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Abstract—In this paper, we establish robustness to noise perturbations

of polyhedral regularization of linear inverse problems. We provide a

sufficient condition that ensures that the polyhedral face associated to

the true vector is equal to that of the recovered one. This criterion also
implies that the ℓ2 recovery error is proportional to the noise level for a

range of parameter. Our criterion is expressed in terms of the hyperplanes

supporting the faces of the unit polyhedral ball of the regularization.
This generalizes to an arbitrary polyhedral regularization results that

are known to hold for sparse synthesis and analysis ℓ1 regularization

which are encompassed in this framework. As a byproduct, we obtain

recovery guarantees for ℓ
∞ and ℓ

1
− ℓ

∞ regularization.

I. INTRODUCTION

A. Polyhedral Regularization

We consider the following linear inverse problem

y = Φx0 +w, (1)

where y ∈ R
Q are the observations, x0 ∈ R

N is the unknown true

vector to recover, w the bounded noise, and Φ a linear operator which

maps the signal domain R
N into the observation domain R

Q. The

goal is to recover x0 either exactly or to a good approximation.

We call a polyhedron a subset P of R
N such that P =

{

x ∈ R
N | Ax 6 b

}

for some A ∈ R
NH×N and b ∈ R

NH , where

the inequality 6 should be understood component-wise. This is

a classical description of convex polyhedral sets in terms of the

hyperplanes supporting their (N − 1)-dimensional faces.

In the following, we consider polyhedral convex functions of the

form

JH(x) = max
16i6NH

〈x, hi〉,

where H = (hi)
NH

i=1 ∈ R
N×NH . Thus, PH =

{

x ∈ R
N | JH(x) 6 1

}

is a polyhedron. We assume that PH

is a bounded polyhedron which contains 0 in its interior. This

amounts to saying that JH is a gauge, or equivalently that it is

continuous, non-negative, sublinear (i.e. convex and positively

homogeneous), coercive, and JH(x) > 0 for x 6= 0. Note that it is

in general not a norm because it needs not be symmetric.

In order to solve the linear inverse problem (1), we devise the

following regularized problem

x
⋆ ∈ argmin

x∈RN

1

2
||y − Φx||2 + λJH(x), (Pλ(y))

where λ > 0 is the regularization parameter. Coercivity and convexity

of JH implies the set of minimizers is non-empty, convex and

compact.

In the noiseless case, w = 0, one usually considers the equality-

constrained optimization problem

x
⋆ ∈ argmin

Φx=y

JH(x). (P0(y))

B. Relation to Sparsity and Anti-sparsity

Examples of polyhedral regularization include the ℓ1-norm, anal-

ysis ℓ1-norm and ℓ∞-norm. The ℓ1 norm reads

JH1
(x) = ||x||1 =

N
∑

i=1

|xi|.

It corresponds to choosing H1 ∈ R
N×2N where the columns of H1

enumerate all possible sign patterns of length N , i.e. {−1, 1}N . The

corresponding regularized problem (Pλ(y)) is the popular Lasso [1]

or Basis Pursuit DeNoising [2]. It is used for recovering sparse vec-

tors. Analysis-type sparsity-inducing penalties are obtained through

the (semi-)norm JH(x) = ||Lx||1, where L ∈ R
P×N is an analysis

operator. This corresponds to using H = L∗H1 where ∗ stands for

the adjoint. A popular example is the anisotropic total variation where

L is a first-order finite difference operator.

The ℓ∞ norm

JH∞(x) = ||x||∞ = max
16i6N

|xi|

corresponds to choosing H∞ = [IdN ,−IdN ] ∈ R
N×2N . This

regularization, coined anti-sparse regularization, is used for instance

for approximate nearest neighbor search [3].

Another possible instance of polyhedral regularization is the group

ℓ1 − ℓ∞ regularization. Let B be a partition of {1, . . . , N}. The

ℓ1 − ℓ∞ norm associated to this group structure is

JH∞
B
(x) =

∑

b∈B

||xb||∞.

This amounts to choosing the block-diagonal matrix H∞
B ∈

R
N×

∏
b∈B 2|b| such that each column is chosen by taking for each

block a position with sign ±1, others are 0. If for all b ∈ B, |b| = 1,

then we recover the ℓ1-norm, whereas if the block structure is

composed by one element, we get the ℓ∞-norm.

C. Prior Work

In the special case of ℓ1 and analysis ℓ1 penalties, our criterion is

equivalent to those defined in [4] and [5]. To our knowledge, there is

no generic guarantee for robustness to noise with ℓ∞ regularization,

but [6] studies robustness of a sub-class of polyhedral norms obtained

by convex relaxation of combinatorial penalties. Its notion of support

is however completely different from ours. The work [7] studies nu-

merically some polyhedral regularizations.In [8], the authors provide

an homotopy-like algorithm for polyhedral regularization through

a continuous problem coined adaptive inverse scale space method.

The work [9] analyzes some particular polyhedral regularizations

in a noiseless compressed sensing setting when the matrix Φ is

drawn from an appropriate random ensemble. Again in a compressed

sensing scenario, the work of [10] studies a subset of polyhedral



regularizations to get sharp estimates of the number of measurements

for exact and ℓ2-stable recovery.

II. CONTRIBUTIONS

Definition 1. We define the H-support suppH(x) of a vector x ∈ R
N

to be the set

suppH(x) = {i ∈ {1, . . . , NH} | 〈x, hi〉 = JH(x)} .

This definition suggests that to recover signals with H-support

suppH(x), it would be reasonable to impose that Φ is invertible on

the corresponding subspace KerH∗
suppH(x). This is formalised in the

following condition.

Definition 2. A H-support I satisfies the restricted injectivity con-

dition if

KerΦ ∩KerH∗
I = {0}, (CI )

where HI is the matrix whose columns are those of H indexed by I .

When it holds, we define the orthogonal projection ΓI on

ΦKerH∗
I :

MI = (U∗Φ∗ΦU)−1
and

{

ΓI = ΦUMIU
∗Φ∗

Γ⊥
I = Id− ΓI .

where U is (any) basis of KerH∗
I . The symmetric bilinear form on

R
N induced by Γ⊥

I reads

〈u, v〉Γ⊥
I

= 〈u, Γ⊥
I v〉,

and we denote its associated quadratic form || · ||2
Γ⊥
I

.

Definition 3. Let I be a H-support such that (CI ) holds. The

Identifiability Criterion of I is

ICH(I) = max
zI∈KerHI

min
i∈I

(Φ̃∗
IΓ

⊥
I Φ̃I II + zI)i

where II ∈ R
|I| is the vector with coefficients 1, and Φ̃I = ΦH+,∗

I ∈
R

Q×|I| where + stands for the Moore–Penrose pseudo-inverse.

ICH(I) can be computed by solving the linear program

ICH(I) = max
(r,zI)∈R×R|I|

r subj. to

{

∀i ∈ I, r 6 (Φ̃∗
IΓ

⊥
I Φ̃I II + zI)i

HIzI = 0.

A. Noise Robustness

Our main contribution is the following result.

Theorem 1. Let x0 ∈ R
N \ {0} and I its H-support such that (CI )

holds. Let y = Φx0 + w. Suppose that Φ̃III 6= 0 and ICH(I) > 0.

Then there exists two constants cI , c̃I satisfying,

||w||2
T

<
c̃I

cI
where T = min

j∈Ic
JH(x0)− 〈x0, hj〉 > 0,

such that if λ is chosen according to

cI ||w||2 < λ < T c̃I ,

the vector x⋆ ∈ R
N defined by

x
⋆ = µH

+,∗
I II + UMIU

∗Φ∗(y − µΦ̃I II)

where U is any basis of KerH∗
I and

0 < µ = JH(x0) +
〈Φ̃III , w〉Γ⊥

I

− λ

||Φ̃I II ||2
Γ⊥
I

(2)

is the unique solution of (Pλ(y)), and x⋆ lives on the same face as

x0, i.e. suppH(x⋆) = suppH(x0).

Observe that if λ is chosen proportional to the noise level, then

||x⋆ − x0||2 = O(||w||2). The following proposition proves that the

condition ICH(I) > 0 is almost a necessary condition to ensure

the stability of the H-support. Its proof is omitted for obvious space

limitation reasons.

Proposition 1. Let x0 ∈ R
N \{0} and I its H-support such that (CI)

holds. Let y = Φx0+w. Suppose that Φ̃I II 6= 0 and ICH(I) < 0. If
||w||
λ

< 1
cI

then for any solution of (Pλ(y)), we have suppH(x0) 6=
suppH(x⋆).

B. Noiseless Identifiability

When there is no noise, the following result, which is a straightfor-

ward consequence of Theorem 1, shows that the condition ICH(I) >
0 implies signal identifiability.

Theorem 2. Let x0 ∈ R
N \ {0} and I its H-support. Suppose that

Φ̃I II 6= 0 and ICH(I) > 0. Then the vector x0 is the unique solution

of (P0(y)).

III. PROOFS

A. Preparatory Lemmata

We recall the definition of the subdifferential of a convex function

f at the point x is the set ∂f(x) is

∂f(x) =
{

g ∈ R
N | f(y) > f(x) + 〈g, y − x〉

}

.

The following lemma, which is a direct consequence of the properties

of the max function, gives the subdifferential of the regularization

function JH .

Lemma 1. The subdifferential ∂JH at x ∈ R
N reads

∂JH(x) = HIΣI

where I = suppH(x) and ΣI is the canonical simplex on R
|I|:

ΣI =
{

vI ∈ R
|I| | vI > 0, 〈vI , II〉 = 1

}

.

A point x⋆ is a minimizer of minx f(x) if, and only if, 0 ∈
∂f(x⋆). Thanks to Lemma 1, this gives the first-order condition for

the problem (Pλ(y)).

Lemma 2. A vector x⋆ is a solution of (Pλ(y)) if, and only if, there

exists vI ∈ ΣI such that

Φ∗(Φx− y) + λHIvI = 0,

where I = suppH(x).

We now introduce the following so-called source condition.

(SCx): For I = suppH(x), there exists η and vI ∈ ΣI such that:

Φ∗
η = HIvI ∈ ∂JH(x).

Under the source condition, a sufficient uniqueness condition can

be derived when vI lives in the relative interior of ΣI which is

ri ΣI =
{

vI ∈ R
|I| | vI > 0, 〈vI , II〉 = 1

}

.

Lemma 3. Let x⋆ be a minimizer of (Pλ(y)) (resp. (P0(y))) and

I = suppH(x⋆). Assume that (SCx⋆) is verified with vI ∈ ri ΣI ,

and that (CI ) holds. Then x⋆ is the unique solution of (Pλ(y))
(resp. (P0(y))).

The proof of this lemma is omitted due to lack of space. Observe

that in the noiseless case, if the assumptions of Lemma 3 hold at x0,

then the latter is exactly recovered by solving (P0(y)).



Lemma 4. Let x⋆ ∈ R
N and I = suppH(x⋆). Assume (CI) holds.

Let U be any basis of KerH∗
I . There exists zI ∈ KerHI such that

U
∗Φ∗(Φx⋆ − y) = 0

vI = zI +
1

λ
H

+
I Φ∗(y − Φx⋆) ∈ ΣI ,

if, and only if, x⋆ is a solution of (Pλ(y)). Moreover, if vI ∈ ri ΣI ,

then x⋆ is the unique solution of (Pλ(y)).

Proof: We compute

Φ∗(Φx⋆ − y) + λHIvI

=Φ∗(Φx⋆ − y) + λHI

(

zI +
1

λ
H

+
I Φ∗(y − Φx⋆)

)

=(Id−HIH
+
I )Φ∗(Φx⋆ − y) = projH∗

I

(Φ∗(Φx⋆ − y)) = 0,

where projH∗
I

is the projection on KerH∗
I . Hence, x⋆ is a solution

of (Pλ(y)). If vI ∈ ri ΣI , then according to Lemma 3, x⋆ is the

unique solution.

The following lemma is a simplified rewriting of the condition

introduced in Lemma 4.

Lemma 5. Let x⋆ ∈ R
N , I = suppH(x⋆) and µ = JH (x⋆).

Assume (CI ) holds. Let U be any basis of KerH∗
I . There exists

z ∈ KerHI such that

vI = zI +
1

λ
Φ̃∗

IΓ
⊥
I (y − µΦ̃I II) ∈ ΣI ,

if, and only if, x⋆ is a solution of (Pλ(y)). Moreover, if vI ∈ ri ΣI ,

then x⋆ is the unique solution of (Pλ(y)).

Proof: Note that any vector x ∈ R
N such that the condition (CI )

holds, where I is the H-support of x, is such that

x = µH
+,∗
I II + Uα where µ = JH(x),

for some coefficients α and U any basis of KerH∗
I . We obtain

UΦ∗(Φx⋆ − y) = µUΦ∗ΦH+,∗
I II − UΦ∗

y + UΦ∗ΦUα = 0

Since (CI ) holds, we have

α = (UΦ∗ΦUα)−1
UΦ∗

(

y − µΦ̃I II

)

.

Hence,

ΦUα = ΓI

(

y − µΦ̃I II

)

.

Now since, x⋆ = µH
+,∗
I II + Uα, one has

Φx⋆ = µΦ̃I II + ΓI

(

y − µΦ̃I II

)

= µΓ⊥
I Φ̃III + ΓIy.

Subtracting y and multiplying by Φ̃∗
I both sides, and replacing in the

expression of vI in Lemma 4, we get the desired result.

B. Proof of Theorem 1

Let I be the H-support of x0. We consider the restriction

of (Pλ(y)) to the H-support I .

x
⋆ = argmax

x∈R
N

suppH(x)⊆I

1

2
||y − Φx||22 + JH(x). (Pλ(y)I )

Thanks to (CI), the objective function is strongly convex on the set

of signals of H-support I. Hence x⋆ is uniquely defined. The proof is

divided in five parts: We give (1.) an implicit form of x⋆. We check

(2.) that the H-support of x⋆ is the same as the H-support of x0.

We provide (3.) the value of JH(x⋆). Using Lemma 5, we prove (4.)

that x⋆ is the unique minimizer of (Pλ(y)).

1. Expression of x⋆. One has x⋆ = µH
+,∗
I II + Uα where µ =

JH(x⋆). Hence,

U
∗Φ∗(Φx− y) = µU

∗Φ∗ΦH+,∗
I II + (U∗Φ∗ΦU)α− U

∗Φ∗
y = 0.

Thus,

Uα = UMIU
∗Φ∗(y − µΦH+,∗

I II).

Now, since y = Φx0 +w, with suppH(x0) = I , then

x
⋆ = µH

+,∗
I II + UMIU

∗Φ∗(y − µΦH+,∗
I II)

= µH
+,∗
I II + UMIU

∗Φ∗((µ0 − µ)ΦH+,∗
I II + w) + Uα0

= x0 − (µ0 − µ)H+,∗
I II + UMIU

∗Φ∗((µ0 − µ)ΦH+,∗
I II +w),

where µ0 = JH(x0). Hence, x⋆ is satisfying

x
⋆ = x0+(µ0−µ)[UMIU

∗Φ∗Φ−Id]H+,∗
I II+UMIU

∗Φ∗
w. (3)

2. Checking that the H-support of x⋆ is I . To ensure that the

H-support of x⋆ is I we have to impose that

∀i ∈ I, 〈hi, x
⋆〉 = JH(x⋆) = µ

∀j ∈ I
c
, 〈hj , x

⋆〉 < JH(x⋆) = µ.

The components on I of x⋆ are satisfying H∗
I x

⋆ = µII . Since JH

is subadditive, we bound the components on Ic by the triangular

inequality on (3) to get

max
j∈Ic

〈hj , x
⋆〉 6max

j∈Ic
〈hj , x0〉

+ (µ0 − µ)||H∗
Ic [UMIU

∗Φ∗Φ− Id]H+,∗
I II ||∞

+ ||H∗
IcUMIU

∗Φ∗
w||∞.

Denoting

C1 = ||H∗
Ic [UMIU

∗Φ∗Φ− Id]H+,∗
I II ||∞,

C2 = ||H∗
IcUMIU

∗Φ∗||2,∞,

T = µ0 −max
j∈Ic

〈hj , x0〉,

we bound the correlations outside the H-support by

max
j∈Ic

〈hj , x
⋆〉 6 µ0 − T + (µ0 − µ)C1 + C2||w||.

There exists some constants c1, c2 satisfying c1||w|| < c2T + λ such

that

0 6 µ0 − T + (µ0 − µ)C1 +C2||w|| < µ (4)

Under this condition, one has

max
j∈Ic

〈hj , x
⋆〉 < µ,

which proves that suppH(x⋆) = I .

3. Value of µ = JH(x⋆). Using Lemma 5 with H = U∗H , since

x⋆ is a solution of (Pλ(y)I), there exists zI ∈ KerHI such that

vI = zI +
1

λ
Φ̃∗

IΓ
⊥
I (y − µΦ̃I II) ∈ ΣI . (5)

We decompose x0 as

x0 = µ0H
+,∗
I II + Uα0.

Since y = Φx0 + w, we have

Γ⊥
I y = Γ⊥

I (µ0Φ̃III + ΦUα0 + w).

Now since

ΓIΦUα0 = ΦU(U∗Φ∗ΦU)−1
U

∗Φ∗ΦUα0 = ΦUα0,



one obtains

Γ⊥
I y = µ0Γ

⊥
I Φ̃III + Γ⊥

I w.

Thus, equation (5) equivalently reads

vI = zI +
1

λ
Φ̃∗

IΓ
⊥
I

(

(µ0 − µ)Φ̃I II + w
)

.

In particular, 〈vI , II〉 = λ. Thus,

λ = 〈λvI , II〉 = 〈λz̃I , II〉+ 〈Φ̃∗
IΓ

⊥
I ((µ0 − µ)Φ̃I II +w, II〉.

Since z̃I ∈ KerHI , one has 〈zI , II〉 = 0.

λ = 〈Φ̃∗
IΓ

⊥
I ((µ0 − µ)Φ̃I II +w, II〉

= (µ0 − µ)||Φ̃I II ||
2
Γ⊥
I

+ 〈Φ̃III , w〉Γ⊥
I

.

Thus the value of µ is given by

µ = µ0 +
〈Φ̃III , w〉Γ⊥

I

− λ

||Φ̃I II ||2
Γ⊥
I

> 0. (6)

4. Checking conditions of Lemma 5. Consider now the vector

ṽI defined by

ṽI = z̃I +
1

λ
Φ̃∗

IΓ
⊥
I

(

(µ0 − µ)Φ̃I II + w
)

,

where

z̃I =
1

µ− µ0

(

argmax
zI∈KerHI

min
i∈I

(Φ̃∗
IΓ

⊥
I Φ̃I II + zI)i

)

Under condition (4), the H-support of x⋆ is I , hence we only have

to check that ṽI is an element of ri ΣI . Since 〈z̃I , II〉 = 0, one has

〈ṽI , II〉

=〈zI +
1

λ
Φ̃∗

IΓ
⊥
I

(

(µ0 − µ)Φ̃I II + w
)

, II〉+ 〈z̃I − zI , II〉

=〈vI , II〉+ 0 = λ.

Plugging back the expression (6) of (µ0 −µ) in the definition of ṽI ,

one has

ṽI = z̃I +
1

λ



Φ̃∗
IΓ

⊥
I w +

〈Φ̃III , w〉Γ⊥
I

− λ

||Φ̃I II ||2
Γ⊥
I

Φ̃∗
IΓ

⊥
I Φ̃III



 .

For some constant c3 such that c3||w|| − ICH(I) · λ > 0, one has

∀i ∈ I, vi > 0.

Combining this with the fact that 〈ṽI , II〉 = λ proves that ṽI ∈ ri ΣI .

According to Lemma 5, x⋆ is the unique minimizer of (Pλ(y)).

C. Proof of Theorem 2

Taking w = 0 in Theorem 1, we obtain immediately

Lemma 6. Let x0 ∈ R
N \ {0} and I its H-support such that (CI )

holds. Let y = Φx0. Suppose that Φ̃I II 6= 0 and ICH(I) > 0. Let

T = min
j∈Ic

JH(x0)− 〈x0, hj〉 > 0 and λ < T c̃I . Then,

x
⋆ = x0 +

λ

||Φ̃I II ||2
Γ⊥
I

[UMIU
∗Φ∗Φ− Id]H+,∗

I II ,

is the unique solution of (Pλ(y)).

The following lemma shows that under the same condition, x0 is

a solution of (P0(y)).

Lemma 7. Let x0 ∈ R
N \ {0} and I its H-support such that (CI )

holds. Let y = Φx0. Suppose that Φ̃I II 6= 0 and ICH(I) > 0. Then

x0 is a solution of (P0(y)).

Proof: According to Lemma 6, for every 0 < λ < T c̃I ,

x
⋆
λ = x0 +

λ

||Φ̃I II ||2
Γ⊥
I

[UMIU
∗Φ∗Φ− Id]H+,∗

I II ,

is the unique solution of (Pλ(y)).
Let x̃ 6= x0 such that Φx̃ = y. For every 0 < λ < T c̃I , since x⋆

λ

is the unique minimizer of (Pλ(y)), one has

1

2
||y − Φx⋆

λ||
2
2 + JH(x⋆

λ) <
1

2
||y − Φx̃||22 + JH(x̃).

Using the fact that Φx̃ = y = Φx0, one has JH(x⋆
λ) < JH(x̃). By

continuity of the mapping x 7→ JH(x), taking the limit for λ → 0
in the previous inequality gives

JH(x0) 6 JH(x̃).

It follows that x0 is a solution of (P0(y)).
We now prove Theorem 2.

Proof of Theorem 2: Lemma 7 proves that x0 is a solution

of (P0(y)). We now prove that x0 is in fact the unique solution. Let

z̃I be the argument of the maximum in the definition of ICH(I).
We define

ṽI =
1

||Φ̃I II ||2
Γ⊥
I

(

z̃I + Φ̃∗
IΓ

⊥
I Φ̃I II

)

.

By definition of ICH(I), for every i ∈ I, ṽI > 0 and 〈ṽI , II〉 = 1.

Thus, HI ṽI ∈ ri(∂JH(x0)). Moreover, since z̃I ∈ KerHI , one has

HIvI = HIH
+,∗
I Φ∗Γ⊥

I Φ̃III = Φ∗
η where η = Γ⊥

I Φ̃I II .

Thanks to Lemma 3, x0 is the unique solution of (P0(y)).
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