‖L1([−(L+MT ),(L+MT )];R), (10)

where M = Lip(f) and C = 2Lip(p)‖w‖
L∞(R−;R).

(ii) If ρ0 belongs to D, defined as in (7), then the unique entropy weak solution of
problem (1) verifies ρ(t, ·) ∈ D for a.e. t > 0, and it satisfies

TV (Ψ (ρ(t))) ≤ Ct = TV (Ψ (ρ0)) + 4f(ρ̄) + C t , (11)

moreover, for a.e. t, s in ]0, T [ we have

‖Ψ(ρ(t, ·)) −Ψ(ρ(s, ·))‖
L1(R;R) ≤ |t− s| Lip(Ψ) CT . (12)

Proof. The proof consists of three parts, the longest one being postponed to Sec. 3.

Uniqueness and stability

Conditions (4) of Definition 1 ensure that for all t ∈ [0, T ] we can apply the stability
estimate in Proposition 2.10 in Ref. [1]. More specifically, if ρ and ρ̃ are solutions
of (1) corresponding to the constraints q and q̃, and the initial conditions ρ0 and ρ̃0,
respectively, then

‖ρ(t)− ρ̃(t)‖
L1([−L,L];R) ≤ ‖ρ0 − ρ̃0‖L1({|x|≤L+Mt};R) + 2

∫ t

0
|q(s)− q̃(s)| ds.
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By the explicit expression of the constraints q and q̃, see (5), we have
∫ t

0
|q(s)− q̃(s)| ds =

∫ t

0

∣

∣

∣

∣

p

(
∫

R−

w(x) ρ(s, x) dx

)

− p

(
∫

R−

w(x) ρ̃(s, x) dx

)
∣

∣

∣

∣

ds,

and this quantity is bounded by Lip(p) w(0−)
∫ t
0 ‖ρ(s)− ρ̃(s)‖

L1([−iw,0];R)ds by the

Lipschitz continuity of p and Hölder inequality. Note the inclusions [−L,L] ⊇ [−iw, 0]
and {|x| ≤ L+MT} ⊇ {|x| ≤ L+Mt}. We complete the proof by applying Gronwall’s
inequality, see for instance Ref. [29].

Existence in D

The existence problem in the D–framework will be addressed in Sec. 3, see Proposi-
tion 2. With this result in hand, existence in L∞ follows by the density argument we
develop below.

Existence in L∞

Let ρ0 be in L∞(R; [0, R]). By the standard diagonal procedure argument, it is enough
to prove existence on an arbitrary time interval [0, T ] in R+. Introduce a sequence
Ψn

0 in BVloc(R;R) which converges pointwise a.e. to Ψ0 = Ψ(ρ0). Set ρ
n
0 = Ψ−1(Ψn

0 ).

For any L ∈ N sufficiently large, set ρn,L0 = ρn0 χ{|x|≤L+MT}. We have that ρn,L0

belongs to D and ρn,L0 converges to ρ0 in L1

loc
(R; [0, R]) as L and n go to infinity. Let

ρn,L be the corresponding entropy weak solution of (1) constructed in Proposition 2.
Then, for any L > 1 + iw

(A) for all t ∈ [0, T ] we have that
∥

∥ρn,L(t)− ρm,L(t)
∥

∥

L1([−L,L];R)
goes to zero as m

and n go to infinity;
(B) if L′ > L, then ρn,L ≡ ρn,L

′

on [0, T ]× [−L,L].

Properties (A) and (B) follow by (10). Then, by taking L(x) = ⌊|x|⌋+1, property (A)

ensures that we can introduce the function ρ(t, x) = limn→+∞ ρn,L(x)(t, x). By (B)

we also have that ρ(t, x) = limn→+∞ ρn,L
′

(t, x) for any L′ > L(x).
We prove now that [t 7→ ρ(t)] is an entropy weak solution to (1) with initial datum

ρ0. For any compact set K ⊂ R, take L such that [−L + 1, L − 1] ⊇ (K ∪ [−iw, 0]).
Then ρn,L converges to ρ in L1([0, T ]×K; [0, R]) and consequently for a.e. t ∈ [0, T ],

qn,L(t) = p
(

∫ 0
−iw

w(x) ρn,L(t, x) dx
)

converges to q(t) = p
(

∫ 0
−iw

w(x) ρ(t, x) dx
)

in L1([0, T ];R). This is enough to ensure that for all test functions φ supported
in [0, T ] × K, the function ρ satisfies (4a)–(4c) and that (5) holds. In particular
the Rankine–Hugoniot condition is satisfied, therefore using Lemma 3, we have that
fn

(

ρn,L(·, 0−)
)

converges weakly to f (ρ(·, 0−)) in L1([0, T ];R) and f (ρ(·, 0−)) =
f (ρ(·, 0+)). Therefore, also (4d) holds true. �

3. Wave–front tracking and operator splitting methods

In this section we construct solutions for initial data in D and we prove that D is
an invariant domain for the semigroup S.
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Proposition 2. For any initial datum ρ0 in D, there exists a unique entropy weak
solution of problem (1), [t 7→ ρ(t)] and ρ(t) belongs to D for all t > 0. Moreover,
estimates (11) and (12) are satisfied.

The solution [t 7→ ρ(t)] is the limit (along a subsequence) of a sequence obtained
by combining the wave–front tracking algorithm and the operator splitting method.
In the following subsections we describe the construction in full details.

3.1. Approximation of flux and efficiency functions. Fix h, n ∈ N sufficiently
large with n≫ h. Introduce the mesh

Mn = f−1
(

2−nf(ρ̄)N ∩ [0, f(ρ̄)]
)

and the set

Dn = D ∩PC (R;Mn) ,

where PC (R;Mn) is the set of piecewise constant functions defined on R, taking
values in Mn and with a finite number of jumps. Approximate the flux f with a
piecewise linear, continuous flux fn : [0, R] → [0, f(ρ̄)], whose derivative exists in
[0, R] \ Mn and such that fn coincides with f on Mn, see Fig. 2, left. Clearly,

fn satisfies condition (F). Consider p−1
(

f(Mh) ∩ p([0, R])
)

= {ξ̃h0 , . . . , ξ̃
h
mh+2}, with

0 ≤ ξ̃h0 < ξ̃h1 < . . . < ξ̃hmh+2 ≤ R, and observe that
(

ξ̃hi+1 − ξ̃hi

)

Lip(p) ≥ p
(

ξ̃hi+1

)

− p
(

ξ̃hi

)

= 2−hf(ρ̄) . (13)

Approximate p with the function ph ∈ PC
(

[0, R]; f(Mh)
)

defined as follows:

R

f, fn

ρ

f(Mn)

Mn R

p, ph

ξξh1 ξhmh

f(Mh)

Figure 2. Left: : In thin line f and in thick line the approximation
fn. Right: In thin line p and in thick line the approximation ph.

ph(ξ) =

mh−1
∑

i=0

phi χ
[

ξhi , ξ
h
i+1

[(ξ) + phmh
χ[
ξhmh

, R
](ξ) , (14a)

where

0 = ξh0 < ξh1 = ξ̃h1 < . . . < ξhmh
= ξ̃hmh

< ξhmh+1 = R , (14b)

phi = p(ξhi+1), i = 0, . . . ,mh − 1, and phmh
= p(ξ̃hmh+1) , (14c)
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see Fig. 2, right. Since h < n, we have that f(Mh) ⊂ f(Mn), ph([0, R]) ⊆ f(Mn) \
{0},

∥

∥

∥
p− ph

∥

∥

∥

L∞([0,R];R)
≤ 21−hf(ρ̄) (15)

and by (13) and (14)

phi − phi+1 = 2−hf(ρ̄) , (16)

inf
i=0,...,mh

(

ξhi+1 − ξhi

)

≥
2−hf(ρ̄)

Lip(p)
. (17)

3.2. The algorithm. Now we can start with the construction of an approximating
solution [t 7→ ρn,h(t)] to (1). As a first step we associate to any fractional time interval
of the form [ℓ∆th, (ℓ+ 1)∆th[, ∆th > 0, ℓ ∈ N, a constrained Cauchy problem of the
form (3) with constant constraint. Then the wave–front tracking algorithm gives us

the corresponding exact solution [t 7→ ρn,hℓ+1(t)]. Finally, ρn,h is obtained by gluing

together ρn,hℓ+1, ℓ ∈ N. The existence of a limit for ρn,h as n and h go to infinity is
ensured by the choice

∆th =
1

2h+1w(0−)Lip(p)
, (18)

which will be motivated in the proof of Lemma 1 by a sort of CFL condition. Roughly
speaking, this condition is needed to bound the possible jump in the value of the
constraint due to the update at each fractional time (ℓ+ 1)∆th, ℓ ∈ N.

Approximate ρ0 with a piecewise constant function ρn0 : R → [0, R] that coin-
cides with ρ0 on Mn and such that ‖ρn0‖L1(R;R) ≤ ‖ρ0‖L1(R;R) and TV (Ψ (ρn0 )) ≤

TV (Ψ (ρ0)). Clearly, ρ
n
0 belongs to Dn. First consider the approximating constrained

Cauchy problem

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ ]0,∆th[× R

fn (ρ(t, 0±)) ≤ ph (Ξn
0 ) t ∈ ]0,∆th]

ρ(0, x) = ρn0 (x) x ∈ R ,

where

Ξn
0 =

∫

R−

w(x) ρn0 (x) dx .

The unique exact solution [t 7→ ρn,h1 (t)] for the above problem is obtained by piecing
together the solutions to the Riemann problems at points where ρn0 is discontinuous
or where interactions take place, namely where two or more waves intersect, or one
or more waves reach x = 0. For the definition of solution of the Riemann problem
with a piecewise linear, continuous flux away from the constraint, we refer to Sec. 6.1
in Ref. [2] or to Sec. 5.2 in Ref. [29]. The definition of solution to the constrained
Riemann problem along x = 0 follows by the obvious adaptation of Definition 2.2
in Ref. [8] to the case with a piecewise linear continuous flux, see also Sec. 6.3 in
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Ref. [29]. The results of Theorem 3.4 in Ref. [8] can be easily generalized to the case
with piecewise linear continuous flux and, therefore, we can define

ρn,h(t, x) = ρn,h1 (t, x) for (t, x) ∈ ]0,∆th]× R .

We can assume that no interaction occurs at time t = ∆th, see assumption H2 below.
Then the approximate solution is prolonged beyond t = ∆th by taking

ρn,h(t, x) = ρn,h2 (t−∆th, x) for (t, x) ∈ ]∆th, 2∆th]× R ,

where [t 7→ ρn,h2 (t)] is the exact solution of the constrained Cauchy problem

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ ]0,∆th[× R

fn (ρ(t, 0±)) ≤ ph
(

Ξn,h
1

)

t ∈ ]0,∆th]

ρ(0, x) = ρn,h1 (∆th, x) x ∈ R ,

with

Ξn,h
1 =

∫

R−

w(x) ρn,h1 (∆th, x) dx .

We repeat this procedure at each fractional step and, once we get [t 7→ ρn,hℓ (t)], we

construct [t 7→ ρn,hℓ+1(t)] by solving a constrained Cauchy problem of the form

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ ]0,∆th[× R (19a)

fn (ρ(t, 0±)) ≤ ph
(

Ξn,h
ℓ

)

t ∈ ]0,∆th] (19b)

ρ(0, x) = ρn,hℓ (∆th, x) x ∈ R , (19c)

where

Ξn,h
ℓ =

∫

R−

w(x) ρn,hℓ (∆th, x) dx . (19d)

We stress that the solution to (19) is unique and that the efficiency at the exit may
change at each time t ∈ ∆thN and only there.

To simplify the wave–front tracking algorithm, see Remark 7.1 in Ref. [2], it is
standard to remark that, without loss of generality, one can assume that:

H1 At any interaction either exactly two waves interact, or a single wave reaches the
constraint x = 0.

H2 No interaction occurs at time t ∈ ∆thN.

In this way we construct

Ξn,h(t) =
∑

ℓ∈N

Ξn,h
ℓ χ[ℓ∆th, (ℓ+ 1)∆th[

(t) (20)

and an approximate solution of the Cauchy problem (1)

ρn,h(t, x) =
∑

ℓ∈N

ρn,hℓ+1(t− ℓ∆th, x) χ]ℓ∆th, (ℓ+ 1)∆th]
(t) , (21)

where [t 7→ ρn,hℓ+1(t)] is the unique solution to (19).
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Roughly speaking, the present procedure consists in the application of two op-
erators, Θ and S, at each fractional step ]ℓ∆th, (ℓ+ 1)∆th], ℓ ∈ N. The first

operator gives Ξn,h
ℓ = Θ[ρn,hℓ (∆th)], while the second operator gives the solution

ρn,hℓ+1 = S[ρn,hℓ (∆th),Ξ
n,h
ℓ ] of the constrained Cauchy problem of the form (19), with

[x 7→ ρn,hℓ (∆th, x)] as initial datum and with ph(Ξn,h
ℓ ) as constraint.

More rigorously, for any ρn0 ∈ Dn and t ∈ R+, define recursively

Fn,h[ρn0 ](t) = S [ρn0 ,Θ [ρn0 ]] (t)

if t ∈ [0,∆th], and, if t ∈ ](ℓ+ 1)∆th, (ℓ+ 2)∆th], ℓ ∈ N, then

Fn,h[ρn0 ](t) = S
[

Fn,h[ρn0 ] ((ℓ+ 1)∆th) ,Θ
[

Fn,h[ρn0 ] ((ℓ+ 1)∆th)
]]

(t) .

3.3. A priori estimates. In this section we prove that ρn,h(t) = Fn,h[ρn0 ](t) is in
Dn on any bounded time interval [0, T ], T > 0, and we estimate TV

(

Ψ
(

ρn,h(t)
))

uniformly in n, h and t. To this aim, we introduce the following Temple functional

Υn,h
T (t) = TV

(

Ψ
(

ρn,h(t)
))

+ γh
(

ρn,h(t),Ξn,h(t)
)

+ Γh
T (t) , (22)

with

γh (ρ,Ξ) =







0
if ρ(0−) > ρ̄ > ρ(0+) and
fn (ρ(0±)) = ph (Ξ(t))

4
[

f(ρ̄)− ph (Ξ)
]

otherwise,

Γh
T (t) = 5 · 2−h f(ρ̄)

[

T

∆th
−

⌊

t

∆th

⌋]

,

where ⌊·⌋ : R → Z denotes the floor function. Recall that the Temple functional
adopted in Ref. [8] involves the total variation of the approximating constraint, which
is given a priori. In our construction, at each fractional time interval we are dealing
with a different approximating problem (19) and we need to know the solution at
the previous step in order to fix the value of the constraint in (19b). Therefore,
the constraint p

(

Ξn,h(t)
)

, t ∈ R+, and its total variation are not given a priori.
Nevertheless, due to the choice of ∆th, we are able to bound the possible jump of
p
(

Ξn,h(t)
)

at each time step, as we will see in Lemma 1, and estimate a priori the

total variation of the efficiency. From this point of view, the functional Υn,h
T is the

natural generalization of that one used in Ref. [8]. In fact, the two functionals have
in common the first two terms, namely

Qn,h (t) = TV
(

Ψ
(

ρn,h(t)
))

+ γh
(

ρn,h(t),Ξn,h(t)
)

, (23)

while Γh
T (t) is introduced to control the total variation of p

(

Ξn,h(·)
)

in the time
interval [t, T ].

Lemma 1. For any ℓ ∈ N, the jump in the efficiency at time t = (ℓ+1)∆th, namely
∣

∣

∣
ph(Ξn,h

ℓ+1)− ph(Ξn,h
ℓ )

∣

∣

∣
, is either zero or 2−hf(ρ̄).
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Proof. Fix ℓ ∈ N. If
∣

∣

∣
Ξn,h
ℓ+1 − Ξn,h

ℓ

∣

∣

∣
< inf

i=0,...,mh

∣

∣

∣
ξhi+1 − ξhi

∣

∣

∣
, then [ξ 7→ ph(ξ)] has at

most one jump for ξ between Ξn,h
ℓ+1 and Ξn,h

ℓ and (16) allows us to conclude. Because
of (17), we just need to show

∣

∣

∣
Ξn,h
ℓ+1 − Ξn,h

ℓ

∣

∣

∣
Lip(p) < 2−hf(ρ̄) .

By Proposition 1, ρn,hℓ+1 is a weak solution of the problem (19a), (19c) with ρn,hℓ (∆th)

as initial condition. Then, for any φ in C1
c(R

2;R) we have
∫

R+

∫

R

[

ρn,hℓ+1 ∂tφ+ f(ρn,hℓ+1) ∂xφ
]

dx dt+

∫

R

ρn,hℓ (∆th, x) φ(0, x) dx = 0 . (24)

Let (ην)ν be a standard family of mollifiers and define wν = w ∗ ην . Let δε be as
in (9). Take 0 ≤ t1 < t2 ≤ ∆th and consider the test function

φ(t, x) =

[
∫ t−t1

t−t2+ε
δε(z) dz

] [
∫ x+iw

x+ε
δε(z) dz

]

wν(x) .

Observe that φ(0, ·) ≡ 0 and that letting ε go to zero we get

∂tφ(t, x) → [δDt1 (t)− δDt2 (t)] χ[−iw, 0]
(x) wν(x) ,

∂xφ(t, x) → χ[t1, t2]
(t) [δD−iw+(x)− δD0−(x)] wν(x) .

We pass to the limit in the Eq. (24) letting ε go to zero and we obtain
∫ 0

−iw

wν(x)
[

ρn,hℓ+1(t1, x)− ρn,hℓ+1(t2, x)
]

dx

=

∫ t2

t1

[

wν(0−) f
(

ρn,hℓ+1(t, 0−)
)

− wν(−iw+) f
(

ρn,hℓ+1(t,−iw+)
)]

dt .

Then, as ν goes to infinity we get
∣

∣

∣

∣

∫ 0

−iw

w(x)
[

ρn,hℓ+1(t1, x)− ρn,hℓ+1(t2, x)
]

dx

∣

∣

∣

∣

≤ (t2 − t1)f(ρ̄)w(0−) . (25)

By (19c) and (19d) we have that
∣

∣

∣
Ξn,h
ℓ+1 − Ξn,h

ℓ

∣

∣

∣
=

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,hℓ+1(∆th, x)− ρn,hℓ (∆th, x)
]

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,hℓ+1(∆th, x)− ρn,hℓ+1(0, x)
]

dx

∣

∣

∣

∣

≤ ∆th f(ρ̄) w(0−) .

Therefore by (18) the proof is complete. �

We are ready to show that Υn,h
T is a Temple functional.

Proposition 3. Let h, n ∈ N and ρn0 ∈ Dn. On [0, T ], the map [t 7→ Υn,h
T (t)] is

non–increasing and it decreases by at least 2−nf(ρ̄) each time the number of waves
increases.
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The proof is deferred to Sec. 6.1.
In the next corollary we rely on Proposition 3 to prove a uniform estimate on

TV
(

Ψ
(

ρn,h(t)
))

.

Corollary 1. There exists a constant C > 0, that does not depend on n or h, such
that for all t > 0

TV
(

Ψ
(

ρn,h(t)
))

≤ TV (Ψ (ρ0)) + 4f(ρ̄) +C t . (26)

Proof. We consider the functional Qn,h = Υn,h
T −Γh

T introduced in (23). Proceeding as

in the proof of Proposition 3, we can show that Qn,h may increase only at t ∈ ∆thN.

However, since Υn,h
T is strictly decreasing at t ∈ ∆thN, we have that for all ℓ ∈ N,

Qn,h(ℓ∆th+)−Qn,h(ℓ∆th−) ≤
∣

∣

∣
Γh
T (ℓ∆th+)− Γh

T (ℓ∆th−)
∣

∣

∣
= 5 · 2−hf(ρ̄) .

Therefore, by (18)

TV
(

Ψ
(

ρn,h(t)
))

≤ Qn,h(t) ≤ Qn,h(0) + 5 · 2−hf(ρ̄)

⌊

t

∆th

⌋

≤ TV (Ψ (ρ0)) + 4f(ρ̄) + 10 w(0−) Lip(p) f(ρ̄) t ,

and the estimate (26) holds with C = 10 w(0−) Lip(p) f(ρ̄). �

By the results proved in Ref. [8], the assumption H2 and the corollary above,
we have that both ρn,h(t) and Ξn,h(t) are well defined for any t ∈ [0, T ] and that
ρn,h belongs to C0(R+;D

n). In particular, [t 7→ ρn,h(t)] is piecewise constant with
discontinuities along finitely many polygonal lines with bounded speed of propagation,
that do not intersect each other at any time t ∈ ∆thN. By the construction of ρn,h

and its continuity with respect to time it is not difficult to show

Proposition 4. The map [t 7→ ρn,h(t)] given by (21) is an entropy weak solution in
the sense of Definition 1 (with fn, ph replacing f, p) to the problem

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ R+ × R (27a)

fn (ρ(t, 0±)) ≤ ph
(

Ξn,h(t)
)

t ∈ R+ (27b)

ρ(0, x) = ρn0 (x) x ∈ R , (27c)

where [t 7→ Ξn,h(t)] is given by (20).

The proof is deferred to Sec. 6.2.

Proposition 5. There exists a subsequence of ρn,h converging a.e. on R+ × R to a
limit ρ ∈ L∞ (R+ × R; [0, R]). In addition, ρ satisfies estimates (11) and (12).

Proof. By the standard diagonal procedure argument, it is enough to prove conver-
gence on an arbitrary time interval [0, T ], T > 0. The sequence Ψ

(

ρn,h
)

is uniformly
bounded in L∞ ([0, T ]× R;R) ∩ L∞ ([0, T ];BV(R;R)) by Corollary 1. In order to
get compactness in L1

loc
, see Theorem 2.4 in Ref. [2], we still need to show that



14 BORIS ANDREIANOV, CARLOTTA DONADELLO, AND MASSIMILIANO D. ROSINI

[t 7→ Ψ
(

ρn,h(t, ·)
)

] is Lipschitz with respect to the L1–norm. In analogy to (6), we
define

Ψn(ρ) = sign(ρ− ρ̄) (fn(ρ̄)− fn(ρ)) =

∫ ρ

ρ̄

∣

∣

∣
ḟn(r)

∣

∣

∣
dr . (28)

We observe that Ψ coincides with Ψn on Mn and, as a consequence, Lip(Ψn) ≤
Lip(Ψ). Since ρn,h takes values in Mn, we have Ψn

(

ρn,h
)

= Ψ
(

ρn,h
)

. Hence,

TV
(

Ψn
(

ρn,h(t)
))

= TV
(

Ψ
(

ρn,h(t)
))

and by Corollary 1 we have
∥

∥

∥
∂xΨ

n
(

ρn,h
)
∥

∥

∥

L∞([0,T ];Mb(R;R))
≤ CT = TV (Ψ (ρ0)) + 4f(ρ̄) + C T ,

uniformly in n and h. Above, Mb(R;R) denotes the space of bounded Radon mea-
sures. Let gn = fn ◦ (Ψn)−1 and remark that by (28)

ġn(ψ) =
ḟn ◦ (Ψn)−1(ψ)

Ψ̇n ◦ (Ψn)−1(ψ)
=

ḟn ◦ (Ψn)−1(ψ)
∣

∣

∣
ḟn ◦ (Ψn)−1(ψ)

∣

∣

∣

∈ {−1, 1} .

Hence ∂tρ
n,h is bounded in L∞ ([0, T ];Mb(R;R)) because, by Eq. (27) and Theorem 4

in Ref. [21], we have
∥

∥

∥
∂tρ

n,h
∥

∥

∥

L∞([0,T ];Mb(R;R))
≤ ‖ġn‖

L∞([−f(ρ̄),f(ρ̄)];R)

∥

∥

∥
∂xΨ

n
(

ρn,h
)
∥

∥

∥

L∞([0,T ];Mb(R;R))

≤ CT .

As the functions Ψn are uniformly Lipschitz, also the distributions µn,h = ∂tΨ
n(ρn,h)

are uniformly bounded measures in L∞ ([0, T ];Mb(R;R)) with
∥

∥

∥
µn,h

∥

∥

∥

L∞([0,T ];Mb(R;R))
≤ Lip(Ψn) CT .

Now, let (ην)ν be a standard family of mollifiers in C∞
c (R2;R) and define Fn,h

ν =

Ψn
(

ρn,h
)

∗ ην and µn,hν = µn,h ∗ ην . Then
∥

∥

∥
µn,hν

∥

∥

∥

L∞([0,T ];L1(R;R))
≤

∥

∥

∥
µn,h

∥

∥

∥

L∞([0,T ];Mb(R;R))
.

Due to the regularity of Fn,h
ν , for any δ > 0 and for any 0 ≤ t < t+ δ ≤ T

∥

∥

∥
Fn,h
ν (t+ δ, ·) − Fn,h

ν (t, ·)
∥

∥

∥

L1(R;R)
=

∫

R

∣

∣

∣

∣

∫ t+δ

t
µn,hν (s, x) ds

∣

∣

∣

∣

dx

≤ δ
∥

∥

∥
µn,hν

∥

∥

∥

L∞([0,T ];L1(R;R))
≤ δ Lip(Ψn) CT ,

and as ν go to zero we deduce the uniform Lipschitz continuity in time of Ψ
(

ρn,h
)

=

Ψn
(

ρn,h
)

:
∥

∥

∥
Ψ(ρn,h(t+ δ, ·)) −Ψ(ρn,h(t, ·))

∥

∥

∥

L1(R;R)
≤ δ Lip(Ψ) CT .

In this way we prove the existence of a subsequence of Ψ
(

ρn,h
)

= Ψn
(

ρn,h
)

that

converges in L1

loc
([0, T ] × R;R) to a function ψ in L∞ ([0, T ];BV(R; [−f(ρ̄), f(ρ̄)]))



CROWD DYNAMICS AND CONSERVATION LAWS WITH NON–LOCAL CONSTRAINTS 15

which satisfies

‖ψ(t+ δ, ·) − ψ(t, ·)‖
L1(R;R) ≤ δ Lip(Ψ) CT . (29)

For simplicity we still denote the subsequence Ψ
(

ρn,h
)

. Since Ψ is invertible and Ψ−1

is continuous, also ρn,h converges in L1

loc
([0, T ] × R;R) to a function ρ = Ψ−1(ψ) in

L∞ ([0, T ]× R; [0, R]). In particular, by (26) and (29) the estimates (11) and (12)
hold true. �

Lemma 2. For any T > 0

lim
n,h→+∞

∫ T

0

∣

∣

∣

∣

Ξn,h(t)−

∫

R−

w(x) ρ(t, x) dx

∣

∣

∣

∣

dt = 0 .

Proof. Let T > 0 and define ℓhT = ⌊T/∆th⌋. Then by (20) and (25)
∫ T

0

∣

∣

∣

∣

Ξn,h(t)−

∫

R−

w(x) ρn,h(t, x) dx

∣

∣

∣

∣

dt ≤

≤

ℓhT−1
∑

ℓ=0

∫ (ℓ+1)∆th

ℓ∆th

∣

∣

∣

∣

Ξn,h
ℓ (t− ℓ∆th)−

∫

R−

w(x) ρn,hℓ+1(t− ℓ∆th, x) dx

∣

∣

∣

∣

dt

+

∫ T

ℓh
T
∆th

∣

∣

∣

∣

Ξn,h

ℓh
T

(t− ℓhT∆th)−

∫

R−

w(x) ρn,h
ℓh
T
+1

(t− ℓhT∆th, x) dx

∣

∣

∣

∣

dt

=

ℓh
T
−1

∑

ℓ=0

∫ ∆th

0

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,hℓ+1(0, x) − ρn,hℓ+1(t, x)
]

dx

∣

∣

∣

∣

dt

+

∫ T−ℓh
T
∆th

0

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,h
ℓh
T
+1

(0, x) − ρn,h
ℓh
T
+1

(t, x)
]

dx

∣

∣

∣

∣

dt

≤





ℓh
T
−1

∑

ℓ=0

∫ ∆th

0
t dt+

∫ T−ℓh
T
∆th

0
t dt



 f(ρ̄) w(0−)

=
∆t2h ℓ

h
T + (T − ℓhT∆th)

2

2
f(ρ̄) w(0−) .

Therefore, since ℓhT∆th converges to T as h goes to infinity and ρn,h converges to ρ
in L1

loc
(R+ × R;R) as n and h go to infinity, the proof is complete. �

Since ρn,h converges to ρ in L1

loc
, Proposition 4 and Lemma 2 imply that [t 7→ ρ(t)]

satisfies the conditions (4a)–(4c) and (5) of Definition 1 with respect to the prob-
lem (1). Moreover, ρ satisfies the condition (4d) of Definition 1 by Lemma 3,
and it satisfies estimate (11) and (12) by Proposition 5. Finally, observe that
ρ ∈ C0

(

R+;L
1

loc
(R; [0, R])

)

because of entropy inequalities (4a)–(4c), see Ref. [3].

As already observed Ψ (ρ) ∈ C0 (R+;BV(R;R)) thus ρ(t) ∈ D for all t.
Uniqueness of the entropy weak solutions to the Cauchy problem (1) in the case

p ∈ Lip([0, R];R), ρ0 ∈ D follows directly from uniqueness in the L∞–framework, see
the first part of the proof of Theorem 1.
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4. The constrained Riemann problem

In this section we study constrained Riemann problems of the form

∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R+ × R (30a)

f (ρ(t, 0±)) ≤ p

(
∫

R−

w(x) ρ(t, x) dx

)

t ∈ R+ (30b)

ρ(0, x) =

{

ρL if x < 0
ρR if x ≥ 0

x ∈ R (30c)

with ρL, ρR ∈ [0, R]. Along with (F) and (W), we assume that:

(P2) p belongs to PC ([0, R] ; ]0, f(ρ̄)]) and is a non–increasing map.

The assumption (P2) is introduced in place of (P1) to allow an explicit construction
of solutions to (30). However, the regularity of p required by (P2) is not enough to
apply the results of Theorem 1. In fact, the uniqueness of entropy weak solutions as
well as the stability estimate (10) do not hold in the present framework, as we will
see in Example 2.

Aiming for a general construction of the solutions to (30), we allow p to be a
multi–valued piecewise constant function, namely, see Fig. 1, right:

• there exist ξ1, . . . , ξn ∈ ]0, R[ and p0, . . . , pn ∈ ]0, f(ρ̄)], with ξi < ξi+1 and
pi > pi+1, such that p(0) = p0, p(R) = pn, p χ]ξi, ξi+1[

= pi for i = 0, . . . , n,

p(ξi) = [pi, pi−1] for i = 1, . . . , n, being ξ0 = 0 and ξn+1 = R.

Let σ(ρL, ρR) = (f(ρL)− f(ρR)) / (ρL − ρR) be the speed of propagation of a shock
between ρL and ρR, while λ(ρ) = f ′(ρ) is the characteristic speed. Introduce the
maps ρ̌, ρ̂ : [0, f(ρ̄)] → [0, R] implicitly defined by

f (ρ̌(p)) = p = f (ρ̂(p)) and ρ̌(p) ≤ ρ̄ ≤ ρ̂(p) .

Let ρ̌i = ρ̌(pi) and ρ̂i = ρ̂(pi). Denote by R the classical Riemann solver Refs. [23],
[25]. This means that the map [(t, x) 7→ R[ρL, ρR](x/t)] is the unique entropy weak
solution for the unconstrained problem (30a), (30c), see Refs. [2], [29], [30] for its con-
struction. As we will see in Proposition 6, the classical solutions given by R may not
satisfy the constraint (30b). For this reason we consider also nonclassical solutions,
namely solutions that do not satisfy the Lax entropy inequalities, see Ref. [24] as a
general reference. In general, entropy weak solutions to (30) are not self–similar nor
unique, as we will show in the two following examples.

Example 1. Let 0 < ρL < ρR < R be such that f(ρL) > f(ρR). If ξi ≤ ρL < ξi+1,
pi+1 < f(ρR) < pi and j > i is such that f (ρ̂j) = p (ρ̂j) and f (ρ̂k) > p (ρ̂k) for all
k ∈ {i, . . . , j−1}, see Fig. 3, left, then the entropy weak solution to the corresponding
Riemann problem (30) is not self–similar, see Fig. 3, right. More in detail, for
sufficiently small times, the solution corresponds to the classical one and is given by
a shock with speed σ(ρL, ρR) < 0. The corresponding map [t 7→ ξ(t)] is increasing and
by hypothesis, there exists a time t1 < −iw/σ(ρL, ρR) such that ξ(t1) = ξi+1. Then,
the efficiency of the exit falls to pi+1 and the solution given by the classical Riemann
solver R no longer satisfies the constraint condition (30b). As a result, at time t1
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the solution performs a nonclassical discontinuity at the constraint location and two
further classical shocks appear, one with speed σ(ρR, ρ̂i+1) < 0 and one with speed
σ(ρ̌i+1, ρR) > 0. The final solution can then be constructed by taking into account the
interactions between the shocks on each side of the constraint and the appearance of
new shocks each time [t 7→ ξ(t)] crosses ξk, k ∈ {i+ 1, . . . , j − 1}.

f

pj

ρL ρRρ̌j ρ̂j ρ

ρL ρR

ρ̌jρ̂j t

t1

x

Figure 3. Construction of a non self–similar entropy weak solution as
in Example 1. On the left, the thick line corresponds to the efficiency
of the exit p|]ρL,ρ̂j [.

As we have seen, the lack of self–similarity is related to the jumps of [t 7→ p (ξ(t))].
Nevertheless, in the proof of Proposition 6 we show that any entropy weak solution
of (30) is self–similar for sufficiently small times. Therefore, it makes sense to in-
troduce nonclassical local Riemann solvers, see Definition 2. Then, the availability
of a local Riemann solver allows us to construct a global solution to the Riemann
problem (30) by a wave–front tracking algorithm in which the jumps in the map
[t 7→ p (ξ(t))] are interpreted as interactions.

The next example shows that the entropy weak solutions to the constrained Rie-
mann problem (30) are not necessarily unique.

ρ̌i+1 ρ̌i ρ̂i ρ̂i+1

pi

pi+1

ρL

f

ρ

ρ̌i+1ρ̂i+1

ρL ρ̄

t

x

ρ̌L

ρL ρ̄

t

x

ρ̌iρ̂i

ρL ρ̄

t

x

Figure 4. With reference to Example 2, the flux configuration and
three different solutions ρ1, ρ2 and ρ3 to the same Riemann problem
are represented from left to right. Here ρ̌L = ρ̌ (f(ρL)).

Example 2. Consider the constrained Riemann problem (30) with ρL = ξi+1 ∈ ]ρ̄, R[
and ρR = ρ̄. Assume that f (ρ̂i+1) = pi+1 ≤ f(ξi+1) ≤ pi = f (ρ̂i) < f(ρ̄), see Fig. 4,
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left, then

ρ1(x/t) =

{

R[ξi+1, ρ̂i+1](x/t) if x < 0
R[ρ̌i+1, ρ̄](x/t) if x ≥ 0 ,

ρ2(x/t) =

{

ξi+1 if x < 0
R[ρ̌ (f(ξi+1)) , ρ̄](x/t) if x ≥ 0 ,

ρ3(x/t) =

{

R[ξi+1, ρ̂i](x/t) if x < 0
R[ρ̌i, ρ̄](x/t) if x ≥ 0 ,

are self–similar entropy weak solutions of problem (30) with the same datum, see
Fig. 4. Clearly, the above solutions are distinct if pi+1 6= f(ξi+1) 6= pi, otherwise two
of them may coincide. Additionally, for an arbitrarily chosen t̄ > 0, the functions

ρt̄,1(t, x) =







































ρ2 (x/t) if 0 < t ≤ t̄
ρ1 (x/(t− t̄)) if t > t̄ and x < 0
ρ̌i+1 if t̄ < t ≤ t̃1 and 0 ≤ x < σ (ρ̌i+1, ρ̌ (f(ξi+1))) (t− t̄)
ρ̄ if t̄ < t ≤ t̃1 and x ≥ σ (ρ̌ (f(ξi+1)) , ρ̄) t
ρ̌i+1 if t > t̃1 and 0 ≤ x < σ (ρ̌i+1, ρ̄) (t− t̃1) + x̃1
ρ̄ if t > t̃1 and x ≥ σ (ρ̌i+1, ρ̄) (t− t̃1) + x̃1
ρ̌ (f(ξi+1)) otherwise,

ρt̄,3(t, x) =







































ρ2 (x/t) if 0 < t ≤ t̄
ρ3 (x/(t− t̄)) if t > t̄ and x < 0
ρ̌i if t̄ < t ≤ t̃3 and 0 ≤ x < σ (ρ̌i, ρ̌ (f(ξi+1))) (t− t̄)
ρ̄ if t̄ < t ≤ t̃3 and x ≥ σ (ρ̌ (f(ξi+1)) , ρ̄) t
ρ̌i if t > t̃3 and 0 ≤ x < σ (ρ̌i, ρ̄) (t− t̃3) + x̃3
ρ̄ if t > t̃3 and x ≥ σ (ρ̌i, ρ̄) (t− t̃3) + x̃3
ρ̌ (f(ξi+1)) otherwise,

where

t̃1 =
t̄ σ (ρ̌i+1, ρ̌ (f(ξi+1)))

σ (ρ̌i+1, ρ̌ (f(ξi+1)))− σ (ρ̌ (f(ξi+1)) , ρ̄)
, x̃1 = t̃1 σ (ρ̌ (f(ξi+1)) , ρ̄) ,

t̃3 =
t̄ σ (ρ̌i, ρ̌ (f(ξi+1)))

σ (ρ̌i, ρ̌ (f(ξi+1)))− σ (ρ̌ (f(ξi+1)) , ρ̄)
, x̃3 = t̃3 σ (ρ̌ (f(ξi+1)) , ρ̄) ,

are also entropy weak solutions, see Fig. 5. Therefore, because of the arbitrariness of
t̄, we can build infinitely many different solutions which are not self–similar on any
open time interval. However, remark that the asymptotic profile of ρt̄,i coincides with
the asymptotic profile of ρi.

One may guess that the lack of uniqueness is due to the fact that p is a multi–valued
function. But we observe that if we pick up f(ξi+1) as value for p(ξi+1), then still
all the above solutions are admissible. Moreover, if we have p(ξi+1) 6= f(ξi+1), then
both ρ1 and ρ3 are admissible, but not ρ2. Thus there is more than one entropy weak
solution even if p is a single valued function.

Introduce the subset of [0, R]2

C =
{

(ρL, ρR) ∈ [0, R]2 : (ρL, ρR) satisfies condition (C)
}

,
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ρ̌i+1ρ̂i+1

ρ̌L

ρL ρ̄

t

x

ρL ρ̄

t

x

ρ̌iρ̂i

ρ̌L

Figure 5. With reference to Example 2, the solutions ρt̄,1 and ρt̄,3.
Above ρ̌L = ρ̌ (f(ρL)).

where we say that (ρL, ρR) satisfies condition (C) if it satisfies one of the following
conditions:

(C1): ρL < ρR, f(ρR) < f(ρL) and f(ρR) ≤ p(ρL+);
(C2): ρL < ρR, f(ρL) ≤ f(ρR) and f(ρL) ≤ p(ρL+);
(C3): ρR ≤ ρL ≤ ρ̄ and f(ρL) ≤ p (ρL+);
(C4): ρR ≤ ρ̄ < ρL and f(ρ̄) = p (ρL+);
(C5): ρ̄ < ρR ≤ ρL, f(ρR) ≤ p (ρL−) and f(ρL) < p (ρL+).

In Proposition 6 we will prove that a constrained Riemann problem admits as unique
entropy weak solution the classical one, at least for small times, if and only if its
initial datum satisfies condition (C).

Analogously, introduce the subset of [0, R]2

N =
{

(ρL, ρR) ∈ [0, R]2 : (ρL, ρR) satisfies condition (N)
}

,

where we say that (ρL, ρR) satisfies condition (N) if it satisfies one of the following
conditions:

(N1): ρL < ρR and f(ρL) > f(ρR) > p(ρL+);
(N2): ρL < ρR, f(ρL) ≤ f(ρR) and f(ρL) > p(ρL−);
(N3): ρR ≤ ρL ≤ ρ̄ and f(ρL) > p (ρL−);
(N4a): ρR ≤ ρ̄ < ρL, f(ρ̄) 6= p (ρL−) and f(ρL) < p(ρL+);
(N4b): ρR ≤ ρ̄ < ρL, f(ρ̄) 6= p (ρL−) and f(ρL) > p(ρL−);
(N5a): ρ̄ < ρR ≤ ρL, f(ρR) > p (ρL−) and f(ρL) < p (ρL+);
(N5b): ρ̄ < ρR ≤ ρL and f(ρL) > p (ρL−).

In Proposition 6 we will prove that, at least for small times, a constrained Riemann
problem has a unique entropy weak solution which is nonclassical if and only if its
initial datum satisfies condition (N).

Observe that if the constraint function p is constant in a neighborhood of the state
ρL, then p(ρL−) = p(ρL+) and this simplifies the above conditions. Also a right
or left continuity assumption on p would simplify the above conditions. However,
we keep p as a multi–valued function to take into account all the possible solutions
of (30).

In the next proposition, we show that uniqueness holds if and only if the initial
data are in C ∪ N .
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Proposition 6. Consider the constrained Riemann problem (30).
• If (ρL, ρR) ∈ C, then the map [(t, x) 7→ R[ρL, ρR](x/t)] is the unique entropy weak
solution at least for t > 0 sufficiently small.
• If (ρL, ρR) ∈ N , then there exists a unique p̄ ∈ [p(ρL+), p(ρL−)] such that the map

[

t 7→

{

R[ρL, ρ̂ (p̄)](x/t) if x < 0
R[ρ̌ (p̄) , ρR](x/t) if x ≥ 0

]

is the unique entropy weak solution at least for t > 0 sufficiently small.
• If (ρL, ρR) ∈ [0, R]2 \ (C ∪ N ), then the corresponding constrained Riemann
solver (30) admits more than one entropy weak solution.

Proof. We stress that any nonclassical entropy weak solution in the sense of Defini-
tion 1 is also a classical entropy weak solution in the Kružkov sense in the half–planes
R+ × R− and R+ × R+. Therefore, at least for t > 0 sufficiently small, by Propo-
sition 1 and assumption (P2) any nonclassical entropy weak solution of (30) must
have the form, see Fig. 6,

ρ(t, x) =

{

R[ρL, ρ̂(p̄)](x/t) if x < 0
R[ρ̌(p̄), ρR](x/t) if x ≥ 0 .

(31a)

ρL ρR

ρ̂

x

t

ρL ρR

ρ̂ ρ̌

x

t

ρL ρR

ρ̂ ρ̌

x

t

ρL ρR

ρ̂ ρ̌

x

t

Figure 6. The four possible configurations of nonclassical entropy
weak solutions of the form (31).

Observe that (31a) is uniquely identified once we know p̄ which, by (8), satisfies

p̄ = f (ρ̌(p̄)) = f (ρ̂(p̄)) . (31b)

We recall that (31b) means in particular that the Rankine–Hugoniot jump condition
is satisfied at x = 0 even when the solution to the Riemann problem is nonclassical.
As a consequence of (31b), of assumption (P2) and of the continuity of [t 7→ ξ(t)],
we have that

p̄ ∈ [p(ρL+), p(ρL−)] . (31c)

This implies that if p(ρL+) = p(ρL−), then p(ξ) is constant in a neighborhood of
ρL and, since the solution is in C0

(

R+;L
1

loc
(R; [0, R])

)

, uniqueness is ensured by the
results in Ref. [8]. However, the continuity of p at ρL is not a necessary condition for
uniqueness. In Sec. 6.3 we prove that:

(ρL, ρR) ∈ C: In this case, the corresponding classical solution satisfies (30) for
all t > 0 sufficiently small and it is not possible to construct a different
solution.
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(ρL, ρR) ∈ N : In this case, the corresponding classical solution does not sat-
isfy (30b), and there exists a unique nonclassical solution that satisfies (30).

Now we list the “pathological” cases, where we have more than one admissible
solution. We stress once again that a necessary condition for non–uniqueness is
p(ρL−) 6= p(ρL+) and p(ρL−) ≥ f(ρL) ≥ p(ρL+). It is important to stress that in
general the solutions to the constrained Riemann problem (30) are not self–similar,
see Example 1. All the cases listed below describe self–similar solutions because we
let the solutions evolve only on a small interval of time.

(CN2): If ρL < ρR, f(ρL) ≤ f(ρR) and p(ρL+) < f(ρL) ≤ p(ρL−), then the
classical solution [(t, x) 7→ R[ρL, ρR](x/t)], which consists of a shock with non
negative speed, as well as the nonclassical solution (31), with p̄ = p(ρL+), are
distinct solutions of (30).

(CN3): If ρR ≤ ρL ≤ ρ̄ and p(ρL+) < f(ρL) ≤ p(ρL−), then the classical
solution [(t, x) 7→ R[ρL, ρR](x/t)], which consists of a possible null rarefaction
on the right of the constraint, as well as the nonclassical solution (31), with
p̄ = p(ρL+), are distinct solutions of (30).

(NNN4): If ρR ≤ ρ̄ < ρL, p(ρL−) 6= p(ρL+) and p(ρL+) ≤ f(ρL) ≤
p(ρL−), then the nonclassical solutions of the form (31) corresponding to
p̄ ∈ {p(ρL+), f(ρL), p(ρL−)} satisfy (30), see Example 2. Observe that such
solutions are distinct as far as they correspond to distinct constraint levels p̄,
and that in any case there exist at least two distinct nonclassical solutions.

(CNN5): If ρ̄ < ρR ≤ ρL, f(ρR) ≤ p(ρL−), p(ρL−) 6= p(ρL+) and p(ρL+) ≤
f(ρL), then the classical solution [(t, x) 7→ R[ρL, ρR](x/t)], which consists of a
possible null rarefaction on the left of the constraint, as well as the nonclassical
solutions of the form (31) corresponding to p̄ ∈ {p(ρL+), f(ρL)} satisfy (30).
Observe that the two nonclassical solutions are distinct as far as they corre-
spond to distinct constraint levels p̄, and that in any case there exist at least
two distinct solutions, one classical and one nonclassical.

(NNN5): If ρ̄ < ρR < ρL, f(ρR) > p(ρL−) ≥ f(ρL) ≥ p(ρL+) and p(ρL−) 6=
p(ρL+), then the nonclassical solutions of the form (31) corresponding to
p̄ ∈ {p(ρL+), f(ρL), p(ρL−)} satisfy (30). Observe that such solutions are
distinct as far as they correspond to distinct constraint levels p̄, and that in
any case there exist at least two distinct nonclassical solutions.

This concludes the proof. �

As the local solutions of the Riemann problem are not unique in general, we are
naturally led to question the existence of suitable selection criteria. All the solutions
we introduce are solutions in the Kružkov sense in the open half–planes R+ × R+

and R+ ×R−, so they satisfy the basic requirement of entropy dissipation. However,
coming back to the real situation which our model aims to describe, namely the evac-
uation of a narrow corridor, we argue that the most desirable solution is obviously the
one corresponding to the highest admissible values of the flux at the exit. In analogy
to the discussion in Ref. [19] we interpret all other possible solutions as consequences
of an irrational behavior, which in literature is often described as panic. It is also im-
portant to remark that since non–uniqueness is possible only when p(ρL−) 6= p(ρL+)
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and p(ρL−) ≥ f(ρL) ≥ p(ρL+), non–uniqueness concerns at most a finite number of
left states.

From now on we restrict ourselves to the case in which p(ξi) can only take the
values pi and pi+1 and not the intermediate values, because the extremal behaviors
are the most relevant in view of the applications.

Definition 2. Two Riemann solvers Rq and Rp for (30) are defined as follows for
t > 0 sufficiently small and x ∈ R:

(C): If (ρL, ρR) ∈ C then

Rq[ρL, ρR](t, x) = Rp[ρL, ρR](t, x) = R[ρL, ρR](x/t).

(N): If (ρL, ρR) ∈ N then

Rq[ρL, ρR](t, x) = Rp[ρL, ρR](t, x) =

{

R[ρL, ρ̂ (p̄)](x/t) if x < 0
R[ρ̌ (p̄) , ρR](x/t) if x ≥ 0 ,

where p̄ = p(ρL−) if (ρL, ρR) satisfies (N4a) or (N5a), otherwise p̄ =
p(ρL+).

(CN2), (CN3), (CNN5): If (ρL, ρR) satisfies one of these sets of conditions
then

Rq[ρL, ρR](t, x) = R[ρL, ρR](x/t) ,

Rp[ρL, ρR](t, x) =

{

R[ρL, ρ̂ (p(ρL+))](x/t) if x < 0
R[ρ̌ (p(ρL+)) , ρR](x/t) if x ≥ 0.

(NNN4), (NNN5): If (ρL, ρR) satisfies one of these sets of conditions then
Rq[ρL, ρR](t, x) takes the form (31) with p̄ = p(ρL−) and Rp[ρL, ρR](t, x)
takes the form (31) with p̄ = p(ρL+).

In the next proposition we collect the main properties of the Riemann solvers Rq

and Rp. In particular (R6) means that the Riemann solver Rq is the one which
allows for the fastest evacuation, while Rp is associated to the slowest one.

Proposition 7. Let (ρL, ρR) ∈ [0, R]2. Then, for ⋆ = q, p:

(R1) [(t, x) 7→ R⋆[ρL, ρR](t, x)] is a weak solution to (30a), (30c).
(R2) R⋆[ρL, ρR] satisfies the constraint (30b) in the sense that

f (R⋆[ρL, ρR](t, 0±)) ≤ p

(
∫

R−

w(x) R⋆[ρL, ρR] (t, x) dx

)

.

(R3) R⋆[ρL, ρR](t) ∈ BV (R; [0, R]).
(R4) The map R⋆ : [0, R]2 → L1

loc
(R+ × R;R) is continuous in C ∪ N but not in

all [0, R]2.
(R5) R⋆ is consistent, see Refs. [8], [12].
(R6) Rq[ρL, ρR] maximizes the flux at the exit, in the sense that if E is the set of

all entropy weak solutions of the Riemann problem (30), we have

max
ρ∈E

{f(ρ(t, 0±))} = f (Rq[ρL, ρR](0±)) .
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Analogously, Rp[ρL, ρR] minimizes the flux at the exit, in the sense that

min
ρ∈E

{f(ρ(t, 0±))} = f (Rp[ρL, ρR](0±)) .

The proof of Proposition 7 is deferred to Sec. 6.4.
It is important to observe that even if p(ξi) can only take the two values pi and pi+1,

this is not enough to rule out the existence of infinitely many different solutions as the
ones described in Example 2, in the case pi > f(ξi) = pi+1. However, the Riemann
solver R⋆ spontaneously selects one of them because it sticks to the constant level of
constraint prescribed by Definition 2 until a nonlocal interaction takes place.

Remark 1. Although the Riemann solvers R⋆ are not L1

loc
–continuous, an existence

result for the Cauchy problem (1) can be obtained from a wave–front tracking al-
gorithm based on R⋆, see for instance Ref. [16]. Such approach using R⋆ does not
require the operator splitting method. However, the non–local nature of the approxi-
mating problems prevents us from a direct application of the Riemann solvers R⋆. In
fact, even in a arbitrary small neighborhood of x = 0, to prolong the approximating
solution ρn beyond a time t = t̄ > 0 it is not sufficient to know the traces ρn(t̄, 0−),

ρn(t̄, 0+), but also the value
∫ 0
−iw

w(x) ρn(t̄, x) dx is needed. Roughly speaking, be-
cause of the non–local character of the constraint one cannot merely juxtapose the
solution to the Riemann problem associated to the values of the traces at x = 0 with
the solution to the Riemann problems away from the constraint. Finally, also jumps
in [t 7→ p (ξ(t))] have to be considered as (nonlocal) interactions. Therefore, the ap-
proach using R⋆ is considerably heavier and more technical than the one we presented
in Sec. 3.2, and we do not pursue this line in this paper.

5. Numerical examples

In this section we apply the model (1) to simulate the evacuation of a corridor
through an exit placed in x = 0. The simulation is obtained by explicit analysis of
the wave front interactions, with computer–assisted computation of front slopes and
interaction times presented on Fig. 7.

Assume that the pedestrians are initially uniformly distributed in x ∈ [xA, xB ] with
maximal density, namely ρ0 = R χ[xA,xB]. As in Fig. 8 (a), we choose the efficiency
of the exit, p, of the form

p(ξ) =







p0 if 0 ≤ ξ < ξ1
p1 if ξ1 ≤ ξ < ξ2
p2 if ξ2 ≤ ξ ≤ R ,

and such that the solution to each Riemann problem is unique and Rp ≡ Rq.
Then we can start with the construction of the solution. From B = (xB , 0) starts

the rarefaction RB that takes the values RB(t, x) implicitly given by

λ(R) ≤ λ (RB(t, x)) =
x− xB

t
≤ λ(0) .

The first pedestrian reaches the exit at time tC = −xB/λ(0). In L = (xA, tL), with
tL = (xA − xB)/λ(R), the stationary shock CA originated from A = (xA, 0) starts to
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(b) Profiles of [x 7→ ρ(t, x)] at times
t = 0, tE/2, (tF +tG)/2, (tG+tH)/2,
(tQ + tR)/2.

Figure 7. The solution described in Sec. 5 and corresponding to the choice (32)

interact with the rarefaction RB . As a result, from L starts a shock CL given by

CL : ẋ(t) = σ (0,RB (t, x(t))) , x(tL) = xA.

At time t = tD the maximal efficiency of the exit p0 is reached, f (RB(tD, 0)) = p0,
and a queue appears behind it. The tail of the queue is represented by the backward
shock CD given by

CD : ẋ(t) = σ (RB (t, x(t)) , ρ̂(p0)) , x(tD) = 0.
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Let tE be the value of t solving the equation

E :

∫ CD(t)

−iw

w(x) RB(t, x) dx+ ρ̂(p0)

∫ 0

CD(t)
w(x) dx = ξ1,

t > tD , CD(t) > −iw .

The data can be chosen in such a way that CL(tE) < −iw, then at time t = tE
the efficiency of the exit falls to p1 and a further shock CE with constant speed
σ (ρ̂(p0), ρ̂(p1)) < 0 appears and reaches CD in M . As a result, from M starts the
backward shock CM given by

CM : ẋ(t) = σ (RB (t, x(t)) , ρ̂(p1)) , x(tM ) = xM .

If tF is the solution of

F :

∫ CM (t)

−iw

w(x) RB(t, x) dx+ ρ̂(p1)

∫ 0

CM (t)
w(x) dx = ξ2,

t > tM , CM (t) > −iw ,

with CL(tF ) < −iw, then the fall in the efficiency of the exit to p2 affects the flow and
from F starts a shock CF with constant speed σ (ρ̂(p1), ρ̂(p2)) < 0 that reaches CM in
N . From N then starts the backward shock CN given by

CN : ẋ(t) = σ (RB (t, x(t)) , ρ̂(p2)) , x(tN ) = xN .

We assume that CN and CL meet in O with xO < −iw. Then from O starts a forward
shock CO. Observe that ξ(t) = ρ̂(p2) for any time t between tO and the time at which
CO crosses x = −iw, see Fig. 8 (b). After that, the map [t 7→ ξ(t)] starts to decrease
and, consequently, the efficiency of the exit increases at time tG when ξ(tG) = ξ2 and
then again at time tH when ξ(tH) = ξ1. Observe that the shock CO moves faster after
its interaction with the two rarefactions started from G and H and that it finally
reaches x = 0 at time tI , that corresponds to the evacuation time.
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(a) The functions [ρ 7→ f(ρ)]
and [ξ 7→ p(ξ)].

20 40 60 80

0.2

0.4

0.6

0.8

1.0

(b) The function [t 7→ ξ(t)].
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(c) In gray the region C and in
white the region N .

Figure 8. The above figures refer to Sec. 5.
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Fig. 7 corresponds to a linear weight function w(x) = 2i−2
w (iw + x), a normalized

flux f(ρ) = ρ(1 − ρ) (namely the maximal velocity and the maximal density are
assumed to be equal to one) and to the values

p0 = 0.21, p1 = 0.168, p2 = 0.021, ξ1 ∼ 0.566, ξ2 ∼ 0.731,

xA = −5.75, xB = −2, iw = 1, xO = −2, xM ∼ −0.4002,

tC = 2, tD = 5, tE ∼ 9.651, tG ∼ 85.045, tI ∼ 87.498. (32)

In Fig. 8 (b), is represented the corresponding map [t 7→ ξ(t)]. In Fig. 8 (c), we repre-
sent the region C, in gray, and the region N , in white, as introduced in Definition 2.
Notice that for this choice of f and p the region C4 happens to be empty.

6. Technical section

Lemma 3. Consider the family of scalar conservation laws

∂tu+ ∂xf
n(u) = 0 (t, x) ∈ [0, T ] × ]−∞, 0[ , (33)

and assume that fn converges uniformly on compacts to f as n goes to infinity. Let
ρn be a sequence of Kružkov entropy weak solutions to (33). If ρn converges a.e. to ρ
in [0, T ] ×R, then fn (ρn(·, 0−)) converges weakly to f (ρ(·, 0−)) in L1([0, T ];R).

Proof. First of all notice that by straightforward passage to the limit ρ is a Kružkov
entropy weak solution to

∂tu+ ∂xf(u) = 0 (t, x) ∈ [0, T ] × ]−∞, 0[ . (34)

Further, ρn and ρ admit strong left traces on [0, T ] × {0}, see Refs. [26], [33].
Now let δε be as in (9). Choose any θ, ϕ ∈ C∞

c (R;R+) such that θ(0) = θ(T ) = 0,
ϕ(0) = 1 and observe that

φ(t, x) =

[
∫ t

t−T+ε
δε(z) dz

]

[

∫ x+1/ε

x+ε
δε(z) dz

]

θ(t) ϕ(x)

is a C∞
c –map with support in [0, T ]× [−1/ε, 0] and, as ε goes to zero

φ(0, x) ≡ 0 ≡ φ(T, x) , ∂tφ(t, x) →χ[0, T ]× ]−∞, 0](t, x) θ̇(t) ϕ(x) ,

φ(t, 0) ≡ 0 , ∂xφ(t, x) →χ[0, T ]× ]−∞, 0](t, x) θ(t) ϕ̇(x)

− δD0−(x) χ[0, T ](t) θ(t) .

By hypothesis ρn is a weak solution of (33), therefore
∫ T

0

∫

R−

[ρn ∂tφ+ fn(ρn) ∂xφ] dx dt = 0 ,

and letting ε go to zero we have
∫ T

0

∫

R−

[

ρn ϕ θ̇ + fn(ρn) θ ϕ̇
]

dx dt =

∫ T

0
fn(ρn(t, 0−)) θ(t) dt .
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By definition ρ is the strong limit in L1

loc
of the sequence ρn as n goes to infinity and

fn → f uniformly on compacts. As n goes to infinity, the left hand side of the above
equation converges to

∫

R+

∫

R−

[

ρ ϕ θ̇ + f(ρ) θ ϕ̇
]

dx dt .

Arguing as above, we also find that
∫ T

0

∫

R−

[

ρ ϕ θ̇ + f(ρ) θ ϕ̇
]

dx dt =

∫ T

0
f(ρ(t, 0−)) θ(t) dt ,

because ρ is a weak solution to (34). Therefore
∫ T
0 fn(ρn(t, 0−)) θ(t) dt converges to

∫ T
0 f(ρ(t, 0−)) θ(t) dt as n goes to infinity, and the weak limit of fn(ρn(t, 0−)) equals
f(ρ(t, 0−)). �

6.1. Proof of Proposition 3. For any ℓ ∈ N and t̄ ∈ ]0,∆th], we know by Ref. [8]

that the function ρn,hℓ+1(t̄) is piecewise constant with jumps along a finite number of
polygonal lines. Therefore, for any t in a sufficiently small left neighborhood of t̄, we
can write, by (21)

ρn,h(t+ ℓ∆th, x) = ρn,hℓ+1(t, x) =
∑

i∈J n,h
−

ρn,h−,i χ
[

sn,h−,i−1(t), s
n,h
−,i(t)

[(x) , (35)

sn,h−,i(t) = xn,h−,i + σ
(

ρn,h−,i , ρ
n,h
−,i+1

)

(t− t̄) ,

where J n,h
− ⊂ Z, xn,h−,0 = 0, σ

(

ρn,h−,0, ρ
n,h
−,1

)

= 0, sn,h−,0 ≡ 0, sn,h−,i−1(t) < sn,h−,i(t), ρ
n,h
−,i ∈

Mn, ρn,h−,i 6= ρn,h−,i+1 for any i 6= 0 and f(ρn,h−,0) = f(ρn,h−,1) ≤ ph(Ξn,h
ℓ−1). Introduce the

notation

fn,h−,i = fn
(

ρn,h−,i

)

, Ψn,h
−,i = Ψ

(

ρn,h−,i

)

,

ρ̂n,h+ = ρ̂
(

pn,h+

)

, ρ̌n,h+ = ρ̌
(

pn,h+

)

, pn,h± = ph
(

Ξn,h(t̄±)
)

,

∆Υn,h
T (t̄) = Υn,h

T (t̄+)−Υn,h
T (t̄−) .

Observe that by definition:

if t̄ < ∆th, then pn,h− = pn,h+ ; (36)

fn,h−,0 = fn,h−,1 ≤ pn,h− ; (37)

if ρn,h−,1 < ρn,h−,0, then fn,h−,0 = fn,h−,1 = pn,h− . (38)

We have to distinguish the following two main cases:

(U) either t̄ = ∆th, and in this case Γh(t̄+)− Γh(t̄−) = −5 · 2−h f(ρ̄);

(I) or t̄ 6= ∆th, and in this case Γh(t̄+) = Γh(t̄−) and pn,h− = pn,h+ by (36).

Let us consider more in detail the case t̄ = ∆th. If the efficiency of the exit does not

change, i.e. pn,h− = pn,h+ , then by hypothesis H2, ρn,h(t) is still given by (35) for t lying

in a sufficiently small right neighborhood of (ℓ + 1)∆th, and therefore ∆Υn,h
T (t) =
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−5 · 2−h f(ρ̄). If the efficiency of the exit changes, then
∣

∣

∣
pn,h+ − pn,h−

∣

∣

∣
= 2−hf(ρ̄) by

Lemma 1 and we have to distinguish the following cases:

(U1) If the efficiency of the exit grows, then pn,h+ = pn,h− + 2−hf(ρ̄) and fn,h−,0 =

fn,h−,1 < pn,h+ by (37). There are two possibilities:

ρ
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Figure 9. Interactions of the type (U1).

(U1a) If ρn,h−,0 ≤ ρn,h−,1, then the solution does not change its expression, see Fig. 9,
left and center, and

∆Υn,h
T (t̄) = 4

[

f(ρ̄)− pn,h+

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−hf(ρ̄) = −9 · 2−hf(ρ̄).

(U1b) If ρn,h−,1 < ρn,h−,0, then f
n,h
−,0 = fn,h−,1 = pn,h− by (38). For t > t̄ sufficiently small,

the solution contains a rarefaction between ρn,h−,0 and ρ̂h+ on the left of the

constraint, a nonclassical shock between ρ̂h+ and ρ̌h+ at the constraint and a

rarefaction between ρ̌h+ and ρn,h−,1 on the right of the constraint, see Fig. 9,
right. Therefore

∆Υn,h
T (t̄) =

[

pn,h+ − pn,h−

]

+ 2
[

f(ρ̄)− pn,h+

]

+
[

pn,h+ − pn,h−

]

− 2
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −5 · 2−h f(ρ̄) .

(U2) If the efficiency of the exit decreases, then pn,h+ = pn,h− − 2−hf(ρ̄). Differently

from the case (U1), we do not know a priori whether pn,h+ is less than fn,h−,0 =

fn,h−,1 or not. Therefore there are three possibilities:
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ρ
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Figure 10. Interactions of the type (U2a).
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Figure 11. Interactions of the type (U2b), (U2c).

(U2a) If ρn,h−,0 ≤ ρn,h−,1 and fn,h−,0 = fn,h−,1 ≤ pn,h+ , then the solution does not change its
expression, see Fig. 10, and

∆Υn,h
T (t̄) = 4

[

f(ρ̄)− pn,h+

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) .

(U2b) If ρn,h−,0 ≤ ρn,h−,1 and pn,h+ < fn,h−,0 = fn,h−,1, then after time t̄ the solution performs

a shock between ρn,h−,0 and ρ̂
h
+ on the left of the constraint, a nonclassical shock

between ρ̂h+ and ρ̌h+ at the constraint and a shock between ρ̌h+ and ρn,h−,1 on the

right of the constraint, see Fig. 11, left and center. Therefore, if ρn,h−,0 6= ρn,h−,1,
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then

∆Υn,h
T (t̄) =2

[

2f(ρ̄)− fn,h−,1 − pn,h+

]

+ 2
[

f(ρ̄)− pn,h+

]

− 2
[

f(ρ̄)− fn,h−,1

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) ,

while, if ρn,h−,0 = ρn,h−,1, then

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,1 − pn,h+

]

+ 2
[

f(ρ̄)− pn,h+

]

+
[

fn,h−,1 − pn,h+

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) .

(U2c) If ρn,h−,1 < ρn,h−,0, then p
n,h
+ < pn,h− = fn,h−,0 = fn,h−,1 by (38), and after time t̄ the

solution performs a shock between ρn,h−,0 and ρ̂
h
+ on the left of the constraint, a

nonclassical shock between ρ̂h+ and ρ̌h+ at the constraint and a shock between

ρ̌h+ and ρn,h−,1 on the right of the constraint, see Fig. 11, right. Therefore

∆Υn,h
T (t̄) =

[

pn,h− − pn,h+

]

+ 2
[

f(ρ̄)− pn,h+

]

+
[

pn,h− − pn,h+

]

− 2
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) .

In conclusion, for the case (U) we proved that ∆Υn,h
T ((ℓ+ 1)∆th) ≤ −2−hf(ρ̄) ≤

−2−nf(ρ̄) for any ℓ ∈ N.
Now, assume that we have t̄ ∈ ]0,∆th[. If at time t̄ no interaction occurs, then

∆Υn,h
T (t̄) = 0. The remaining part of the proof consists in a detailed study of all

possible interactions. We start with the most classical case when the interaction
occurs away from x = 0.

(I0) If two waves, respectively between ρn,hi−1 and ρn,hi and between ρn,hi and ρn,hi+1,
interact away from the constraint, then at least one of the two waves has to be

a shock and, in any case, the resulting wave is a shock between ρn,hi−1 and ρn,hi+1.
Therefore

∆Υn,h
T (t̄) =

∣

∣

∣
Ψn,h

−,i−1 −Ψn,h
−,i+1

∣

∣

∣
−

∣

∣

∣
Ψn,h

−,i−1 −Ψn,h
−,i

∣

∣

∣
−

∣

∣

∣
Ψn,h

−,i −Ψn,h
−,i+1

∣

∣

∣
≤ 0

and the number of waves after the interaction diminishes.

We now study the case in which a rarefaction reaches x = 0.

(I1) If a rarefaction reaches x = 0 from the left, then ρn,h−,0 < ρn,h−,−1 ≤ ρ̄ and

fn,h−,0 + 2−n = fn,h−,−1. In particular, the solution cannot perform a nonclassical
shock at x = 0 before the interaction. There are therefore three possibilities:

(I1a) If ρn,h−,0 = ρn,h−,1 and fn,h−,−1 ≤ pn,h± , then the rarefaction crosses x = 0 and

∆Υn,h
T (t̄) = 0.

(I1b) If ρn,h−,0 = ρn,h−,1 and pn,h± < fn,h−,−1, then pn,h± = fn,h−,0 = fn,h−,1 because n > h and

for (37). After the interaction, the solution performs a shock between ρn,h−,−1
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and ρ̂h+ on the left of the constraint and a nonclassical shock between ρ̂h+ and

ρn,h−,1 at the constraint. Therefore

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,−1 − pn,h±

]

+ 2
[

f(ρ̄)− pn,h±

]

−
[

fn,h−,−1 − pn,h±

]

− 4
[

f(ρ̄)− pn,h±

]

= 2
[

pn,h± − fn,h−,−1

]

= −21−nf(ρ̄) .

(I1c) If ρn,h−,0 6= ρn,h−,1, then after the interaction the solution performs a shock between

ρn,h−,−1 and ρn,h−,1 on the left of the constraint. Therefore

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,−1 − fn,h−,1

]

−
[

fn,h−,−1 − fn,h−,1

]

− 2
[

f(ρ̄)− fn,h−,1

]

= 2
[

fn,h−,1 − fn,h−,−1

]

= −21−nf(ρ̄) .

(I2) If a rarefaction reaches x = 0 from the right, then the analysis turns out to be
completely analogous to that for the case (I1), and therefore it is omitted.

We now study the cases when a shock reaches x = 0.

(I3) If a shock reaches x = 0 from the left, then ρn,h−,−1 < min{ρn,h−,0, ρ̄}, f
n,h
−,−1 <

fn,h−,0 = fn,h−,1 ≤ pn,h± by (37). There are three possibilities:

(I3a) If ρn,h−,0 = ρn,h−,1, then the shock crosses x = 0 and we have ∆Υn,h
T (t̄) = 0.

(I3b) If ρn,h−,0 < ρn,h−,1, then after the interaction the solution performs a shock between

ρn,h−,−1 and ρn,h−,1 on the right of the constraint. Therefore

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,1 − fn,h−,−1

]

−
[

fn,h−,1 − fn,h−,−1

]

− 2
[

f(ρ̄)− fn,h−,1

]

= 0 .

(I3c) If ρn,h−,1 < ρn,h−,0, then p
n,h
± = fn,h−,0 = fn,h−,1 by (38), and after the interaction the

solution performs a shock between ρn,h−,−1 and ρ
n,h
−,1 on the right of the constraint.

Therefore

∆Υn,h
T (t̄) =

[

pn,h± − fn,h−,−1

]

+ 4
[

f(ρ̄)− pn,h±

]

−
[

2f(ρ̄)− pn,h± − fn,h−,−1

]

− 2
[

f(ρ̄)− pn,h±

]

= 0 .

(I4) If a shock reaches x = 0 from the right, then the analysis turns out to be
completely analogous to that for the case (I3), and therefore it is omitted.

This concludes the proof of Proposition 3.

6.2. Proof Proposition 4. We have to prove that the conditions given in Defini-
tion 1 are satisfied. Fix φ ∈ C∞

c (R2;R+) and k ∈ [0, R]. Let δε be as in (9). Consider

φε(t, x) =
∑

ℓ∈N

φℓε(t− ℓ∆th, x) =
∑

ℓ∈N

φ(t, x)

∫ t−ℓ∆th

t−(ℓ+1)∆th+ε
δε(y) dy
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and observe that φε, φ
ℓ
ε ∈ C∞

c (R2;R+), φ
ℓ
ε(·, x) has support in [0,∆th] for any x ∈ R,

and as ε goes to zero

φε(t, x) → φ(t, x) ,

∂tφε(t, x) → ∂tφ(t, x) +
∑

ℓ∈N

φ(t, x)
[

δDℓ∆th
(t)− δD(ℓ+1)∆th

(t)
]

,

∂xφε(t, x) → ∂xφ(t, x) .

By construction, since each [t 7→ ρn,hℓ+1(t)] is an entropy weak solution of (19) in the
sense of Definition 1, we have

∫ ∆th

0

∫

R

∣

∣

∣
ρn,hℓ+1(t, x)− k

∣

∣

∣
∂tφ

ℓ
ε(t, x) dx dt

+

∫ ∆th

0

∫

R

sign(ρn,hℓ+1(t, x)− k)
[

fn
(

ρn,hℓ+1(t, x)
)

− fn(k)
]

∂xφ
ℓ
ε(t, x) dx dt

+ 2

∫ ∆th

0



1−
ph

(

Ξn,h
ℓ (t)

)

fn(ρ̄)



 fn(k) φℓε(t, 0) dt ≥ 0 .

By summing over ℓ and letting ε go to zero, by (21) we obtain that

0 ≤
∑

ℓ∈N

{

∫ ∆th

0

∫

R

∣

∣

∣
ρn,hℓ+1(t, x)− k

∣

∣

∣
∂tφ(t+ ℓ∆th, x) dx dt

+

∫

R

∣

∣

∣
ρn,hℓ+1(0, x) − k

∣

∣

∣
φ(ℓ∆th, x) dx−

∫

R

∣

∣

∣
ρn,hℓ+1(∆th, x)− k

∣

∣

∣
φ ((ℓ+ 1)∆th, x) dx

+

∫ ∆th

0

∫

R

sign(ρn,hℓ+1(t, x)− k)
[

fn
(

ρn,hℓ+1(t, x)
)

− fn(k)
]

∂xφ (t+ ℓ∆th, x) dx dt

+ 2

∫ ∆th

0



1−
ph

(

Ξn,h
ℓ (t)

)

fn(ρ̄)



 fn(k) φ(t+ ℓ∆th, 0) dt

}

=

∫

R+

∫

R

∣

∣

∣
ρn,h(t, x)− k

∣

∣

∣
∂tφ(t, x) dx dt

+

∫

R+

∫

R

sign(ρn,h(t, x)− k)
[

fn
(

ρn,h(t, x)
)

− fn(k)
]

∂xφ(t, x) dx dt

+ 2

∫

R+

[

1−
ph

(

Ξn,h(t)
)

fn(ρ̄)

]

fn(k) φ(t, 0) dt+

∫

R+

|ρn0 (x)− k| φ(0, x) dx .

Finally, by construction, fn
(

ρn,h(t, 0±)
)

≤ ph
(

Ξn,h(t)
)

for a.e. t ∈ R+, and this ends
the proof of Proposition 4.

6.3. Proof of Proposition 6. We list here two basic properties which will be of
great help in the following case by case analysis.

First, by definition (2), ξ(0) = ρL and the map [t 7→ ξ(t)] is continuous. Thus, by
assumption (P2) we have that for any t > 0 sufficiently small
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bp1: if ξ(t) < ρL, then p(ξ(t)) ≡ p(ρL−);
bp2: if ρL < ξ(t), then p(ξ(t)) ≡ p(ρL+).

The case ξ(t) ≡ ρL is somehow special and has to be studied separately for each
specific case.

Second, when the solution is nonclassical, due to the finite speed of propagation of
the waves, the assumption (P2) and properties bp1 and bp2, we have

np1: if R [ρL, ρ̂(p̄)] (x) ≡ ρL for x < 0, then p̄ = f(ρL) ∈ [p(ρL+), p(ρL−)];
np2: if p̄ 6= f(ρL) and ρL < ρ̂(p̄), then p̄ = p(ρL+);
np3: if p̄ 6= f(ρL) and ρ̂(p̄) < ρL, then p̄ = p(ρL−);
np4: if p is continuous in ρL, namely p(ρL−) = p(ρL+), then p̄ = p(ρL).

Now we start the description of the possible cases and we proceed as following.
First, we show that for any initial datum satisfying (Ci), i = 1, . . . , 5, the problem
actually has a unique solution and that the solution is classical. Second, we take
into consideration the corresponding case (Ni), for which we prove that the classical
solution is not suitable and that there exists a unique nonclassical solution.

It is important to stress that in general the solutions to the constrained Riemann
problem (30) are not self–similar, see Example 1. All the cases listed below describe
self–similar solutions because we let the solutions to evolve only on a small interval
of time.

(C1) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a shock with negative speed
σ(ρL, ρR) and satisfies (30b) because f(ρR) ≤ p(ρL+) and p(ξ(t)) ≡ p(ρL+)
by bp2. Assume that there exists a nonclassical solution of the form (31).
Observe that the assumptions ρL < ρR and f(ρR) < f(ρL) together imply
that ρ̄ < ρR. Then ρ̌(p̄) ≤ ρ̄ < ρR and R[ρ̌(p̄), ρR] is given by a shock with
non negative speed if and only if p̄ ≤ f(ρR), or equivalently, ρR ≤ ρ̂(p̄). As a
consequence, p̄ ≤ f(ρR) < f(ρL), ρL < ρR ≤ ρ̂(p̄) and by np2 p̄ coincides with
p(ρL+). In conclusion we have p̄ ≤ f(ρR) ≤ p(ρL+) = p̄, namely f(ρR) = p̄
and the nonclassical solution coincides with the classical one.

(N1) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because f(ρR) >
p(ρL+), see case (C1). Therefore, there does not exist any classical solution
and we can consider only nonclassical solutions of the form (31). If p is
continuous in ρL, then by np4 we have that p̄ = p(ρL). If p experiences a
jump at ρL then, one may wonder which value in [p(ρL+), p(ρL−)] has to be
chosen as p̄. As in the case (C1), the assumptions imply that ρ̄ < ρR and
then that ρ̌(p̄) < ρR and p̄ ≤ f(ρR). Then p̄ is strictly smaller than f(ρL) and
ρ̂(p̄) > ρL. As a consequence, property np2 forces us to choose the unique
possible value of p̄, which is p(ρL+).

(C2) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a shock with non negative speed
σ(ρL, ρR) and it satisfies (30b) because f(ρL) ≤ p(ρL+). Assume that there
exists a nonclassical solution of the form (31). Observe that the assumptions
ρL < ρR and f(ρR) ≥ f(ρL) together imply that ρ̄ > ρL. Then ρ̂(p̄) ≥ ρ̄ > ρL
and R[ρL, ρ̂(p̄)] is given by a shock with non positive speed if and only if
p̄ ≤ f(ρL). Thus p̄ ≤ f(ρL) ≤ p(ρL+) and this implies by (31c) that p̄ =
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f(ρL) = p(ρL+) and that the nonclassical solution coincides with the classical
one.

(N2) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because f(ρL) >
p(ρL−), see case (C2). Therefore, there does not exist any classical solution
and we can consider only nonclassical solutions of the form (31). As in the
case (C2), the assumptions imply ρ̂(p̄) ≥ ρ̄ > ρL. Furthermore, by (31c) we
have p̄ ≤ p(ρL−) < f(ρL), and as a consequence, property np2 forces us to
choose p̄ = p(ρL+).

(C3) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a possible null rarefaction on
the right of the constraint and it satisfies (30b) because f(ρL) ≤ p(ρL+).
Assume that there exists a nonclassical solution of the form (31). Since ρL ≤
ρ̄ ≤ ρ̂(p̄), R[ρL, ρ̂(p̄)] is given by a shock that has non positive speed if and
only if p̄ ≤ f(ρL). Therefore p̄ ≤ f(ρL) ≤ p(ρL+) and this by (31c) implies
that p̄ = f(ρL) = p(ρL+) and that the nonclassical solution coincides with
the classical one.

(N3) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because f(ρL) >
p(ρL−), see case (C3). Therefore, there does not exist any classical solution
and we can consider only nonclassical solutions of the form (31). By hypoth-
esis and (31c) we have f(ρL) > p(ρL−) ≥ p̄. Therefore ρL ≤ ρ̄ < ρ̂(p̄) and
by np2 we have p̄ = p(ρL+).

(C4) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a rarefaction with speeds be-
tween λ(ρL) < 0 and λ(ρR) ≥ 0 and it satisfies (30b) because f(ρ̄) = p(ρL+)
implies that p(ρ) = f(ρ̄) for all ρ ≤ ρL. Moreover, it implies also that p
is continuous in ρL and therefore, by np4, any nonclassical solution of the
form (31) must have p̄ = p(ρL) = f(ρ̄), but in this case the nonclassical
solution coincides with the classical one.

(N4) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because f(ρ̄) >
p(ρL−), see case (C4). Therefore, there does not exist any classical solution
and we can consider only nonclassical solutions of the form (31).
(N4a) By assumption and (31c) f(ρL) < p(ρL+) ≤ p̄ and therefore ρ̂(p̄) < ρL

and by np3 we have p̄ = p(ρL−).
(N4b) By assumption and (31c) f(ρL) > p(ρL−) ≥ p̄ and therefore ρ̂(p̄) > ρL

and by np2 we have p̄ = p(ρL+).
(C5) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a possible null rarefaction on

the left of the constraint and it satisfies (30b) because f(ρR) ≤ p(ρL−) and
p(ξ(t)) ≡ p(ρL−) by bp1. Assume that there exists a nonclassical solution of
the form (31). Since by assumption and (31c) p̄ ≥ p(ρL+) > f(ρL), we have
ρ̂(p̄) < ρL and by np3 p̄ = p(ρL−), but in this case the nonclassical solution
coincides with the classical one.

(N5a) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because f(ρR) >
p(ρL−), see case (C5). Therefore, there does not exist any classical solution
and we can consider only nonclassical solutions of the form (31).
(N5b) By assumption and (31c), f(ρL) < p(ρL+) ≤ p̄ and therefore ρ̂(p̄) <

ρL and by np3 we have p̄ = p(ρL−).
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(N5b) By assumption and (31c), f(ρL) > p(ρL−) ≥ p̄ and therefore ρ̂(p̄) <
ρL and by np2 we have p̄ = p(ρL+).

6.4. Proof of Proposition 7.

(R1) Any solution given byR⋆ coincides on each side of the constraint with a solution
given by the classical Riemann solver R. Therefore it satisfies the Rankine–
Hugoniot jump condition along any of its discontinuities away from the con-
straint. Finally, by definition of ρ̂ and ρ̌, it satisfies the Rankine–Hugoniot
jump condition also along the constraint.

(R2) It is clear by the proof of Proposition 6.
(R3) It is proved as in (R1) since any classical solution is in BV.
(R4) As was proved in Ref. [8], R⋆ is continuous on C∪N . If (ρL, ρR) is not in C∪N

then p experiences a jump at ξ = ρL. Therefore, the local in time solutions of
the Riemann problem for the initial conditions (ρL + ε, ρR) and (ρL − ε, ρR)
are different and only one of the two converges to R⋆[ρL, ρR] as ε > 0 goes to
zero.

(R5) We first stress once again that we can discuss the consistency property of our
Riemann solvers only locally in time because, in general, the solutions may be
not even self–similar globally in time. However, locally in time, the efficiency
of the exit can be assumed to be constant and it is thus sufficient to proceed
as in Ref. [8].

(R6) It is clear by the proof of Proposition 6.

7. Further discussion on the model, conclusions and perspectives

The present model does not take into account extremal cases. For instance, when-
ever a high density is approaching the exit the efficiency of the exit can become very
small. As a consequence, even a small density of pedestrians may form a queue pro-
vided a sufficiently high density is approaching from behind. However, at least in
this case, the low efficiency of the exit has not a “big” effect on the flow at the exit
which is in fact “small”. Further investigation and modeling may be needed in order
to deal with such singular effects.

The planned forthcoming papers of the authors aim to generalize the present model
to the initial–boundary value problem with non–local constraint, to code the result-
ing model, to simulate realistic evacuations, to state and solve optimal management
problems, to reproduce the so–called Braess’ paradox for pedestrian flows (e.g. the
situation where a wider door placed before the exit door makes the evacuation faster),
see Refs. [9], [10], and to introduce further features of “panic” behavior, see Refs. [4],
[13].
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