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SYNTHESIZING AND MIXING STATIONARY
GAUSSIAN TEXTURE MODELS∗

GUI-SONG XIA† , SIRA FERRADANS‡ , GABRIEL PEYRÉ§ , AND

JEAN-FRANÇOIS AUJOL¶

Abstract. This paper addresses the problem of modeling textures with Gaussian processes,
focusing on color stationary textures that can be either static or dynamic. We detail two classes
of Gaussian processes parameterized by a small number of compactly supported linear filters, the
so-called textons. The first class extends the spot noise (SN) texture model to the dynamical setting.
We estimate the space-time texton to fit a translation-invariant covariance from an input exemplar.
The second class is a specialization of the auto-regressive (AR) dynamic texture method to the setting
of space and time stationary textures. This allows one to parameterize the covariance with only a
few spatial textons. The simplicity of these models allows us to tackle a more complex problem,
texture mixing which, in our case, amounts to interpolate between Gaussian models. We use optimal
transport to derive geodesic paths and barycenters between the models learned from an input data
set. This allows the user to navigate inside the set of texture models and perform texture synthesis
from each new interpolated model. Numerical results on a library of exemplars show the ability of
our method to generate arbitrary interpolations among unstructured natural textures. Moreover,
experiments on a database of stationary textures show that the methods, despite their simplicity,
provide state of the art results on stationary dynamical texture synthesis and mixing.

Key words. Texture analysis, texture synthesis, texture mixing, Gaussian process, dynamic
textures, optimal transport.

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. This paper studies the analysis, synthesis and mixing of both
static and dynamic textures. Textures play an important role in visual perception and
image or video understanding. Static textures typically capture the surface properties
of objects, while dynamic textures occur in many natural physical phenomena (such
as rain, snow, or smoke).

1.1. Stationary Texture Modeling. The modeling of textures is a longstand-
ing and central problem in image processing, computer vision, and computer graphics.
While it is difficult to give a strict mathematical definition of textures, most proposed
methods tackle their analysis and synthesis using random distributions. The process
of modeling a texture amounts first, to learn the underlying random process from a
given exemplar image, and then, to develop algorithms to draw new samples from the
learned distribution.

This paper concentrates on the modeling and mixing of both stationary static
textures (SSTs) and stationary dynamic textures (SDTs). Stationary textures have
been widely investigated especially after Julesz’s conjecture [20], which states that
humans cannot distinguish between textures with identical second-order statistics.
Even though, he proved this conjecture false in the general case [21], it still hold for a
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large class of textures. Although a complex natural image is usually inhomogeneous
due to the presence of objects and occlusions, it can often be considered as being
locally statistically homogeneous. Furthermore, it is also reasonable to assume that
the dynamical statistics of images created by natural phenomena (such as smoke,
snow, waterfall, etc.) are stationary in time.

1.2. Previous Works.
Texture synthesis. Patch-based methods are adapted to complicated geometric

textures, see e.g. [15]. Statistical parametric models are generally not as good in
handling complex texture patterns, but they are more flexible and fast, see for in-
stance [30]. This paper concentrates on a simple statistical texture model, namely
stationary Gaussian distributions, following and extending the spot noise (SN) model
initiated in [16]. For dynamic texture, we also consider Gaussian auto-regressive (AR)
models as initially proposed in [10], which restricts the class of covariances but is well
suited to model natural phenomena.

Modeling stationary dynamic textures. Early attempts to model SDTs include
the spatio-temporal autoregressive (STAR) model [37], which creates local space-
time models for individual pixels relying on their 3-D causal neighborhood. Bar-
Joseph et al. [4] use a 3-D wavelet transform to construct multi-resolution trees for
synthesizing dynamic textures. Following the idea of Efros and Leung [14], patch-
based methods can be adapted to synthesize stationary dynamic textures, see for
instance [42, 23]. Doretto et al. [12, 11] extend their initial AR models using stationary
multi-scale AR models. In this paper, we consider a more direct approach to build
stationary AR models using convolutive iterations, which leads to a more compact
and simpler parameterization of the models. Recently, a compact Gaussian texton has
been proposed for stationary 2-D textures [7], and we extend it to dynamic models.

Texture mixing. Mixing texture models requires to design algorithms to average
distributions estimated from several input exemplars. The simplest approach consists
in using mixture of distributions, see for instance [5]. The use of non-parametric
histogram averaging has also been proposed for grayscale images [25] as well as color
and wavelet features [31]. Ruiters et. al. [35] propose a patch-based approach for
texture interpolation. Darabi et. al. [36] report state-of-the-art results on texture
mixing using the patch match method. Mixtures of Gaussians have been used to
interpolate between AR models [6], which leads to non-Gaussian sets of models. In
contrast, we propose a method based on the theory of optimal transport to ensure
that the texture models stay Gaussian during interpolation. We also expose how to
apply this optimal transport methodology to Gaussian AR models, which resembles
previous works on the geometry of AR manifolds [32, 33, 39].

Optimal transport (OT) [41] has been used intensively in computer vision as a
metric between statistical features [34]. It has been much less used in computer graph-
ics for image processing and synthesis, with the notable exception of [31], that handles
statistical constraints for synthesis using a non-parametric point cloud discretization.
Note that Gaussian OT has been used for color manipulation [29] but never to achieve
image modeling nor synthesis.

1.3. Contributions. The first set of contributions of this paper is the devel-
opment of two novel Gaussian texture models. The first one extends the spot noise
(SN) model of Galerne et. al. [16] to the setting of dynamic textures. The second
one is a specialization of the auto-regressive (AR) model of Dorreto et. al. [10] to
the setting of spatially stationary textures. We show how both models are param-
eterized by a localized set of filters called textons. Our second set ofcontributions
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is a novel framework to interpolate between two (geodesic computation) and several
(barycenter computation) Gaussian texture models. This texture mixing method is
based on displacement interpolation in the optimal transport manifold of Gaussian
distributions. Finally, we show the versatility of this novel set of methods, which
make explicit use of the stationarity assumption to enable fast algorithms for both
analysis and synthesis. The source code to reproduce the figures of this article, as
well as a database of stationary dynamic textures, synthesis and mixing results, are
available online1

2. Stationary Stochastic Modeling of Textures.

2.1. Notations. In this paper, we denote deterministic images and videos, cor-
responding to samples of textures, by f ∈ RU×d (d = 1 for gray-scale data and d = 3
for color ones). We denote by f(p) ∈ Rd the value at some space or space-time pixel
p ∈ U , with U = {0, . . . , N1 − 1} × {0, . . . , N2 − 1} × {0, . . . , N3 − 1}, where N1 ×N2

is the spatial size of the data, and N3 is the number of frames (size in time) of the
data, i.e. for static textures N3 = 1. We denote by N = N1N2N3 the total number
of voxels. Moreover, when we deal with space-time input data, we also rewrite the
coordinates p as p = (x, t), where x ∈ Us = {0, . . . , N1 − 1} × {0, . . . , N2 − 1} is the
2-D indexes in space and t ∈ {0, . . . , N3 − 1} is the 1-D indexes in time.

Fourier transform. A basic tool for the analysis and synthesis of stationary tex-
ture models is the discrete Fourier transform. The Fourier transform f̂ = F(f) ∈
RU×d of a static or dynamic texture f ∈ RU×d is

∀ω ∈ U, f̂(ω) =
∑
p∈U

f(p) · e−2ıπ〈p, ω〉 ∈ Rd where 〈p, ω〉 =

d∑
k=1

ωkxk
Nk

. (2.1)

The transformed texture f̂ is computed in O(Nd log(Nd)) operations using the Fast
Fourier Transform (FFT), and this transform is inverted with the same complexity
using the inverse discrete Fourier transform written as

∀ p ∈ U, f(p) =
1

N

∑
ω∈U

f̂(ω) · e2ıπ〈p, ω〉.

Convolution. The space-time convolution of two textures f, g ∈ RU×d is defined
as

∀ p ∈ U, (f ? g)(p) =
∑
p′∈U

f(p− p′) · g(p′) (2.2)

where · is the entry-wise multiplication of vectors in Cd. It can be equivalently
computed over the Fourier domain as

∀ω ∈ U, ĥ(ω) = f̂(ω) · ĝ(ω) where h = f ? g. (2.3)

A matrix convolution kernel is C = (C(p))p∈U ∈ RU×d×d where each C(p) ∈
Rd×d. The convolution between such a kernel and a texture g ∈ RU×d is defined as

∀ p ∈ U, (C ? g)(p) =
∑
p′∈U

C(p− p′)g(p′) ∈ Rd, (2.4)

1http://www.ceremade.dauphine.fr/~peyre/codes/

http://www.ceremade.dauphine.fr/~peyre/codes/
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and can be computed over the Fourier domain as

∀ω ∈ U, ĥ(ω) = Ĉ(ω)ĝ(ω) where h = C ? g, (2.5)

where Ĉ is obtained by applying the Fourier transform to each of the d × d entries
of C.

2.2. Stationary Gaussian Processes. We model a texture using a random
vector X, which is a mapping X : Ω → RU×d from (Ω,P) (a fixed probability space
with probability P) to RU×d. This random vector thus maps some ω ∈ Ω to a
realization Xω ∈ RU×d which is a deterministic image or video denoted by f . Each
coordinate defines a random variable X(p) : Ω→ Rd.

In the following, we consider a Gaussian random vector X, which follows a Gaus-
sian distribution µ = N (m, C) with mean m = E(X) ∈ RU×d and positive semi-definite
covariance C ∈ RUd×Ud

∀ (p, p′) ∈ U2, C(p, p′) = E
[
(X(p)−m(p))(X(p′)−m(p′))∗

]
∈ Rd×d

where E is the expected value and v∗ ∈ C1×d is the transposed complex conjugate
vector of v ∈ Cd,. This covariance C can be thought of as a (Nd)× (Nd) matrix or as
a collection of matrices C(p, p′) ∈ Rd×d for (p, p′) ∈ U × U . The covariance operator
is applied to a texture f ∈ RU×d as

∀ p ∈ U, y(p) = (Cf)(p) =
∑
p′∈U

C(p, p′)f(p′). (2.6)

Stationarity of such a Gaussian texture model means that X has the same distri-
bution as X(·+τ) for any shift τ ∈ U , where we assume periodic boundary conditions.
It is also equivalent to imposing that the mean is a constant vector

∀ p ∈ U, m(p) = m ∈ Rd

and that the covariance matrix C satisfies

∀ (p, p′) ∈ U2, C(p, p′) = C(p− p′) ∈ Rd×d

where C ∈ RU×(d×d) is the associated convolution kernel. It means that Cf = C ? f
where ? is the convolution (2.4) between a kernel and a texture f ∈ RU×d.

Distribution vs. realizations. In the following, if µ is a distribution (e.g. µ =
N (m, C)), we denote X ∼ µ when the random vector X has distribution µ. We
denote f ≡ µ when the (deterministic) vector f is sampled according to a random
vector having distribution µ.

3. Spot Noise Texture Models. This section introduces the first Gaussian
texture model considered in the paper. It is the Spot Noise (SN) model originally
considered by Galerne et al. [17] that we introduce and motivate differently for static
textures and extend to dynamic textures. We define the canonical texton inspired
that extend the one of Desolneux et al. [8, 9] to the dynamic setting. This texton
is useful when performing model resizing, and it will also be important to perform
texture mixing (see Section 6).

Given an exemplar texture f0 ∈ RU×d, the texture analysis problem corresponds
to estimating the parameters m and C of a stationary Gaussian model µ = N (m, C)
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from f0. The synthesis problem simply corresponds to sampling the distribution to
obtain a realization f from µ.

The whole pipeline (analysis and synthesis) for the SN model is summarized
in Algorithm 1. The following part of the section describes in detail each step of the
process. Note that some steps (e.g. model resizing and synthesis) will be re-used
when performing more complicated tasks such as texture mixing.

It should be noted that the synthesis step of our algorithm is slightly different
from the original one in Galerne et al. [17]. Indeed, only gray-scale noise is used for
the sampling in [17]. In contrast we use a d-dimensional white noise w. This leads to
a computational complexity overhead, that is required to be able to handle non-Spot
Noise model (which corresponds to non rank-1 matrices Ĉ(ω)). They are generated
when using texture mixing, or when using more complicated covariance estimators
than the empirical covariance.

Algorithm 1: SN Texture Analysis and Synthesis

Input: exemplar f̃0 ∈ RU×d.
Output: sample f ∈ RŨ×d of the SN model.

1. Pre-processing. Compute f0 from f̃0 using (3.2).
2. SN texture analysis. Compute C from f0 using (3.5).
3. SN texton computation. Compute the canonical texton K from C:

• if C is a SN covariance (step 2. has been used), use (3.8),
• otherwise use (3.7).

4. Model resizing. Compute K̃ from K using (3.9).
5. Texture synthesis. Compute f from K̃:

• for periodic time synthesis, use (3.10),
• for infinite time synthesis (causal texton), use (3.11).

3.1. Pre-processing. For the ease of exposition and computational simplicity,
we assume periodic boundary conditions. To reduce boundary artifacts during the
estimation process, we use as a pre-processing step the method of Moisan [26] to
extract the periodic component f0 = Per(f̃0) of an arbitrary input texture f̃0 ∈ RU×d.

For the sake of completeness, we recall that this periodic component is computed
by solving a Poisson equation{

∆f0 = ∆if̃0
mean(f0) = mean(f̃0),

(3.1)

where ∆ is the discrete periodic Laplacian with periodic boundary conditions while
∆i is computed with non-periodic boundary conditions

∆f(p) = Card(N ) · f(p)−
∑

p′−p∈N
f(p)

∆if(p) = Card((p+N ) ∩ U) · f(p)−
∑

p′∈(p+N )∩U

f(p′).

Here, N is the 4-connected (resp. 6-connected) neighborhood for static (resp. for
dynamic) textures ; while (p+N ) ∩ U denotes the neighborhood of p inside U . The
problem in Equation (3.1) can be solved in O(dN log(dN)) operations over the Fourier
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domain as

f̂0(ω) =


1

2d−2
∑d
i=1 cos

(
2πωi
Ni

)∆̂if(ω), if ω 6= 0,

Nmean(f̃0), if ω = 0,
(3.2)

see [26] for more details.

3.2. Spot Noise Texture Analysis. Spot Noise (SN) models, first introduced
by Wijk [40] are Gaussian distributions for which the power spectra is equal to the
empirical power spectra of some input exemplar. These models have been rigorously
studied and extended to color textures by Galerne et al. [17]. They can be equivalently
described as a random convolution of each channel of the exemplar with the same
gray-scale white noise.

Given some deterministic input exemplar f0 ∈ RU×d, we thus estimate the mean
of the Gaussian model N (m, C) as the empirical mean

∀ p ∈ U, m(p) = m =
1

N

∑
p′∈U

f0(p′). (3.3)

We also estimate the kernel C of the covariance matrix C using the empirical covari-
ance, which is also known as the empirical periodogram

∀p, p′ ∈ U, C(p) =
1

N

∑
p′∈U

(f0(p)−m)(f0(p′ + p)−m)∗ ∈ Rd×d, (3.4)

where v∗ is the transpose of v ∈ Rd. This estimator can also be understood as the
maximum likelihood estimator (MLE) of the covariance matrix from a sample f0.

The correlation C is the auto-correlation of the input exemplar C = f0 ? f̄0 where
f̄0(p) = f0(−p). Its Fourier spectrum is composed of rank-1 matrices, which offers a
convenient way to estimate the kernel in O(Nd log(Nd)) operations

∀ω 6= 0, Ĉ(ω) =
1

N
f̂0(ω)f̂0(ω)∗. (3.5)

and Ĉ(0) = 0. Imposing that Ĉ(ω) is rank-1 is actually a necessary and sufficient
condition to be a SN model for some image f0.

3.3. Texton Computation.
Generic texton. Following [8], we define a texton as a basic element that param-

eterizes a Gaussian texture model. This texton parameterization is useful to perform
texture synthesis, since it allows for a painless resizing of texture models. And it is
also at the heart of the texture mixing method described in the following sections. A
texton K ∈ RUd×Ud associated to a Gaussian distribution N (m, C) is any matrix such
that C = KK∗.

In the case of a stationary Gaussian process, the covariance C is a convolution
operator (see (2.6)). A texton is thus any convolution operator K with convolution
kernel K which Fourier transform satisfies

Ĉ(ω) = K̂(ω)K̂(ω)∗, where K̂(ω) ∈ Cd×d.

Recall that Ĉ is the Fourier transform of the correlation kernel C and that it is
defined in (2.5). It is thus possible to compute a texton using for instance a Cholesky
decomposition of Ĉ(ω), see for instance [18].
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Canonical texton – general case. Following [9], we define a texton which is uniquely
associated to a given texture model. The canonical texton K associated to a Gaussian
distribution N (m, C) is its unique real and symmetric positive texton.

We denote the SVD factorization of Ĉ(ω) by

Ĉ(ω) = Q̂(ω) diag(λ1(ω), . . . , λd(ω))Q̂(ω)∗ ∈ Cd×d (3.6)

where (λ1(ω), . . . , λd(ω)) ∈ Rd+ are the eigenvalues value of K̂(ω), and Q̂(ω) ∈ Cd×d
is the unitary matrix of eigenvectors.

The canonical texton can be computed in O(Nd log(Nd)) operations over the
Fourier domain,

K̂(ω) = Q̂(ω) diag(λ1(ω)1/2, . . . , λd(ω)1/2)Q̂(ω)∗ ∈ Cd×d (3.7)

which only involves the diagonalization of d× d matrices.
This canonical texton K can thus be stored as a set (K(p)i,j)1≤i≤j≤d of d(d+1)/2

filters, and together with m they completely characterize a Gaussian texture model.
Note also that this canonical texton is in general different from the rank-1 color texton
introduced in [8].

Canonical texton – SN case. When the model N (m, C) is a SN model learned
from some input exemplar f0, the covariance frequencies are rank-1 (see (3.5)). The
canonical texton, that we call SN-texton, obeys the same property, and it can be
computed in the Fourier domain as

∀ω, K̂(ω) =
1√
N

f̂(ω)f̂(ω)∗

|f̂(ω)|
∈ Cd×d. (3.8)

where |v| is the modulus of v. In the special case when d = 1 (gray-scale images), one
obtains the original texton introduced by Moisan [8]

∀ω, K̂(ω) =
1√
N
|f̂(ω)| ∈ R+,

that has several interesting optimality properties in term of compactness, see [8]. It
is unclear wether similar properties also hold in the vectorial case.

The obtained SN-Texton K ∈ RN×d is a set of d(d+ 1)/2 space-time 3-D filters.
An example of such SN-Textons is displayed in Figure 5.1. The numerical experi-
ments presented in Section 5 show that, in practice, the obtained SN-Texton is highly
compact in space and time.

3.4. Model Resizing. An important requirement of texture synthesis methods
is to be able to generate texture of an arbitrary size (Ñi)

d
i=1. Let us denote by Ũ the

new pixel domain of dimension N =
∏
i Ñi, and its associated Gaussian distribution

N (m̃, C̃) where m̃ ∈ RŨd and C̃ ∈ RŨd×Ũd, which can either extrapolate (when Ñi >
Ni) or restrict (when Ñi < Ni) the initial model.

Since m(p) = m is constant, one defines m̃(p) = m. A naive approach to obtain C̃
would be to either crop or zero-pad the original covariance C. This is not an acceptable
method, since C̃ would not be positive and symmetric, in general. Following the idea
introduced in [8] for the rank-1 color-texton, we propose to crop or zero pad the kernel
K associated to the canonical texton K.

Another reason for introducing a pixel domain Ũ that differs from the initial
domain U is to ensure causality of the covariance factorization, meaning K(x, t) = 0
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when t ≤ 0. Denoting Ñ3 the number of time frames of the cropped texton, one can
simply perform a time-shift of the texton (which does not modify the covariance C̃),
which is equivalent to not centering the texton at 0.

We thus denote by δ = (δx, δt) the center of the target domain Ũ , where usually
δx = 0 and, to compute a time causal texton, δt = −Ñ3/2. The resized and translated
texton is

∀ p ∈ Ũ , K̃(p) =

{
K(p− δ) if p− δ ∈ U,
0 otherwise.

(3.9)

3.5. Texture Synthesis. When the texton K̃ of a model µ = N (m, C̃) has been
defined (either as the SN texton of an input texture, or from the mixing process
described in the following sections), one can easily perform texture synthesis. This
corresponds to computing a sample f ∈ RU×d drawn from the distribution µ. De-
pending on the properties of the texton (spacial extent and/or time causality), one
can use either Fourier-based, convolution-based, or a mixed formulation.

Time-periodic synthesis. A time-periodic synthesis is achieved in O(Nd log(Nd))
operations by sampling independently each Fourier frequency as follows

∀ω ∈ U, f̂(ω) =

{
Nm if ω = 0,̂̃K(ω)ŵ(ω) if ω 6= 0

where w ≡ N (0, IdUd×Ud) (3.10)

where ≡ means “sampled from” (i.e. it is a realization, not a random variable).
Infinite time synthesis. We assume that the resized texton K̃ has been shifted so

that it is causal, i.e. K(x, t) = 0 for t ≤ 0. This allows us to generate the texture
f(x, t) = ft(x) in a frame-by-frame manner using, for each time step, noise blocks of
reduced size

wt = (w
(1)
t , . . . , w

(Ñ3)
t ) ∈ RÑ1×Ñ2×Ñ3×d where w

(k)
t ≡ N (0, IdÑ1×Ñ2

).

For each t ≥ 0, the sampled frame is computed as

ft = m +

Ñ3∑
k=1

w
(k)
t ? K(·, 1− k) (3.11)

where ? is the 2-D space-only convolution that can be implemented using either the
spatial definition of the convolution (see (2.2) in the special case N3 = 1) or the
Fourier domain formulation (see (2.3)).

The block of noise is then updated by a time-shift and by adding new noise w(0)

wt+1 = (w(0), w
(1)
t , . . . , w

(Ñ3−1)
t ) where w(0) ≡ N (0, IdÑ1×Ñ2

).

4. Auto-regressive Texture Models. We now introduce our second Gaussian
texture model, which is a specialization of the auto-regressive (AR) model of Doretto
et al. [11] to the setting of stationary random fields. A chief advantage of this special-
ization is that it does not require a PCA dimensionality reduction since the texture
analysis is performed over the 2-D reduced frequency domain, and the synthesis is
achieved using fast spatial convolutions. This setting differs significantly from the
stationary model introduced in [12] which makes use of complicated tree-based spa-
tial AR model. Our numerical tests reported in Section 5 seem to indicate that our
method gives results visually similar to the ones presented by Doretto et al. in [12].
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While the SN model is non-parametric (under the condition that the covariance
has rank-1 frequencies), the AR model reduces drastically the number of free param-
eters by imposing a recursive relationship. We focus on the class of AR(1) models,
although a more general recurrence (AR(p) and ARIMA) could be treated exactly in
the same way.

The whole pipeline (analysis and synthesis) for the AR model is summarized
in Algorithm 2. The following sections describe in detail each step of the process.

Algorithm 2: Texture synthesis by using AR-textons

Input: exemplar f̃0 ∈ RU×d.
Output: sample f ∈ RŨ×d of the AR model.

1. Pre-processing. Compute f0 from f̃0 using (4.7).
2. SN texture analysis.

• Compute A from f0 using (4.8).
• Compute B from f0 and A using (4.9).

3. AR texton computation. Compute L from B using (4.10).
4. Model resizing. Compute (Ã, L̃) from (A,L) using (4.11).
5. Texture synthesis. Compute f from (Ã, L̃) using (4.12).

Remove the |t0| initial frames.

4.1. Stationary AR Processes. We consider an infinite time domain U =
Us × Z where Us = {1, . . . , N1} × {1, . . . , N2}. A Gaussian random vector X =
(Xt)t∈Z with values in RU×d is distributed according to an auto-regressive AR(1)
model parameterized by (A,B, E) if it satisfies

∀ t ∈ Z, Xt+1 = E +AXt + W̄t, (4.1)

where A,B : R(Usd)×(Usd) are space-only linear operators, E ∈ RUs , and W̄t ∼
N (0,B). If L is any texton factorization of B, i.e. B = LL∗, then one can write
W̄t = LWt for Wt ∼ N (0, IdUs×d).

To ensure that this AR process is stationary, we impose that the operators A, B,
and L are convolutions with their respective kernels A,B,L ∈ RUs×d, and that

∀ p ∈ Us, E(p) = e ∈ Rd,

so that

∀ t ∈ Z, Xt+1 = E +A ? Xt + L ?Wt ∈ RUs×d, (4.2)

where ? is the 2-D space-only convolution (see Equation (2.2) for N3 = 1). The
modulus of the eigenvalues of A needs to be strictly smaller than one.

We denote by X̂t the 2-D Fourier transform of Xt (in the special case where
N3 = 1, see Equation (2.1)). The AR recursion boils down to a low-dimensional d×d
recursion for each frequency ω ∈ Us

∀ t ∈ Z, X̂t+1(ω) = Ê(ω) + Â(ω)X̂t(ω) + L̂(ω)Ŵt(ω) ∈ Cd (4.3)

where Ê(ω) =

{
N1N2e if ω = 0,
0 if ω 6= 0.

(4.4)
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The following proposition summarizes the main properties of AR(1) processes.
Proposition 4.1. An AR(1) process (Xt)t satisfying Equation (4.1) exists if

∀ω ∈ Us, Â(ω) ∈ ∆d where ∆d =
{
a ∈ Cd×d \ ∀ i = 1, . . . , |λi(a)| < 1

}
(4.5)

where (λi(a))i=1d ⊂ C is the set of eigenvalues of a matrix a ∈ Cd×d. Its distribution
N (m, C) is then uniquely defined and it is space and time stationary Gaussian. Its
mean satisfies

∀ p ∈ U, m(p) = (Idd−Â(0))−1e ∈ Rd.

Its covariance C is a convolution with kernel C = (Ct)t ∈ RUs×Z. Each 2-D (space
only) Fourier transform matrix Ĉt(ω) ∈ Cd×d are

Ĉt(ω) =


β(Â(ω), B̂(ω)), if t = 0

A(ω)tĈ0(ω) if t > 0

Ĉ0(ω)A(ω)−t,∗ if t < 0

where for a ∈ ∆d and for a symmetric b ∈ Cd×d, β = β(a, b) ∈ Cd×d is the unique
(symmetric) matrix which is solution to the linear equation

β = aβa∗ + b. (4.6)

Proof. These are classical results on multichannel AR models, here we only sketch
the proof. We refer for instance to [24] for more details about AR models and their
properties. We consider an AR(1) process satisfying

∀ t ∈ Z, xt+1 = axt + wt ∈ Cd with wt ∼ N (0, b)

where a, b ∈ Cd×d. In our case, for some ω, xt = X̂t(ω), a = Â(ω) and b = B̂(ω). If
such an xt exists and is stationary, E(xt) = m ∈ Cd and

E((xt+1 −m)(xt+1 −m)∗) = aE((xt −m)(xt −m)∗)a∗ + E(wtw
∗
t )

and thus the covariance β of xt, for any t, satisfies Ta(β) = b where Ta(β) = β−aβa∗.
If one denotes (ui ∈ Cd)di=1 and (λi ∈ C)di=1 the eigenvectors and eigenvalues of a, one
verifies that for all (i, j) ∈ {1, . . . , d}2, uiu

∗
j ∈ Cd×d are the eigenvectors of Ta, with

corresponding eigenvalues 1 − λiλ∗j . Since these eigenvalues are non-vanishing, Ta is
invertible and β is uniquely defined. A recursion shows that the covariance between
pairs of frames satisfies, for δ ≥ 1

E((xt+δ −m)(xt −m)∗) = aE((xt+δ−1 −m)(xt −m)∗) = aδβ

(and similarly for δ ≤ 0).
The fast decay of this covariance as δ increases shows that this equation defines

a covariance with bounded `2 norm on Cd×Z, and that the corresponding Gaussian
process satisfies by construction the recursion.

4.2. Pre-processing. The exemplar is a video f̃0 = (f̃0,t)
N3−1
t=0 ∈ RUs×N3×d of

N3 frames. If f̃0 is not periodic in space, we extract its periodic component, similarly
to (3.1), but only in space, since the estimation process for the AR model does not
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use a Fourier transform in time. We thus solve (3.1) independently for each t, which
reads

∀ t = 0, . . . , N3 − 1,

{
∆f0,t = ∆if̃0,t
mean(f0,t) = mean(f̃0,t).

(4.7)

Similarly to (3.2), this computation can be carried over in O(Nd log(Nd)) operations
over the Fourier domain.

4.3. Learning texture parameters. Without loss of generality, we assume
that the mean of the AR(1) process is zero, so that e = 0 and the input exemplar is
pre-processed by removing its empirical mean. The parameters (A,B) of the model are
learned from the pre-processed exemplar f0 = (f0,t)

N3−1
t=0 ∈ RUs×N3×d of N3 sample

frames. We follow [11] and we compute an estimate by solving the Yule-Walker
equations [27], which can be shown to be a consistent estimator when N3 → +∞.

Learning A. The first step, the estimation of A can be understood as a least
square estimate assuming B = 0

min
A

N3−2∑
t=0

‖f0,t+1 −Af0,t‖2.

Since the model is assumed to be stationary, it has the form (4.3), and the estimation
can be performed independently over each frequency ω ∈ Us

min
Â(ω)∈Cd×d

N3−2∑
t=0

‖f̂0,t+1(ω)− Â(ω)f̂0,t(ω)‖2.

for which the solution can be computed in closed form by inverting a small d × d
matrix

∀ω ∈ Us, Â(ω) =

(
N3−2∑
t=0

f̂0,t+1(ω)f̂0,t(ω)∗

)(
N3−2∑
t=0

f̂0,t(ω)f̂0,t(ω)∗

)−1
(4.8)

Learning B. Once A is known, the parameter B is estimated from the residual

∀ t = 0, . . . , N3 − 2, Rt = f0,t+1 −Af0,t
which should be distributed according to N (0,B). One thus estimates B using the
MLE estimator of a Gaussian process which is stationary in space from the time
samples. This reads

∀ω ∈ Us, B̂(ω) =
1

N3 − 1

N3−2∑
t=0

R̂t(ω)R̂t(ω)∗. (4.9)

4.4. AR-Texton. The SVD decomposition of B̂(ω) reads

∀ω, B̂(ω) = V̂ (ω) diag(ρ1(ω), . . . , ρd(ω))V̂ (ω)∗ ∈ Cd×d

where (ρ1(ω), . . . , ρd(ω)) ∈ Rd+ are the eigenvalues of B̂(ω), and V̂ (ω) ∈ Cd×d is
the unitary matrix of eigenvectors.

We denote by L the canonical texton (compare to (3.6) for the SN case) associated
to B

L̂(ω) = V̂ (ω) diag(ρ1(ω)1/2, . . . , ρd(ω)1/2)V̂ (ω)∗ ∈ Cd×d (4.10)

We call the pair (A,L) the AR-texton associated to the AR model.
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4.5. Resizing. The texton (A,L) can be resized to any new spatial domain
Ũs = {0, . . . , Ñ1}×{0, . . . , Ñ2−1} by cropping/zero-padding the initial kernels (A,L)
into (Ã, L̃)

∀x ∈ Ũs, Ã(x) =

{
A(x) if p ∈ Us,
0 otherwise,

(4.11)

(and similarly for L).

4.6. Texture Synthesis. Once the texton (Ã, L̃) has been learned, a texture f
is obtained by sampling the model (4.3) from an initial time t0

∀ t ≥ t0, ft+1 = A ? ft + L ? wt where wt ≡ N (0, IdUs×d) (4.12)

where ft0 is drawn from any distribution (for instance ft0 = 0).
We should note that a resulting texture is sampled from a time-stationary process

only in the limit t0 → −∞. In practice, only a few time steps t0 ≤ t < 0 are needed
to reach almost stationarity. We thus initialize the sampling at some initial time t0,
we generate Ñ3 + t0 frames, and we then discard the first t0 samples, and we consider

f = (ft)
Ñ3−1
t=0 where Ñ3 is the number of desired frames.

5. Numerical Results for Synthesis. In this section, following a brief intro-
duction of the experimental setup, we discuss the performance of Spot Noise textons,
AR textons and compare them with the results obtained by Doretto et al. in [12].

Experimental setup. Though there are several dynamic texture datasets, such as
for instance DynTex [28] and DynTex++ [19], none is available both for the analysis
and synthesis of SDTs. In order to test the synthesis algorithm, we compiled a dataset
of SDTs containing 35 different color dynamic textures.Each sequence is of spatial size
64× 64 pixels and with 100 frames.

Comparing SN-textons with AR-textons. Figure 5.1 presents the SN-textons and
AR-textons learned from two exemplar textures moving goldenlines and waterfall,
respectively. It shows the fast decay in space and time of the learned textons. Observe
that the SN-textons are 6 3-D space-time filters, while the AR-textons are 6 2-D spatial
filters. Instead of showing all the 6 filters, (b) and (c) only display the diagonal
elements (r, g, and b for the red, green and blue channels, which results in a color
image) of the textons. Note that the synthesized results of these two Gaussian models
are visually comparable.

Comparing AR-textons with LDS [12]. We now compare our method with the
one proposed in [12], which uses multiscale autoregressive models. Figure 5.2 shows
the synthesized results for two dynamic sequences: waterfall and fire (courtesy of
Doretto et al. [12]). Both models capture the temporal and spatial stationarity of
the exemplar. They produce quite similar results on these sequences. Both exhibit
artifacts when the input texture is not stationary, which can be observed on the results
of the fire sequence, Figure 5.2 (right).

6. Geodesic Mixing Two Gaussian Models. In this section, we discuss the
problem of mixing two textures, which corresponds to computing the geodesics be-
tween two Gaussian models according to some distance between distributions. We
give the explicit solution of this problem in the case of the L2 optimal transport (OT)
distance for SN models. Moreover, we give an approximate solution for AR models
by approximating the full distribution of the space-time video by the distribution of
two consecutive frames.
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(a) 2 consecutive frames of the exemplar textures video f0: goldenlines and waterfall

(b) 2 frames of the diagonal elements (Kr,r, Kg,g , Kb,b) of the learned 3D canonical SN-Texton.

(c) The diagonal elements ((A,L)r,r, (A,L)g,g , (A,L)b,b) of the learned 2D AR-Texton.

Figure 5.1: Learned textons from two stationary dynamic textures. (a) 2 consecu-
tive frames of the original texture videos. (b) 2 consecutive frames of the diagonal
elements (Kr,r, Kg,g, Kb,b) of the learned canonical SN-texton; (c) diagonal elements
(Ar,r, Ag,g, Ab,b) and (Lr,r, Lg,g, Lb,b) of the learned canonical AR-texton.

6.1. Optimal transport distance. We consider two distributions µ0, µ1 de-
fined on RP , for instance P = Nd when dealing with dynamic textures. The square
of the L2 optimal transport (OT) distance between two distributions is defined as

dOT(µ0, µ1)2 = min
Z∈C(µ0,µ1)

∫
RP×RP

‖y0 − y1‖2dPZ(y0, y1),

where Z ∈ C(µ0, µ1) is a joint distribution having marginal distributions µ0, µ1, i.e.∫
U×RP

dPZ(y0, y1) = µ0(U), and

∫
RP×V

dPZ(y0, y1) = µ1(V )

for all measurable sets U, V ⊂ RP . Intuitively, dOT(µ0, µ1) measures the amount of
work (supposed to be proportional to the squared L2 distance) needed to displace the
mass of the distribution µ0 to the mass of µ1. More details about OT can be found
for instance in [41].
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(a) 3 consecutive frames of the input videos.

(b) 3 frames of SN-texton synthesis

(c) 3 frames of AR-texton synthesis

(d) 3 frames of synthesis with [12].

Figure 5.2: Results on stationary dynamic texture synthesis using SN-textons, AR-
textons and the method of [12].

The OT distance between Gaussian distributions µi = N (mi, Ci), i = 0, 1 can be
computed explicitly as

dOT(µ0, µ1)2 = tr(C0 + C1 − 2C0,1) + ‖m0 −m1‖2, (6.1)

where C0,1 = (C1/21 C0C
1/2
1 )1/2, (6.2)

where A1/2 is the unique semi-definite positive square root of a symmetric semi-
definite positive matrix A. See for instance [13] for a proof of this result.

When (Ci)i=0,1 diagonalize in the same orthogonal basis, with eigenvalues (λki )Pk=1,
then the OT distance between (µi = N (mi, Ci))i=0,1 is

dOT(µ0, µ1)2 = ‖m0 −m1‖2 +

P∑
k=1

(√
λk0 −

√
λk1

)2

.

6.2. Geodesic Interpolation.
Barycentric interpolation between two distributions. We consider a distance d

between distributions (for instance d = dOT). A barycentric path linking µ0 to µ1 is
defined as

∀ ρ ∈ [0, 1], µρ = argmin
µ

(1− ρ) d(µ0, µ)2 + ρ d(µ1, µ)2, (6.3)
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where ρ ∈ [0, 1] 7→ µρ parameterizes the path (we assume existence and uniqueness of
such minimizer).

Connection with geodesics. The OT distance is a geodesic distance. This means
that dOT(µ0, µ1) is equal to the length of the shortest path (the so-called geodesic
path) between µ0 and µ1, i.e.

dOT(µ0, µ1) = argmin
µρ

LdOT
(µρ)

where the length of a path for a metric d is

Ld(µ) = inf
K∈N∗,0=t0<t1<...<tK=1

K∑
k=1

d(µtk−1
, µtk).

In this case, dOT(µ0, µ1) = LdOT
(µρ) where µρ solves (6.3) and is a geodesic path.

6.3. OT Geodesics of Gaussian Distributions. The following proposition
shows that the set of Gaussian distributions is geodesically convex for the OT-distance,
see [38].

Proposition 6.1. If ker(C0) 6⊂ ker(C1)⊥ and rank(C0) ≥ rank(C1), we define a
Gaussian distribution µρ = N (mρ, Cρ) with

∀ ρ ∈ [0, 1],

{
mρ = (1− ρ)m0 + ρm1,
Cρ = [(1− ρ) Id +ρΠ]C0[(1− ρ) Id +ρΠ],

(6.4)

where Π = C1/21 C
+
0,1C

1/2
1 (6.5)

with C0,1 defined by Equation (6.2), A+ is the Moore-Penrose pseudo-inverse of a
matrix A. It is the unique Gaussian OT-geodesic between µi = N (mi, Ci) for i = 0, 1.

Proof. The linear interpolation of the mean is a well known result, see [41]. We
thus assume that m0 = m1 = 0. The proof follows the one in [38] taking extra care
of the rank-deficient matrix case. Classical results (see e.g. [41]) ensures that a map
T : RP → RP is an L2 OT between µ0 and µ1 if and only if T is the gradient of
a convex function and T]µ0 = µ1 (where ] is the push-forward operator). An OT
geodesic between µ0 and µ1 is then defined by µρ = ((1−ρ) Id +ρT )]µ0. In our case, if
the transport is linear, this means that T is symmetric and TC0T = C1. We first prove
that Π defined in (6.5) satisfies this equality. Indeed, condition ker(C0) 6⊂ ker(C1)⊥

and rank(C0) ≥ rank(C1) ensures that

ΠC0Π = C1/21 (C1/20,1 )+C1/20,1 (C1/20,1 )+C1/21 = C1/21 ProjIm(C1)C
1/2
1 = C1

where ProjIm(C1) is the orthogonal projector on Im(C1). A Gaussian barycenter nec-

essarily corresponds to a transport Π̃ which is linear from Im(C0) to Im(C1). It sat-
isfies Π̃C0Π̃ = C1 = ΠC0Π, and hence, by uniqueness of the matrix square root,

C1/20 Π̃C1/20 = C1/20 ΠC1/20 . Then, Π̃ and Π are equal on Im(C0) and thus changing Π by
Π̃ in (6.4) defines the same geodesic Cρ.

When C0 or C1 are full rank, the geodesic µρ is known to be unique, and it is thus
the one defined in (6.4). Note also that if the hypothesis rank(C0) ≥ rank(C1) is not
satisfied, one can exchange C0 and C1 and compute the geodesic Cρ after exchanging
ρ by 1− ρ.

When C0 and C1 diagonalize in the same ortho-basis of RP , Cρ diagonalizes in the
same basis and its eigenvalues (λkρ)Pk=1 are

∀ k = 1, . . . , P,
√
λkρ = (1− ρ)

√
λk0 + ρ

√
λk1 .
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6.4. Comparison with Other Metrics. While we focus our attention to the
OT interpolation of Gaussian models, many other distances could be used as well.
Let us however stress several key features that makes the use of OT appealing:

• The set of Gaussian distributions are geodesically convex.
• The geodesic path µρ can be computed in closed form, see (6.4).
• The distance is defined and finite even for rank-deficient covariances (such as

the SN covariance for color texture, see (3.5)).
• The geodesic between rank-r covariance is rank-r, which is exploited in Sec-

tion 6.5 when computing the geodesic of SN models in the case r = 1 (rank-1
covariances).

To gain a better insight about this interpolation, let us focus in the special case
of 1-D Gaussian (P = 1), and compare OT with other interpolations. In this case,
µi = N (mi, Ci) for i = 0, 1 where mi ∈ R and Ci = σ2

i where σi ∈ R+ is the standard
deviation.

Optimal Transport interpolation. The OT interpolation N (mρ, Cρ = σ2
ρ) defines

a linear segment in the half plane (m, σ) ∈ R× R+

∀ ρ ∈ [0, 1], (mρ, σρ) = (1− ρ)(m0, σ0) + ρ(m1, σ1).

Figure 6.1, left, shows the resulting interpolation, which clearly shows the translation
of the mean of the Gaussian.

Linear interpolation. A naive interpolation consists in performing a linear aver-
aging of the densities. This results in a Gaussian mixture (with two mixtures) that
is no longer Gaussian. This is illustrated on Figure 6.1, middle.

Fisher-Rao interpolation. As detailed in [3], the Fisher-Rao (FR) geodesic of 1-D
Gaussian satisfies

∀ ρ ∈ [0, 1], (mFR
ρ , σFR

ρ ) = (mFR − λ cos(ϕρ), λ sin(ϕρ)) (6.6)

where ∀ ρ ∈ (0, 1), ϕρ = (1− ρ)ϕ0 + ρϕ1 (6.7)

λ2 = σ2
0 +

((m0 −m1)2 − (σ2
0 − σ2

1))2

4(m0 −m1)2
(6.8)

mFR =
m0 + m1

2
+

σ2
0 − σ2

1

2(m0 −m1)
(6.9)

∀ i = 0, 1, ϕi = sin−1(σi/λ). (6.10)

Here, ϕi is taken to be in the interval ]0, π2 ] if mi ≥ mFR and in ]π2 , π], otherwise.
Geometrically, (mFR

ρ , σFR
ρ ) draws an arc jointing µ0 and µ1 with radius λ and centered

on (mFR, 0). It corresponds to a geodesic in a space with negative curvature (see [2]),
as opposed to the OT geometry which has positive curvature (and which is actually
Euclidean in the 1-D (m, σ) parameters).

Moreover, it is worth noticing that no explicit formula is known for the FR
geodesic in dimension greater that 1 when the distributions do not have the same
mean. Figure 6.1, right, shows the FR interpolation of the densities.

6.5. SN Model Geodesics. We denote N (m, C) = S(f0) a SN texture learned
from an input exemplar f0 ∈ RU×d. Its mean and covariances are thus defined by (3.3)
and (3.5).
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Figure 6.1: Comparisons of geodesic interpolation for (m0, σ0) = (0, 0.5) and
(m1, σ1) = (9, 1.5).

SN models are geodesically convex. The following theorem shows that if the input
models µ0, µ1 are spot noises, then the geodesic interpolation is also a spot noise. This
means that the SN texture model is geodesically convex.

Theorem 6.2. For i = 0, 1, let µi ∼ S(fi) be spot noise distributions. We

suppose that ∀ω, f̂1(ω)∗f̂0(ω) 6= 0. The OT geodesic path µρ defined in (6.4) is a spot
noise model µρ = S(fρ) where fρ is defined as

∀ ρ ∈ [0, 1], fρ = (1− ρ) f0 + ρ g1, (6.11)

where g1 is computed from f1 as

∀ω, ĝ1(ω) = f̂1(ω)
f̂1(ω)∗f̂0(ω)

|f̂1(ω)∗f̂0(ω)|
. (6.12)

Proof. The covariance operator Ci of µi is a matrix-convolution operator, and its
associated kernel Ci has the following Fourier transform

Ĉi(ω) = f̂i(ω)f̂i(ω)∗ ∈ Cd×d. (6.13)

The symmetric operator Π defined in Equation (6.5) is thus also a matrix convolution
Πg = π ? g with kernel whose Fourier transform is

π̂(ω) = Ĉ
1/2
1 (ω)

[
(Ĉ

1/2
1 (ω)Ĉ0(ω)Ĉ

1/2
1 (ω))1/2

]+
Ĉ

1/2
1 (ω).

Note that the square root of a rank-1 matrix can be easily computed as

∀u ∈ Cd, (uu∗)1/2 =
1

|u|
uu∗ ∈ Cd×d.

Using this property, together with Equation (6.13), denoting ui = f̂i(ω) one proves
that

π̂(ω) =
1

|u∗1u0|
u1u
∗
1(u1u

∗
1)+u1u

∗
1 =

u1u
∗
1

|u∗1u0|
. (6.14)

Observe that although the matrix u∗1u0 is non invertible, the above expression is
correct because the mapping π(ω) is zero on the orthogonal of u1.
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The expression in Equation (6.4) of the covariance Cρ implies that it is also a
matrix-convolution operator with kernel Cρ defined over the Fourier domain as

Ĉρ(ω) = f̂ρ(ω)f̂ρ(ω)∗ ∈ Cd×d,

where

f̂ρ(ω) = [(1− ρ) Id +ρπ̂(ω)]u0 ∈ Cd.

Using the expression (6.14) for π̂(ω), one thus has that µρ = S(fρ) is a Spot Noise
model where fρ is defined as

f̂ρ(ω) = (1− ρ)f̂0(ω) + ρ
f̂1(ω)∗f̂0(ω)

|f̂1(ω)∗f̂0(ω)|
f̂1(ω)︸ ︷︷ ︸

ĝ1(ω)

∈ Cd.

Grayscale SN model geodesic. For grayscale texture, specializing (6.12) to the
case d = 1 leads to

µρ = S(f̃ρ) where f̃ρ = (1− ρ)f̃0 + ρf̃1,

where f̃i is the grayscale texton associated to fi, as defined in [8]

∀ω, ̂̃
fi(ω) = |f̂i(ω)|.

SN geodesics and synthesis. Theorem 6.2 details how to compute fρ, which pa-
rameterizes the the geodesic path as a spot noise µρ = S(fρ). One can thus perform a
synthesis from the geodesic model by essentially replacing f0 by fρ in the framework
described in Section 3. This is detailed in Algorithm 3.

Algorithm 3: SN Geodesic Path Synthesis

Input: exemplars (f̃0, f̃1) ∈ RU×d, weight ρ ∈ [0, 1].

Output: sample f ∈ RŨ×d of the geodesic SN model.
1. Pre-processing. Compute (f0, f1) from (f̃0, f̃1) using (3.2).
2. SN mixing. Compute fρ from (f0, f1) using (6.11).
3. Texture synthesis. Apply step 3, 4 and 5 of Algorithm 1

with fρ instead of f0.

6.6. AR Model Geodesics. Recall that according to (4.3), a stationary AR(1)
process follows, for each frequency ω ∈ Us, the AR(1) recursion in Cd

∀ t ∈ Z, xt+1 = axt + w̄t ∈ Cd.

where a = Â(ω) ∈ Cd×d, xt = X̂t(ω), w̄t ∼ N (0, B̂(ω)). Since the model is separable
across frequencies, we will thus focus on computing the geodesic of a AR(1) model in
small dimension Cd parameterized by (a, b).

While the set of SN models is geodesically convex for the OT distance, it is not
the case for the set of AR(1) distributions. A brute force way to impose the geodesic
to be an AR(1) model is to restrict the optimization (6.3) to be an AR(1) process.
This leads to an intractable highly non-convex problem. We propose here to use a
simple approximation that works well in our numerical experiments.
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Low-dimensional covariance embedding. The basic idea is that the set of AR(1)
model (xt)t on Cd×Z is in bijection with a subset of Gaussian processes on C2d, and an
explicit bijection is given by the selection of two consecutive frames (xt)t∈Z 7→ (x0, x1),
where we have arbitrarily chosen the frames indexed by t = 0 and t = 1. Note that
this is formally a map between random vectors. The following proposition shows how
to compute the covariance of these pair of frames and how to invert the corresponding
embedding.

Proposition 6.3. The covariance Γ(a, b) of (x0, x1) defines the map

Γ : (a, b) ∈ ∆d × S+d 7→
[
β(a, b) aβ(a, b)
β(a, b)a∗ β(a, b)

]
∈ Ud ⊂ C2d×2d

where ∆d is defined in (4.5) and S+d is the set of symmetric positive definite matrices,
and

Ud =

{[
β c
c∗ β

]
∈ C2d×2d \ β ∈ S+d , c ∈ Cd×d

}
.

We define

Γ−1 :

[
β c
c∗ β

]
∈ Ud 7→ (a = cβ−1, b = β − aβa∗ = β − cβ−1c∗).

This map satisfies Γ−1 ◦ Γ = Id.
Proof. The expression of the covariance Γ(a, b) is a direct consequence of Propo-

sition 4.1. For b ∈ S+d , β = aβa∗+ b is the sum of a semi-definite positive matrix and
a positive definite matrix, and it is hence positive definite. One thus has Γ(a, b) ∈ Ud.
The inversion formula for Γ−1 follows from this, using the fact that β is invertible.

Note that we restrict our attention to noise covariances b ∈ S+d that are full rank.
It is certainly possible to weaken this assumption and still be able to define an inverse
map Γ−1.

Approximate AR geodesic through embedding. For any covariances (Ci)i=0,1, let
us denote

Cρ = Barρ(C0, C1)

where Cρ is the covariance of the geodesic of (µi = N (0, Ci))i=0,1 with weight ρ, that
minimizes (6.3) and that can be computed in closed form as exposed in (6.4).

We compute an approximate geodesic of AR models parameterized by (ai, bi)i=0,1

by computing the barycenter over the embedding domain after the application of Γ,
and then lifting back to the set of AR models using Γ−1. Formally, this reads

∀ ρ ∈ (0, 1), (aρ, bρ) = Γ−1 (Barρ(Γ(a0, b0),Γ(a1, b1))) . (6.15)

The property Γ−1 ◦ Γ = Id guarantees that ρ ∈ (0, 1) 7→ (aρ, bρ) interpolates between
(ai, bi) for i = 0, 1.

Denoting

∀ i ∈ {0, 1}, Γ(ai, bi) =

[
βi ci
c∗i βi

]
∈ Ud,

one easily sees that the barycenter is in Ud,

∀ ρ ∈ [0, 1], Barρ(Γ(a0, b0),Γ(a1, b1)) =

[
βρ cρ
c∗ρ βρ

]
.
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AR barycenters and synthesis. Algorithm 4 describes the steps of the texture
mixing and synthesis with the AR model. It operates by applying Equation (6.15) to
each spacial frequency, and then using the synthesis framework described in Section 4.

Algorithm 4: AR Geodesic Path Synthesis

Input: exemplars (f̃0, f̃1) ∈ RU×d, weight ρ ∈ [0, 1].

Output: sample f ∈ RŨ×d of the geodesic AR model.
1. Pre-processing. Compute (f0, f1) from (f̃0, f̃1) using (3.2).
2. AR textons learning. For i = 0, 1, learn (Ai,Bi) using (4.8) and (4.9).
3. AR mixing. Learn the mixed parameter (Aρ,Bρ) by applying (6.15) to

each ω ∈ Us, with (aρ, bρ) = (Âρ(ω), B̂ρ(ω)).
4. Texture synthesis. Apply step 4 and 5 of Algorithm 2 with (Aρ,Bρ)

instead of (A,B).

6.7. Numerical Results for Geodesics. In this section, we show some results
obtained with the OT-geodesic mixing method. Note that we experiment both on
static and dynamic textures.

Mixing static SN models. Each row of Figure 6.2 corresponds to a single exper-
iment. Given two input textures (f̃0, f̃1), the texture models µ(fi)i=0,1 are learned
for both, and then several models µ(fρ) where interpolated along the path between
model µ(f0) and µ(f1). Detailed numerical procedures are given in Algorithm 3. In
this experiment, we take ρ ∈ {k8 , k = 0, 1, 2, . . . , 8}. The resulting images are shown
on the first row of Figure 6.2. Note that the images on the extreme left and right
of each row correspond to ρ = 0, 1 respectively, which are instances of the original
models. We would like to point out how these instances are perceptually similar to
the original input textures.

With respect to the interpolated models and their instances, there are two effects
that we would like the reader to note. First of all, the color changes gradually as
we move along the geodesic path, see Figure 6.2 for examples. Secondly, there is a
continuous morphing between the spacial patterns of the exemplar due to a change
in the covariance matrix. As we move along the geodesic path, the models mix in
a different proportion the spatial patterns of the original textures. This is specially
visible in the first rows, where diagonal features progressively replaces the isotropic
structures of the grass.

We compare our results with those achieved by a state-of-the-art method, named
Image Melding, proposed in [36], which mixes two textures by a patch-based approach.
More details about the implementations can be found in [36], and we use the same
ρ values as mentioned before. Figure 6.2(b) displays the texture mixing results by
Image Melding. Comparing with the results in Figure 6.2(a), we can see that the
interpolation of either color or spatial patterns are worse than those obtained by the
proposed OT-geodesic method.

An example of dynamic texture mixing can be observed in Figure 6.3. Each row
corresponds to a single video, where every image is a single frame, ordered from left
to right. The first and last rows are the input videos and the two middle ones are
instances of interpolated models obtained with the geodesic mix method. In this
experiment, we take ρ = {k7 , k = 0, 1, . . . , 7}. Note how the colors, spatial patterns,
and movements are interpolated.
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ρ = 0 ρ = 1/7 ρ = 2/7 ρ = 3/7 ρ = 4/7 ρ = 5/7 ρ = 6/7 ρ = 1

(a) static texture mixing of spot noise models.

(b) static texture mixing via Image Melding.

Figure 6.2: Results obtained with OT texture mixing. In (a), each texture was
synthesized from the SN models along the OT-geodesic. Comparison results of texture
mixing using Image Melding [36] are displayed in (b).

Mixing dynamic AR and SN models. Figure 6.3 shows a similar experiment for
dynamic textures. (a) shows results obtained using the SN models. (b) shows results
obtained with AR models. Given two input textures (f̃0, f̃1), both AR texture models
(ai, bi)i=0,1 are learned, and then several (aρ, bρ) are interpolated along the path
between these two models. Detailed numerical procedures are given in Algorithm 4.
One can observe that both methods produces visually similar results.

7. Barycenter Mixing of Several Gaussian Models. This section extends
the construction of Section 6 to the case of mixing an arbitrary number of Gaussian
models. The computation is however more involved since no closed form is known for
the OT barycenter.

7.1. Optimal Transport Barycenter of Gaussian Distributions. Given a
family of Gaussian distributions (µi)i∈I and weights ρ = (ρi)i∈I with ρi ≥ 0,

∑
i ρi =

1, the barycenter according to some distance d is defined as

µρ = argmin
µ

∑
i∈I

ρid(µi, µ)2. (7.1)
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ρ = 0 ρ = 1/7 ρ = 2/7 ρ = 3/7 ρ = 4/7 ρ = 5/7 ρ = 6/7 ρ = 1

(a) dynamic texture mixing of SN models.

(b) dynamic texture mixing of AR models.

Figure 6.3: Example of dynamic texture mixing of SN and AR models. From left to
right, the weight ρ takes values in {k7 , k = 0, 1, . . . , 7}. From top to bottom, 3 frames
of each synthesized dynamic texture are displayed.

Note that when |I| = 2, one recovers the definition (6.3). Note that ρ ∈ (R+)I is now
a vector of barycentric coordinates (which differs from Section 6 where ρ was a single
scalar). We now recall a result proved in [1].

Proposition 7.1. If at least one of the Ci has full rank, then the OT barycenter
µρ of (µi = N (mi, Ci))i∈I exists, is unique, and is a Gaussian process N (mρ, Cρ) where

mρ =
∑
i∈I

ρimi

and Cρ is the unique solution of the following fixed point equation

Φ(Cρ) = Cρ where Φ(C) =
∑
i∈I

ρi

(
C1/2CiC1/2

)1/2
. (7.2)

An open problem is to determine under which hypothesis the barycenter is still
unique when all the covariances Ci are rank-deficient, which is the case when averaging
SN models. In the case |I| = 2, Proposition 6.1 ensures that this is the case under a
restriction on the kernel of the covariances.
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In Figure 7.1, we illustrate and compare the barycenters of three 2-D Gaussians
(displayed at the vertices of a triangle) for the Euclidean-distance, Rao-distance, and
OT-distance respectively. Note that each edge of the triangle corresponds to a geodesic
between two 2-D Gaussian distributions. A covariance C is represented using its asso-
ciated unit ball (an ellipse)

{
x ∈ R2 \ x∗Cx ≤ 1

}
. The Euclidean barycenter does not

maintain the rank-1 property, and ellipses obtained as barycenters are more “round”.
The Rao barycenter is not defined for rank-1 covariances, and tends to become ill-
posed as the covariance becomes rank deficient. In contrast, the OT barycenter main-
tains the rank-1 property along the edges of the triangle, and become full rank only
near the center of the triangle.

(a) Euclidean barycenter (b) Rao-barycenter (c) OT-barycenter

(d) Euclidean barycenter (e) Rao-barycenter (f) OT-barycenter

Figure 7.1: Comparisons of different barycenters of three 2-dimensional Gaussian
distributions with the same mean vector but different covariance matrix, µi =
N (m, Ci), i = 0, 1, 2. (a, b, c) Barycenters of three Gaussian distributions with al-
most rank-1 covariance matrices. (d, e, f) Barycenters of three full rank covariances.

7.2. Barycenter of SN Models.
Fixed point equation. The following proposition, which is a direct consequence of

Proposition 7.1, describes the barycenter of SN models using a series of fixed point
equation over the Fourier domain.

Proposition 7.2. If (µi = N (mi, Ci))i∈I are stationary Gaussian processes, a
barycenter satisfies

∀ω ∈ U, Ĉρ(ω) = Φω(Ĉρ(ω)) (7.3)

where

Φω : c ∈ Cd×d 7→
∑
i∈I

ρi

(
c1/2Ĉi(ω)c1/2

)1/2
∈ Cd×d.
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We note that in general, µρ is not a spot noise because Ĉρ(ω) is not necessarily
rank one.

Numerical scheme. In general, put aside the case where the covariances Ĉi(ω)
diagonalize in the same bases, or the case |I| = 2 (see Theorem 6.2), it is not possible
to solve the fixed point equation (7.3) in closed form.

Following [22], we propose to approximate Ĉρ(ω) by iterating the mapping Φω.

Formally, for each ω ∈ U , we initialize Ĉ
(0)
ρ (ω) (for instance using Ĉi(ω) for some

i ∈ I) and then iterate

∀ ` ≥ 0, Ĉ(`+1)
ρ (ω) = Φω(Ĉ(`)

ρ (ω)). (7.4)

We observe numerically the convergence

Ĉ(`)
ρ (ω)

`→+∞−→ Ĉρ(ω)

where Ĉρ(ω) is the Fourier transform of the kernel of a barycenter covariance Cρ.
Note that the mapping Φω is not strictly contracting, but we conjecture that

some iterate Φω ◦ . . .◦Φω of this mapping is contracting (as it is the case in dimension
d = 1), although we were not able to prove it in arbitrary dimension d > 1.

The numerical computation of Φω in the case d = 3 requires the computation
of the square root of 3 × 3 matrices, which is performed explicitly by computing
the eigenvalues of the symmetric matrix as the root of a third order polynomial.
Algorithm 5 details the method.

Algorithm 5: SN Barycenter Synthesis

Input: exemplars (f̃i ∈ RU×d)i∈I , weight (ρi)i∈I ∈ (R+)I with
∑
i ρi = 1.

Output: sample f ∈ RŨ×d of the barycentric SN model.
1. Pre-processing. Compute (fi)i∈I from (f̃i)i∈I using (3.2).
2. SN mixing. Compute Cρ from (Ci)i∈I using the iterations (7.4).
3. Texture synthesis. Apply step 3, 4 and 5 of Algorithm 1 with Cρ

instead of C.

7.3. Barycenter of AR Models. For any covariance (Ci)i∈I , let us denote

Cρ = Barρ(Ci)i∈I

where Cρ is the covariance of the barycenter µρ = N (0, Cρ) of (µi = N (0, Ci))i∈I
with weight ρ, that minimizes (7.1) and can be computed using the iterations of the
mapping Φ defined in (7.3).

We compute an approximate OT barycenter of the AR models using the low-
dimensional mapping exposed in Section 6.6. This corresponds to computing the AR
textons (Aρ,Bρ) of the barycenter as

∀ω ∈ Us, ∀ ρ ∈ [0, 1], (Âρ(ω), B̂ρ(ω)) = Γ−1
(

Barρ(Γ(Âi(ω), B̂i(ω)))i∈I

)
. (7.5)

Algorithm 6 details the whole process.
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Algorithm 6: AR Barycenter Synthesis

Input: exemplars (f̃i ∈ RU×d)i∈I , weight (ρi)i∈I ∈ (R+)I with
∑
i ρi = 1.

Output: sample f ∈ RŨ×d of the barycentric AR model.
1. Pre-processing. Compute (fi)i∈I from (f̃i)i∈I using (3.2).
2. AR texton learning. For i ∈ I, learn (Ai,Bi) using (4.8) and (4.9).
3. AR mixing. Compute the mixed parameter (Aρ,Bρ) by applying (7.5)

for each ω ∈ Us.
4. Texture synthesis. Apply step 4 and 5 of Algorithm 2 with (Aρ,Bρ)

instead of (A,B).

7.4. Numerical Results for Barycenter Mixing. This section shows some
numerical results obtained with the barycenter mixing method with three input tex-
tures. Given the input textures (f0, f1, f2), we first learn their Gaussian models (SN or
AR), and then compute the weighted barycenters with Algorithm 5 (for SN) and Algo-
rithm 6 (for AR). Figure 7.2 displays the barycentric coordinates ρ = (ρ0, ρ1, ρ2) ∈ R3

on a triangle, whose vertices correspond to ρ = (1, 0, 0), ρ = (0, 1, 0), and ρ = (0, 0, 1),
respectively. We illustrate the method by navigating along two straight paths s 7→ ρ(s)
that are displayed on the same figure.

Figure 7.3 displays the results obtained on static textures for the AR barycenters,
along the two paths. Note how the synthesized textures obtained from the models
that are not located at the vertices have mixed colors and texture patterns.

f0 f1 f2

Figure 7.2: Left: (ρ0, ρ1, ρ2) barycentric coordinates together with the two paths
s 7→ ρ(s) used in our experiments. Right: input textures (f0, f1, f2) used for the
experiments showed on Figure 7.3. Each column corresponds to a single experiment,
where (f0, f1, f2) are the exemplar textures located at the vertices of the triangle.

Figure 7.4 displays the results obtained on dynamic textures mixing with SN
barycenters. Each column corresponds to a single video, where every image is a single
frame, ordered from top to bottom. Result obtained with SN barycenter are visually
similar.
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s = 0 s = 0.2 s = 0.4 s = 0.6 s = 0.8 s = 1

(a) Barycenter texture mixing of the three texture models in the 1st set.

(b) Barycenter texture mixing of the three texture models in the 2nd set.

(c) Barycenter texture mixing of the three texture models in the 3rd set.

Figure 7.3: SN barycenter texture mixing of three texture models, using different
input exemplar sets (f0, f1, f2) shown in Figure 7.2, right. In each subfigure, the top
row displays the mixing along the path ρ(s) = (1 − s, s/2, s/2), and the bottom row
displays the mixing on the path ρ(s) = (s/2, 1−s, s/2), where s ∈ [0, 1] parameterizes
the path.

8. Conclusion. This paper has introduced two compact representations of sta-
tionary static and dynamic textures. These representations correspond to two differ-
ent parameterizations of Gaussian processes. Experimental results demonstrate that
the proposed methods are quite effective at describing sequences which exhibit tem-
poral and spatial regularity. Moreover, the computational complexity of the proposed
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s = 0 s = 0.2 s = 0.4 s = 0.6 s = 0.8 s = 1

(a) mixing dynamic textures on the path ρ(s) = (1− s, s/2, s/2).

(b) mixing dynamic textures on the path ρ = (s/2, 1− s, s/2).

Figure 7.4: Barycenter dynamic texture mixing of three input texture videos, using
AR models. The top three rows show 3 consecutive frames of the mixing on the
path ρ(s) = (1 − s, s/2, s/2), and the bottom three rows display those on the path
ρ(s) = (s/2, 1− s, s/2), where s ∈ [0, 1] parameterizes the path.

algorithms for texture synthesis is low. While both methods tend to produce visually
similar results on our numerical examples, their parameterization, and thus their typ-
ical usage, are different. Only the SN model can be used for static textures. The AR
model is probably the most appropriate for dynamic textures with simple temporal
patterns, since it offers the most compact representation with only 2-D textons. On
contrast, the SN model requires the computation of a full 3-D texton, but is able to
capture arbitrary Gaussian models.
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The second main contribution of this paper is a new method for texture mixing
that enables the creation of new textures from a set of exemplars. It is based on
optimal transport, which provides a mathematically sound way to interpolate between
distributions. A major feature of this method is that it is robust to rank-deficient
covariances. This is crucial to deal with rank-deficient models that often occurs when
learning from a a small number of exemplars. The numerical results show how the
method successfully merges the visual features of the original images into new complex
patterns.

These contributions open the door to several potential future works beside texture
synthesis and mixing. The computation of compact texture representations could be
used for dynamic textures recognition and video compression. The ability to perform
models averaging is a key ingredient for un-supervised learning algorithms (e.g. for
clustering tasks), such as for instance in the celebrated k-means algorithm.
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[29] F. Pitié, A. Kokaram, and R. Dahyot, Automated colour grading using colour distribution
transfer, Computer Vision and Image Understanding, (2007).

[30] J. Portilla and E. P. Simoncelli, A parametric texture model based on joint statistics of
complex wavelet coefficients, Int. J. Comput. Vision, 40 (2000), pp. 49–70.
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