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Abstract. In this paper we model pedestrian flows evacuating a narrow corridor
through an exit by a one–dimensional hyperbolic conservation law with a non–local
constraint. Existence and stability results for the Cauchy problem with Lipschitz
constraint are achieved by a procedure that combines the wave–front tracking al-
gorithm with the operator splitting method. The Riemann problem with piecewise
constant constraint is discussed in details, stressing the possible lack of uniqueness,
self–similarity and L
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loc–continuity. One explicit example of application is provided.

Keywords: Crowd dynamics, constrained hyperbolic PDE’s, non–local constraints

AMS subject classification: 35L65, 90B20.

1. Introduction

The theory for constrained conservation laws was introduced by Colombo and
Goatin in Ref. [8]. Their results are of interest in many real–life applications, such
as vehicular traffic, Refs. [11], [20], pedestrian flows, Refs. [4], [13], telecommuni-
cations, supply–chains, etc.

For pedestrians, constraints are usually caused by a direct capacity reduction
(door or obstacle) and are of fundamental importance in the calculation of evac-
uation times. The first macroscopic model for pedestrian evacuations able to
reproduce the fall in the efficiency of an exit when a high density of pedestrians
clogs it, was the CR model proposed in Ref. [13] and developed in Refs. [9], [10],
[16], [28]; see also Ref. [29]. There, the maximal outflow allowed through the exit
is assumed to be a piecewise constant function of the density at the exit, and takes
two distinct values, one related to the “standard” case, when the density is less
than an assigned threshold, and one related to the case with “panic”, when the
density is greater than the threshold. As a result, the fall in the efficiency of the
exit has a non–realistic behavior since it is instantaneous when the panic reaches
the exit. A more realistic model should reproduce a more gradual decay in the
efficiency of the exit as the pedestrians accumulate close to it, see Refs. [27], [31].
Moreover, according to the CR model, once the efficiency of the exit falls down, it
remains constant until the very last pedestrian is evacuated. On the contrary, in
real life the efficiency of the exit gradually increases as the number of the remaining
pedestrians to be evacuated becomes smaller and smaller.

To avoid these drawbacks of the CR model, in this paper we generalize the
results proved in Ref. [8] and study the Cauchy problem for a one–dimensional
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hyperbolic conservation law with non–local constraint of the form

∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R+ × R (1a)

f (ρ(t, 0±)) ≤ p

(
∫

R−

w(x) ρ(t, x) dx

)

t ∈ R+ (1b)

ρ(0, x) = ρ0(x) x ∈ R . (1c)

Above, ρ = ρ(t, x) ∈ [0, R] is the (mean) density at time t ∈ R+ of pedestrians
moving along the corridor parameterized by the coordinate x ∈ R−. Then, R ∈ R+

is the maximal density, f : [0, R] → R is the pedestrian flow with pedestrians
moving in the direction of increasing x, p : R+ → R+ prescribes the maximal flow
allowed through an exit placed in x = 0 as a function of the weighted average
density of pedestrians in a left neighborhood of the exit, w : R− → R+ is the
weight function used for the average density and ρ0 : R → [0, R] is the initial
(mean) density. Finally, ρ(t, 0−) denotes the left measure theoretic trace along
the constraint implicitly defined by

lim
ε↓0

1

ε

∫ +∞

0

∫ 0

−ε
|ρ(t, x)− ρ(t, 0−)| φ(t, x) dx dt = 0

for all φ ∈ C∞
c (R2;R). The right measure theoretic trace, ρ(t, 0+), is defined

analogously.
Observe that if w is regular enough and limx→−∞w(x) = 0, then the quantity

ξ(t) =

∫

R−

w(x) ρ(t, x) dx (2)

is the solution of the following Cauchy problem for an ordinary differential equation

ξ̇(t) =

∫

R−

ẇ(x) [f (ρ(t, x)) − f (ρ(t, 0−))] dx , ξ(0) =

∫

R−

w(x) ρ0(x) dx .

In real life, when a very high density of pedestrians accumulate near the exit,
the outgoing flow can be very small, but remains strictly positive. For this reason,
the efficiency of the exit p is assumed to be always strictly positive. We assume
that the weight w is an increasing function with compact support because the
efficiency of the exit is more affected by the closest high densities, while it does
not take into account “far” densities. In summary, we assume that:

(F) f ∈ Lip ([0, R]; [0,+∞[), f(0) = 0 = f(R) and there exists ρ̄ ∈ ]0, R[ such
that f ′(ρ) (ρ̄− ρ) > 0 for a.e. ρ ∈ [0, R].

(W) w ∈ L∞(R−;R+) is an increasing map, ‖w‖
L1(R−;R+) = 1 and there exists

iw > 0 such that w(x) = 0 for any x ≤ −iw.
(P0) p takes values in ]0, f(ρ̄)] and is a non–increasing map.

Observe that f(ρ) < f(ρ̄) for any ρ 6= ρ̄ and ξ(t) ∈ [0, R], see Fig. 1. In the
present work we do not take into account the presence of a panic regime since
in (F) we assume that the fundamental diagram [ρ 7→ (ρ, f(ρ))] is bell–shaped.
Indeed, the CR model introduces a flux that results from the juxtaposition of
two bell–shaped sub–fluxes corresponding to the two regimes quiet–panic and,
therefore, does not satisfy the condition (F). The latter assumption (P0) is the
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Figure 1. Examples of functions satisfying conditions (F), (W),
(P0) and (P2).

minimal requirement for (1) to be meaningful in the sense of distributions, see
Definition 1. While existence for the Riemann problem is proved for piecewise
constant p, see (P2) in Sec. 4, we strengthen the assumption on p to a Lips-
chitz continuity hypothesis when dealing with the Cauchy problem, see (P1) and
Theorem 1 in Sec 2.

We give the definition of solution for problem with nonlocal constraint (1) by
extending the definition of entropy weak solution for a constrained Cauchy problem
of the form

∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R+ × R (3a)

f (ρ(t, 0±)) ≤ q (t) t ∈ R+ (3b)

ρ(0, x) = ρ0(x) x ∈ R . (3c)

Definition 1. Assume conditions (F), (W), (P0). A map ρ ∈ L∞(R+ ×
R; [0, R])∩C0(R+;L

1

loc
(R; [0, R])) is an entropy weak solution to (1) if there exists

q ∈ L∞(R+; [0, f(ρ̄)]) such that the following conditions hold:

(1) For every test function φ ∈ C∞
c (R2;R+) and for every k ∈ [0, R]

∫

R+

∫

R

[|ρ− k|∂tφ+ sign(ρ− k) (f(ρ)− f(k)) ∂xφ] dx dt (4a)

+ 2

∫

R+

[

1−
q (t)

f(ρ̄)

]

f(k) φ(t, 0) dt (4b)

+

∫

R

|ρ0(x)− k| φ(0, x) dx ≥ 0 , (4c)

and

f (ρ(t, 0±)) ≤ q (t) for a.e. t ∈ R+ . (4d)

(2) In addition q is linked to ρ by the relation

q(t) = p

(
∫

R−

w(x) ρ(t, x) dx

)

for a.e. t ∈ R+ . (5)

If q is given a priori, then (4) is the definition of entropy weak solution to
problem (3). This item is precisely the Definition 2.1 in Ref. [1], which is a minor
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generalization of the original Definition 3.2 introduced in Ref. [8]. We refer to
Proposition 2.6 in Ref. [1] for a series of equivalent formulations of conditions (4).

The lines (4a) and (4c) originate from the classical Kružkov Definition 1 in
Ref. [22], in the case of the Cauchy problem with no constraints. Lines (4b)
and (4d) account for the constraint. Let us stress that both left and right traces
at x = 0 of an entropy weak solution exist (see, e.g., Theorem 2.2 in Ref. [1] which
is a reformulation of the results of Refs. [26], [33]).

Our main result is well-posedness for the nonlocal problem (1), see Theorem 1.
We show that under the Lipschitz continuity assumption on p there exists a semi-
group (St)t>0 on L∞(R; [0, R]) such that ρ(t, ·) = St(ρ0) is the unique solution
of (1), and depends continuously on t and ρ0 with respect to the L1

loc
–distance.

The uniqueness result for (1) is a consequence of a stability estimate for the
problem with local constraint (3) with respect to the L1

loc
–distance, of the rela-

tion (5) and of the Gronwall inequality.
The existence result for (1) is achieved through an operator splitting method,

Refs. [6], [7], [14], [15], [18], coupled with the wave–front tracking algorithm,
Refs. [8], [17]. This procedure is chosen for two reasons. First, wave–front track-
ing schemes are able to operate also in the case with panic, when nonclassical
shocks away from the constraint have to be taken into account, see Ref. [4]. Sec-
ond, the operator splitting procedure allows us to approximate our problem with
a problem of type (3), namely with a “frozen” constraint. This greatly simplify
our work because it avoids the difficulties coming from the Riemann solver for the
nonlocally constrained problem. Indeed, we underline the fact that, differently
from the constrained Cauchy problems studied in Refs. [1], [8], the maximal flow
at the constraint for (1) depends on the solution itself and, in general, it is an un-
known variable of the problem. As soon as p is discretized, i.e. p is approximated
by piecewise constant functions, the solution of the corresponding nonlocally con-
strained Riemann problem may fail to be unique, L1

loc
–continuous, consistent and

self–similar, as we will show in Sec. 4. Furthermore, using wave–front tracking for
a nonlocal problem is quite delicate because one cannot merely juxtapose local
solutions of Riemann problems, see Remark 1.

The use of wave–front tracking approximation requires the BV functional set-
ting. As already observed in Ref. [8], the constraint may cause sharp increases
in the total variation TV(ρ) of the solution. To overcome this difficulty, as in
Refs. [5], [8], [11], [32], we rather estimate the total variation of Ψ ◦ ρ, where

Ψ(ρ) = sign(ρ− ρ̄) (f(ρ̄)− f(ρ)) =

∫ ρ

ρ̄

∣

∣

∣
ḟ(r)

∣

∣

∣
dr . (6)

We stress that Ψ is one–to–one, but possibly singular at ρ = ρ̄. Indeed, if ρ is in
BV, then also Ψ ◦ ρ is in BV, while the reverse implication does not hold true.
Therefore we introduce the set

D =
{

ρ ∈ L1 (R; [0, R]) : Ψ(ρ) ∈ BV(R;R)
}

. (7)

In the first step of our construction, we exploit the finite speed of propagation
property for the conservation law (1a) to define St on the domain D by coupling
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the operator splitting method with the wave–front tracking algorithm, see Sec 3.
Then we extend St to L∞ by a density argument, see the second part of the proof
of Theorem 1.

The paper is organized as follows. Sec. 2 and 3 are devoted to the constrained
Cauchy problem. In Sec. 4 we study (1) with a Riemann initial datum. In Sec. 5 we
apply the model (1) to describe the evacuation of a corridor through an exit placed
at x = 0. All the technical proofs are in Sec. 6. Conclusions and perspectives are
outlined in Sec. 7.

2. The Cauchy problem with nonlocal constraint

In this section we consider the Cauchy problem (1) under the hypotheses (F),
(W) and the following assumption on p:

(P1) p belongs to Lip ([0, R] ; ]0, f(ρ̄)]) and it is a non-increasing map.

Let us start with the basic properties of entropy weak solutions to (1).

Proposition 1. Let [t 7→ ρ(t)] be an entropy weak solution of (1) in the sense of
Definition 1. Then

(1) It is also a weak solution of (1a), (1c).
(2) Any discontinuity satisfies the Rankine–Hugoniot jump condition.
(3) Any discontinuity away from the constraint is classical, i.e. satisfies the Lax

entropy inequalities.
(4) Nonclassical discontinuities, see Refs. [24], [29], may occur only at the con-

straint location x = 0, and in this case the flow at x = 0 is the maximal
flow allowed by the constraint. Namely, if the solution contains a nonclassical
discontinuity for all times t ∈ I, I open in R+, then for a.e. t in I

f (ρ(t, 0−)) = f (ρ(t, 0+)) = p

(
∫

R−

w(x) ρ(t, x) dx

)

. (8)

Proof. By taking k = 0, then k = R, in (4), we deduce that any entropy weak
solution to (1) is also a weak solution to (1a), (1c). As a consequence, ρ satisfies the
Rankine–Hugoniot jump condition and, in particular, f (ρ(t, 0−)) = f (ρ(t, 0+)).
By taking in (4) a test function with support in R+×R−, then in R+×R+, we see
that ρ is also a classical Kružkov solution to (1a), (1c) in R+ × R± and therefore
the jumps in ρ located at x 6= 0 satisfy the Lax entropy inequalities. Finally,
we prove property (8). This property was observed at the level of problem (3),
see in particular the description of the “germ” GF in Ref. [1], but it was not
explicitly stated in the works Refs. [1], [8] devoted to problem (3). For the sake of
completeness, we give an explicit proof of property (8) for problem (4). Consider
the test function

φ(t, x) =

[

∫ +∞

|x|−ε
δε(z) dz

]

ψ(t) ,
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where ψ ∈ C∞
c (R;R+) is such that ψ(0) = 0, while δε is a smooth approximation

of the Dirac mass centered at 0+, δD0+, namely

δε ∈ C∞
c (R;R+), ε ∈ R+, supp(δε) ⊆ [0, ε], ‖δε‖L1(R;R) = 1, δε → δD0+. (9)

Observe that as ε goes to zero

φ(0, x) ≡ 0 → 0 , ∂tφ(t, x) =

[

∫ +∞

|x|−ε
δε(z) dz

]

ψ̇(t) → 0 ,

φ(t, 0) = ψ(t) → ψ(t) , χ
R±

(x) ∂xφ(t, x) → ∓ δD0±(|x|) ψ(t) .

Then, if we take k = ρ̄ and φ as test function in (4), we obtain as ε goes to zero
∫

R+

[Ψ (ρ(t, 0+)) −Ψ(ρ(t, 0−))]ψ(t) dt+ 2

∫

R+

[f(ρ̄)− p (ξ(t))] ψ(t) dt ≥ 0 ,

where ξ is defined by (2). For the arbitrariness of ψ, we have for a.e. t > 0

Ψ (ρ(t, 0+)) −Ψ(ρ(t, 0−)) + 2 [f(ρ̄)− p (ξ(t))] ≥ 0 .

Therefore, if for t ∈ I the solution has a nonclassical discontinuity at the constraint
location x = 0, then by the assumption (F) and the Rankine–Hugoniot jump
condition, ρ(t, 0+) < ρ̄ < ρ(t, 0−) and p (ξ(t)) ≤ f (ρ(t, 0±)) for a.e. t ∈ I. Finally,
by the condition (4d) of Definition 1, it has to be p (ξ(t)) = f (ρ(t, 0±)) for a.e. t ∈
I. �

The following theorem on existence, uniqueness and stability of entropy weak
solutions of the constrained Cauchy problem (1) is the main result of this paper.

Theorem 1. Let (F), (W), (P1) hold. Then

(i) For any initial datum ρ0 ∈ L∞(R; [0, R]), the Cauchy problem (1) admits
a unique entropy weak solution ρ in the sense of Definition 1. Moreover, if
ρ̃ = ρ̃(t, x) is the entropy weak solution corresponding to the initial datum
ρ̃0 ∈ L∞(R; [0, R]), then for all T > 0 and L > iw there holds

‖ρ(T )− ρ̃(T )‖
L1([−L,L];R) ≤ eCT ‖ρ0 − ρ̃0‖L1([−(L+MT ),(L+MT )];R), (10)

where M = Lip(f) and C = 2Lip(p)‖w‖
L∞(R−;R).

(ii) If ρ0 belongs to D, defined as in (7), then the unique entropy weak solution
of problem (1) verifies ρ(t, ·) ∈ D for a.e. t > 0, and it satisfies

TV (Ψ (ρ(t))) ≤ Ct = TV (Ψ (ρ0)) + 4f(ρ̄) + C t , (11)

moreover, for a.e. t, s in ]0, T [ we have

‖Ψ(ρ(t, ·)) −Ψ(ρ(s, ·))‖
L1(R;R) ≤ |t− s| Lip(Ψ) CT . (12)

Proof. The proof consists of three parts, the longest one being postponed to Sec. 3.

Uniqueness and stability

Conditions (4) of Definition 1 ensure that for all t ∈ [0, T ] we can apply the stability
estimate in Proposition 2.10 in Ref. [1]. More specifically, if ρ and ρ̃ are solutions
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of (1) corresponding to the constraints q and q̃, and the initial conditions ρ0 and
ρ̃0, respectively, then

‖ρ(t)− ρ̃(t)‖
L1([−L,L];R) ≤ ‖ρ0 − ρ̃0‖L1({|x|≤L+Mt};R) + 2

∫ t

0
|q(s)− q̃(s)| ds.

By the explicit expression of the constraints q and q̃, see (5), we have
∫ t

0
|q(s)− q̃(s)| ds =

∫ t

0

∣

∣

∣

∣

p

(
∫

R−

w(x) ρ(s, x) dx

)

− p

(
∫

R−

w(x) ρ̃(s, x) dx

)∣

∣

∣

∣

ds,

and this quantity is bounded by Lip(p) w(0−)
∫ t
0 ‖ρ(s)− ρ̃(s)‖

L1([−iw,0];R)ds by

the Lipschitz continuity of p and Hölder inequality. Note the inclusions [−L,L] ⊇
[−iw, 0] and {|x| ≤ L+MT} ⊇ {|x| ≤ L+Mt}. We complete the proof by applying
Gronwall’s inequality, see for instance Ref. [29].

Existence in D

The existence problem in the D–framework will be addressed in Sec. 3, see Propo-
sition 2. With this result in hand, existence in L∞ follows by the density argument
we develop below.

Existence in L∞

Let ρ0 be in L∞(R; [0, R]). By the standard diagonal procedure argument, it is
enough to prove existence on an arbitrary time interval [0, T ] in R+. Introduce a
sequence Ψn

0 in BVloc(R;R) which converges pointwise a.e. to Ψ0 = Ψ(ρ0). Set

ρn0 = Ψ−1(Ψn
0 ). For any L ∈ N sufficiently large, set ρn,L0 = ρn0 χ{|x|≤L+MT}.

We have that ρn,L0 belongs to D and ρn,L0 converges to ρ0 in L1

loc
(R; [0, R]) as L

and n go to infinity. Let ρn,L be the corresponding entropy weak solution of (1)
constructed in Proposition 2. Then, for any L > 1 + iw

(A) for all t ∈ [0, T ] we have that
∥

∥ρn,L(t)− ρm,L(t)
∥

∥

L1([−L,L];R)
goes to zero as

m and n go to infinity;
(B) if L′ > L, then ρn,L ≡ ρn,L

′

on [0, T ]× [−L,L].

Properties (A) and (B) follow by (10). Then, by taking L(x) = ⌊|x|⌋ + 1, prop-
erty (A) ensures that we can introduce the function ρ(t, x) = limn→+∞ ρn,L(x)(t, x).

By (B) we also have that ρ(t, x) = limn→+∞ ρn,L
′

(t, x) for any L′ > L(x).
We prove now that [t 7→ ρ(t)] is an entropy weak solution to (1) with initial

datum ρ0. For any compact set K ⊂ R, take L such that [−L + 1, L − 1] ⊇
(K ∪ [−iw, 0]). Then ρn,L converges to ρ in L1([0, T ] × K; [0, R]) and conse-

quently for a.e. t ∈ [0, T ], qn,L(t) = p
(

∫ 0
−iw

w(x) ρn,L(t, x) dx
)

converges to

q(t) = p
(

∫ 0
−iw

w(x) ρ(t, x) dx
)

in L1([0, T ];R). This is enough to ensure that for

all test functions φ supported in [0, T ] ×K, the function ρ satisfies (4a)–(4c) and
that (5) holds. In particular the Rankine–Hugoniot condition is satisfied, therefore
using Lemma 3, we have that fn

(

ρn,L(·, 0−)
)

converges weakly to f (ρ(·, 0−)) in

L1([0, T ];R) and f (ρ(·, 0−)) = f (ρ(·, 0+)). Therefore, also (4d) holds true. �
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3. Wave–front tracking and operator splitting methods

In this section we construct solutions for initial data in D and we prove that D
is an invariant domain for the semigroup S.

Proposition 2. For any initial datum ρ0 in D, there exists a unique entropy weak
solution of problem (1), [t 7→ ρ(t)] and ρ(t) belongs to D for all t > 0. Moreover,
estimates (11) and (12) are satisfied.

The solution [t 7→ ρ(t)] is the limit (along a subsequence) of a sequence obtained
by combining the wave–front tracking algorithm and the operator splitting method.
In the following subsections we describe the construction in full details.

3.1. Approximation of flux and efficiency functions. Fix h, n ∈ N suffi-
ciently large with n≫ h. Introduce the mesh

Mn = f−1
(

2−nf(ρ̄)N ∩ [0, f(ρ̄)]
)

and the set

Dn = D ∩PC (R;Mn) ,

where PC (R;Mn) is the set of piecewise constant functions defined on R, taking
values in Mn and with a finite number of jumps. Approximate the flux f with a
piecewise linear, continuous flux fn : [0, R] → [0, f(ρ̄)], whose derivative exists in
[0, R] \Mn and such that fn coincides with f on Mn, see Fig. 2, left. Clearly, fn

satisfies condition (F). Consider p−1
(

f(Mh) ∩ p([0, R])
)

= {ξ̃h0 , . . . , ξ̃
h
mh+2}, with

0 ≤ ξ̃h0 < ξ̃h1 < . . . < ξ̃hmh+2 ≤ R, and observe that
(

ξ̃hi+1 − ξ̃hi

)

Lip(p) ≥ p
(

ξ̃hi+1

)

− p
(

ξ̃hi

)

= 2−hf(ρ̄) . (13)

Approximate p with the function ph ∈ PC
(

[0, R]; f(Mh)
)

defined as follows:

Figure 2. Left: : In thin line f and in thick line the approximation
fn. Right: In thin line p and in thick line the approximation ph.

ph(ξ) =

mh−1
∑

i=0

phi χ
[

ξhi , ξ
h
i+1

[(ξ) + phmh
χ[
ξhmh

, R
](ξ) , (14a)
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where

0 = ξh0 < ξh1 = ξ̃h1 < . . . < ξhmh
= ξ̃hmh

< ξhmh+1 = R , (14b)

phi = p(ξhi+1), i = 0, . . . ,mh − 1, and phmh
= p(ξ̃hmh+1) , (14c)

see Fig. 2, right. Since h < n, we have that f(Mh) ⊂ f(Mn), ph([0, R]) ⊆
f(Mn) \ {0},

∥

∥

∥
p− ph

∥

∥

∥

L∞([0,R];R)
≤ 21−hf(ρ̄) (15)

and by (13) and (14)

phi − phi+1 = 2−hf(ρ̄) , (16)

inf
i=0,...,mh

(

ξhi+1 − ξhi

)

≥
2−hf(ρ̄)

Lip(p)
. (17)

3.2. The algorithm. Now we can start with the construction of an approximating
solution [t 7→ ρn,h(t)] to (1). As a first step we associate to any fractional time
interval of the form [ℓ∆th, (ℓ+ 1)∆th[, ∆th > 0, ℓ ∈ N, a constrained Cauchy
problem of the form (3) with constant constraint. Then the wave–front tracking

algorithm gives us the corresponding exact solution [t 7→ ρn,hℓ+1(t)]. Finally, ρn,h is

obtained by gluing together ρn,hℓ+1, ℓ ∈ N. The existence of a limit for ρn,h as n and
h go to infinity is ensured by the choice

∆th =
1

2h+1w(0−)Lip(p)
, (18)

which will be motivated in the proof of Lemma 1 by a sort of CFL condition.
Roughly speaking, this condition is needed to bound the possible jump in the
value of the constraint due to the update at each fractional time (ℓ+1)∆th, ℓ ∈ N.

Approximate ρ0 with a piecewise constant function ρn0 : R → [0, R] that coin-
cides with ρ0 on Mn and such that ‖ρn0‖L1(R;R) ≤ ‖ρ0‖L1(R;R) and TV (Ψ (ρn0 )) ≤

TV (Ψ (ρ0)). Clearly, ρn0 belongs to Dn. First consider the approximating con-
strained Cauchy problem

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ ]0,∆th[× R

fn (ρ(t, 0±)) ≤ ph (Ξn
0 ) t ∈ ]0,∆th]

ρ(0, x) = ρn0 (x) x ∈ R ,

where

Ξn
0 =

∫

R−

w(x) ρn0 (x) dx .

The unique exact solution [t 7→ ρn,h1 (t)] for the above problem is obtained by piecing
together the solutions to the Riemann problems at points where ρn0 is discontinuous
or where interactions take place, namely where two or more waves intersect, or
one or more waves reach x = 0. For the definition of solution of the Riemann
problem with a piecewise linear, continuous flux away from the constraint, we
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refer to Sec. 6.1 in Ref. [2] or to Sec. 5.2 in Ref. [29]. The definition of solution to
the constrained Riemann problem along x = 0 follows by the obvious adaptation
of Definition 2.2 in Ref. [8] to the case with a piecewise linear continuous flux,
see also Sec. 6.3 in Ref. [29]. The results of Theorem 3.4 in Ref. [8] can be easily
generalized to the case with piecewise linear continuous flux and, therefore, we can
define

ρn,h(t, x) = ρn,h1 (t, x) for (t, x) ∈ ]0,∆th]× R .

We can assume that no interaction occurs at time t = ∆th, see assumption H2
below. Then the approximate solution is prolonged beyond t = ∆th by taking

ρn,h(t, x) = ρn,h2 (t−∆th, x) for (t, x) ∈ ]∆th, 2∆th]× R ,

where [t 7→ ρn,h2 (t)] is the exact solution of the constrained Cauchy problem

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ ]0,∆th[× R

fn (ρ(t, 0±)) ≤ ph
(

Ξn,h
1

)

t ∈ ]0,∆th]

ρ(0, x) = ρn,h1 (∆th, x) x ∈ R ,

with

Ξn,h
1 =

∫

R−

w(x) ρn,h1 (∆th, x) dx .

We repeat this procedure at each fractional step and, once we get [t 7→ ρn,hℓ (t)],

we construct [t 7→ ρn,hℓ+1(t)] by solving a constrained Cauchy problem of the form

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ ]0,∆th[× R (19a)

fn (ρ(t, 0±)) ≤ ph
(

Ξn,h
ℓ

)

t ∈ ]0,∆th] (19b)

ρ(0, x) = ρn,hℓ (∆th, x) x ∈ R , (19c)

where

Ξn,h
ℓ =

∫

R−

w(x) ρn,hℓ (∆th, x) dx . (19d)

We stress that the solution to (19) is unique and that the efficiency at the exit
may change at each time t ∈ ∆thN and only there.

To simplify the wave–front tracking algorithm, see Remark 7.1 in Ref. [2], it is
standard to remark that, without loss of generality, one can assume that:

H1 At any interaction either exactly two waves interact, or a single wave reaches
the constraint x = 0.

H2 No interaction occurs at time t ∈ ∆thN.

In this way we construct

Ξn,h(t) =
∑

ℓ∈N

Ξn,h
ℓ χ[ℓ∆th, (ℓ+ 1)∆th[

(t) (20)
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and an approximate solution of the Cauchy problem (1)

ρn,h(t, x) =
∑

ℓ∈N

ρn,hℓ+1(t− ℓ∆th, x) χ]ℓ∆th, (ℓ+ 1)∆th]
(t) , (21)

where [t 7→ ρn,hℓ+1(t)] is the unique solution to (19).
Roughly speaking, the present procedure consists in the application of two op-

erators, Θ and S, at each fractional step ]ℓ∆th, (ℓ+ 1)∆th], ℓ ∈ N. The first

operator gives Ξn,h
ℓ = Θ[ρn,hℓ (∆th)], while the second operator gives the solution

ρn,hℓ+1 = S[ρn,hℓ (∆th),Ξ
n,h
ℓ ] of the constrained Cauchy problem of the form (19),

with [x 7→ ρn,hℓ (∆th, x)] as initial datum and with ph(Ξn,h
ℓ ) as constraint.

More rigorously, for any ρn0 ∈ Dn and t ∈ R+, define recursively

Fn,h[ρn0 ](t) = S [ρn0 ,Θ [ρn0 ]] (t)

if t ∈ [0,∆th], and, if t ∈ ](ℓ+ 1)∆th, (ℓ+ 2)∆th], ℓ ∈ N, then

Fn,h[ρn0 ](t) = S
[

Fn,h[ρn0 ] ((ℓ+ 1)∆th) ,Θ
[

Fn,h[ρn0 ] ((ℓ+ 1)∆th)
]]

(t) .

3.3. A priori estimates. In this section we prove that ρn,h(t) = Fn,h[ρn0 ](t) is in
Dn on any bounded time interval [0, T ], T > 0, and we estimate TV

(

Ψ
(

ρn,h(t)
))

uniformly in n, h and t. To this aim, we introduce the following Temple functional

Υn,h
T (t) = TV

(

Ψ
(

ρn,h(t)
))

+ γh
(

ρn,h(t),Ξn,h(t)
)

+ Γh
T (t) , (22)

with

γh (ρ,Ξ) =







0
if ρ(0−) > ρ̄ > ρ(0+) and
fn (ρ(0±)) = ph (Ξ(t))

4
[

f(ρ̄)− ph (Ξ)
]

otherwise,

Γh
T (t) = 5 · 2−h f(ρ̄)

[

T

∆th
−

⌊

t

∆th

⌋]

,

where ⌊·⌋ : R → Z denotes the floor function. Recall that the Temple functional
adopted in Ref. [8] involves the total variation of the approximating constraint,
which is given a priori. In our construction, at each fractional time interval we
are dealing with a different approximating problem (19) and we need to know the
solution at the previous step in order to fix the value of the constraint in (19b).
Therefore, the constraint p

(

Ξn,h(t)
)

, t ∈ R+, and its total variation are not given
a priori. Nevertheless, due to the choice of ∆th, we are able to bound the possible
jump of p

(

Ξn,h(t)
)

at each time step, as we will see in Lemma 1, and estimate a
priori the total variation of the efficiency. From this point of view, the functional

Υn,h
T is the natural generalization of that one used in Ref. [8]. In fact, the two

functionals have in common the first two terms, namely

Qn,h (t) = TV
(

Ψ
(

ρn,h(t)
))

+ γh
(

ρn,h(t),Ξn,h(t)
)

, (23)

while Γh
T (t) is introduced to control the total variation of p

(

Ξn,h(·)
)

in the time
interval [t, T ].
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Lemma 1. For any ℓ ∈ N, the jump in the efficiency at time t = (ℓ + 1)∆th,

namely
∣

∣

∣
ph(Ξn,h

ℓ+1)− ph(Ξn,h
ℓ )

∣

∣

∣
, is either zero or 2−hf(ρ̄).

Proof. Fix ℓ ∈ N. If
∣

∣

∣
Ξn,h
ℓ+1 − Ξn,h

ℓ

∣

∣

∣
< inf

i=0,...,mh

∣

∣

∣
ξhi+1 − ξhi

∣

∣

∣
, then [ξ 7→ ph(ξ)] has

at most one jump for ξ between Ξn,h
ℓ+1 and Ξn,h

ℓ and (16) allows us to conclude.
Because of (17), we just need to show

∣

∣

∣
Ξn,h
ℓ+1 − Ξn,h

ℓ

∣

∣

∣
Lip(p) < 2−hf(ρ̄) .

By Proposition 1, ρn,hℓ+1 is a weak solution of the problem (19a), (19c) with ρn,hℓ (∆th)

as initial condition. Then, for any φ in C1
c(R

2;R) we have
∫

R+

∫

R

[

ρn,hℓ+1 ∂tφ+ f(ρn,hℓ+1) ∂xφ
]

dx dt+

∫

R

ρn,hℓ (∆th, x) φ(0, x) dx = 0 . (24)

Let (ην)ν be a standard family of mollifiers and define wν = w ∗ ην . Let δε be as
in (9). Take 0 ≤ t1 < t2 ≤ ∆th and consider the test function

φ(t, x) =

[
∫ t−t1

t−t2+ε
δε(z) dz

] [
∫ x+iw

x+ε
δε(z) dz

]

wν(x) .

Observe that φ(0, ·) ≡ 0 and that letting ε go to zero we get

∂tφ(t, x) → [δDt1 (t)− δDt2 (t)] χ[−iw, 0]
(x) wν(x) ,

∂xφ(t, x) → χ[t1, t2]
(t) [δD−iw+(x)− δD0−(x)] wν(x) .

We pass to the limit in the Eq. (24) letting ε go to zero and we obtain
∫ 0

−iw

wν(x)
[

ρn,hℓ+1(t1, x)− ρn,hℓ+1(t2, x)
]

dx

=

∫ t2

t1

[

wν(0−) f
(

ρn,hℓ+1(t, 0−)
)

− wν(−iw+) f
(

ρn,hℓ+1(t,−iw+)
)]

dt .

Then, as ν goes to infinity we get
∣

∣

∣

∣

∫ 0

−iw

w(x)
[

ρn,hℓ+1(t1, x)− ρn,hℓ+1(t2, x)
]

dx

∣

∣

∣

∣

≤ (t2 − t1)f(ρ̄)w(0−) . (25)

By (19c) and (19d) we have that
∣

∣

∣
Ξn,h
ℓ+1 − Ξn,h

ℓ

∣

∣

∣
=

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,hℓ+1(∆th, x)− ρn,hℓ (∆th, x)
]

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,hℓ+1(∆th, x)− ρn,hℓ+1(0, x)
]

dx

∣

∣

∣

∣

≤ ∆th f(ρ̄) w(0−) .

Therefore by (18) the proof is complete. �

We are ready to show that Υn,h
T is a Temple functional.
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Proposition 3. Let h, n ∈ N and ρn0 ∈ Dn. On [0, T ], the map [t 7→ Υn,h
T (t)] is

non–increasing and it decreases by at least 2−nf(ρ̄) each time the number of waves
increases.

The proof is deferred to Sec. 6.1.
In the next corollary we rely on Proposition 3 to prove a uniform estimate on

TV
(

Ψ
(

ρn,h(t)
))

.

Corollary 1. There exists a constant C > 0, that does not depend on n or h, such
that for all t > 0

TV
(

Ψ
(

ρn,h(t)
))

≤ TV (Ψ (ρ0)) + 4f(ρ̄) +C t . (26)

Proof. We consider the functionalQn,h = Υn,h
T −Γh

T introduced in (23). Proceeding

as in the proof of Proposition 3, we can show that Qn,h may increase only at

t ∈ ∆thN. However, since Υ
n,h
T is strictly decreasing at t ∈ ∆thN, we have that for

all ℓ ∈ N,

Qn,h(ℓ∆th+)−Qn,h(ℓ∆th−) ≤
∣

∣

∣
Γh
T (ℓ∆th+)− Γh

T (ℓ∆th−)
∣

∣

∣
= 5 · 2−hf(ρ̄) .

Therefore, by (18)

TV
(

Ψ
(

ρn,h(t)
))

≤ Qn,h(t) ≤ Qn,h(0) + 5 · 2−hf(ρ̄)

⌊

t

∆th

⌋

≤ TV (Ψ (ρ0)) + 4f(ρ̄) + 10 w(0−) Lip(p) f(ρ̄) t ,

and the estimate (26) holds with C = 10 w(0−) Lip(p) f(ρ̄). �

By the results proved in Ref. [8], the assumption H2 and the corollary above,
we have that both ρn,h(t) and Ξn,h(t) are well defined for any t ∈ [0, T ] and that
ρn,h belongs to C0(R+;D

n). In particular, [t 7→ ρn,h(t)] is piecewise constant
with discontinuities along finitely many polygonal lines with bounded speed of
propagation, that do not intersect each other at any time t ∈ ∆thN. By the
construction of ρn,h and its continuity with respect to time it is not difficult to
show

Proposition 4. The map [t 7→ ρn,h(t)] given by (21) is an entropy weak solution
in the sense of Definition 1 (with fn, ph replacing f, p) to the problem

∂tρ+ ∂xf
n(ρ) = 0 (t, x) ∈ R+ × R (27a)

fn (ρ(t, 0±)) ≤ ph
(

Ξn,h(t)
)

t ∈ R+ (27b)

ρ(0, x) = ρn0 (x) x ∈ R , (27c)

where [t 7→ Ξn,h(t)] is given by (20).

The proof is deferred to Sec. 6.2.

Proposition 5. There exists a subsequence of ρn,h converging a.e. on R+ ×R to
a limit ρ ∈ L∞ (R+ × R; [0, R]). In addition, ρ satisfies estimates (11) and (12).
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Proof. By the standard diagonal procedure argument, it is enough to prove con-
vergence on an arbitrary time interval [0, T ], T > 0. The sequence Ψ

(

ρn,h
)

is
uniformly bounded in L∞ ([0, T ]× R;R) ∩ L∞ ([0, T ];BV(R;R)) by Corollary 1.
In order to get compactness in L1

loc
, see Theorem 2.4 in Ref. [2], we still need to

show that [t 7→ Ψ
(

ρn,h(t, ·)
)

] is Lipschitz with respect to the L1–norm. In analogy
to (6), we define

Ψn(ρ) = sign(ρ− ρ̄) (fn(ρ̄)− fn(ρ)) =

∫ ρ

ρ̄

∣

∣

∣
ḟn(r)

∣

∣

∣
dr . (28)

We observe that Ψ coincides with Ψn on Mn and, as a consequence, Lip(Ψn) ≤
Lip(Ψ). Since ρn,h takes values in Mn, we have Ψn

(

ρn,h
)

= Ψ
(

ρn,h
)

. Hence,

TV
(

Ψn
(

ρn,h(t)
))

= TV
(

Ψ
(

ρn,h(t)
))

and by Corollary 1 we have
∥

∥

∥
∂xΨ

n
(

ρn,h
)
∥

∥

∥

L∞([0,T ];Mb(R;R))
≤ CT = TV (Ψ (ρ0)) + 4f(ρ̄) + C T ,

uniformly in n and h. Above, Mb(R;R) denotes the space of bounded Radon
measures. Let gn = fn ◦ (Ψn)−1 and remark that by (28)

ġn(ψ) =
ḟn ◦ (Ψn)−1(ψ)

Ψ̇n ◦ (Ψn)−1(ψ)
=

ḟn ◦ (Ψn)−1(ψ)
∣

∣

∣
ḟn ◦ (Ψn)−1(ψ)

∣

∣

∣

∈ {−1, 1} .

Hence ∂tρ
n,h is bounded in L∞ ([0, T ];Mb(R;R)) because, by Eq. (27) and Theo-

rem 4 in Ref. [21], we have
∥

∥

∥
∂tρ

n,h
∥

∥

∥

L∞([0,T ];Mb(R;R))
≤ ‖ġn‖

L∞([−f(ρ̄),f(ρ̄)];R)

∥

∥

∥
∂xΨ

n
(

ρn,h
)
∥

∥

∥

L∞([0,T ];Mb(R;R))

≤ CT .

As the functions Ψn are uniformly Lipschitz, also the distributions µn,h =
∂tΨ

n(ρn,h) are uniformly bounded measures in L∞ ([0, T ];Mb(R;R)) with
∥

∥

∥
µn,h

∥

∥

∥

L∞([0,T ];Mb(R;R))
≤ Lip(Ψn) CT .

Now, let (ην)ν be a standard family of mollifiers in C∞
c (R2;R) and define Fn,h

ν =

Ψn
(

ρn,h
)

∗ ην and µn,hν = µn,h ∗ ην . Then
∥

∥

∥
µn,hν

∥

∥

∥

L∞([0,T ];L1(R;R))
≤

∥

∥

∥
µn,h

∥

∥

∥

L∞([0,T ];Mb(R;R))
.

Due to the regularity of Fn,h
ν , for any δ > 0 and for any 0 ≤ t < t+ δ ≤ T

∥

∥

∥
Fn,h
ν (t+ δ, ·) − Fn,h

ν (t, ·)
∥

∥

∥

L1(R;R)
=

∫

R

∣

∣

∣

∣

∫ t+δ

t
µn,hν (s, x) ds

∣

∣

∣

∣

dx

≤ δ
∥

∥

∥
µn,hν

∥

∥

∥

L∞([0,T ];L1(R;R))
≤ δ Lip(Ψn) CT ,
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and as ν go to zero we deduce the uniform Lipschitz continuity in time of Ψ
(

ρn,h
)

=

Ψn
(

ρn,h
)

:
∥

∥

∥
Ψ(ρn,h(t+ δ, ·)) −Ψ(ρn,h(t, ·))

∥

∥

∥

L1(R;R)
≤ δ Lip(Ψ) CT .

In this way we prove the existence of a subsequence of Ψ
(

ρn,h
)

= Ψn
(

ρn,h
)

that

converges in L1

loc
([0, T ]×R;R) to a function ψ in L∞ ([0, T ];BV(R; [−f(ρ̄), f(ρ̄)]))

which satisfies

‖ψ(t+ δ, ·) − ψ(t, ·)‖
L1(R;R) ≤ δ Lip(Ψ) CT . (29)

For simplicity we still denote the subsequence Ψ
(

ρn,h
)

. Since Ψ is invertible

and Ψ−1 is continuous, also ρn,h converges in L1

loc
([0, T ]×R;R) to a function ρ =

Ψ−1(ψ) in L∞ ([0, T ]× R; [0, R]). In particular, by (26) and (29) the estimates (11)
and (12) hold true. �

Lemma 2. For any T > 0

lim
n,h→+∞

∫ T

0

∣

∣

∣

∣

Ξn,h(t)−

∫

R−

w(x) ρ(t, x) dx

∣

∣

∣

∣

dt = 0 .

Proof. Let T > 0 and define ℓhT = ⌊T/∆th⌋. Then by (20) and (25)
∫ T

0

∣

∣

∣

∣

Ξn,h(t)−

∫

R−

w(x) ρn,h(t, x) dx

∣

∣

∣

∣

dt ≤

≤

ℓh
T
−1

∑

ℓ=0

∫ (ℓ+1)∆th

ℓ∆th

∣

∣

∣

∣

Ξn,h
ℓ (t− ℓ∆th)−

∫

R−

w(x) ρn,hℓ+1(t− ℓ∆th, x) dx

∣

∣

∣

∣

dt

+

∫ T

ℓh
T
∆th

∣

∣

∣

∣

Ξn,h

ℓh
T

(t− ℓhT∆th)−

∫

R−

w(x) ρn,h
ℓh
T
+1

(t− ℓhT∆th, x) dx

∣

∣

∣

∣

dt

=

ℓhT−1
∑

ℓ=0

∫ ∆th

0

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,hℓ+1(0, x) − ρn,hℓ+1(t, x)
]

dx

∣

∣

∣

∣

dt

+

∫ T−ℓhT∆th

0

∣

∣

∣

∣

∫

R−

w(x)
[

ρn,h
ℓh
T
+1

(0, x) − ρn,h
ℓh
T
+1

(t, x)
]

dx

∣

∣

∣

∣

dt

≤





ℓhT−1
∑

ℓ=0

∫ ∆th

0
t dt+

∫ T−ℓh
T
∆th

0
t dt



 f(ρ̄) w(0−)

=
∆t2h ℓ

h
T + (T − ℓhT∆th)

2

2
f(ρ̄) w(0−) .

Therefore, since ℓhT∆th converges to T as h goes to infinity and ρn,h converges to
ρ in L1

loc
(R+ × R;R) as n and h go to infinity, the proof is complete. �

Since ρn,h converges to ρ in L1

loc
, Proposition 4 and Lemma 2 imply that

[t 7→ ρ(t)] satisfies the conditions (4a)–(4c) and (5) of Definition 1 with respect
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to the problem (1). Moreover, ρ satisfies the condition (4d) of Definition 1 by
Lemma 3, and it satisfies estimate (11) and (12) by Proposition 5. Finally, ob-
serve that ρ ∈ C0

(

R+;L
1

loc
(R; [0, R])

)

because of entropy inequalities (4a)–(4c),

see Ref. [3]. As already observed Ψ (ρ) ∈ C0 (R+;BV(R;R)) thus ρ(t) ∈ D for all
t.

Uniqueness of the entropy weak solutions to the Cauchy problem (1) in the case
p ∈ Lip([0, R];R), ρ0 ∈ D follows directly from uniqueness in the L∞–framework,
see the first part of the proof of Theorem 1.

4. The constrained Riemann problem

In this section we study constrained Riemann problems of the form

∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R+ × R (30a)

f (ρ(t, 0±)) ≤ p

(
∫

R−

w(x) ρ(t, x) dx

)

t ∈ R+ (30b)

ρ(0, x) =

{

ρL if x < 0
ρR if x ≥ 0

x ∈ R (30c)

with ρL, ρR ∈ [0, R]. Along with (F) and (W), we assume that:

(P2) p belongs to PC ([0, R] ; ]0, f(ρ̄)]) and is a non–increasing map.

The assumption (P2) is introduced in place of (P1) to allow an explicit con-
struction of solutions to (30). However, the regularity of p required by (P2) is
not enough to apply the results of Theorem 1. In fact, the uniqueness of entropy
weak solutions as well as the stability estimate (10) do not hold in the present
framework, as we will see in Example 2.

Aiming for a general construction of the solutions to (30), we allow p to be a
multi–valued piecewise constant function, namely, see Fig. 1, right:

• there exist ξ1, . . . , ξn ∈ ]0, R[ and p0, . . . , pn ∈ ]0, f(ρ̄)], with ξi < ξi+1 and
pi > pi+1, such that p(0) = p0, p(R) = pn, p χ]ξi, ξi+1[

= pi for i = 0, . . . , n,

p(ξi) = [pi, pi−1] for i = 1, . . . , n, being ξ0 = 0 and ξn+1 = R.

Let σ(ρL, ρR) = (f(ρL)− f(ρR)) / (ρL − ρR) be the speed of propagation of a shock
between ρL and ρR, while λ(ρ) = f ′(ρ) is the characteristic speed. Introduce the
maps ρ̌, ρ̂ : [0, f(ρ̄)] → [0, R] implicitly defined by

f (ρ̌(p)) = p = f (ρ̂(p)) and ρ̌(p) ≤ ρ̄ ≤ ρ̂(p) .

Let ρ̌i = ρ̌(pi) and ρ̂i = ρ̂(pi). Denote by R the classical Riemann solver Refs. [23],
[25]. This means that the map [(t, x) 7→ R[ρL, ρR](x/t)] is the unique entropy weak
solution for the unconstrained problem (30a), (30c), see Refs. [2], [29], [30] for its
construction. As we will see in Proposition 6, the classical solutions given by R
may not satisfy the constraint (30b). For this reason we consider also nonclassical
solutions, namely solutions that do not satisfy the Lax entropy inequalities, see
Ref. [24] as a general reference. In general, entropy weak solutions to (30) are not
self–similar nor unique, as we will show in the two following examples.
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Example 1. Let 0 < ρL < ρR < R be such that f(ρL) > f(ρR). If ξi ≤ ρL < ξi+1,
pi+1 < f(ρR) < pi and j > i is such that f (ρ̂j) = p (ρ̂j) and f (ρ̂k) > p (ρ̂k) for all
k ∈ {i, . . . , j−1}, see Fig. 3, left, then the entropy weak solution to the correspond-
ing Riemann problem (30) is not self–similar, see Fig. 3, right. More in detail, for
sufficiently small times, the solution corresponds to the classical one and is given by
a shock with speed σ(ρL, ρR) < 0. The corresponding map [t 7→ ξ(t)] is increasing
and by hypothesis, there exists a time t1 < −iw/σ(ρL, ρR) such that ξ(t1) = ξi+1.
Then, the efficiency of the exit falls to pi+1 and the solution given by the classical
Riemann solver R no longer satisfies the constraint condition (30b). As a result, at
time t1 the solution performs a nonclassical discontinuity at the constraint location
and two further classical shocks appear, one with speed σ(ρR, ρ̂i+1) < 0 and one
with speed σ(ρ̌i+1, ρR) > 0. The final solution can then be constructed by taking
into account the interactions between the shocks on each side of the constraint and
the appearance of new shocks each time [t 7→ ξ(t)] crosses ξk, k ∈ {i+1, . . . , j−1}.

Figure 3. Construction of a non self–similar entropy weak solution
as in Example 1. On the left, the thick line corresponds to the
efficiency of the exit p|]ρL,ρ̂j [.

As we have seen, the lack of self–similarity is related to the jumps of [t 7→
p (ξ(t))]. Nevertheless, in the proof of Proposition 6 we show that any entropy
weak solution of (30) is self–similar for sufficiently small times. Therefore, it makes
sense to introduce nonclassical local Riemann solvers, see Definition 2. Then, the
availability of a local Riemann solver allows us to construct a global solution to
the Riemann problem (30) by a wave–front tracking algorithm in which the jumps
in the map [t 7→ p (ξ(t))] are interpreted as interactions.

The next example shows that the entropy weak solutions to the constrained
Riemann problem (30) are not necessarily unique.

Example 2. Consider the constrained Riemann problem (30) with ρL = ξi+1 ∈
]ρ̄, R[ and ρR = ρ̄. Assume that f (ρ̂i+1) = pi+1 ≤ f(ξi+1) ≤ pi = f (ρ̂i) < f(ρ̄),



18 BORIS ANDREIANOV, CARLOTTA DONADELLO, AND MASSIMILIANO D. ROSINI

Figure 4. With reference to Example 2, the flux configuration
and three different solutions ρ1, ρ2 and ρ3 to the same Riemann
problem are represented from left to right. Here ρ̌L = ρ̌ (f(ρL)).

see Fig. 4, left, then

ρ1(x/t) =

{

R[ξi+1, ρ̂i+1](x/t) if x < 0
R[ρ̌i+1, ρ̄](x/t) if x ≥ 0 ,

ρ2(x/t) =

{

ξi+1 if x < 0
R[ρ̌ (f(ξi+1)) , ρ̄](x/t) if x ≥ 0 ,

ρ3(x/t) =

{

R[ξi+1, ρ̂i](x/t) if x < 0
R[ρ̌i, ρ̄](x/t) if x ≥ 0 ,

are self–similar entropy weak solutions of problem (30) with the same datum, see
Fig. 4. Clearly, the above solutions are distinct if pi+1 6= f(ξi+1) 6= pi, otherwise
two of them may coincide. Additionally, for an arbitrarily chosen t̄ > 0, the
functions

ρt̄,1(t, x) =







































ρ2 (x/t) if 0 < t ≤ t̄
ρ1 (x/(t− t̄)) if t > t̄ and x < 0
ρ̌i+1 if t̄ < t ≤ t̃1 and 0 ≤ x < σ (ρ̌i+1, ρ̌ (f(ξi+1))) (t− t̄)
ρ̄ if t̄ < t ≤ t̃1 and x ≥ σ (ρ̌ (f(ξi+1)) , ρ̄) t
ρ̌i+1 if t > t̃1 and 0 ≤ x < σ (ρ̌i+1, ρ̄) (t− t̃1) + x̃1
ρ̄ if t > t̃1 and x ≥ σ (ρ̌i+1, ρ̄) (t− t̃1) + x̃1
ρ̌ (f(ξi+1)) otherwise,

ρt̄,3(t, x) =







































ρ2 (x/t) if 0 < t ≤ t̄
ρ3 (x/(t− t̄)) if t > t̄ and x < 0
ρ̌i if t̄ < t ≤ t̃3 and 0 ≤ x < σ (ρ̌i, ρ̌ (f(ξi+1))) (t− t̄)
ρ̄ if t̄ < t ≤ t̃3 and x ≥ σ (ρ̌ (f(ξi+1)) , ρ̄) t
ρ̌i if t > t̃3 and 0 ≤ x < σ (ρ̌i, ρ̄) (t− t̃3) + x̃3
ρ̄ if t > t̃3 and x ≥ σ (ρ̌i, ρ̄) (t− t̃3) + x̃3
ρ̌ (f(ξi+1)) otherwise,
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where

t̃1 =
t̄ σ (ρ̌i+1, ρ̌ (f(ξi+1)))

σ (ρ̌i+1, ρ̌ (f(ξi+1)))− σ (ρ̌ (f(ξi+1)) , ρ̄)
, x̃1 = t̃1 σ (ρ̌ (f(ξi+1)) , ρ̄) ,

t̃3 =
t̄ σ (ρ̌i, ρ̌ (f(ξi+1)))

σ (ρ̌i, ρ̌ (f(ξi+1)))− σ (ρ̌ (f(ξi+1)) , ρ̄)
, x̃3 = t̃3 σ (ρ̌ (f(ξi+1)) , ρ̄) ,

are also entropy weak solutions, see Fig. 5. Therefore, because of the arbitrariness
of t̄, we can build infinitely many different solutions which are not self–similar
on any open time interval. However, remark that the asymptotic profile of ρt̄,i
coincides with the asymptotic profile of ρi.

One may guess that the lack of uniqueness is due to the fact that p is a multi–
valued function. But we observe that if we pick up f(ξi+1) as value for p(ξi+1), then
still all the above solutions are admissible. Moreover, if we have p(ξi+1) 6= f(ξi+1),
then both ρ1 and ρ3 are admissible, but not ρ2. Thus there is more than one entropy
weak solution even if p is a single valued function.

Figure 5. With reference to Example 2, the solutions ρt̄,1 and ρt̄,3.
Above ρ̌L = ρ̌ (f(ρL)).

Introduce the subset of [0, R]2

C =
{

(ρL, ρR) ∈ [0, R]2 : (ρL, ρR) satisfies condition (C)
}

,

where we say that (ρL, ρR) satisfies condition (C) if it satisfies one of the following
conditions:

(C1): ρL < ρR, f(ρR) < f(ρL) and f(ρR) ≤ p(ρL+);
(C2): ρL < ρR, f(ρL) ≤ f(ρR) and f(ρL) ≤ p(ρL+);
(C3): ρR ≤ ρL ≤ ρ̄ and f(ρL) ≤ p (ρL+);
(C4): ρR ≤ ρ̄ < ρL and f(ρ̄) = p (ρL+);
(C5): ρ̄ < ρR ≤ ρL, f(ρR) ≤ p (ρL−) and f(ρL) < p (ρL+).

In Proposition 6 we will prove that a constrained Riemann problem admits as
unique entropy weak solution the classical one, at least for small times, if and only
if its initial datum satisfies condition (C).

Analogously, introduce the subset of [0, R]2

N =
{

(ρL, ρR) ∈ [0, R]2 : (ρL, ρR) satisfies condition (N)
}

,

where we say that (ρL, ρR) satisfies condition (N) if it satisfies one of the following
conditions:
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(N1): ρL < ρR and f(ρL) > f(ρR) > p(ρL+);
(N2): ρL < ρR, f(ρL) ≤ f(ρR) and f(ρL) > p(ρL−);
(N3): ρR ≤ ρL ≤ ρ̄ and f(ρL) > p (ρL−);
(N4a): ρR ≤ ρ̄ < ρL, f(ρ̄) 6= p (ρL−) and f(ρL) < p(ρL+);
(N4b): ρR ≤ ρ̄ < ρL, f(ρ̄) 6= p (ρL−) and f(ρL) > p(ρL−);
(N5a): ρ̄ < ρR ≤ ρL, f(ρR) > p (ρL−) and f(ρL) < p (ρL+);
(N5b): ρ̄ < ρR ≤ ρL and f(ρL) > p (ρL−).

In Proposition 6 we will prove that, at least for small times, a constrained Riemann
problem has a unique entropy weak solution which is nonclassical if and only if its
initial datum satisfies condition (N).

Observe that if the constraint function p is constant in a neighborhood of the
state ρL, then p(ρL−) = p(ρL+) and this simplifies the above conditions. Also
a right or left continuity assumption on p would simplify the above conditions.
However, we keep p as a multi–valued function to take into account all the possible
solutions of (30).

In the next proposition, we show that uniqueness holds if and only if the initial
data are in C ∪ N .

Proposition 6. Consider the constrained Riemann problem (30).
• If (ρL, ρR) ∈ C, then the map [(t, x) 7→ R[ρL, ρR](x/t)] is the unique entropy
weak solution at least for t > 0 sufficiently small.
• If (ρL, ρR) ∈ N , then there exists a unique p̄ ∈ [p(ρL+), p(ρL−)] such that the
map

[

t 7→

{

R[ρL, ρ̂ (p̄)](x/t) if x < 0
R[ρ̌ (p̄) , ρR](x/t) if x ≥ 0

]

is the unique entropy weak solution at least for t > 0 sufficiently small.
• If (ρL, ρR) ∈ [0, R]2 \ (C ∪ N ), then the corresponding constrained Riemann
solver (30) admits more than one entropy weak solution.

Proof. We stress that any nonclassical entropy weak solution in the sense of Def-
inition 1 is also a classical entropy weak solution in the Kružkov sense in the
half–planes R+×R− and R+×R+. Therefore, at least for t > 0 sufficiently small,
by Proposition 1 and assumption (P2) any nonclassical entropy weak solution
of (30) must have the form, see Fig. 6,

ρ(t, x) =

{

R[ρL, ρ̂(p̄)](x/t) if x < 0
R[ρ̌(p̄), ρR](x/t) if x ≥ 0 .

(31a)

Observe that (31a) is uniquely identified once we know p̄ which, by (8), satisfies

p̄ = f (ρ̌(p̄)) = f (ρ̂(p̄)) . (31b)

We recall that (31b) means in particular that the Rankine–Hugoniot jump con-
dition is satisfied at x = 0 even when the solution to the Riemann problem is
nonclassical. As a consequence of (31b), of assumption (P2) and of the continuity
of [t 7→ ξ(t)], we have that

p̄ ∈ [p(ρL+), p(ρL−)] . (31c)
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Figure 6. The four possible configurations of nonclassical entropy
weak solutions of the form (31).

This implies that if p(ρL+) = p(ρL−), then p(ξ) is constant in a neighborhood
of ρL and, since the solution is in C0

(

R+;L
1

loc
(R; [0, R])

)

, uniqueness is ensured
by the results in Ref. [8]. However, the continuity of p at ρL is not a necessary
condition for uniqueness. In Sec. 6.3 we prove that:

(ρL, ρR) ∈ C: In this case, the corresponding classical solution satisfies (30)
for all t > 0 sufficiently small and it is not possible to construct a different
solution.

(ρL, ρR) ∈ N : In this case, the corresponding classical solution does not sat-
isfy (30b), and there exists a unique nonclassical solution that satisfies (30).

Now we list the “pathological” cases, where we have more than one admissible
solution. We stress once again that a necessary condition for non–uniqueness is
p(ρL−) 6= p(ρL+) and p(ρL−) ≥ f(ρL) ≥ p(ρL+). It is important to stress that in
general the solutions to the constrained Riemann problem (30) are not self–similar,
see Example 1. All the cases listed below describe self–similar solutions because
we let the solutions evolve only on a small interval of time.

(CN2): If ρL < ρR, f(ρL) ≤ f(ρR) and p(ρL+) < f(ρL) ≤ p(ρL−), then
the classical solution [(t, x) 7→ R[ρL, ρR](x/t)], which consists of a shock
with non negative speed, as well as the nonclassical solution (31), with
p̄ = p(ρL+), are distinct solutions of (30).

(CN3): If ρR ≤ ρL ≤ ρ̄ and p(ρL+) < f(ρL) ≤ p(ρL−), then the classical
solution [(t, x) 7→ R[ρL, ρR](x/t)], which consists of a possible null rarefac-
tion on the right of the constraint, as well as the nonclassical solution (31),
with p̄ = p(ρL+), are distinct solutions of (30).

(NNN4): If ρR ≤ ρ̄ < ρL, p(ρL−) 6= p(ρL+) and p(ρL+) ≤ f(ρL) ≤
p(ρL−), then the nonclassical solutions of the form (31) corresponding
to p̄ ∈ {p(ρL+), f(ρL), p(ρL−)} satisfy (30), see Example 2. Observe that
such solutions are distinct as far as they correspond to distinct constraint
levels p̄, and that in any case there exist at least two distinct nonclassical
solutions.

(CNN5): If ρ̄ < ρR ≤ ρL, f(ρR) ≤ p(ρL−), p(ρL−) 6= p(ρL+) and p(ρL+) ≤
f(ρL), then the classical solution [(t, x) 7→ R[ρL, ρR](x/t)], which consists
of a possible null rarefaction on the left of the constraint, as well as the non-
classical solutions of the form (31) corresponding to p̄ ∈ {p(ρL+), f(ρL)}
satisfy (30). Observe that the two nonclassical solutions are distinct as far
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as they correspond to distinct constraint levels p̄, and that in any case there
exist at least two distinct solutions, one classical and one nonclassical.

(NNN5): If ρ̄ < ρR < ρL, f(ρR) > p(ρL−) ≥ f(ρL) ≥ p(ρL+) and p(ρL−) 6=
p(ρL+), then the nonclassical solutions of the form (31) corresponding to
p̄ ∈ {p(ρL+), f(ρL), p(ρL−)} satisfy (30). Observe that such solutions are
distinct as far as they correspond to distinct constraint levels p̄, and that
in any case there exist at least two distinct nonclassical solutions.

This concludes the proof. �

As the local solutions of the Riemann problem are not unique in general, we
are naturally led to question the existence of suitable selection criteria. All the
solutions we introduce are solutions in the Kružkov sense in the open half–planes
R+×R+ and R+×R−, so they satisfy the basic requirement of entropy dissipation.
However, coming back to the real situation which our model aims to describe,
namely the evacuation of a narrow corridor, we argue that the most desirable
solution is obviously the one corresponding to the highest admissible values of the
flux at the exit. In analogy to the discussion in Ref. [19] we interpret all other
possible solutions as consequences of an irrational behavior, which in literature is
often described as panic. It is also important to remark that since non–uniqueness
is possible only when p(ρL−) 6= p(ρL+) and p(ρL−) ≥ f(ρL) ≥ p(ρL+), non–
uniqueness concerns at most a finite number of left states.

From now on we restrict ourselves to the case in which p(ξi) can only take the
values pi and pi+1 and not the intermediate values, because the extremal behaviors
are the most relevant in view of the applications.

Definition 2. Two Riemann solvers Rq and Rp for (30) are defined as follows
for t > 0 sufficiently small and x ∈ R:

(C): If (ρL, ρR) ∈ C then

Rq[ρL, ρR](t, x) = Rp[ρL, ρR](t, x) = R[ρL, ρR](x/t).

(N): If (ρL, ρR) ∈ N then

Rq[ρL, ρR](t, x) = Rp[ρL, ρR](t, x) =

{

R[ρL, ρ̂ (p̄)](x/t) if x < 0
R[ρ̌ (p̄) , ρR](x/t) if x ≥ 0 ,

where p̄ = p(ρL−) if (ρL, ρR) satisfies (N4a) or (N5a), otherwise p̄ =
p(ρL+).

(CN2), (CN3), (CNN5): If (ρL, ρR) satisfies one of these sets of condi-
tions then

Rq[ρL, ρR](t, x) = R[ρL, ρR](x/t) ,

Rp[ρL, ρR](t, x) =

{

R[ρL, ρ̂ (p(ρL+))](x/t) if x < 0
R[ρ̌ (p(ρL+)) , ρR](x/t) if x ≥ 0.

(NNN4), (NNN5): If (ρL, ρR) satisfies one of these sets of conditions then
Rq[ρL, ρR](t, x) takes the form (31) with p̄ = p(ρL−) and Rp[ρL, ρR](t, x)
takes the form (31) with p̄ = p(ρL+).
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In the next proposition we collect the main properties of the Riemann solvers
Rq and Rp. In particular (R6) means that the Riemann solver Rq is the one
which allows for the fastest evacuation, while Rp is associated to the slowest one.

Proposition 7. Let (ρL, ρR) ∈ [0, R]2. Then, for ⋆ = q, p:

(R1) [(t, x) 7→ R⋆[ρL, ρR](t, x)] is a weak solution to (30a), (30c).
(R2) R⋆[ρL, ρR] satisfies the constraint (30b) in the sense that

f (R⋆[ρL, ρR](t, 0±)) ≤ p

(
∫

R−

w(x) R⋆[ρL, ρR] (t, x) dx

)

.

(R3) R⋆[ρL, ρR](t) ∈ BV (R; [0, R]).
(R4) The map R⋆ : [0, R]2 → L1

loc
(R+ × R;R) is continuous in C ∪ N but not

in all [0, R]2.
(R5) R⋆ is consistent, see Refs. [8], [12].
(R6) Rq[ρL, ρR] maximizes the flux at the exit, in the sense that if E is the set

of all entropy weak solutions of the Riemann problem (30), we have

max
ρ∈E

{f(ρ(t, 0±))} = f (Rq[ρL, ρR](0±)) .

Analogously, Rp[ρL, ρR] minimizes the flux at the exit, in the sense that

min
ρ∈E

{f(ρ(t, 0±))} = f (Rp[ρL, ρR](0±)) .

The proof of Proposition 7 is deferred to Sec. 6.4.
It is important to observe that even if p(ξi) can only take the two values pi

and pi+1, this is not enough to rule out the existence of infinitely many different
solutions as the ones described in Example 2, in the case pi > f(ξi) = pi+1.
However, the Riemann solver R⋆ spontaneously selects one of them because it
sticks to the constant level of constraint prescribed by Definition 2 until a nonlocal
interaction takes place.

Remark 1. Although the Riemann solvers R⋆ are not L1

loc
–continuous, an exis-

tence result for the Cauchy problem (1) can be obtained from a wave–front tracking
algorithm based on R⋆, see for instance Ref. [16]. Such approach using R⋆ does
not require the operator splitting method. However, the non–local nature of the ap-
proximating problems prevents us from a direct application of the Riemann solvers
R⋆. In fact, even in a arbitrary small neighborhood of x = 0, to prolong the
approximating solution ρn beyond a time t = t̄ > 0 it is not sufficient to know

the traces ρn(t̄, 0−), ρn(t̄, 0+), but also the value
∫ 0
−iw

w(x) ρn(t̄, x) dx is needed.
Roughly speaking, because of the non–local character of the constraint one cannot
merely juxtapose the solution to the Riemann problem associated to the values of
the traces at x = 0 with the solution to the Riemann problems away from the con-
straint. Finally, also jumps in [t 7→ p (ξ(t))] have to be considered as (nonlocal)
interactions. Therefore, the approach using R⋆ is considerably heavier and more
technical than the one we presented in Sec. 3.2, and we do not pursue this line in
this paper.
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(a) The solution in the (x, t)–plane. (b) Profiles of [x 7→ ρ(t, x)] at
times t = 0, tE/2, (tF + tG)/2,
(tG + tH)/2, (tQ + tR)/2.

Figure 7. The solution described in Sec. 5 and corresponding to
the choice (32)

5. Numerical examples

In this section we apply the model (1) to simulate the evacuation of a corridor
through an exit placed in x = 0. The simulation is obtained by explicit analysis
of the wave front interactions, with computer–assisted computation of front slopes
and interaction times presented on Fig. 7.

Assume that the pedestrians are initially uniformly distributed in x ∈ [xA, xB ]
with maximal density, namely ρ0 = R χ[xA,xB]. As in Fig. 8 (a), we choose the
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efficiency of the exit, p, of the form

p(ξ) =







p0 if 0 ≤ ξ < ξ1
p1 if ξ1 ≤ ξ < ξ2
p2 if ξ2 ≤ ξ ≤ R ,

and such that the solution to each Riemann problem is unique and Rp ≡ Rq.
Then we can start with the construction of the solution. From B = (xB , 0)

starts the rarefaction RB that takes the values RB(t, x) implicitly given by

λ(R) ≤ λ (RB(t, x)) =
x− xB

t
≤ λ(0) .

The first pedestrian reaches the exit at time tC = −xB/λ(0). In L = (xA, tL),
with tL = (xA − xB)/λ(R), the stationary shock CA originated from A = (xA, 0)
starts to interact with the rarefaction RB . As a result, from L starts a shock CL
given by

CL : ẋ(t) = σ (0,RB (t, x(t))) , x(tL) = xA.

At time t = tD the maximal efficiency of the exit p0 is reached, f (RB(tD, 0)) = p0,
and a queue appears behind it. The tail of the queue is represented by the backward
shock CD given by

CD : ẋ(t) = σ (RB (t, x(t)) , ρ̂(p0)) , x(tD) = 0.

Let tE be the value of t solving the equation

E :

∫ CD(t)

−iw

w(x) RB(t, x) dx+ ρ̂(p0)

∫ 0

CD(t)
w(x) dx = ξ1,

t > tD , CD(t) > −iw .

The data can be chosen in such a way that CL(tE) < −iw, then at time t = tE
the efficiency of the exit falls to p1 and a further shock CE with constant speed
σ (ρ̂(p0), ρ̂(p1)) < 0 appears and reaches CD in M . As a result, from M starts the
backward shock CM given by

CM : ẋ(t) = σ (RB (t, x(t)) , ρ̂(p1)) , x(tM ) = xM .

If tF is the solution of

F :

∫ CM (t)

−iw

w(x) RB(t, x) dx+ ρ̂(p1)

∫ 0

CM (t)
w(x) dx = ξ2,

t > tM , CM (t) > −iw ,

with CL(tF ) < −iw, then the fall in the efficiency of the exit to p2 affects the flow
and from F starts a shock CF with constant speed σ (ρ̂(p1), ρ̂(p2)) < 0 that reaches
CM in N . From N then starts the backward shock CN given by

CN : ẋ(t) = σ (RB (t, x(t)) , ρ̂(p2)) , x(tN ) = xN .

We assume that CN and CL meet in O with xO < −iw. Then from O starts a
forward shock CO. Observe that ξ(t) = ρ̂(p2) for any time t between tO and the
time at which CO crosses x = −iw, see Fig. 8 (b). After that, the map [t 7→ ξ(t)]
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starts to decrease and, consequently, the efficiency of the exit increases at time tG
when ξ(tG) = ξ2 and then again at time tH when ξ(tH) = ξ1. Observe that the
shock CO moves faster after its interaction with the two rarefactions started from
G and H and that it finally reaches x = 0 at time tI , that corresponds to the
evacuation time.

(a) The functions [ρ 7→ f(ρ)]
and [ξ 7→ p(ξ)].

(b) The function [t 7→ ξ(t)]. (c) In gray the region C and in
white the region N .

Figure 8. The above figures refer to Sec. 5.

Fig. 7 corresponds to a linear weight function w(x) = 2i−2
w (iw+x), a normalized

flux f(ρ) = ρ(1 − ρ) (namely the maximal velocity and the maximal density are
assumed to be equal to one) and to the values

p0 = 0.21, p1 = 0.168, p2 = 0.021, ξ1 ∼ 0.566, ξ2 ∼ 0.731,

xA = −5.75, xB = −2, iw = 1, xO = −2, xM ∼ −0.4002,

tC = 2, tD = 5, tE ∼ 9.651, tG ∼ 85.045, tI ∼ 87.498. (32)

In Fig. 8 (b), is represented the corresponding map [t 7→ ξ(t)]. In Fig. 8 (c),
we represent the region C, in gray, and the region N , in white, as introduced in
Definition 2. Notice that for this choice of f and p the region C4 happens to be
empty.

6. Technical section

Lemma 3. Consider the family of scalar conservation laws

∂tu+ ∂xf
n(u) = 0 (t, x) ∈ [0, T ]× ]−∞, 0[ , (33)

and assume that fn converges uniformly on compacts to f as n goes to infinity. Let
ρn be a sequence of Kružkov entropy weak solutions to (33). If ρn converges a.e. to
ρ in [0, T ]×R, then fn (ρn(·, 0−)) converges weakly to f (ρ(·, 0−)) in L1([0, T ];R).

Proof. First of all notice that by straightforward passage to the limit ρ is a Kružkov
entropy weak solution to

∂tu+ ∂xf(u) = 0 (t, x) ∈ [0, T ]× ]−∞, 0[ . (34)

Further, ρn and ρ admit strong left traces on [0, T ] × {0}, see Refs. [26], [33].
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Now let δε be as in (9). Choose any θ, ϕ ∈ C∞
c (R;R+) such that θ(0) = θ(T ) =

0, ϕ(0) = 1 and observe that

φ(t, x) =

[
∫ t

t−T+ε
δε(z) dz

]

[

∫ x+1/ε

x+ε
δε(z) dz

]

θ(t) ϕ(x)

is a C∞
c –map with support in [0, T ]× [−1/ε, 0] and, as ε goes to zero

φ(0, x) ≡ 0 ≡ φ(T, x) , ∂tφ(t, x) →χ[0, T ]× ]−∞, 0](t, x) θ̇(t) ϕ(x) ,

φ(t, 0) ≡ 0 , ∂xφ(t, x) →χ[0, T ]× ]−∞, 0](t, x) θ(t) ϕ̇(x)

− δD0−(x) χ[0, T ](t) θ(t) .

By hypothesis ρn is a weak solution of (33), therefore
∫ T

0

∫

R−

[ρn ∂tφ+ fn(ρn) ∂xφ] dx dt = 0 ,

and letting ε go to zero we have
∫ T

0

∫

R−

[

ρn ϕ θ̇ + fn(ρn) θ ϕ̇
]

dx dt =

∫ T

0
fn(ρn(t, 0−)) θ(t) dt .

By definition ρ is the strong limit in L1

loc
of the sequence ρn as n goes to infinity

and fn → f uniformly on compacts. As n goes to infinity, the left hand side of
the above equation converges to

∫

R+

∫

R−

[

ρ ϕ θ̇ + f(ρ) θ ϕ̇
]

dx dt .

Arguing as above, we also find that
∫ T

0

∫

R−

[

ρ ϕ θ̇ + f(ρ) θ ϕ̇
]

dx dt =

∫ T

0
f(ρ(t, 0−)) θ(t) dt ,

because ρ is a weak solution to (34). Therefore
∫ T
0 fn(ρn(t, 0−)) θ(t) dt converges

to
∫ T
0 f(ρ(t, 0−)) θ(t) dt as n goes to infinity, and the weak limit of fn(ρn(t, 0−))

equals f(ρ(t, 0−)). �

6.1. Proof of Proposition 3. For any ℓ ∈ N and t̄ ∈ ]0,∆th], we know by Ref. [8]

that the function ρn,hℓ+1(t̄) is piecewise constant with jumps along a finite number
of polygonal lines. Therefore, for any t in a sufficiently small left neighborhood of
t̄, we can write, by (21)

ρn,h(t+ ℓ∆th, x) = ρn,hℓ+1(t, x) =
∑

i∈J n,h
−

ρn,h−,i χ
[

sn,h−,i−1(t), s
n,h
−,i(t)

[(x) , (35)

sn,h−,i(t) = xn,h−,i + σ
(

ρn,h−,i , ρ
n,h
−,i+1

)

(t− t̄) ,
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where J n,h
− ⊂ Z, xn,h−,0 = 0, σ

(

ρn,h−,0, ρ
n,h
−,1

)

= 0, sn,h−,0 ≡ 0, sn,h−,i−1(t) < sn,h−,i(t),

ρn,h−,i ∈ Mn, ρn,h−,i 6= ρn,h−,i+1 for any i 6= 0 and f(ρn,h−,0) = f(ρn,h−,1) ≤ ph(Ξn,h
ℓ−1).

Introduce the notation

fn,h−,i = fn
(

ρn,h−,i

)

, Ψn,h
−,i = Ψ

(

ρn,h−,i

)

,

ρ̂n,h+ = ρ̂
(

pn,h+

)

, ρ̌n,h+ = ρ̌
(

pn,h+

)

, pn,h± = ph
(

Ξn,h(t̄±)
)

,

∆Υn,h
T (t̄) = Υn,h

T (t̄+)−Υn,h
T (t̄−) .

Observe that by definition:

if t̄ < ∆th, then pn,h− = pn,h+ ; (36)

fn,h−,0 = fn,h−,1 ≤ pn,h− ; (37)

if ρn,h−,1 < ρn,h−,0, then fn,h−,0 = fn,h−,1 = pn,h− . (38)

We have to distinguish the following two main cases:

(U) either t̄ = ∆th, and in this case Γh(t̄+)− Γh(t̄−) = −5 · 2−h f(ρ̄);

(I) or t̄ 6= ∆th, and in this case Γh(t̄+) = Γh(t̄−) and pn,h− = pn,h+ by (36).

Let us consider more in detail the case t̄ = ∆th. If the efficiency of the exit

does not change, i.e. pn,h− = pn,h+ , then by hypothesis H2, ρn,h(t) is still given
by (35) for t lying in a sufficiently small right neighborhood of (ℓ + 1)∆th, and

therefore ∆Υn,h
T (t) = −5 · 2−h f(ρ̄). If the efficiency of the exit changes, then

∣

∣

∣
pn,h+ − pn,h−

∣

∣

∣
= 2−hf(ρ̄) by Lemma 1 and we have to distinguish the following

cases:

(U1) If the efficiency of the exit grows, then pn,h+ = pn,h− + 2−hf(ρ̄) and fn,h−,0 =

fn,h−,1 < pn,h+ by (37). There are two possibilities:

(U1a) If ρn,h−,0 ≤ ρn,h−,1, then the solution does not change its expression, see Fig. 9,
left and center, and

∆Υn,h
T (t̄) = 4

[

f(ρ̄)− pn,h+

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−hf(ρ̄) = −9 · 2−hf(ρ̄).

(U1b) If ρn,h−,1 < ρn,h−,0, then f
n,h
−,0 = fn,h−,1 = pn,h− by (38). For t > t̄ sufficiently small,

the solution contains a rarefaction between ρn,h−,0 and ρ̂h+ on the left of the

constraint, a nonclassical shock between ρ̂h+ and ρ̌h+ at the constraint and a

rarefaction between ρ̌h+ and ρn,h−,1 on the right of the constraint, see Fig. 9,
right. Therefore

∆Υn,h
T (t̄) =

[

pn,h+ − pn,h−

]

+ 2
[

f(ρ̄)− pn,h+

]

+
[

pn,h+ − pn,h−

]

− 2
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −5 · 2−h f(ρ̄) .
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Figure 9. Interactions of the type (U1).

(U2) If the efficiency of the exit decreases, then pn,h+ = pn,h− −2−hf(ρ̄). Differently

from the case (U1), we do not know a priori whether pn,h+ is less than

fn,h−,0 = fn,h−,1 or not. Therefore there are three possibilities:

Figure 10. Interactions of the type (U2a).

(U2a) If ρn,h−,0 ≤ ρn,h−,1 and fn,h−,0 = fn,h−,1 ≤ pn,h+ , then the solution does not change
its expression, see Fig. 10, and

∆Υn,h
T (t̄) = 4

[

f(ρ̄)− pn,h+

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) .
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Figure 11. Interactions of the type (U2b), (U2c).

(U2b) If ρn,h−,0 ≤ ρn,h−,1 and pn,h+ < fn,h−,0 = fn,h−,1, then after time t̄ the solution

performs a shock between ρn,h−,0 and ρ̂h+ on the left of the constraint, a non-

classical shock between ρ̂h+ and ρ̌h+ at the constraint and a shock between

ρ̌h+ and ρn,h−,1 on the right of the constraint, see Fig. 11, left and center.

Therefore, if ρn,h−,0 6= ρn,h−,1, then

∆Υn,h
T (t̄) =2

[

2f(ρ̄)− fn,h−,1 − pn,h+

]

+ 2
[

f(ρ̄)− pn,h+

]

− 2
[

f(ρ̄)− fn,h−,1

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) ,

while, if ρn,h−,0 = ρn,h−,1, then

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,1 − pn,h+

]

+ 2
[

f(ρ̄)− pn,h+

]

+
[

fn,h−,1 − pn,h+

]

− 4
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) .

(U2c) If ρn,h−,1 < ρn,h−,0, then pn,h+ < pn,h− = fn,h−,0 = fn,h−,1 by (38), and after time

t̄ the solution performs a shock between ρn,h−,0 and ρ̂h+ on the left of the

constraint, a nonclassical shock between ρ̂h+ and ρ̌h+ at the constraint and

a shock between ρ̌h+ and ρn,h−,1 on the right of the constraint, see Fig. 11,
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right. Therefore

∆Υn,h
T (t̄) =

[

pn,h− − pn,h+

]

+ 2
[

f(ρ̄)− pn,h+

]

+
[

pn,h− − pn,h+

]

− 2
[

f(ρ̄)− pn,h−

]

− 5 · 2−h f(ρ̄) = −2−hf(ρ̄) .

In conclusion, for the case (U) we proved that ∆Υn,h
T ((ℓ+ 1)∆th) ≤ −2−hf(ρ̄) ≤

−2−nf(ρ̄) for any ℓ ∈ N.
Now, assume that we have t̄ ∈ ]0,∆th[. If at time t̄ no interaction occurs, then

∆Υn,h
T (t̄) = 0. The remaining part of the proof consists in a detailed study of all

possible interactions. We start with the most classical case when the interaction
occurs away from x = 0.

(I0) If two waves, respectively between ρn,hi−1 and ρ
n,h
i and between ρn,hi and ρn,hi+1,

interact away from the constraint, then at least one of the two waves has

to be a shock and, in any case, the resulting wave is a shock between ρn,hi−1

and ρn,hi+1. Therefore

∆Υn,h
T (t̄) =

∣

∣

∣
Ψn,h

−,i−1 −Ψn,h
−,i+1

∣

∣

∣
−

∣

∣

∣
Ψn,h

−,i−1 −Ψn,h
−,i

∣

∣

∣
−

∣

∣

∣
Ψn,h

−,i −Ψn,h
−,i+1

∣

∣

∣
≤ 0

and the number of waves after the interaction diminishes.

We now study the case in which a rarefaction reaches x = 0.

(I1) If a rarefaction reaches x = 0 from the left, then ρn,h−,0 < ρn,h−,−1 ≤ ρ̄ and

fn,h−,0+2−n = fn,h−,−1. In particular, the solution cannot perform a nonclassical
shock at x = 0 before the interaction. There are therefore three possibilities:

(I1a) If ρn,h−,0 = ρn,h−,1 and fn,h−,−1 ≤ pn,h± , then the rarefaction crosses x = 0 and

∆Υn,h
T (t̄) = 0.

(I1b) If ρn,h−,0 = ρn,h−,1 and pn,h± < fn,h−,−1, then pn,h± = fn,h−,0 = fn,h−,1 because n > h

and for (37). After the interaction, the solution performs a shock between

ρn,h−,−1 and ρ̂h+ on the left of the constraint and a nonclassical shock between

ρ̂h+ and ρn,h−,1 at the constraint. Therefore

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,−1 − pn,h±

]

+ 2
[

f(ρ̄)− pn,h±

]

−
[

fn,h−,−1 − pn,h±

]

− 4
[

f(ρ̄)− pn,h±

]

= 2
[

pn,h± − fn,h−,−1

]

= −21−nf(ρ̄) .

(I1c) If ρn,h−,0 6= ρn,h−,1, then after the interaction the solution performs a shock

between ρn,h−,−1 and ρn,h−,1 on the left of the constraint. Therefore

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,−1 − fn,h−,1

]

−
[

fn,h−,−1 − fn,h−,1

]

− 2
[

f(ρ̄)− fn,h−,1

]

= 2
[

fn,h−,1 − fn,h−,−1

]

= −21−nf(ρ̄) .

(I2) If a rarefaction reaches x = 0 from the right, then the analysis turns out
to be completely analogous to that for the case (I1), and therefore it is
omitted.
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We now study the cases when a shock reaches x = 0.

(I3) If a shock reaches x = 0 from the left, then ρn,h−,−1 < min{ρn,h−,0, ρ̄}, f
n,h
−,−1 <

fn,h−,0 = fn,h−,1 ≤ pn,h± by (37). There are three possibilities:

(I3a) If ρn,h−,0 = ρn,h−,1, then the shock crosses x = 0 and we have ∆Υn,h
T (t̄) = 0.

(I3b) If ρn,h−,0 < ρn,h−,1, then after the interaction the solution performs a shock

between ρn,h−,−1 and ρn,h−,1 on the right of the constraint. Therefore

∆Υn,h
T (t̄) =

[

2f(ρ̄)− fn,h−,1 − fn,h−,−1

]

−
[

fn,h−,1 − fn,h−,−1

]

− 2
[

f(ρ̄)− fn,h−,1

]

= 0 .

(I3c) If ρn,h−,1 < ρn,h−,0, then pn,h± = fn,h−,0 = fn,h−,1 by (38), and after the interaction

the solution performs a shock between ρn,h−,−1 and ρn,h−,1 on the right of the
constraint. Therefore

∆Υn,h
T (t̄) =

[

pn,h± − fn,h−,−1

]

+ 4
[

f(ρ̄)− pn,h±

]

−
[

2f(ρ̄)− pn,h± − fn,h−,−1

]

− 2
[

f(ρ̄)− pn,h±

]

= 0 .

(I4) If a shock reaches x = 0 from the right, then the analysis turns out to be
completely analogous to that for the case (I3), and therefore it is omitted.

This concludes the proof of Proposition 3.

6.2. Proof Proposition 4. We have to prove that the conditions given in Def-
inition 1 are satisfied. Fix φ ∈ C∞

c (R2;R+) and k ∈ [0, R]. Let δε be as in (9).
Consider

φε(t, x) =
∑

ℓ∈N

φℓε(t− ℓ∆th, x) =
∑

ℓ∈N

φ(t, x)

∫ t−ℓ∆th

t−(ℓ+1)∆th+ε
δε(y) dy

and observe that φε, φ
ℓ
ε ∈ C∞

c (R2;R+), φ
ℓ
ε(·, x) has support in [0,∆th] for any

x ∈ R, and as ε goes to zero

φε(t, x) → φ(t, x) ,

∂tφε(t, x) → ∂tφ(t, x) +
∑

ℓ∈N

φ(t, x)
[

δDℓ∆th
(t)− δD(ℓ+1)∆th

(t)
]

,

∂xφε(t, x) → ∂xφ(t, x) .

By construction, since each [t 7→ ρn,hℓ+1(t)] is an entropy weak solution of (19) in
the sense of Definition 1, we have

∫ ∆th

0

∫

R

∣

∣

∣
ρn,hℓ+1(t, x)− k

∣

∣

∣
∂tφ

ℓ
ε(t, x) dx dt

+

∫ ∆th

0

∫

R

sign(ρn,hℓ+1(t, x)− k)
[

fn
(

ρn,hℓ+1(t, x)
)

− fn(k)
]

∂xφ
ℓ
ε(t, x) dx dt

+ 2

∫ ∆th

0



1−
ph

(

Ξn,h
ℓ (t)

)

fn(ρ̄)



 fn(k) φℓε(t, 0) dt ≥ 0 .
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By summing over ℓ and letting ε go to zero, by (21) we obtain that

0 ≤
∑

ℓ∈N

{

∫ ∆th

0

∫

R

∣

∣

∣
ρn,hℓ+1(t, x)− k

∣

∣

∣
∂tφ(t+ ℓ∆th, x) dx dt

+

∫

R

∣

∣

∣
ρn,hℓ+1(0, x) − k

∣

∣

∣
φ(ℓ∆th, x) dx−

∫

R

∣

∣

∣
ρn,hℓ+1(∆th, x)− k

∣

∣

∣
φ ((ℓ+ 1)∆th, x) dx

+

∫ ∆th

0

∫

R

sign(ρn,hℓ+1(t, x)− k)
[

fn
(

ρn,hℓ+1(t, x)
)

− fn(k)
]

∂xφ (t+ ℓ∆th, x) dx dt

+ 2

∫ ∆th

0



1−
ph

(

Ξn,h
ℓ (t)

)

fn(ρ̄)



 fn(k) φ(t+ ℓ∆th, 0) dt

}

=

∫

R+

∫

R

∣

∣

∣
ρn,h(t, x)− k

∣

∣

∣
∂tφ(t, x) dx dt

+

∫

R+

∫

R

sign(ρn,h(t, x)− k)
[

fn
(

ρn,h(t, x)
)

− fn(k)
]

∂xφ(t, x) dx dt

+ 2

∫

R+

[

1−
ph

(

Ξn,h(t)
)

fn(ρ̄)

]

fn(k) φ(t, 0) dt+

∫

R+

|ρn0 (x)− k| φ(0, x) dx .

Finally, by construction, fn
(

ρn,h(t, 0±)
)

≤ ph
(

Ξn,h(t)
)

for a.e. t ∈ R+, and this
ends the proof of Proposition 4.

6.3. Proof of Proposition 6. We list here two basic properties which will be of
great help in the following case by case analysis.

First, by definition (2), ξ(0) = ρL and the map [t 7→ ξ(t)] is continuous. Thus,
by assumption (P2) we have that for any t > 0 sufficiently small

bp1: if ξ(t) < ρL, then p(ξ(t)) ≡ p(ρL−);
bp2: if ρL < ξ(t), then p(ξ(t)) ≡ p(ρL+).

The case ξ(t) ≡ ρL is somehow special and has to be studied separately for each
specific case.

Second, when the solution is nonclassical, due to the finite speed of propagation
of the waves, the assumption (P2) and properties bp1 and bp2, we have

np1: if R [ρL, ρ̂(p̄)] (x) ≡ ρL for x < 0, then p̄ = f(ρL) ∈ [p(ρL+), p(ρL−)];
np2: if p̄ 6= f(ρL) and ρL < ρ̂(p̄), then p̄ = p(ρL+);
np3: if p̄ 6= f(ρL) and ρ̂(p̄) < ρL, then p̄ = p(ρL−);
np4: if p is continuous in ρL, namely p(ρL−) = p(ρL+), then p̄ = p(ρL).

Now we start the description of the possible cases and we proceed as follow-
ing. First, we show that for any initial datum satisfying (Ci), i = 1, . . . , 5, the
problem actually has a unique solution and that the solution is classical. Second,
we take into consideration the corresponding case (Ni), for which we prove that
the classical solution is not suitable and that there exists a unique nonclassical
solution.
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It is important to stress that in general the solutions to the constrained Riemann
problem (30) are not self–similar, see Example 1. All the cases listed below describe
self–similar solutions because we let the solutions to evolve only on a small interval
of time.

(C1) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a shock with negative speed
σ(ρL, ρR) and satisfies (30b) because f(ρR) ≤ p(ρL+) and p(ξ(t)) ≡
p(ρL+) by bp2. Assume that there exists a nonclassical solution of the
form (31). Observe that the assumptions ρL < ρR and f(ρR) < f(ρL)
together imply that ρ̄ < ρR. Then ρ̌(p̄) ≤ ρ̄ < ρR and R[ρ̌(p̄), ρR]
is given by a shock with non negative speed if and only if p̄ ≤ f(ρR),
or equivalently, ρR ≤ ρ̂(p̄). As a consequence, p̄ ≤ f(ρR) < f(ρL),
ρL < ρR ≤ ρ̂(p̄) and by np2 p̄ coincides with p(ρL+). In conclusion
we have p̄ ≤ f(ρR) ≤ p(ρL+) = p̄, namely f(ρR) = p̄ and the nonclassical
solution coincides with the classical one.

(N1) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because
f(ρR) > p(ρL+), see case (C1). Therefore, there does not exist any
classical solution and we can consider only nonclassical solutions of the
form (31). If p is continuous in ρL, then by np4 we have that p̄ = p(ρL).
If p experiences a jump at ρL then, one may wonder which value in
[p(ρL+), p(ρL−)] has to be chosen as p̄. As in the case (C1), the as-
sumptions imply that ρ̄ < ρR and then that ρ̌(p̄) < ρR and p̄ ≤ f(ρR).
Then p̄ is strictly smaller than f(ρL) and ρ̂(p̄) > ρL. As a consequence,
property np2 forces us to choose the unique possible value of p̄, which is
p(ρL+).

(C2) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a shock with non negative
speed σ(ρL, ρR) and it satisfies (30b) because f(ρL) ≤ p(ρL+). Assume
that there exists a nonclassical solution of the form (31). Observe that
the assumptions ρL < ρR and f(ρR) ≥ f(ρL) together imply that ρ̄ > ρL.
Then ρ̂(p̄) ≥ ρ̄ > ρL and R[ρL, ρ̂(p̄)] is given by a shock with non positive
speed if and only if p̄ ≤ f(ρL). Thus p̄ ≤ f(ρL) ≤ p(ρL+) and this implies
by (31c) that p̄ = f(ρL) = p(ρL+) and that the nonclassical solution
coincides with the classical one.

(N2) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because
f(ρL) > p(ρL−), see case (C2). Therefore, there does not exist any
classical solution and we can consider only nonclassical solutions of the
form (31). As in the case (C2), the assumptions imply ρ̂(p̄) ≥ ρ̄ > ρL.
Furthermore, by (31c) we have p̄ ≤ p(ρL−) < f(ρL), and as a consequence,
property np2 forces us to choose p̄ = p(ρL+).

(C3) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a possible null rarefaction on
the right of the constraint and it satisfies (30b) because f(ρL) ≤ p(ρL+).
Assume that there exists a nonclassical solution of the form (31). Since
ρL ≤ ρ̄ ≤ ρ̂(p̄), R[ρL, ρ̂(p̄)] is given by a shock that has non positive
speed if and only if p̄ ≤ f(ρL). Therefore p̄ ≤ f(ρL) ≤ p(ρL+) and
this by (31c) implies that p̄ = f(ρL) = p(ρL+) and that the nonclassical
solution coincides with the classical one.
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(N3) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because
f(ρL) > p(ρL−), see case (C3). Therefore, there does not exist any
classical solution and we can consider only nonclassical solutions of the
form (31). By hypothesis and (31c) we have f(ρL) > p(ρL−) ≥ p̄. There-
fore ρL ≤ ρ̄ < ρ̂(p̄) and by np2 we have p̄ = p(ρL+).

(C4) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a rarefaction with speeds
between λ(ρL) < 0 and λ(ρR) ≥ 0 and it satisfies (30b) because f(ρ̄) =
p(ρL+) implies that p(ρ) = f(ρ̄) for all ρ ≤ ρL. Moreover, it implies
also that p is continuous in ρL and therefore, by np4, any nonclassical
solution of the form (31) must have p̄ = p(ρL) = f(ρ̄), but in this case the
nonclassical solution coincides with the classical one.

(N4) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because f(ρ̄) >
p(ρL−), see case (C4). Therefore, there does not exist any classical solu-
tion and we can consider only nonclassical solutions of the form (31).
(N4a) By assumption and (31c) f(ρL) < p(ρL+) ≤ p̄ and therefore ρ̂(p̄) <

ρL and by np3 we have p̄ = p(ρL−).
(N4b) By assumption and (31c) f(ρL) > p(ρL−) ≥ p̄ and therefore ρ̂(p̄) >

ρL and by np2 we have p̄ = p(ρL+).
(C5) In this case [(t, x) 7→ R[ρL, ρR](x/t)] performs a possible null rarefaction on

the left of the constraint and it satisfies (30b) because f(ρR) ≤ p(ρL−) and
p(ξ(t)) ≡ p(ρL−) by bp1. Assume that there exists a nonclassical solution
of the form (31). Since by assumption and (31c) p̄ ≥ p(ρL+) > f(ρL), we
have ρ̂(p̄) < ρL and by np3 p̄ = p(ρL−), but in this case the nonclassical
solution coincides with the classical one.

(N5a) In this case [(t, x) 7→ R[ρL, ρR](x/t)] does not satisfy (30b) because
f(ρR) > p(ρL−), see case (C5). Therefore, there does not exist any
classical solution and we can consider only nonclassical solutions of the
form (31).
(N5b) By assumption and (31c), f(ρL) < p(ρL+) ≤ p̄ and therefore

ρ̂(p̄) < ρL and by np3 we have p̄ = p(ρL−).
(N5b) By assumption and (31c), f(ρL) > p(ρL−) ≥ p̄ and therefore

ρ̂(p̄) < ρL and by np2 we have p̄ = p(ρL+).

6.4. Proof of Proposition 7.

(R1) Any solution given by R⋆ coincides on each side of the constraint with a
solution given by the classical Riemann solver R. Therefore it satisfies the
Rankine–Hugoniot jump condition along any of its discontinuities away from
the constraint. Finally, by definition of ρ̂ and ρ̌, it satisfies the Rankine–
Hugoniot jump condition also along the constraint.

(R2) It is clear by the proof of Proposition 6.
(R3) It is proved as in (R1) since any classical solution is in BV.
(R4) As was proved in Ref. [8], R⋆ is continuous on C ∪ N . If (ρL, ρR) is not in

C ∪ N then p experiences a jump at ξ = ρL. Therefore, the local in time
solutions of the Riemann problem for the initial conditions (ρL + ε, ρR) and
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(ρL − ε, ρR) are different and only one of the two converges to R⋆[ρL, ρR] as
ε > 0 goes to zero.

(R5) We first stress once again that we can discuss the consistency property of
our Riemann solvers only locally in time because, in general, the solutions
may be not even self–similar globally in time. However, locally in time, the
efficiency of the exit can be assumed to be constant and it is thus sufficient
to proceed as in Ref. [8].

(R6) It is clear by the proof of Proposition 6.

7. Further discussion on the model, conclusions and perspectives

The present model does not take into account extremal cases. For instance,
whenever a high density is approaching the exit the efficiency of the exit can
become very small. As a consequence, even a small density of pedestrians may
form a queue provided a sufficiently high density is approaching from behind.
However, at least in this case, the low efficiency of the exit has not a “big” effect
on the flow at the exit which is in fact “small”. Further investigation and modeling
may be needed in order to deal with such singular effects.

The planned forthcoming papers of the authors aim to generalize the present
model to the initial–boundary value problem with non–local constraint, to code
the resulting model, to simulate realistic evacuations, to state and solve optimal
management problems, to reproduce the so–called Braess’ paradox for pedestrian
flows (e.g. the situation where a wider door placed before the exit door makes the
evacuation faster), see Refs. [9], [10], and to introduce further features of “panic”
behavior, see Refs. [4], [13].

Acknowledgment

The authors are partially supported by the French ANR JCJC grant CoTo-
CoLa. The third author was partially supported by ICM, University of Warsaw,
Narodowe Centrum Nauki, grant 4140, Polonium 2011 (French-Polish cooperation
program) under the project “CROwd Motion Modeling and Management” and the
Organizing Committee of HYP2012.

References

[1] Andreianov, B., Goatin, P., and Seguin, N. Finite volume schemes for locally con-
strained conservation laws. Numerische Mathematik 115 (2010), 609–645.

[2] Bressan, A. Hyperbolic systems of conservation laws, vol. 20 of Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford, 2000.
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