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This paper reports on numerical and experimental results of acoustic transmission spectra of bead

chains with symmetric and asymmetric Fibonacci-like structures. As a matter of comparison,

perfect periodic acoustic waveguide structures are also examined. This study shows that

Fibonacci structures with mirror symmetry can exhibit localized modes with higher amplitude,

due to resonant transmission induced by the presence of dimers inside the 1D structure. A

good agreement is observed between the theoretical predictions and the experimental power

spectra. VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4801890]

I. INTRODUCTION

During the last decades, many theoretical and experi-

mental studies were devoted to the propagation of waves

such as electromagnetic or elastic waves in composite mate-

rials with periodic structures. In 1993, by analogy to the

extensive realizations achieved on photonic crystals,1

Kushwaha et al.,2 and Sigalas and Economou3 suggested the

concept of “phononic crystals” i.e., artificial structures made

of periodic distributions of elastic inclusions embedded in a

host matrix. First, full calculation of the band structure of

two- and three- dimensional phononic crystals showed the

existence of frequencies ranges named as forbidden or stop

bands where propagation of elastic waves is not allowed.

Further to these pioneering works, by analogy with the elec-

tronic properties of natural and artificial semi-conductors,

effects of compositional or positional disorder on the disper-

sion curves and transmission properties of periodic structures

have received a great deal of attention. One of the motiva-

tions for studying these disordered structures is the localiza-

tion phenomenon4–6 which can be defined as the spatial

confinement of waves associated with disorder. Different

degrees of disorder may be considered. Then, the lowest

degree of disorder consists of the insertion of a positional or

compositional defect inside the periodic structure.7–9 The

periodicity is then broken and this may lead to highly

localized modes that appear as very narrow pass bands

within the band gaps. Potential applications of these

defected structures as very selective frequency filters were

widely studied theoretically and experimentally, especially

in one-dimensional,10 quasi-one-dimensional,11 two-12,13

and three-9 dimensional structures. The highest degree of

disorder corresponds to the fully disordered system in

which randomly distributed perturbations are introduced.

As a disordering process is gradually introduced in a peri-

odic structure, the band gaps become partially regions of

localized states. The localization of electromagnetic and

elastic waves in 1-D to 3-D samples was widely investi-

gated as well as the frequency dependences of the localiza-

tion length and the density of states. A numerical study

was developed by Williams and Maris14 to calculate pho-

non eigenstates for a 2-D square lattice with mass disorder

and the phonon localization length was studied versus fre-

quency. In the work reported by Sigalas and Soukoulis,15

the propagation of elastic waves through disordered multi-

layered 1-D systems assumed periodic on the average is

investigated. Effect of disorder on the band structure and

the transmission profiles is analyzed. In vibration applica-

tion, Xie16 calculated the vibration mode localization in

randomly disordered single bay and double bay trusses by

using the transfer matrix method. More recently, Lu et al.
demonstrate Anderson localization of ultrasound in a three-

dimensional (3D) elastic medium made of randomly dis-

tributed brazed aluminium beads.17

The well known quasi-periodic crystal where the struc-

ture is ordered in a non-periodic fashion constitutes an inter-

mediate case between perfectly periodic and random

systems.18,19 The transmission of classical waves through

such systems exhibits very peculiar behaviours, and thus,

received a great deal of interest. A lot of works was then

reported on the propagation of elementary excitations through

quasi-periodic structures according to different geometrical

sequences such as Cantor, Fibonacci, Thue-Morse, and

double-period sequences20–22 that are of particular interest in

many domains of physics such as optics, thermodynamics,

and acoustics. Among these works, several studies focused on

quasi one-dimensional structures made of one-dimensional

segments and loops pasted together23–26 and following a

Fibonacci series. These structures are constituted of two dif-

ferent building blocks A and B distributed according to the

Fibonacci sequence defined recursively as Snþ1¼SnSn�1 with

S0¼A and S1¼B. For example, in 2006, Hassouani et al.23

reported on theoretical and experimental electromagnetic

transmission spectra showing the distribution of the
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bandwidths as a function of the Fibonacci generation number

(i.e., integer n). Different properties related to the bulk bands

such as the fragmentation of the frequency spectrum are dis-

cussed and analyzed. The works reveal also the existence of

self similarity of order 6 and multi-fractality which are related

to the quasi-periodicity of the structure. Effects of these phe-

nomena are much more pronounced when the phase shift

along each building block is the same, inducing specific thick-

ness for a given wave velocity in the material. These results

are general and remain valid for other kind of excitations and

especially for acoustic waves.

Similar investigations were conducted on the light trans-

mission through 1-D quasi-periodic multilayer and quasi-

crystals arranged by the Fibonacci sequences.27–31 Moreover,

Macon et al.32 presented experimental results on the propaga-

tion of surface acoustic waves (SAW) on a quasi periodically

corrugated surface with grooves engraved according to a

Fibonacci sequence. Reflection and transmission frequency

dependences are analyzed and exhibit transport features simi-

larly encountered with disordered systems and related to

Anderson localization.4 They point out a critical regime of

the localization transition and succeed to give an experimen-

tal characterization of the critical proper modes. In a recent

past, a new type of quasi-periodic structures was considered

including the mirror symmetry.33–35 Symmetrical Fibonacci

sequences with mirror symmetry were studied in photonic

aperiodic dielectric multilayers.33,34 The symmetric Fibonacci

sequence is generated in the following way. The jth genera-

tion of the sequence can be expressed as Sj¼GjHj, where Gj

and Hj are Fibonacci sequences. Gj and Hj obey the recursion

relations Gj¼Gj�1Gj�2, Hj¼Hj�2Hj�1 with G0¼H0¼B,
G1¼H1¼A, and consequently Sj¼Gj�1Gj�2Hj�2Hj�1.33

The structures presented in Refs. 33 and 34 are Symmetric

Fibonacci Multilayer (SFM) TiO2/SiO2 with internal symme-

try. It was shown that their optical transmission spectra ex-

hibit a series of resonant transmissions induced by the

internal symmetry. The resonant transmissions originate from

the dimer-like positional correlation in the system, i.e., the

occurrence inside the quasi-periodic structure of “CC” pairs,

where C is made of building blocks A or B (for example

C¼ABA). This kind of dimers is particularly attractive

because the resonant transmission can be adjusted at a spe-

cific frequency by tuning aperiodic structure with internal

symmetry. Then the mirror symmetry plays an important

role in obtaining the perfect transmission features in SFM

and may leads to practical applications such as efficient op-

tical filters and multiplexing systems. Nevertheless it has

been shown that the mirror symmetry is a sufficient condi-

tion but not a necessary one to generate multiple perfect

transmission peaks. Indeed asymmetric Fibonacci multi-

layers were constructed by joining a Fibonacci sequence Hj

and a conjugated Fibonacci sequence Cj where the initial

conditions are H0¼B, H1¼A, C0¼A, and C1¼B, respec-

tively (for example, the asymmetric structure of order 4 is

H4jC4�ABAABjBABBA). Under the assumption of the

conservation of the light phase in each medium A and B,

the authors36 have shown that while the structure is asym-

metric, it exhibits perfect transmission of light at some spe-

cific wavelengths. This feature was analyzed with the help

of a rather simple quasi-analytical model based on products

of transfer matrices.

In this paper, we focus on one-dimensional chains made

of glued spherical solid beads. In recent years, the propaga-

tion of longitudinal elastic waves in similar waveguide struc-

tures was the subject of several works.37,38 In particular, the

effect of grafted side branches (or double stub) on the trans-

mission properties of such waveguides was analyzed numeri-

cally and experimentally.38 Results showed that with a

proper choice of the constituting materials of the different

beads, this waveguide structure may exhibit selective filter-

ing functionalities. Inspired by the works on internal symme-

try in photonic and phononic quasiperiodic superlattices, we

propose another way to obtain selective filtering device

based on symmetric Fibonacci waveguides, made of glass

and steel glued beads. We report especially on experimental

and numerical results of acoustic transmission spectra of

Fibonacci bead chains with mirror symmetry. Due to the

attenuation of acoustic waves along too long bead chains, the

transmission spectra are specifically investigated for the first

Fibonacci generations (i.e., n� 7). Transmission spectra

present the resonance modes, and their eigen frequencies of

bead chains sandwiched between two transducers. As a mat-

ter of comparison perfect periodic acoustic waveguide struc-

tures are first examined. Experimental transmission spectra

of symmetric Fibonacci structures exhibit resonance peaks

of higher amplitude in good agreement with the theoretical

predictions.

The paper is organized as follows. In Sec. II, the sam-

ples and the numerical methods are presented. The procedure

allowing the measurement of longitudinal elastic waves

transmission coefficients together with the experimental

results are reported in Sec. III. Conclusions are summarized

in Sec. IV.

II. GENERAL DESCRIPTION OF THE DEVICES AND
NUMERICAL CALCULATION

A. Description of the samples

The numerical results and experiments are performed on

samples made up of two kinds of 8.0 6 0.1 mm diameter beads:

steel and glass beads denominated in the following by capital

letters S and G, respectively. The longitudinal CL and the trans-

verse CT speeds of sound and the density q of the beads used

in the calculations are CL¼ 5960 m/s, CT¼ 3400 m/s, and

q¼ 7900 kg/m3 for steel and CL¼ 5600 m/s, CT¼ 3700 m/s,

and q¼ 2600 kg/m3 for glass.

The Fibonacci quasi periodic structures are built with

steel (S) and glass (G) beads. The Fibonacci sequences are

usually defined with the recursion relation: Snþ1¼SnSn�1, n

being the number of the Fibonacci sequence, with S0¼G

and S1¼S. Unfortunately, self-similarity and multi-fractality

phenomena cannot be observed in these bead chains. Indeed

as mentioned for electromagnetic Fibonacci structures23,33,36

such phenomena are much more pronounced when the phase

shift along each building block A or B is the same. This con-

dition is clearly not verified with beads of the same diameter

and made of different materials, such as steel and glass.

Moreover due to the attenuation of acoustic waves along the
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bead chains, our experimental study is limited to chains

made of a maximum number of 10 beads.

Different samples have been fabricated and experimen-

tally tested.

(i) Classical superlattice-like samples, in particular made

of 9 beads SGSGSGSGS named Cla-9.

(ii) The S3 to S7 Fibonacci sequences, in particular the

S4 sequence (SGSSG) for further experiments.

(iii) The Symmetrical Fibonacci sequence based on S4

structure: SGSSG-GSSGS, named Sym-S4 and its

reverse obtained from Sym-S4 by placing the mirror

on the opposite end of the S4 chain: GSSGS-SGSSG

named Rev-S4.

(iv) A default has been inserted in the Rev-S4 sequence,

i.e., the 4th and the 5th beads (from the left) have

been permuted, leading to GSSSG-SGSSG named

Def-S4.

The samples are drawn as insets in the figures, the white

(respectively, grey) bead being made of glass (respectively,

steel).

B. Infinite periodic chain: Calculation of the
dispersion curves

In a first time, the case of an infinite periodic chain with

alternatively S and G beads is studied. The finite element

method, with the help of the ATILA code39 has been used for

the calculation of the dispersion curves: only one unit cell of

the periodic grating, made of two beads, one made of glass

the other made of steel, is meshed and Bloch-Floquet rela-

tions are applied on the unit cell.40 In further experiments,

adjacent beads are pasted together with a very small amount

of glue. In numerical calculations, the coupling between the

beads is taken into account by introducing a small contact

area, which seems to be the simpler way to represent the cou-

pling. The dispersion curves are plotted by varying the wave-

number k in the reduced Brillouin zone i.e., for k varying

between 0 and p/4R, where R is the bead radius. Figure 1

presents the corresponding dispersion curves with alternate

pass bands and forbidden bands. The pass bands are related

to propagating modes whereas forbidden bands are associ-

ated to evanescent modes. In the frequency range of interest,

a first forbidden band occurs in the 47–83 kHz frequency

range. The limits of the forbidden band of the infinite peri-

odic chain are represented as vertical dotted lines in the fol-

lowing figures.

C. Finite size samples: Calculation of the
transmission coefficient

For numerical calculations, a prescribed longitudinal

force is supposed to be applied on the left end of the chain

for simulating the displacement of the front face of the trans-

mitter. The displacements at the right extremity are calcu-

lated and the numerical variations of the product frequency

(f) times longitudinal displacement (Ux) are plotted in dB.37

These plots represent the variations of the transmission nor-

malized to its highest value as a function of the frequency.

Numerical calculations are performed on the above men-

tioned samples.

Figure 2 presents the variations of the normalized trans-

mission versus the frequency for the Cla-9 chain. Figure 2

highlights two sets of 4 peaks, below and above the stop

band that correspond to maxima of the displacement in the x
direction (along the main axis of the sample). This has been

previously observed in the case of linear chains made of N

identical beads where the pass band in the band structure cor-

responds to (N-1) peaks in the transmission spectrum.37 One

can notice that the peaks are sharp because losses are not

taken into account in the numerical calculations.

In the same way, the transmission is calculated for

several samples with structures according with Fibonacci

sequences of different orders. Classically, they exhibit

(N� 1) peaks in the same range of frequency as the pass

band of the periodic analogous structure, when N is the total

number of the beads in the finite length chain. This is clearly

illustrated in Fig. 3(a) where the frequency locations of the

transmission peaks for S3 to S7 Fibonacci sequences are

reported. One notes that some of these peaks appear in the

frequency range of the stop band of the perfectly periodic

Cla-9 chain. These peaks are similar to those observed when

structural defects are inserted in a perfectly periodic chain of

beads and they correspond to localized modes associated

with the Fibonacci sequences. As expected, because the

phase shift is not the same across the glass bead and the steel

FIG. 1. Band structure (wave number as a function of frequency) for an infi-

nite chain containing alternatively steel and glass beads of radius R. The ver-

tical dotted lines correspond to the limits of the forbidden band.

FIG. 2. Chain of 9 beads with alternatively steel and glass beads (Cla-9).

Theoretical transmission in terms of Uxf as a function of the frequency. The

amplitude is normalized to the maximum. The vertical dotted lines corre-

spond to the limits of the forbidden band (see Fig. 1). In the inserted sample,

the white (respectively, grey) bead is made of glass (respectively, steel).
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bead, the self-similarity between the sequences is not clearly

exhibited. Figure 3(b) presents the transmission in the

particular case of the S4 chain, for further comparison

with experiments.

Figures 4(a) and 4(b) present the normalized transmis-

sion for the Sym-S4 and Rev-S4 chains, respectively. As pre-

viously, some transmission peaks occur in the frequency

range of the stop band of the periodic chain and these trans-

mission maxima can be associated with the mirror symmetry.

Moreover, the amplitude of these peaks is higher for the

Rev-S4 than the Sym-S4. Resonant transmission induced by

dimers may explain the enhancement of the transmission for

the Rev-S4 chain. Indeed, one can notice that the sequence

(GSSGS-SGSSG) can be arranged under the forms: GS-

SGS-SGS-SG, where the dimer (as defined in Ref. 34) SGS-

SGS occurs or also as G-SS-G-SS-G-SS-G with the dimer

SS. These phenomena can also be observed for higher order

of Reverse Symmetrical Fibonacci sequences.34 Therefore,

by a proper choice of the Symmetrical Fibonacci sequence,

the device can be used as a selective filter at a given fre-

quency. One can notice that symmetry of the Fibonacci

chains is sufficient but not necessary for transmission

enhancement.36 Because the phase shift is not conserved in

each building block, it is not straightforward to propose an

analytical model allowing a reliable prediction of the fre-

quency location of the transmission maxima as it was done

in electromagnetic Fibonacci superlattices.36

Finally introducing a default in the Rev-S4 chain by

inverting the fourth and the fifth beads to lead to the

asymmetric GSSSG-SGSSG structure without dimer, one

observes (see Fig. 4(c)) that the higher transmission level

observed with Rev-S4 is strongly reduced. Then localized

modes with high transmission are favoured in symmetric

Fibonacci structures with dimers as already observed for

light.34

III. EXPERIMENTAL PROCEDURE AND RESULTS

A. Experimental procedure

Several chains of spherical glued beads were manufac-

tured. Steel and glass beads are quite mono-disperse with a

diameter of 8.0 6 0.1 mm. Two adjacent beads are pasted to-

gether with a drop of a bi-component epoxy glue. The

amount of glue is chosen as small as possible in order to not

affect strongly the transmission properties of the sample.

The samples are sandwiched between two longitudinal trans-

ducers, used in the [10–80] kHz pass band. The experiments

are conducted with short ultrasonic pulses for a frequency

analysis via Fast Fourier Transform. The response is elec-

tronically selected by eliminating the excitation pulse in

order to explore the transmitted signal only. As the ampli-

tude of the wave bursts is usually small, several signals are

FIG. 3. Chains with steel and glass beads, following Fibonacci sequences,

from S3 to S7. (a) Numerical spectroscopic diagram showing the position of

the resonance frequencies for different values of n, the number of the

Fibonacci sequence. (b) Theoretical transmission in terms of Uxf as a func-

tion of the frequency for the S4 sequence. The amplitude is normalized to

the maximum. The vertical dotted lines correspond to the limits of the for-

bidden band. In the inserted sample, the white (respectively, grey) bead is

made of glass (respectively, steel).

FIG. 4. Theoretical transmissions in terms of Uxf as a function of the fre-

quency for (a) Sym-S4 sequence, (b) Rev-S4 sequence, and (c) Def-S4

sequence. The amplitude is normalized to the maximum. The vertical dotted

lines correspond to the limits of the forbidden band. In the inserted sample,

the white (respectively, grey) bead is made of glass (respectively, steel).
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recorded and averaged to eliminate background noise. The

averaged waveforms are stored in a computer for post-

treatment, and then power spectra are calculated. This proce-

dure leads to the observation of transmission peaks that

emerge in the power spectra.

A longitudinal force (F0) is applied on both ends of the

chain. The frequency position of the modes is sensitive to

the value of F0 and its intensity must be carefully chosen.

This dependence may be associated with non-linear effects

as already reported.41–43 In order to avoid taking into account

non-linear effects, F0 is chosen as low as possible and then

of the order of a few Newton. The propagation of the initial

perturbation through the chain is created by the intimate con-

tact between the beads. Changes in the arrangement of the

beads lead to modifications of the frequency response of the

chains.

B. Experimental results

In this section, experimental measurements are reported

with finite length specimen namely the S4 sequence (Fig. 5),

the Sym-S4 chain (Fig. 6(a)), the Rev-S4 chain (Fig. 6(b)),

and the Def-S4 chain (Fig. 6(c)) for comparison with the fi-

nite elements results. Compared to the theoretical predic-

tions, experimental results exhibit wider transmission peaks:

losses could be adjusted in the numerical calculations in

order to fit theoretical transmission and experimental results.

The quite low resolution of the experimental setup (2 kHz),

does not allow in some cases to separate easily two adjacent

peaks in the power spectrum. Frequency shift between theo-

retical and experimental transmission maxima should be

attributed to a defective coupling between adjacent beads.

Figure 5 presents the experimental transmission

response of the S4 sequence. Three main peaks occur at 25,

50, and 77 kHz. Due to the attenuation of longitudinal elastic

waves at higher frequencies and to the frequency response of

the transducers, amplitude of these peaks decreases with

increasing frequencies. These three experimental frequencies

are in good agreement with the theoretical predicted ones

reported in Fig. 3(b), namely at 24.5, 52.0, and 73.0 kHz,

respectively. Nevertheless, the fourth peak observed at

88 kHz in Fig. 3(b) does not appear in the experimental spec-

trum of Fig 5. This discrepancy between theoretical and

experimental results could be attributed to the very small

pass band of the transducers and to the attenuation of waves

with frequency.

Figures 6(a) and 6(b) show the transmission spectra

obtained for the Sym-S4 and Rev-S4 chains, respectively.

These spectra compare quite well with the finite element cal-

culations reported in Figures 4(a) and 4(b) in terms of fre-

quency locations of the transmission peaks below 80 kHz

(i.e., the upper limit of the pass band of the transducers).

Larger width and reduced amplitude of the experimental

transmission peaks are linked with materials losses. In the

frequency range of the stop band of the periodic structure,

one observes that the transmission peaks exhibit larger am-

plitude for the Rev-S4 than for the Sym-S4 chain in agree-

ment with the theoretical predictions (see Figs. 4(b) and 4(a),

respectively). The mirror symmetry together with the exis-

tence of dimers may explain the enhancement of transmis-

sion. In Fig. 6(b), one peak is missing around 73 kHz that

could be attributed to the low resolution of the experimental

set-up.

In Fig. 6(c), a defect is introduced in the Rev-S4

sequence by permuting the 4th bead made of glass and the

5th bead made of steel. Then, the symmetry of the structure

FIG. 5. Experimental power spectrum as a function of the frequency for the

S4 sequence. The vertical dotted lines correspond to the limits of the forbid-

den band. In the inserted sample, the white (respectively, grey) bead is made

of glass (respectively, steel).

FIG. 6. Experimental power spectra as a function of the frequency. (a) Sym-

S4 sequence, (b) Rev-S4 sequence, and (c) Def-S4 sequence. The vertical

dotted lines correspond to the limits of the forbidden band. In the inserted

sample, the white (respectively, grey) bead is made of glass (respectively,

steel).
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is disrupted and dimers do not exist. The results present

again a good agreement with numerical predictions and, as

expected, most of the transmission peaks shrink.

IV. CONCLUSION

In this paper, the propagation of longitudinal acoustic

waves is reported through linear chains made of glued

steel and glass beads with structures following Fibonacci

sequences. Attention is focused on the existence of local-

ized modes associated with the quasi-periodic chain, inside

the frequency range of the stop band of the perfectly peri-

odic analogous structure. The existence of such localized

modes is of great interest from a fundamental point of

view (elastic waves localization) but also for ultrasonic

applications such as filtering and demultiplexing of elastic

waves.

This study shows that localized modes occur as high am-

plitude peaks in the transmission spectrum, when the

Fibonacci sequence exhibits a symmetrical structure and

dimers occur inside the 1D structure. Comparison between

numerical and experimental results presents a reasonably

good agreement as the frequency location of the resonant

peaks is concerned. Numerical results could be improved by

taking into account in the finite element calculations the ma-

terial losses and by modelling the coupling between adjacent

beads with a thin slab of glue between beads. From the ex-

perimental point of view, it seems necessary to improve the

resolution of the experimental setup by using transducers of

wider pass band for instance.
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