Gui-Song Xia

Sira Ferradans

Gabriel Peyr É §

Jean-Franc ¸ois

SYNTHESIZING AND MIXING STATIONARY GAUSSIAN TEXTURE MODELS *

Keywords: Texture analysis, texture synthesis, texture mixing, Gaussian process, dynamic textures, optimal transport. AMS subject classifications. 15A15, 15A09, 15A23

This paper addresses the problem of modeling textures with Gaussian processes, focusing on color stationary textures that can be either static or dynamic. We detail two classes of Gaussian processes parameterized by a small number of compactly supported linear filters, the so-called textons. The first class extends the spot noise (SN) texture model to the dynamical setting, where the space-time texton is estimated to fit a translation-invariant covariance from an input exemplar. The second class is a specialization of the auto-regressive (AR) dynamic texture method to the setting of space and time stationary textures. This enables one to parameterize the covariance with only a few spatial textons. The simplicity of these models allows us to tackle a more complex problem, texture mixing, which, in our case, amounts to interpolate between Gaussian models. We use optimal transport to derive geodesic paths and barycenters between the models learned from an input data set. This enables the user to navigate inside the set of texture models and perform texture synthesis from each new interpolated model. Numerical results on a library of exemplars show the ability of our method to generate arbitrary interpolations among unstructured natural textures. Moreover, experiments on a database of stationary textures show that the methods, despite their simplicity, provide state-of-the-art results on stationary dynamical texture synthesis and mixing.

1. Introduction. This paper studies the analysis, synthesis and mixing of both static and dynamic textures. Textures play an important role in visual perception and image or video understanding. Static textures typically capture the surface properties of objects, while dynamic textures model many natural physical phenomena (such as rain, snow, smoke, etc.).

1.1. Stationary Texture Modeling. The modeling of textures is a longstanding and central problem in image processing, computer vision and computer graphics. While it is difficult to give a strict mathematical definition of textures, most methods proposed in the literature tackle their analysis and synthesis using random distributions. The process of modeling texture for texture synthesis by example amounts first, to learn the underlying random process from a given exemplar image, and then, to develop algorithms to draw new samples from the learned distribution.

This paper concentrates on the modeling and mixing of both stationary static textures (SSTs) and stationary dynamic textures (SDTs). Stationary textures have been widely investigated especially after Julesz's conjecture [START_REF] Julesz | Visual pattern discrimination[END_REF], which states that humans cannot distinguish between textures with identical second-order statistics.

Even though he proved this conjecture false in the general case [START_REF] Julesz | Inability of humans to discriminate between visual textures that agree in second-order statistics -revisited[END_REF], it still holds for a large class of textures. Although a complex natural image is not usually homogeneous due to the presence of objects and occlusions, it can often be considered as being locally homogeneous from a statistical point of view. Furthermore, it is also reasonable to assume that the dynamical statistics of images created by natural phenomena (such as smoke, snow, waterfall, etc.) are stationary in time.

Previous Works.

Texture synthesis. Patch-based methods are adapted to complicated geometric textures, see e.g. [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF][START_REF] Wei | State of the art in example-based texture synthesis[END_REF]. Statistical parametric models are generally not as good in handling complex texture patterns, but they are more principled and their parameters are better understood, see for instance [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF]. This paper concentrates on a simple statistical texture model, namely stationary Gaussian distributions, following and extending the spot noise (SN) model initiated in [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. For dynamic texture, we also consider Gaussian auto-regressive (AR) models as initially proposed in [START_REF] Doretto | Dynamic textures[END_REF], which restricts the class of covariances but is well suited to model natural phenomena.

Modeling stationary dynamic textures. Early attempts to model SDTs include the spatio-temporal autoregressive (STAR) model [START_REF] Szummer | Temporal texture modeling[END_REF], which creates local spacetime models for individual pixels relying on their 3-D causal neighborhood. Bar-Joseph et al. [START_REF] Bar-Joseph | Texture mixing and texture movie synthesis using statistical learning[END_REF] use a 3-D wavelet transform to construct multi-resolution trees for synthesizing dynamic textures. Following the idea of Efros and Leung [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF], patchbased methods can be adapted to synthesize stationary dynamic textures, see for instance [START_REF] Wei | Texture synthesis over arbitrary manifold surfaces[END_REF][START_REF] Kwatra | Graphcut textures: image and video synthesis using graph cuts[END_REF]. Doretto et al. [START_REF] Doretto | Spatially homogeneous dynamic textures[END_REF][START_REF] Doretto | Dynamic textures[END_REF] extend their initial AR models using stationary multi-scale AR models. In this paper, we consider a more direct approach to build stationary AR models using convolutive iterations, which leads to a more compact and simpler parameterization of the models. Recently, a compact Gaussian texton has been proposed for stationary 2-D textures [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF], and we extend it to dynamic models.

Texture mixing. Mixing texture models requires to design algorithms to average distributions estimated from several input exemplars. The simplest approach consists in using mixture of distributions, see for instance [START_REF] Bar-Joseph | Texture mixing and texture movie synthesis using statistical learning[END_REF]. The use of non-parametric histogram averaging has also been proposed for grayscale images [START_REF] Matusik | Texture design using a simplicial complex of morphable textures[END_REF] as well as color and wavelet features [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF]. Ruiters et. al. [START_REF] Ruiters | Patch-based texture interpolation[END_REF] propose a patch-based approach for texture interpolation. Soheil et. al. [START_REF] Soheil | Image Melding: Combining Inconsistent Images using Patch-based Synthesis[END_REF] report state-of-the-art results on texture mixing using the patch match method. Mixtures of Gaussians have been used to interpolate between AR models [START_REF] Chan | Mixtures of dynamic textures[END_REF], an approach that can generate non-Gaussian models. In contrast, we propose a method based on the theory of optimal transport to ensure that the texture models stay Gaussian during the interpolation. We also expose how to apply this optimal transport methodology to Gaussian AR models, which is closely related to some previous works on the geometry of AR manifolds [START_REF] Ravishanker | Differential geometry of ARFIMA processes[END_REF][START_REF] Ravishanker | Differential geometry of arma models[END_REF][START_REF] Van Garderen | Exact geometry of first order autoregressive models[END_REF].

Optimal transport (OT) [START_REF] Villani | Topics in Optimal Transportation[END_REF] has been used intensively in computer vision as a metric between statistical features [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF]. It has been much less employed in computer graphics for image processing and synthesis, with the notable exception of [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF], that handles statistical constraints for synthesis using a non-parametric point cloud discretization. Note that Gaussian OT has been adopted for color manipulation [START_REF] Pitié | Automated colour grading using colour distribution transfer[END_REF] but never to achieve image modeling nor synthesis.

1.3. Contributions. The first set of contributions of this paper is the development of two novel Gaussian texture models. The first one extends the SN model of Galerne et. al. [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF] to the setting of dynamic textures. The second one is a specialization of the AR model of Doretto et. al. [START_REF] Doretto | Dynamic textures[END_REF] to the setting of spatially stationary textures. We show how both models are parameterized by a localized set of filters called textons. Our second set of contributions is a novel framework to interpolate between two or more Gaussian texture models, using geodesic and barycenter computations. This texture mixing method is based on a displacement interpolation in the OT manifold of Gaussian distributions. Finally, we show the versatility of this novel group of methods and how, by explicitly using the stationarity assumption, we can enable the definition of fast algorithms for both analysis and synthesis.

The source code to reproduce the figures of this article, as well as a database of stationary dynamic textures, and some synthesis and mixing results, are available online 1 . Preliminary versions of this work were presented in the conference papers [START_REF] Xia | Compact representations of stationary dynamic textures[END_REF][START_REF] Ferradans | Static and dynamic texture mixing using optimal transport[END_REF].

1.4. Organization of the Paper. Section 2 introduces the notations of this paper. Sections 3 and 4 detail respectively our SN and AR Gaussian texture models and explain how to learn and synthesize textures using each of these models. Numerical results and comparisons between these two models are shown in section 5. Then, the framework for texture mixing is introduced. Section 6 explains how to use optimal transport to compute a geodesic path that mixes two different Gaussian texture models and section 7 extends this construction to compute a barycenter of more than two models.

Stationary Stochastic Modeling of Textures.

2.1. Notations. In this paper, we denote deterministic images and videos, corresponding to samples of textures, by f ∈ R U ×d (d = 1 for gray-scale data and d = 3 for color ones). We denote by f (p) ∈ R d the value at some space or space-time pixel p ∈ U , with U = {0, . . . , N 1 -1} × {0, . . . , N 2 -1} × {0, . . . , N 3 -1}, where N 1 × N 2 is the spatial size of the data, and N 3 is the number of frames (size in time) of the data (i.e. for static textures N 3 = 1). We denote by N = N 1 N 2 N 3 the total number of voxels. Moreover, when we deal with space-time input data, we also rewrite the coordinates p as p = (x, t), where x ∈ U s = {0, . . . , N 1 -1} × {0, . . . , N 2 -1} is the 2-D index in space and t ∈ {0, . . . , N 3 -1} is the 1-D index in time. If A is a complex vector or a matrix, A * denotes its complex adjoint (i.e. both transpose and conjugate).

Fourier transform. A basic tool for the analysis and synthesis of stationary texture models is the discrete Fourier transform. The Fourier transform f

= F(f) ∈ C U ×d of a static or dynamic texture f ∈ R U ×d is ∀ ω ∈ U, f (ω) = p∈U f (p) • e -2ıπ p, ω ∈ C d where p, ω = d k=1 ω k p k N k , (2.1)
where • is the entry-wise multiplication of vectors in C d . The transformed texture f is computed in O(N d log(N d)) operations using the Fast Fourier Transform (FFT), and this transform is inverted with the same complexity using the inverse discrete Fourier transform written as

∀ p ∈ U, f (p) = 1 N ω∈U f (ω) • e 2ıπ p, ω .
1 https://github.com/gpeyre/2013-SIIMS-gaussian-textures Convolution. The space-time convolution of two textures f, g ∈ R U ×d is defined as

∀ p ∈ U, (f g)(p) = p ∈U f (p -p) • g(p), (2.2)
where we implicitly assume periodic boundary conditions. It can be equivalently computed over the Fourier domain as

∀ ω ∈ U, ĥ(ω) = f (ω) • ĝ(ω) where h = f g. (2.3) A matrix convolution kernel is C = (C(p)) p∈U ∈ R U ×d×d where each C(p) ∈ R d×d .
The convolution between such a kernel and a texture g ∈ R U ×d is defined as

∀ p ∈ U, (C g)(p) = p ∈U C(p -p)g(p) ∈ R d , (2.4)
and can be computed over the Fourier domain as

∀ ω ∈ U, ĥ(ω) = Ĉ(ω)ĝ(ω) where h = C g, (2.5)
where Ĉ is obtained by applying the Fourier transform to each of the d × d entries of C.

Stationary Gaussian

Processes. We model a texture using a random vector X, which is a mapping X : Ω → R U ×d from (Ω, P) (a fixed probability space with probability P) to R U ×d . This random vector thus maps some ξ ∈ Ω to a realization X ξ ∈ R U ×d which is a deterministic image or video denoted by f . Each coordinate defines a random variable X(p) : Ω → R d .

In the following, we consider a Gaussian random vector X, which follows a Gaus-

sian distribution µ = N (m, C) with mean m = E(X) ∈ R U ×d and positive semi-definite covariance C ∈ R U d×U d ∀ (p, p) ∈ U 2 , C(p, p) = E (X(p) -m(p))(X(p) -m(p)) * ∈ R d×d
where E is the expected value and v * ∈ C 1×d is the transposed complex conjugate vector of v ∈ C d . This covariance C can be thought of as a (N d) × (N d) matrix or as a collection of matrices C(p, p) ∈ R d×d for (p, p) ∈ U × U . The covariance can be also thought as a linear operator, and can thus be applied to a vector f ∈ R U ×d as y = Cf defined by

∀ p ∈ U, y(p) = (Cf)(p) = p ∈U C(p, p)f (p).
(2.6)

For this Gaussian texture model, stationarity means that X has the same distribution as X(•+τ) for any shift τ ∈ U , where we assume periodic boundary conditions. It is also equivalent to imposing that the mean is a constant vector

∀ p ∈ U, m(p) = m ∈ R d
and that the covariance matrix C satisfies d×d) is the associated convolution kernel. It means that Cf = C f where is the convolution (2.4) between a kernel and a texture f ∈ R U ×d . Distribution vs. realizations. In the following, if µ is a distribution (e.g. µ = N (m, C)), we denote X ∼ µ when the random vector X has distribution µ. We denote f ≡ µ when the (deterministic) vector f is sampled according to a random vector having distribution µ.

∀ (p, p) ∈ U 2 , C(p, p) = C(p -p) ∈ R d×d where C ∈ R U ×(
3. Spot Noise Texture Models. This section introduces the first Gaussian texture model considered in the paper. It is the SN model originally considered by Galerne et al. [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF] that we introduce and motivate differently for static textures and extend to dynamic textures. We define the canonical texton which extends the one of Desolneux et al. [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF][START_REF]A texton for random phase and Gaussian textures[END_REF] to the dynamic setting. This texton is useful when performing texture synthesis for areas that do not have the same size as the original input texture and it will also be important to perform texture mixing (see Section 6).

Given an exemplar texture f 0 ∈ R U ×d , the texture analysis problem corresponds to estimating the parameters m and C of a stationary Gaussian model µ = N (m, C) from f 0 . The synthesis problem simply corresponds to sampling the distribution to obtain a realization f from µ.

The whole pipeline (analysis and synthesis) for the SN model is summarized in Algorithm 1. The following part of the section describes in detail each step of the process. Note that some steps (e.g. model resizing and synthesis) will be re-used when performing more complicated tasks such as texture mixing.

It should be noted that the synthesis step of our algorithm is slightly different from the original one in Galerne et al. [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF], given that they use only gray-scale noise for the sampling. In contrast, we use a d-dimensional white noise w. This leads to a computational complexity overhead, which is required to be able to handle non-spot noise models (which correspond to non rank-1 matrices Ĉ(ω)). These models arise when computing Gaussian model barycenters, as detailed in Section 7. Note that such non-spot noise covariances also arise when considering covariance estimators different from the empirical periodogram. The most well-known methods are based on multitapers [START_REF] Percival | Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques[END_REF], which denoise the periodogram using windowing with orthogonal Slepian functions [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V -The discrete case[END_REF].

Algorithm 1: SN Texture Analysis and Synthesis

Input: exemplar f0 ∈ R U ×d . Output: sample f ∈ R Ũ ×d of the SN model.

1. Pre-processing. Compute f 0 from f0 using (3.2). 2. SN texture analysis. Compute C from f 0 using (3.5).

3. SN texton computation. Compute the canonical texton K from C:

• if C is a SN covariance (step 2 has been used), use (3.8),

• otherwise use (3.7). 4. Model resizing. Compute K from K using (3.9). 5. Texture synthesis. Compute f from K using (3.10).

3.1. Pre-processing. For the ease of exposition and computational simplicity, we assume periodic boundary conditions. To reduce boundary artifacts during the estimation process, we use as a pre-processing step the method of Moisan [START_REF] Moisan | Periodic plus smooth image decomposition[END_REF] to extract the periodic component f 0 = Per(f0) of an arbitrary input texture f0 ∈ R U ×d .

For the sake of completeness, we recall that this periodic component is computed by solving a Poisson equation

∆f 0 = ∆ i f0 mean(f 0) = mean(f0), (3.1)
where ∆ is the discrete periodic Laplacian with periodic boundary conditions while ∆ i is computed with non-periodic boundary conditions

∆f (p) = Card(N) • f (p) - p -p∈N f (p) ∆ i f (p) = Card((p + N) ∩ U) • f (p) - p ∈(p+N)∩U f (p).
Here, N is the 4-connected (resp.

(ω) =    1 2d-2 d i=1 cos 2πω i N i ∆ i f (ω), if ω = 0, N • mean(f0), if ω = 0, (3.2)
see [START_REF] Moisan | Periodic plus smooth image decomposition[END_REF] for more details.

3.2. Spot Noise Texture Analysis. SN models, first introduced in [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF] by van Wijk, are Gaussian distributions for which the power spectrum is equal to the empirical power spectrum of some input exemplar. These models have been rigorously studied and extended to color textures by Galerne et al. [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. They can be equivalently described as a convolution of each channel of the exemplar with the same gray-scale white noise.

Given some deterministic input exemplar f 0 ∈ R U ×d , we can estimate the mean of the Gaussian model N (m, C) as the empirical mean

∀ p ∈ U, m(p) = m = 1 N p ∈U f 0 (p). (3.3)
We estimate the kernel C of the covariance matrix C using the empirical covariance, which is also known as the empirical periodogram

∀p ∈ U, C(p) = 1 N p ∈U (f 0 (p) -m)(f 0 (p + p) -m) * ∈ R d×d . (3.4)
This estimator can also be understood as the maximum likelihood estimator (MLE) of the covariance matrix from a sample f 0 [START_REF] Kent | Multivariate Analysis[END_REF]. The correlation C is the auto-correlation of the input exemplar C = (f 0 -m) (f0 -m) where f0 (p) = f 0 (-p). Its Fourier spectrum is composed of rank-1 matrices, which offers a convenient way to estimate the kernel in O(N d log(N)) operations

∀ ω = 0, Ĉ(ω) = 1 N f0 (ω) f0 (ω) * , (3.5)
and Ĉ(0) = 0. Imposing that Ĉ(ω) is rank-1 is actually a necessary and sufficient condition to be a SN model for some image f 0 .

Texton Computation.

Generic texton. Following [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF], we define a texton as a basic element that parameterizes a Gaussian texture model. This texton parameterization is useful to perform texture synthesis, since it allows easy texture model resizing. It is also at the heart of the texture mixing method described in the following sections.

A texton K ∈ R (U ×d)×(U ×d) associated to a Gaussian distribution N (m, C) is any matrix such that C = KK * . In the case of a stationary Gaussian process, the covariance C is a convolution operator (see (2.6)). A texton is thus any convolution operator K with the convolution kernel K whose Fourier transform satisfies

Ĉ(ω) = K(ω) K(ω) * , where K(ω) ∈ C d×d .
Recall that Ĉ is the Fourier transform of the correlation kernel C and that it is defined in (2.5). It is thus possible to compute a texton using for instance a Cholesky decomposition of Ĉ(ω), see for instance [START_REF] Gentle | Numerical Linear Algebra for Applications in Statistics[END_REF].

Canonical texton -general case. Following [START_REF]A texton for random phase and Gaussian textures[END_REF], we define a texton which is uniquely associated to a given texture model. The canonical texton K associated to a Gaussian distribution N (m, C) is its unique real and symmetric positive texton.

We denote the SVD factorization of Ĉ(ω) by

Ĉ(ω) = Q(ω) diag(λ 1 (ω), . . . , λ d (ω)) Q(ω) * ∈ C d×d (3.6)
where (λ 1 (ω), . . . , λ d (ω)) ∈ R d + are the eigenvalues of Ĉ(ω), and Q(ω) ∈ C d×d is the unitary matrix of eigenvectors.

The canonical texton can be computed in O(N d log(N)) operations over the Fourier domain,

K(ω) = Q(ω) diag(λ 1 (ω) 1/2 , . . . , λ d (ω) 1/2) Q(ω) * ∈ C d×d (3.7)
which only involves the diagonalization of d × d matrices, recall that d = 1 or d = 3. This canonical texton K can thus be stored as a set (K(p) i,j) 1≤i≤j≤d of d(d+ 1)/2 filters, and together with m they completely characterize a Gaussian texture model. Note also that this canonical texton is in general different from the rank-1 color texton introduced in [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF].

Canonical texton -SN case. When the model N (m, C) is a SN model learned from some input exemplar f 0 , the covariance frequencies are rank-1 (see (3.5)). The canonical texton, that we call SN-texton, obeys the same property, and it can be computed in the Fourier domain as

∀ ω, K(ω) = 1 √ N f (ω) f (ω) * | f (ω)| ∈ C d×d , (3.8)
where |v| is the norm of v. In the special case of d = 1 (gray-scale images), one obtains the original texton introduced in [6]

∀ ω, K(ω) = 1 √ N | f (ω)| ∈ R + ,
that has several interesting optimality properties in terms of compactness, see [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF]. It is unclear whether similar properties also hold in the vectorial case.

The obtained SN-texton K ∈ R N ×d is a set of d(d + 1)/2 space-time 3-D filters. An example of such SN-textons is displayed in Figure 5.1. The numerical experiments presented in Section 5 show that, in practice, the obtained SN-texton is highly compact in space and time.

Model

Resizing. An important requirement of texture synthesis methods is to be able to generate texture of an arbitrary size (Ñi) d i=1 . Let us denote by Ũ the new pixel domain of dimension Ñ = i Ñi , and its associated Gaussian distribution N (m, C) where m ∈ R Ũ ×d and C ∈ R (Ũ ×d)×(Ũ ×d) , which can either extrapolate (when Ñi > N i) or restrict (when Ñi < N i) the initial model.

Since m(p) = m is constant, one defines m(p) = m. A naive approach to obtain C would be to either crop or zero-pad the original covariance C. This is not an acceptable method, since the resulting C would not be positive and symmetric, in general. Following the idea introduced in [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF] for the rank-1 color-texton, we propose to crop or zero pad the kernel K associated to the canonical texton K.

The resized and translated texton is

∀ p ∈ Ũ , K(p) = K(p) if p ∈ U, 0 otherwise. (3.9)
3.5. Texture Synthesis. When the texton K of a model µ = N (m, C) has been defined (either as the SN texton of an input texture, or from the mixing process described in the following sections), one can easily perform texture synthesis. This corresponds to computing a sample f ∈ R U ×d drawn from the distribution µ. Depending on the properties of the texton (e.g. its spatial extent), one can use either Fourier-based, convolution-based, or a mixed formulation.

Time-periodic synthesis. A time-periodic synthesis is achieved in O(N d log(N)) operations by sampling independently each Fourier frequency as follows

∀ ω ∈ U, f (ω) = N m if ω = 0, K(ω) ŵ(ω) if ω = 0 where w ≡ N (0, Id (U ×d)×(U ×d))
(3.10) where ≡ means "sampled from" (i.e. it is a realization, not a random variable).

Infinite time synthesis. Computing an infinite dynamic texture f (x, t) = f t (x) for any t ∈ N requires computing an infinite convolution. This convolution can be written as

f t = m + Ñ3 k=1 K(•, k) w t-k where w t ≡ N (0, Id (Ñ1 Ñ2d)×(Ñ1 Ñ2d)),
where the w t are independent. Note that this formula can be implemented in a timeframe by time-frame manner, and only requires to store a block of Ñ3 frames of noise samples at each time step.

4. Auto-regressive Texture Models. We now introduce our second Gaussian texture model, which is a specialization of the AR model of Doretto et al. [START_REF] Doretto | Dynamic textures[END_REF] to the setting of stationary random fields. A chief advantage of this specialization is that it does not require a PCA dimensionality reduction since the texture analysis is performed over the 2-D reduced frequency domain, and the synthesis is achieved using fast spatial convolutions. This setting differs significantly from the stationary model introduced in [START_REF] Doretto | Spatially homogeneous dynamic textures[END_REF] which makes use of complicated tree-based spatial AR model. Our numerical tests reported in Section 5 seem to indicate that our method gives results visually similar to the ones presented by Doretto et al. in [START_REF] Doretto | Spatially homogeneous dynamic textures[END_REF].

While the SN model is non-parametric (under the condition that the covariance has rank-1 frequencies), the AR model reduces drastically the number of free parameters by imposing a recursive relationship. We focus on the class of AR(1) models, although a more general recurrence (AR(p) and ARIMA) could be treated exactly in the same way.

The whole pipeline (analysis and synthesis) for the AR model is summarized in Algorithm 2. The following sections describe in detail each step of the process.

Algorithm 2: Texture synthesis by using AR-textons

Input: exemplar f0 ∈ R U ×d . Output: sample f ∈ R Ũ ×d of the AR model.
1. Pre-processing. Compute f 0 from f0 using (4.7).

2. SN texture analysis.

• Compute A from f 0 using (4.8).

• Compute B from f 0 and A using (4.9). 3. AR texton computation. Compute L from B using (4.10). 4. Model resizing. Compute (Ã, L) from (A, L) using (4.11). 5. Texture synthesis. Compute f from (Ã, L) using (4.12).

Remove the |t 0 | initial frames.

4.1. Stationary AR Processes. We consider an infinite time domain

U = U s × Z where U s = {1, . . . , N 1 } × {1, . . . , N 2 }. A Gaussian random vector X = (X t) t∈Z with values in R U ×d is distributed according to an auto-regressive AR(1) model parameterized by (A, B, E) if it satisfies ∀ t ∈ Z, X t+1 = E + AX t + Wt , (4.1)
where Wt ∼ N (0, B), A, B : R (Usd)×(Usd) are space-only linear operators and E ∈ R Us×d . If L is any texton factorization of B, i.e. B = LL * , then one can write Wt = LW t for W t ∼ N (0, Id (d×Us)×(d×Us)).

To ensure that this AR process is stationary, we impose that the operators A, B, and L are convolutions with their respective kernels A, B, L ∈ R Us×d , and that

∀ p ∈ U s , E(p) = e ∈ R d , so that ∀ t ∈ Z, X t+1 = E + A X t + L W t ∈ R Us×d , (4.2)
where is the 2-D space-only convolution (see Equation (2.2) for N 3 = 1). We denote by Xt the 2-D Fourier transform of X t (in the special case where

N 3 = 1, see Equation (2.1)). The AR recursion boils down to a low-dimensional d × d recursion for each frequency ω ∈ U s ∀ t ∈ Z, Xt+1 (ω) = Ê(ω) + Â(ω) Xt (ω) + L(ω) Ŵt (ω) ∈ C d (4.3) where Ê(ω) = N 1 N 2 e if ω = 0, 0 if ω = 0. (4.4)
The modulus of the eigenvalues of A needs to be strictly smaller than one. The following proposition summarizes the main properties of AR(1) processes. Proposition 4.1. An AR(1) process (X t) t satisfying Equation (4.1) exists if

∀ ω ∈ U s , Â(ω) ∈ ∆ d where ∆ d = a ∈ C d×d : ∀ i = 1, . . . , |λ i (a)| < 1 (4.5)
where (λ i (a)) d i=1 ⊂ C is the set of eigenvalues of a matrix a ∈ C d×d . Its distribution N (m, C) is then uniquely defined and it is space and time stationary Gaussian. Its mean satisfies

∀ p ∈ U, m(p) = (Id d×d -Â(0)) -1 e ∈ R d . Its covariance C is a convolution with kernel C = (C t) t ∈ R Us×Z . Each 2-D (space only) Fourier transform matrix Ĉt (ω) ∈ C d×d is Ĉt (ω) =    β(Â(ω), B(ω)), if t = 0 A(ω) t Ĉ0 (ω) if t > 0 Ĉ0 (ω)A(ω) -t, * if t < 0
where for a ∈ ∆ d and for a symmetric b ∈ C d×d , β = β(a, b) ∈ C d×d is the unique (symmetric) matrix which is solution to the linear equation

β = aβa * + b. (4.6)
Proof. These are classical results on multichannel AR models, here we only sketch the proof. We refer for instance to [START_REF] Ljung | System Identification: Theory for the User[END_REF] for more details about AR models and their properties. We consider an AR(1) process satisfying

∀ t ∈ Z, x t+1 = ax t + w t ∈ C d with w t ∼ N (0, b)
where a, b ∈ C d×d . In our case, for some ω, x t = Xt (ω), a = Â(ω) and b = B(ω). If such an (x t) t∈Z exists and is stationary,

E(x t) = m ∈ C d and E((x t+1 -m)(x t+1 -m) *) = aE((x t -m)(x t -m) *)a * + E(w t w *
t) and thus the covariance β of x t , for any t, satisfies T a (β) = b where T a (β) = β -aβa * . Denoting by (u i ∈ C d) d i=1 and (λ i ∈ C) d i=1 the eigenvectors and eigenvalues of a, one verifies that for all (i, j) ∈ {1, . . . , d} 2 , u i u * j ∈ C d×d are the eigenvectors of T a , with corresponding eigenvalues 1 -λ i λ * j . Since these eigenvalues are non-vanishing, T a is invertible and β is uniquely defined. A recursion shows that the covariance between pairs of frames satisfies, for δ ≥ 1

E((x t+δ -m)(x t -m) *) = aE((x t+δ-1 -m)(x t -m) *) = a δ β
(and similarly for δ ≤ 0).

The fast decay of this covariance as δ increases shows that this equation defines a covariance with bounded 2 norm on C d×Z , and that the corresponding Gaussian process satisfies by construction the recursion.

Note that condition (4.5) is a sufficient condition to ensure existence of a stationary AR process.

4.2. Pre-processing. The input exemplar is a video f0 = (f0,t) N3-1 t=0 ∈ R Us×N3×d of N 3 frames. If f0 is not periodic in space, we extract its periodic component, similarly to (3.1), but only in space, since the estimation process for the AR model does not use a Fourier transform in time. We thus solve (3.1) independently for each t, which reads

∀ t = 0, . . . , N 3 -1, ∆f 0,t = ∆ i f0,t mean(f 0,t) = mean(f0,t). (4.7)
Similarly to (3.2), this computation can be carried over in

O(N 1 N 2 N 3 d log(N 1 N 2))
operations over the Fourier domain, with N 1 N 2 as the size of U s .

4.3. Learning texture parameters. Without loss of generality, we assume that the mean of the AR(1) process is zero, so that e = 0 and the input exemplar is pre-processed by removing its empirical mean. The parameters (A, B) of the model are learned from the pre-processed exemplar f 0 = (f 0,t) N3-1 t=0 ∈ R Us×N3×d of N 3 sample frames. We follow [START_REF] Doretto | Dynamic textures[END_REF] and we compute an estimate by solving the Yule-Walker equations [START_REF] Pandit | Time Series and System Analysis with Applications[END_REF], which can be shown to be a consistent estimator when N 3 → +∞.

Learning A. The first step, the estimation of A, can be understood as a least square estimate assuming B = 0

min A N3-2 t=0 f 0,t+1 -Af 0,t 2 .
Since the model is assumed to be stationary, it has the form (4.3), and the estimation can be performed independently over each frequency ω ∈ U s min

Â(ω)∈C d×d N3-2 t=0 f0,t+1 (ω) -Â(ω) f0,t (ω) 2 .
for which the solution can be computed in closed form by inverting a small d × d matrix

∀ ω ∈ U s , Â(ω) = N3-2 t=0 f0,t+1 (ω) f0,t (ω) * N3-2 t=0 f0,t (ω) f0,t (ω) * -1 (4.8)
Learning B. Once A is known, the parameter B is estimated from the residual

∀ t = 0, . . . , N 3 -2, R t = f 0,t+1 -Af 0,t
which should be distributed according to N (0, B). One thus estimates B using the MLE estimator of a Gaussian process which is stationary in space from the time samples. This reads

∀ ω ∈ U s , B(ω) = 1 N 3 -1 N3-2 t=0
Rt (ω) Rt (ω) * .

(4.9)

4.4. AR-Texton. The SVD decomposition of B(ω) reads

∀ ω, B(ω) = V (ω) diag(ρ 1 (ω), . . . , ρ d (ω)) V (ω) * ∈ C d×d
where (ρ 1 (ω), . . . , ρ d (ω)) ∈ R d + are the eigenvalues of B(ω), and V (ω) ∈ C d×d is the unitary matrix of eigenvectors.

We denote by L the canonical texton (compare to (3.6) for the SN case) associated to B

L(ω) = V (ω) diag(ρ 1 (ω) 1/2 , . . . , ρ d (ω) 1/2) V (ω) * ∈ C d×d . (4.10)
We call the pair (A, L) the AR-texton associated to the AR model.

4.5.

Resizing. The texton (A, L) can be resized to any new spatial domain Ũs = {0, . . . , Ñ1 -1} × {0, . . . , Ñ2 -1} by cropping/zero-padding the initial kernels (A, L) into (Ã, L)

∀ x ∈ Ũs , Ã(x) = A(x) if x ∈ U s , 0 otherwise, (4.11)
(and similarly for L).

4.6. Texture Synthesis. Once the texton (Ã, L) has been learned, a texture f is obtained by sampling the model (4.3) from an initial time t 0 ∀ t ≥ t 0 , f t+1 = A f t + L w t where w t ≡ N (0, Id (d× Ũs)×(d× Ũs)) (4.12)

where f t0 is drawn from any distribution (for instance f t0 = 0). We should note that a resulting texture is sampled from a time-stationary process only in the limit t 0 → -∞. In practice, only a few time steps t 0 ≤ t < 0 are needed to reach almost stationarity. We thus initialize the sampling at some initial time t 0 , we generate Ñ3 + t 0 frames, and then discard the first |t 0 | samples, so we just consider

f = (f t) Ñ3-1 t=0
where Ñ3 is the number of desired frames. The speed of convergence is related to the decay of the covariance in time, although it is beyond the scope of this paper to make a detailed analysis of this behavior. In the numerical tests, we observed that the synthesized textures converge to an almost time stationary process very quickly, and we use |t 0 | = 10.

5.

Numerical Results for Synthesis. In this section, following a brief introduction of the experimental setup, we discuss the performance of spot noise textons, AR textons and compare them with the results obtained by Doretto et al. in [START_REF] Doretto | Spatially homogeneous dynamic textures[END_REF].

Experimental setup. Even though there are several dynamic texture data sets, such as for instance DynTex [START_REF] Péteri | DynTex: a comprehensive database of dynamic textures[END_REF] and DynTex++ [START_REF] Ghanem | Phase based modelling of dynamic textures[END_REF], none is available both for the analysis and synthesis of SDTs. In order to test the synthesis algorithm, we compiled a data set of SDTs containing 35 different color dynamic textures. Each sequence is of spatial size 64 × 64 pixels and with 100 frames.

Comparing SN and AR textons. Comparing SN and AR synthesis. It is important to realize that over the spatial domain, SN and AR covariances have the same type of covariance parameterization. The main difference lies in the temporal domain. The SN is a non-parametric model with many degrees of freedom, while the AR(1) model performs an aggressive compression of the representation using only two parameters per time course and frequency. To our surprise, we found that the AR(1) model is still capable of capturing all the dynamics we considered in our data set, and in particular we found no noticeable difference with respect to the results obtained with the SN method. This is illustrated on Figure 5.2. Our partial understanding is that AR(1) perfectly captures translational behavior, which is somehow dominant in most natural videos.

Comparing AR-textons with LDS [START_REF] Doretto | Spatially homogeneous dynamic textures[END_REF]. We now compare our method with the one proposed in [START_REF] Doretto | Spatially homogeneous dynamic textures[END_REF], which uses multiscale autoregressive models. Figure 5.2 shows the synthesized results for two dynamic sequences: waterfall and fire (courtesy of Doretto et al. [START_REF] Doretto | Spatially homogeneous dynamic textures[END_REF]). Both models capture the temporal and spatial stationarity of the exemplar. They produce quite similar results on these sequences and they both exhibit artifacts when the input texture is not stationary, as can be observed on the results of the fire sequence, Figure 5.2 (right).

6. Geodesic Mixing Two Gaussian Models. In this section, we discuss the problem of mixing two textures, which corresponds to computing the geodesics be- tween two Gaussian models according to some distance between distributions. We give the explicit solution of this problem in the case of the L 2 optimal transport (OT) distance for SN models. Moreover, we give an approximate solution for AR models by approximating the full distribution of the space-time video by the distribution of two consecutive frames.

6.1. Optimal transport distance. We consider two distributions µ 0 , µ 1 defined on R P , for instance P = N d when dealing with dynamic textures. The square of the L 2 OT distance between two distributions is defined as

d OT (µ 0 , µ 1) 2 = min Z∈C(µ0,µ1) R P ×R P y 0 -y 1 2 dP Z (y 0 , y 1),
where Z ∈ C(µ 0 , µ 1) is a joint distribution having marginal distributions µ 0 , µ 1 , i.e.

U ×R P dP Z (y 0 , y 1) = µ 0 (U), and for all measurable sets U, V ⊂ R P . Intuitively, d OT (µ 0 , µ 1) measures the amount of work (supposed to be proportional to the squared L 2 distance) needed to displace the mass of the distribution µ 0 onto the mass of µ 1 . More details about OT can be found for instance in [START_REF] Villani | Topics in Optimal Transportation[END_REF].

R P ×V dP Z (y 0 , y 1) = µ 1 (V)
The OT distance between Gaussian distributions µ i = N (m i , C i), i = 0, 1 can be computed explicitly as

d OT (µ 0 , µ 1) 2 = tr(C 0 + C 1 -2C 0,1) + m 0 -m 1 2 , (6.1)
where

C 0,1 = (C 1/2 1 C 0 C 1/2 1) 1/2 , (6.2)
where A 1/2 is the unique semi-definite positive square root of a symmetric semidefinite positive matrix A. See for instance [START_REF] Dowson | The fréchet distance between multivariate normal distributions[END_REF] for a proof of this result. When (C i) i=0,1 diagonalize in the same orthogonal basis, with eigenvalues (λ k i) P k=1 , then the OT distance between (

µ i = N (m i , C i)) i=0,1 is d OT (µ 0 , µ 1) 2 = m 0 -m 1 2 + P k=1 λ k 0 -λ k 1 2 .

Geodesic Interpolation.

Barycentric interpolation between two distributions. We consider a distance d between distributions (for instance d = d OT). A barycentric path linking µ 0 to µ 1 is defined as

∀ ρ ∈ [0, 1], µ ρ = argmin µ (1 -ρ) d(µ 0 , µ) 2 + ρ d(µ 1 , µ) 2 , (6.3)
where ρ ∈ [0, 1] → µ ρ parameterizes the path (we assume existence and uniqueness of such minimizer). Connection with geodesics. The OT distance is a geodesic distance, as detailed for instance in [START_REF] Villani | Topics in Optimal Transportation[END_REF]Section 5.1]. This means that d OT (µ 0 , µ 1) is equal to the length of the shortest path ρ → µ ρ (the so-called geodesic path) between µ 0 and µ 1 , i.e.

d OT (µ 0 , µ 1) = argmin (µρ) ρ∈[0,1] L dOT (µ ρ) ρ∈[0,1]
where the length of a path (µ ρ) ρ∈[0,1] for a metric d is

L d (µ ρ) ρ∈[0,1] = inf K∈N * ,0=t0<t1<...<t K =1 K k=1 d(µ t k-1 , µ t k).
In this case, d OT (µ 0 , µ 1) = L dOT (µ ρ) where µ ρ solves (6.3) and is a geodesic path.

OT Geodesics of Gaussian Distributions.

The following proposition shows that the set of Gaussian distributions is geodesically convex for the OT-distance, see [START_REF] Takatsu | Wasserstein geometry of Gaussian measures[END_REF]. Proposition 6.1.

Let µ i = N (m i , C i) for i = 0, 1 be two Gaussian distributions in R P . If ker(C 0) ∩ ker(C 1) ⊥ = {0}, ker(C 1) ∩ ker(C 0) ⊥ = {0}, (6.4)
we define a Gaussian distribution

µ ρ = N (m ρ , C ρ) with ∀ ρ ∈ [0, 1], m ρ = (1 -ρ) m 0 + ρ m 1 , C ρ = [(1 -ρ) Id P ×P +ρΠ]C 0 [(1 -ρ) Id P ×P +ρΠ], (6.5
)

where Π = C 1/2 1 C + 0,1 C 1/2 1 (6.6)
with C 0,1 defined by Equation (6.2), A + is the Moore-Penrose pseudo-inverse of a matrix A. It is the unique Gaussian OT-geodesic between µ i for i = 0, 1.

To prove Proposition 6.1, we will need the following technical lemma: Lemma 6.2. If condition (6.4) holds, then Im(C 0,1) = Im(C 1). Proof. To prove Lemma 6.2, we first recall that C 0,1 = (C

1/2 1 C 0 C 1/ 2
1) 1/2 is a symmetric matrix. Hence, it is diagonalizable in an orthonormal basis, and thus we deduce that Im(C 0,1) = Im((C 0,1) 2) = Im(C

1/2 1 C 0 C 1/2 1). Now, let us prove that Im(C 1/2 1 C 0 C 1/2 1) = Im(C 1)
. From the rank-nullity theorem applied to the restriction of C 0 to Im(C 1) and denoted by T 0 , we have that rank(C 1) = rank(T 0) + dim(ker(T 0)) = rank(T 0) ≤ rank(C 0) (using the first condition of (6.4) which can be rewritten into ker(C 0) ∩ Im(C 1) = {0} since C 1 is symmetric). But using the rank-nullity theorem applied to the restriction of C 1 to Im(C 0) and denoted by T 1 , we have that rank(C 0) = rank(T 1) ≤ rank(C 1) (with the second condition of (6.4)).

Hence, we deduce that rank(C 0) = rank(T 0) = rank(C 1) = rank(T 1). We therefore have Im(C 0 C 1) = Im(C 0) and Im(C 1 C 0) = Im(C 1). Since Im(C 1) = Im(C 1/2 1) (C 1 being a symmetric matrix), this concludes the proof.

Proof. We can now prove Proposition 6.1. The linear interpolation of the mean is a well known result, see [START_REF] Villani | Topics in Optimal Transportation[END_REF]. We thus assume that m 0 = m 1 = 0. The proof follows the one in [START_REF] Takatsu | Wasserstein geometry of Gaussian measures[END_REF] taking extra care of the rank-deficient matrix case. Classical results (see e.g. [START_REF] Villani | Topics in Optimal Transportation[END_REF]Section 2.4]) ensure that a map T : R P → R P is an L 2 OT between µ 0 and µ 1 if and only if T is the gradient of a convex function and T µ 0 = µ 1 (where is the push-forward operator). An OT geodesic between µ 0 and µ 1 is then defined by µ ρ = ((1 -ρ) Id P ×P +ρT) µ 0 . In our case, if the transport is linear, this means that T is symmetric and T C 0 T = C 1 . We first prove that Π defined in (6.6) satisfies this equality. Indeed, we know from Lemma 6.2 that Im(C 0,1) = Im(C 1) and hence

ΠC 0 Π = C 1/2 1 (C 1/2 0,1) + C 0,1 (C 1/2 0,1) + C 1/2 1 = C 1/2 1 Proj Im(C1) C 1/2 1 = C 1 (6.7)
where Proj Im(C1) is the orthogonal projector on Im(C 1). A Gaussian barycenter necessarily corresponds to a transport Π which is linear from Im(C 0) to Im(C 1). It satisfies ΠC 0 Π = C 1 = ΠC 0 Π, and hence, by uniqueness of the matrix square root, C

1/2 0 ΠC 1/2 0 = C 1/2 0 ΠC 1/2 0 .
Then, Π and Π are equal on Im(C 0) and thus changing Π by Π in (6.5) defines the same geodesic C ρ .

When C 0 or C 1 are full rank, the geodesic µ ρ is known to be unique, and it is thus the one defined in (6.5).

When C 0 and C 1 diagonalize in the same ortho-basis of R P , C ρ diagonalizes in the same basis and its eigenvalues (λ k ρ) P k=1 are

∀ k = 1, . . . , P, λ k ρ = (1 -ρ) λ k 0 + ρ λ k 1 .
(6.8)

6.4. Comparison with Other Metrics. While we focus our attention on the OT interpolation of Gaussian models, many other distances could be used as well. Let us however stress several key features that make the use of OT appealing:

• The set of Gaussian distributions is geodesically convex.

• The geodesic path µ ρ can be computed in closed form, see (6.5).

• The distance is defined and finite even for rank-deficient covariances (such as the SN covariance for color texture, see (3.5)). • The geodesic between rank-r covariances is rank-r, which is exploited in Section 6.5 when computing the geodesic of SN models in the case r = 1 (rank-1 covariances). To gain a better insight into this interpolation, let us focus in the special case of a 1-D Gaussian (P = 1), and compare OT with other interpolations. In this case, Linear interpolation. A naive interpolation consists in performing a linear averaging of the densities. This results in a Gaussian mixture (with two mixtures) that is no longer Gaussian. This is illustrated on Figure 6.1, middle.

µ i = N (m i , C i) for i = 0, 1 where m i ∈ R and C i = σ 2 i where σ i ∈ R + is the standard deviation. Optimal Transport interpolation. The OT interpolation N (m ρ , C ρ = σ 2 ρ) defines a linear segment in the half plane (m, σ) ∈ R × R + ∀ ρ ∈ [0, 1], (m ρ , σ ρ) = (1 -ρ)(m 0 , σ 0) + ρ(m 1 , σ 1).
Fisher-Rao interpolation. As detailed in [START_REF] Atkinson | Rao's distance measure, Sankhya[END_REF], the Fisher-Rao (FR) geodesic of 1-D Gaussians satisfies

∀ ρ ∈ [0, 1], (m FR ρ , σ FR ρ) = (m FR -λ cos(ϕ ρ), λ sin(ϕ ρ)) (6.9)
where ∀ ρ ∈ (0, 1), ϕ ρ = (1 -ρ)ϕ 0 + ρϕ 1 (6.10)

λ 2 = σ 2 0 + ((m 0 -m 1) 2 -(σ 2 0 -σ 2 1)) 2 4(m 0 -m 1) 2 (6.11) m FR = m 0 + m 1 2 + σ 2 0 -σ 2 1
2(m 0 -m 1) (6.12)

∀ i = 0, 1, ϕ i = sin -1 (σ i /λ). (6.13)
Here, ϕ i is defined in the interval]0, π 2] if m i ≥ m FR and in] π 2 , π], otherwise. Geometrically, (m FR ρ , σ FR ρ) draws an arc jointing µ 0 and µ 1 with radius λ and centered on (m FR , 0). It corresponds to a geodesic in a space with negative curvature (see [START_REF] Amari | Differential-geometrical methods in statistics[END_REF]), as opposed to the OT geometry which has positive curvature (and which is actually Euclidean in the 1-D (m, σ) parameters).

Moreover, it is worth noticing that no explicit formula is known for the FR geodesic for dimensions greater that 1, when the distributions do not have the same mean. Figure 6.1, right, shows the FR interpolation of the densities. OT interpolation (6.5) Linear interpolation Fisher-Rao interpolation (6.9) Figure 6.1: Comparison of different geodesic interpolations for (m 0 , σ 0) = (0, 0.5) and (m 1 , σ 1) = (9, 1.5).

6.5. SN Model Geodesics. We denote N (m, C) = S(f 0) a SN texture learned from an input exemplar f 0 ∈ R U ×d . Its mean and covariance are thus defined by (3.3) and (3.5).

SN models are geodesically convex. The following theorem shows that if the input models µ 0 , µ 1 are spot noise, then the geodesic interpolation is also a spot noise. In other words, the SN texture model is geodesically convex. Theorem 6.3. For i = 0, 1, let µ i = S(f i) be two spot noise distributions. We suppose that ∀ω, f1 (ω) * f0 (ω) = 0. (6.14)

The OT geodesic path µ ρ defined in (6.5) is a spot noise model µ ρ = S(f ρ) associated with the image f ρ defined as

∀ ρ ∈ [0, 1], f ρ = (1 -ρ) f 0 + ρ g 1 , (6.15)
where g 1 is computed from f 1 as

∀ ω, ĝ1 (ω) = f1 (ω) f1 (ω) * f0 (ω) | f1 (ω) * f0 (ω)| . (6.16)
Proof. The covariance operator C i of µ i is a matrix-convolution operator, and its associated kernel C i has the following Fourier transform Ĉi (ω) = fi (ω) fi (ω) * ∈ C d×d .

(6.17)

Thus, the symmetric operator Π defined in Equation (6.6) is also a matrix convolution Πg = π g whose kernel π has a Fourier transform defined as

π(ω) = Ĉ1/2 1 (ω) (Ĉ1/2 1 (ω) Ĉ0 (ω) Ĉ1/2 1 (ω)) 1/2 + Ĉ1/2 1 (ω).
Note that the square root of a rank-1 matrix can be easily computed as

∀ u ∈ C d , (uu *) 1/2 = 1 |u| uu * ∈ C d×d .
Using this property, together with Equation (6.17), denoting u i = fi (ω), one proves that

π(ω) = 1 |u * 1 u 0 | u 1 u * 1 (u 1 u * 1) + u 1 u * 1 = u 1 u * 1 |u * 1 u 0 | . (6.18)
Observe that although the matrix u 1 u * 1 is non invertible, the above expression is correct because the mapping π(ω) is zero on the orthogonal of u 1 .

The expression in Equation (6.5) of the covariance C ρ implies that it is also a matrix-convolution operator with kernel C ρ defined over the Fourier domain as

Ĉρ (ω) = fρ (ω) fρ (ω) * ∈ C d×d , where fρ (ω) = [(1 -ρ) Id d×d +ρπ(ω)]u 0 ∈ C d .
Thus, using the expression (6.18) for π(ω), one has that µ ρ = S(f ρ) is a spot noise model associated to the image f ρ , which is defined in the Fourier domain as

fρ (ω) = (1 -ρ) f0 (ω) + ρ f1 (ω) * f0 (ω) | f1 (ω) * f0 (ω)| f1 (ω) ĝ1(ω) ∈ C d .
Condition (6.14) imposes that, at each frequency, the covariances of the models associated to f 0 and f 1 should not be orthogonal to each others. This is likely to be the case for generic images. If this condition is not satisfied for a large number of frequencies, this implies that the two SN models considered are very different, and that computing geodesics is an ill-posed problem.

Gray-scale SN model geodesic. For gray-scale textures d = 1, so (6.16) leads to

µ ρ = S(K ρ) where K ρ = (1 -ρ)K 0 + ρK 1 ,
where K i is the grayscale texton associated to f i , as defined in [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF] ∀ ω, Ki (ω) = | fi (ω)|.

Note that for this case, the OT geodesic path boils down to the Euclidean path between textons.

SN geodesics and synthesis. Theorem 6.3 details how to compute f ρ which parameterizes the geodesic path as a spot noise µ ρ = S(f ρ). Thus, texture synthesis can be performed from the geodesic model by essentially replacing f 0 by f ρ in the framework described in Section 3. This is detailed in Algorithm 3.

Algorithm 3: SN Geodesic Path Synthesis

Input: exemplars (f0 , f1) ∈ R U ×d , weight ρ ∈ [0, 1]. Output: sample f ∈ R Ũ ×d of the geodesic SN model.
1. Pre-processing. Compute (f 0 , f 1) from (f0 , f1) using (3.2). 2. SN mixing. Compute f ρ from (f 0 , f 1) using (6.15). 3. Texture synthesis. Apply steps 3, 4 and 5 of Algorithm 1 with f ρ instead of f 0 .

6.6. AR Model Geodesics. Recall that according to (4.3), for each frequency ω ∈ U s , a stationary AR(1) process follows the AR [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF]

recursion in C d ∀ t ∈ Z, x t+1 = ax t + wt ∈ C d (6.19)
where a = Â(ω) ∈ C d×d , x t = Xt (ω), wt ∼ N (0, B(ω)). Since the model is separable across frequencies, we will focus on computing the geodesic of a AR(1) model in small dimension C d parameterized by (a, b).

The set of AR models is not geodesically convex. While SN distributions are geodesically convex for the OT distance, it is not the case for the set of AR(1) distributions. To illustrate this fact, let us consider a 1-D AR(1) process (x t) t∈Z following (6.19), where (a, b) ∈ R 2 with |a| < 1. In this case, the covariance C ∈ R Z×Z is stationary, i.e. C(t, t) = C(t -t) and its power spectrum (which are the eigenvalues of the covariance operator) satisfies

∀ ω ∈ R/Z, Ĉ(ω) = t∈Z C(t)e 2ıπtω = γ a,b (ω) where γ a,b (ω) = b 2 1 + |a| 2 -2a cos(2πω)
.

Considering two AR(1) models parameterized by the coefficients (a 0 , b 0) ∈ R 2 and (a 1 , b 1) ∈ R 2 , and since both covariances diagonalize in the same Fourier basis t ∈ Z → e 2ıπtω indexed by ω ∈ R/Z, formula (6.8) shows that the OT barycenter between these two AR(1) distributions has a covariance C ρ with the following power spectrum density

∀ ρ ∈ [0, 1], ∀ ω ∈ R/Z, Ĉρ (ω) = (1 -ρ) γ a0,b0 (ω) + ρ γ a1,b1 (ω) 2 .
Ĉρ (ω) cannot be written in the form γ aρ,bρ (ω) for some coefficients (a ρ , b ρ) ∈ R 2 , thus the OT geodesic is in general not an AR(1) model.

Low-dimensional covariance embedding.

A brute force way to impose that the geodesic is an AR(1) model, is to restrict the solution of the optimization (6.3) to the AR(1) process set. This leads to an intractable highly non-convex problem. Instead, we propose here to use a simple approximation that works well in our numerical experiments.

The basic idea is that, the set of AR(1) models (x t) t on C d ×Z is in bijection with a subset of Gaussian processes on C 2d , and an explicit bijection is given by the selection of two consecutive frames (x t) t∈Z → (x 0 , x 1), where we have arbitrarily chosen the frames indexed by t = 0 and t = 1. Note that this is formally a map between random vectors. The following proposition shows how to compute the covariance of this pair of frames and how to invert the corresponding embedding.

Proposition 6.4. The covariance Γ(a, b) of (x 0 , x 1) defines the map

Γ : (a, b) ∈ ∆ d × S + d → β(a, b) aβ(a, b) β(a, b)a * β(a, b) ∈ U d ⊂ C 2d×2d
where ∆ d is defined in (4.5) and S + d is the set of symmetric positive definite matrices, and

U d = β c c * β ∈ C 2d×2d : β ∈ S + d , c ∈ C d×d .
We define

Γ -1 : β c c * β ∈ U d → (a = cβ -1 , b = β -aβa * = β -cβ -1 c *).
This map satisfies

Γ -1 • Γ = Id (∆ d ×S + d)×(∆ d ×S + d) .
Proof. The expression of the covariance Γ(a, b) is a direct consequence of Proposition 4.1. For b ∈ S + d , β = aβa * + b is the sum of a semi-definite positive matrix with a positive definite matrix, hence also positive definite. Thus, Γ(a, b) ∈ U d . The inversion formula for Γ -1 follows from this, using the fact that β is invertible.

Note that we restrict our attention to noise covariances b ∈ S + d that are full rank. It is certainly possible to weaken this assumption and still be able to define an inverse map Γ -1 .

Approximate AR geodesic through embedding. For any covariances (C i) i=0,1 , let us denote

C ρ = Bar ρ (C 0 , C 1)
where C ρ is the covariance of the geodesic of (µ i = N (0, C i)) i=0,1 with weight ρ, that minimizes (6.3) and that can be computed in closed form with expression (6.5).

We compute an approximate geodesic of AR models parameterized by (a i , b i) i=0,1 by, first computing the barycenter over the embedding domain after the application of Γ, and then, lifting back to the set of AR models using Γ -1 . Formally, this reads

∀ ρ ∈ (0, 1), (a ρ , b ρ) = Γ -1 (Bar ρ (Γ(a 0 , b 0), Γ(a 1 , b 1))) .
(6.20)

The property Γ

-1 • Γ = Id (∆ d ×S + d)×(∆ d ×S + d) guarantees that ρ ∈ (0, 1) → (a ρ , b ρ) interpolates between (a i , b i) for i = 0, 1.
Denoting

∀ i ∈ {0, 1}, Γ(a i , b i) = β i c i c * i β i ∈ U d , one easily sees that the barycenter is in U d , ∀ ρ ∈ [0, 1], Bar ρ (Γ(a 0 , b 0), Γ(a 1 , b 1)) = β ρ c ρ c * ρ β ρ .
AR barycenters and synthesis. Algorithm 4 describes the steps for mixing and synthesizing texture when using AR models. It operates by applying Equation (6.20) to each spatial frequency, and then using the synthesis framework described in Section 4. instead of (A, B).

Algorithm 4: AR Geodesic Path Synthesis

Input: exemplars (f0 , f1) ∈ R U ×d , weight ρ ∈ [0, 1]. Output: sample f ∈ R Ũ ×d of
6.7. Numerical Results for Geodesics. In this section, we show some results obtained with the OT-geodesic mixing method. Note that we experiment both on static and dynamic textures.

Mixing static SN models. Each row of Figure 6.2 corresponds to a single experiment. Given two input textures (f0 , f1), the texture models µ(f i) i=0,1 are learned for both input, and then several models µ(f ρ) were interpolated along the path between models µ(f 0) and µ(f 1). Detailed numerical procedures are given in Algorithm 3. In this experiment, we take ρ ∈ { k 8 , k = 0, 1, 2, . . . , 8}. The resulting images are shown on the first row of Figure 6.2. Note that the images on the extreme left and right of each row correspond to ρ = 0, 1 respectively, which are instances of the original models. We would like to point out how these instances are perceptually similar to the original input textures.

With respect to the interpolated models and their instances, there are two effects that we would like to underline. First of all, the color changes gradually as we move along the geodesic path, see Figure 6.2 for examples. Secondly, there is a continuous morphing between the spatial patterns of the exemplar due to a change in the covariance matrix. As we move along the geodesic path, the models mix in a different proportion the spatial patterns of the original textures. This is specially visible in the first rows, where diagonal features progressively replace the isotropic structure of the grass.

We compare our results with those achieved by the state-of-the-art method proposed in [START_REF] Soheil | Image Melding: Combining Inconsistent Images using Patch-based Synthesis[END_REF] named Image Melding, which mixes two textures by a patch-based approach. More details about the implementations can be found in [START_REF] Soheil | Image Melding: Combining Inconsistent Images using Patch-based Synthesis[END_REF], and we use the same ρ values as mentioned before. Figure 6.2(b) displays the texture mixing results by Image Melding. Comparing with the results in Figure 6.2(a), we can see that the interpolation of color or spatial patterns is worse than the one obtained by the proposed OT-geodesic method. Note however that [START_REF] Soheil | Image Melding: Combining Inconsistent Images using Patch-based Synthesis[END_REF] reports mixing results on structured images, which cannot be handled by our approach. Mixing dynamic AR and SN models. Figure 6.3 shows a similar experiment for dynamic textures. Each row corresponds to a single video, where every image is a single frame, ordered from left to right. (a) shows the results obtained with SN models, and (b) shows the results obtained with AR models. Given two input textures (f0 , f1), both AR texture models (a i , b i) i=0,1 are learned, and then several (a ρ , b ρ) are interpolated along the path between these two models. We take ρ = { k 7 , k = 0, 1, . . . , 7}. Detailed numerical procedures are given in Algorithm 4. Note how the colors, spatial patterns, and motion are interpolated, and how both methods produce visually similar results.

7. Barycenter Mixing of Several Gaussian Models. This section extends the construction of Section 6 to the case of mixing an arbitrary number of Gaussian models. The computation is however more involved since no closed form is known for the OT barycenter. 1, the barycenter according to some distance d is defined as

µ ρ = argmin µ i∈I ρ i d(µ i , µ) 2 . (7.1)
Note that when |I| = 2, one recovers the definition (6.3). Note that ρ ∈ (R +) I is now a vector of barycentric coordinates (which differs from Section 6 where ρ was a single scalar). We now recall a result proved in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF]. Proposition 7.1. If at least one of the C i has full rank, then the OT barycenter µ ρ of (µ i = N (m i , C i)) i∈I exists, is unique, and is a Gaussian process N (m ρ , C ρ) where

m ρ = i∈I ρ i m i
and C ρ is the unique solution of the following fixed point equation

Φ(C ρ) = C ρ where Φ(C) = i∈I ρ i C 1/2 C i C 1/2 1/2 . (7.2)
An open problem is to determine under which hypothesis the barycenter is still unique, when all the covariances C i are rank-deficient, which is the case when averaging SN models. In the case |I| = 2, Proposition 6.1 ensures that this is the case under a restriction on the kernel of the covariances.

In Figure 7.1, we illustrate and compare the barycenters of three 2-D Gaussians (displayed at the vertexes of a triangle) (a),(d) for the Euclidean-distance, (b),(e) for the Fisher-Rao-distance, and (c),(f) for the OT-distance. Note that each edge of the triangle corresponds to a geodesic between two 2-D Gaussian distributions. A covariance C is represented using its associated unit ball (an ellipse) x ∈ R 2 : x * Cx ≤ 1 . The Euclidean barycenter does not maintain the rank-1 property, and ellipses obtained as barycenters are more "round". The Fisher-Rao barycenter is not defined for rank-1 covariances, and tends to become ill-posed as the covariance becomes rank deficient. In contrast, the OT barycenter maintains the rank-1 property along the edges of the triangle, and becomes full rank only near the center of the triangle.

Barycenter of SN Models.

Fixed point equation. The following proposition, which is a direct consequence of Proposition 7.1, describes the barycenter of SN models using a series of fixed point equation over the Fourier domain.

Proposition 7.2. If (µ i = N (m i , C i)) i∈I are stationary Gaussian processes, a barycenter satisfies

∀ ω ∈ U, Ĉρ (ω) = Φ ω (Ĉρ (ω)) (7.3)
where

Φ ω : c ∈ C d×d → i∈I ρ i c 1/2 Ĉi (ω)c 1/2 1/2 ∈ C d×d .
We note that in general, µ ρ is not spot noise because Ĉρ (ω) is not necessarily rank one.

Numerical scheme. In general, put aside the case where the covariances Ĉi (ω) diagonalize in the same bases, or the case |I| = 2 (see Theorem 6.3), it is not possible to solve the fixed point equation (7.3) in closed form.

Following [START_REF] Knott | On a generalization of cyclic monotonicity and distances among random vectors[END_REF], we propose to approximate Ĉρ (ω) by iterating the mapping Φ ω . Formally, for each ω ∈ U , we initialize Ĉ(0) ρ (ω) (for instance using Ĉi (ω) for some i ∈ I) and then iterate

∀ ≥ 0, Ĉ(+1) ρ (ω) = Φ ω (Ĉ() ρ (ω)). (7.4)
We observe numerically the convergence

Ĉ() ρ (ω) →+∞ -→ Ĉρ (ω)
where Ĉρ (ω) is the Fourier transform of the kernel of a barycenter covariance C ρ . Note that the mapping Φ ω is not strictly contracting, but we conjecture that some iterate Φ ω • . . . • Φ ω of this mapping is contracting (as it is the case in dimension d = 1), although we were not able to prove it in arbitrary dimension d > 1.

The numerical computation of Φ ω in the case d = 3 requires the computation of the square root of 3 × 3 matrices, which is performed explicitly by computing the eigenvalues of the symmetric matrix as the root of a third order polynomial. Algorithm 5 details the method.

Algorithm 5: SN Barycenter Synthesis

Input: exemplars (fi ∈ R U ×d) i∈I , weight (ρ i) i∈I ∈ (R +) I with i ρ i = 1. Output: sample f ∈ R Ũ ×d of
C ρ = Bar ρ (C i) i∈I
where C ρ is the covariance of the barycenter µ ρ = N (0, C ρ) of (µ i = N (0, C i)) i∈I with weight ρ, that minimizes (7.1) and can be computed using the iterations of the mapping Φ defined in (7.3).

We compute an approximate OT barycenter of the AR models using the lowdimensional mapping exposed in Section 6.6. This corresponds to computing the AR textons (A ρ , B ρ) of the barycenter as ∀ ω ∈ U s , ∀ ρ ∈ (R +) I , (Âρ (ω), Bρ (ω)) = Γ -1 Bar ρ (Γ(Âi (ω), Bi (ω))) i∈I . (7.5) Algorithm 6 details the whole process. 1. Pre-processing. Compute (f i) i∈I from (fi) i∈I using (3.2). 2. AR texton learning. For i ∈ I, learn (A i , B i) using (4.8) and (4.9). 3. AR mixing. Compute the mixed parameter (A ρ , B ρ) by applying (7.5) for each ω ∈ U s . 4. Texture synthesis. Apply steps 4 and 5 of Algorithm 2 with (A ρ , B ρ) instead of (A, B).

7.4. Numerical Results for Barycenter Mixing. This section shows some numerical results obtained with the barycenter mixing method with three input textures. Given the input textures (f 0 , f 1 , f 2), we first learn their Gaussian models (SN or AR), and then compute the weighted barycenters with Algorithm 5 (for SN) and Algorithm 6 (for AR). Figure 7.2 displays the barycentric coordinates ρ = (ρ 0 , ρ 1 , ρ 2) ∈ R 3 on a triangle, whose vertexes correspond to ρ = (1, 0, 0), ρ = (0, 1, 0), and ρ = (0, 0, 1), respectively. We illustrate the method by navigating along two straight paths s → ρ(s) that are displayed on the same figure.

Figure 7.3 displays the results obtained on static textures for the AR barycenters, along the two paths. Note how the synthesized textures obtained from the models that are not located at the vertexes have mixed colors and texture patterns.

Figure 7.4 displays the results obtained with dynamic textures mixing using the AR barycenter method. Each column corresponds to a single video, where every image is a single frame, ordered by time from top to bottom. The results obtained with the SN barycenter are visually similar.

Conclusion.

This paper has introduced two compact representations of stationary static and dynamic textures. These representations correspond to two different parameterizations of Gaussian processes. Experimental results demonstrate that the proposed methods are quite effective at describing sequences which exhibit temporal and spatial regularity. Moreover, the computational complexity of the proposed algorithms for texture synthesis is low. While both methods tend to produce visually similar results on our numerical examples, their parameterization, and thus their typical usage, are different. Only the SN model can be used for static textures. The AR model is probably the most appropriate for dynamic textures with simple temporal patterns, since it offers the most compact representation using only 2-D textons. On the other hand, the SN model requires the computation of a full 3-D texton, but is able to capture arbitrary Gaussian models.

The second main contribution of this paper is a new method for texture mixing that enables the creation of new textures from a set of exemplars. It is based on optimal transport, which provides a mathematically sound way to interpolate between distributions. A major feature of this method is that it is robust to rank-deficient covariances which is crucial given that our texture model is inherently rank-deficient, and rank-deficient models appear often when learning from a small number of exemplars. The numerical results show how the method successfully merges the visual features of the original images into new complex patterns. These contributions pave the way to several potential future works beside texture synthesis and mixing. The computation of compact texture representations could be used for dynamic textures recognition and video compression. The ability to perform model averaging is a key ingredient for un-supervised learning algorithms (e.g. for clustering tasks), such as for instance in the celebrated k-means algorithm.

Figure 5 .

 5 1 presents the SN-textons and ARtextons learned from the two exemplar textures moving goldenlines and waterfall. It shows the fast decay in space and time of the learned textons. Observe that the SNtextons are six 3-D space-time filters, while the AR-textons are six 2-D spatial filters. Instead of showing all the 6 filters, (b) and (c) only display the diagonal elements (r, g, and b for the red, green and blue channels, which results in a color image) of the textons.

(a) 2

 2 consecutive frames of the exemplar textures video f 0 : goldenlines and waterfall (b) 2 frames of the diagonal elements (Kr,r, Kg,g, K b,b) of the learned 3D canonical SN-texton. (c) The diagonal elements ((A, L)r,r, (A, L)g,g, (A, L) b,b) of the learned 2D AR-texton.

Figure 5 . 1 :

 51 Figure 5.1: Learned textons from two stationary dynamic textures. (a) two consecutive frames of the original texture videos. (b)two consecutive frames of the diagonal elements (K r,r , K g,g , K b,b) of the learned canonical SN-texton; (c) diagonal elements (A r,r , A g,g , A b,b) and (L r,r , L g,g , L b,b) of the learned canonical AR-texton.

(a) 3

 3 consecutive frames of the input videos. (b) 3 frames of SN-texton synthesis (c) 3 frames of AR-texton synthesis (d) 3 frames of synthesis with [9].

Figure 5 . 2 :

 52 Figure 5.2: Results on stationary dynamic texture synthesis using SN-textons, ARtextons and the method proposed by Doretto et al. [9].

Figure 6 .

 6 Figure 6.1, left, shows the resulting interpolation, which clearly shows the translation of the Gaussian mean.

 ρ = 0 ρ = 1/7 ρ = 2/7 ρ = 3/7 ρ = 4/7 ρ = 5/7 ρ = 6/7 ρ = 1 (a) static texture mixing of spot noise models. (b) static texture mixing via Image Melding.

Figure 6 . 2 :

 62 Figure 6.2: Results obtained with OT texture mixing. In (a), each texture was synthesized from the SN models along the OT-geodesic. Comparison results of texture mixing using Image Melding [35] are displayed in (b).

7. 1 .

 1 Optimal Transport Barycenter of Gaussian Distributions. Given a family of Gaussian distributions (µ i) i∈I and weights ρ = (ρ i) i∈I with ρ i ≥ 0, i ρ i = ρ = 0 ρ = 1/7 ρ = 2/7 ρ = 3/7 ρ = 4/7 ρ = 5/7 ρ = 6/7 ρ = 1 (a) dynamic texture mixing of SN models. (b) dynamic texture mixing of AR models.

Figure 6 . 3 :

 63 Figure 6.3: Example of dynamic texture mixing of SN and AR models. From left to right, the weight ρ takes values in { k 7 , k = 0, 1, . . . , 7}. From top to bottom, 3 frames of each synthesized dynamic texture are displayed.

Figure 7 . 1 :

 71 Figure 7.1: Comparison of different barycenters obtained from three 2-dimensional Gaussian distributions defined with the same mean vector but different covariance matrices, µ i = N (m, C i), i = 0, 1, 2. (a, b, c) Barycenters of three Gaussian distributions with almost rank-1 covariance matrices. (d, e, f) Barycenters of three full rank covariances.

Algorithm 6 :

 6 AR Barycenter SynthesisInput: exemplars (fi ∈ R U ×d) i∈I , weight (ρ i) i∈I ∈ (R +) I with i ρ i = 1. Output: sample f ∈ R Ũ ×d of the barycentric AR model.

f 0 f 1 f 2 Figure 7 . 2 :

 272 Figure 7.2: Left: (ρ 0 , ρ 1 , ρ 2) barycentric coordinates together with the two paths s → ρ(s) used in our experiments. Right: input textures (f 0 , f 1 , f 2) used for the experiments showed on Figure 7.3. Each row corresponds to a single experiment, where (f 0 , f 1 , f 2) are the exemplar textures located at the vertexes of the triangle.

 Barycenter texture mixing of the three texture models in the 1 st set. (b) Barycenter texture mixing of the three texture models in the 2 nd set. (c) Barycenter texture mixing of the three texture models in the 3 rd set.

Figure 7 . 3 :

 73 Figure 7.3: SN barycenter texture mixing of three texture models, using different input exemplar sets (f 0 , f 1 , f 2) shown in Figure 7.2, right. In each sub-figure, the top row displays the mixing along the path ρ(s) = (1 -s, s/2, s/2), and the bottom row displays the mixing on the path ρ(s) = (s/2, 1 -s, s/2), where s ∈ [0, 1] parameterizes the path.

 the geodesic AR model. 1. Pre-processing. Compute (f 0 , f 1) from (f0 , f1) using (3.2). 2. AR textons learning. For i = 0, 1, learn (A i , B i) using (4.8) and (4.9). 3. AR mixing. Learn the mixed parameter (A ρ , B ρ) by applying(6.20) to each ω ∈ U s , with (a ρ , b ρ) (Âρ (ω), Bρ (ω)). 4. Texture synthesis. Apply steps 4 and 5 of Algorithm 2 with (A ρ , B ρ)

 the barycentric SN model. 1. Pre-processing. Compute (f i) i∈I from (fi) i∈I using (3.2). 2. SN mixing. Compute C ρ from (C i) i∈I using the iterations (7.4). 3. Texture synthesis. Apply steps 3, 4 and 5 of Algorithm 1 with C ρ instead of C. 7.3. Barycenter of AR Models. For any covariance (C i) i∈I , let us denote

This work has been supported by the European Research Council (ERC project SIGMA-Vision) and the French National Research Agency (project NatImages).