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DISTRIBUTION OF LOGARITHMIC SPECTRA OF THE EQUILIBRIUM ENERGY

Let L be a big invertible sheaf on a complex projective variety, equipped with two continuous metrics. We prove that the distribution of the eigenvalues of the transition matrix between the L 2 norms on H 0 (X, nL) with respect to the two metriques converges (in law) as n goes to infinity to a Borel probability measure on R. This result can be thought of as a generalization of the existence of the energy at the equilibrium as a limit, or an extension of Berndtsson's results to the more general context of graded linear series and a more general class of line bundles. Our approach also enables us to obtain a p-adic analogue of our main result.

Introduction

Let X be a complex projective variety (or alternatively, a projective variety defined over a complete non-archimedean field), and let L be an invertible sheaf on X. We assume that L is big, or in other words, that the volume of L, defined by vol(L) := lim n→+∞ rk C H 0 (X, nL) n d /d! , is strictly positive. (In the above formula, d is the dimension of X.) In [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF], Berman and Boucksom studied the Monge-Ampère energy functional of two continuous metrics on L, ϕ and ψ. The equilibrium Monge-Ampère energy of the pair (ϕ, ψ) is an invariant defined by E eq (ϕ, ψ) := 1 d + 1 d j=0 X(C) (P ϕ -P ψ) c 1 (L, P ψ) j c 1 (L, P ϕ) d-j .

In the above formula P φ denotes, for any continuous metric φ on L, the supremum of all (possibly singular) plurisubharmonic continuous metrics bounded above by φ. This invariant describes the asymptotic behaviour of the ratio of the volumes of the unit balls in the linear systems H 0 (X, nL) (n 1) with respect to the L 2 norms induced by the metrics ϕ and ψ, respectively. More precisely, given any probability measure µ on X(C), equivalent to Lesbegue measure in every local chart, we have that (cf. [2, Théorème A]) [START_REF] Maclean | Berkovich -Spectral theory and analytic geometry over non-Archimedean fields[END_REF] lim

n→+∞ d! n d+1 ln vol(B 2 (nL, ϕ, µ)) vol(B 2 (nL, ψ, µ)) = E eq (ϕ, ψ),
where for any continuous metric φ on L, the expression B 2 (nL, φ, µ) denotes the unit ball in H 0 (X, nL) with respect to the following L 2 norm :

∀ s ∈ H 0 (X, nL), s 2 L 2 φ,µ := X(C) s 2 nφ (x) µ(dx).
All volumes are calculated with respect to some arbitrary Haar measure on H 0 (X, nL).

The logarithm which appears in the left hand side of equation ( 1) is equal (up to multiplication by a constant) to the mean of the logarithms of the eigenvalues of the transition matrix between ϕ n and ψ n . Here ϕ n and ψ n are the L 2 norms induced by ϕ and ψ respectively on the space H 0 (X, nL).

In [START_REF] Berndtsson | Probability measures associated to geodesic in the space of Kähler metrics[END_REF], Berndtson studies the distribution of eigenvalues of this transition matrix in the case where ϕ and ψ are Kähler metrics on an ample line bundle L. He establishes the folowing fact by a detailled analysis of geodesics in the space of Kähler metrics on L : if d n = dimV n and the numbers λ j are the logarithms of the eigenvalues of the transition matrics between ϕ n and ψ n then the probability measure

ν n = d -1 n j
δ λj converges as n tends to infinity to a measure on R which is defined using the Monge-Ampère geodesic linking ϕ and ψ in H L , the space of Hermitian metrics in L.

The log-ratio of the volumes appearing in ( 1) is an analogue of the degree function in Arakelov geometry. Let E be a vector space of finite rank over a number field K equipped with a family of norms . v , where v runs over the set M K of places of K, and . v is a norm on E ⊗ K K v which is ultrametric when v is a finite place and Euclidean or Hermitian when v is real or complex. Moreover, we suppose that E contains a lattice E (ie. a maximal rank sub-O K module, where O K is the ring of algebraic integers in K) such that for all but a finite number of places v the norm . v comes from the O K -module structure on E.

The data E = (E, ( . v )) is called a Hermitian adelic bundle on K and its Arakelov degree is defined to be the weighted sum [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF] deg(E) := -

v∈MK n v ln s 1 ∧ • • • ∧ s r v ,
where (s 1 , . . . , s r ) is a basis of E over K and the weight n v is the rank of K v as a vector space over Q v . The Arakelov degree is well-defined due to the product formula

∀ a ∈ K × , v∈MK n v ln |a| v = 0.
We refer the reader to [4, Appendice A] and [START_REF] Gaudron | Pentes de fibrés vectoriels adéliques sur un corps globale[END_REF] for a detailled exposition of this theory. In the context of complex geometry, we consider a finite dimensional vector space V equipped with two Hermitian norms ϕ and ψ. We can write the log-ratio of the volumes of the unit balls (with respect to ϕ and ψ respectively) as [START_REF] Berndtsson | Probability measures associated to geodesic in the space of Kähler metrics[END_REF] ln vol(B(V, ϕ))

vol(B(V, ψ)) = deg(V, ϕ, ψ) := -ln s 1 ∧ • • • ∧ s r ϕ + ln s 1 ∧ • • • ∧ s r ψ ,
where (s 1 , . . . , s r ) is a basis for V . This expression is independent of the choice of basis by the elementary product formula

∀ a ∈ C × , ln |a| -ln |a| = 0.
With this notation, equation ( 1) can be rewritten iin the form lim n→+∞ deg(H 0 (X, nL), L 2 ϕ,µ , L 2 ψ,µ ) n d+1 /d! = E eq (ϕ, ψ).

which is an analogue of the arithmetic Hilbert-Samuel theorem for Hermitian invertible bundles on a projective arithmetic variety.

Given the results in [START_REF] Berndtsson | Probability measures associated to geodesic in the space of Kähler metrics[END_REF] and the convergences proved in [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF], it is natural to wonder whether the eigenvalue distribution of the metric L 2 ϕ,µ with respect to L 2 ψ,µ is wellbehaved asymptotically in more general situations. Unlike the arithmetic case, it does not seem possible to reformulate these spectra functorially, which is a key step in the proof of the convergence results in [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF]. This phenomenon arises essentially because of the presence of a negative weight in formula [START_REF] Berndtsson | Probability measures associated to geodesic in the space of Kähler metrics[END_REF], absent in the arithmetic case. The interested reader will find counter-examples illustrating this phenomenon in [START_REF]Harder-Narasimhan categories[END_REF], remark 5.10 and §4, example 2.

The main contribution of this article is the introduction of a truncation method for studying the asymptotic behaviour of eigenvalues of transition matrices between two metrics. We consider truncations of ψ by dilatations of ϕ, which enables us to prove the following result (cf. theorem 5.2 infra) : Main theorem. -Let k be the field of complex numbers or a complete nonarchimedean field, and let X be a projective k-variety of dimension d 1. Let L be a big invertible O X -module with two continuous metrics ϕ and ψ. For any integer n 1, let ϕ n and ψ n be the sup norms on H 0 (X, nL) with respect to metrics ϕ and ψ respectively. Moreover, let ϕ ′ n and ψ ′ n be hermitian norms on H 0 (X, nL) such that (1) 

max(d(ϕ n , ϕ ′ n ), d(ψ n , ψ ′ n )) = o(n).
Let Z n be the map from {1, . . . , h 0 (X, nL)} to R sending i to the logarithm of the i th eigenvalue (with multiplicity) of ψ ′ n with respect to ϕ ′ n , considered as a random variable on the set {1, . . . , h 0 (X, nL)} with the uniform distribution. Then the sequence of random variables (Z n /n) n 1 converges in law to a probability distribution on R depending only on the pair (ϕ, ψ).

We recall that by definition the sequence of random variables Z n /n converges in law if for any continuous bounded function h defined on R the sequence

(E[h(Z n /n)]) n 1 converges in R.
The theorem 5.2 proved in §5 is a little bit stronger than this statement. It is valid for any sub-graded linear system of subspaces V n ⊂ H 0 (X, nL) satisfying conditions (a)-(c) of section §4.3. Moreover, it also applies to the functions µ i defined in §2.3, and which are associated to pairs of (possibly non-hermitian) norms. When these norms are in fact hermitian, these functions are equal to the logarithms of the eigenvalues of the transition matrix (cf. §2.2). This asymptotic distribution is a fine geometric invariant which measures the degree of non-proportionality of the metrics ϕ and ψ. It should be useful in the variational study of metrics on an invertible sheaf.

The proof of the main theorem uses various techniques drawn from algebraic and arithmetic geometry. In §2-3 we introduce a Harder-Narisimhan type theory for finite dimensional vector spaces with two norms. This can be thought of as a geometric reformulation of the eigenvalues of the transition matrix between two Hermitian norms. This construction has the advantage of being valid for non-Hermitian norms, which allows us to work directly with the sup norm. Moreover, it is analogous to the Harder-Narasimhan filtration and polygon of a vector bundle on a smooth projective curve. In particular, the truncation results (propositions 2.8 and 3.8) are crucial for the proof of the main theorem. Another important ingredient is the existence of the equilibrium energy as a limit, presented in §4. For a complete complex graded system, this is a result of Berman and Boucksom [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF] (where the limit is described.) Here, we use the Okounkov filtered semi-groups point of view developped in [START_REF] Boucksom | Okounkov bodies of filtered linear series[END_REF], analogous to that of Witt-Nystrom [START_REF] Nyström | Transforming metrics on a line bundle to the okounkov body[END_REF]. The combination of this method with the Harder-Naransimhan formalism is extremely flexible and enables us to prove the existence of the equilibrium energy as a limit in the very general setting of a graded linear system on both complex and non-archimedean varieties (cf. theorem 4.5 and its corollary 4.6). Finally, in Section §5 we prove a general version of the main theorem (cf. theorem 5.2 and remark 5.3).

Slopes of a vector space equipped with two norms.

In this section we develop the formalism of slopes and Harder-Narasimham filtrations for finite dimensional complex vector spaces equipped with a pair of norms.

2.1. Slopes and the Harder-Narasimhan filtration.-Let C H be the class of triplets V = (V, ϕ, ψ), where V is a finite dimensional complex vector space and ϕ and ψ are two Hermitian norms on V . For any V = (V, ϕ, ψ) ∈ C H , we let deg(V ) be the real number defined by

(4) -ln s 1 ∧ • • • ∧ s r ϕ + ln s 1 ∧ • • • ∧ s r ψ ,
where (s 1 , . . . , s r ) is a basis of V . If the V is non trivial then we let µ(V ) be the quotient deg(V )/ rk(V ), which we call the slope of V . Unless otherwise specified, for any subspace W of V we will let W be the vector space W equipped with the induced norms and V /W be the quotient space V /W equipped with the quotient norms. The following relationship holds for any subspace W of V :

(5)

deg(V ) = deg(W ) + deg(V /W ). Proposition 2.1. -Let V = (V, ϕ, ψ) be a non-trivial element of C H .
There is a unique subspace V des in V satisfying the following properties:

(1) for any subspace W ⊂ V we have that µ(W ) µ(V des ),

(2) if W is a subspace of V such that µ(W ) = µ(V des ) then W ⊂ V des .
Proof. -Let λ be the norm of the identity map from (V, . ϕ ) to (V, . ψ ). We will prove that the set

V des = {x ∈ V : x ψ = λ x ϕ }
satisfies the conditions of the proposition. We start by checking that V des is a nontrivial subspace of V . By definition, V des contains at least one non-zero vector and is stable under multiplication by a complex scalar. We need to check that V des is stable under addition. Let x and y be two elements of V des . As the norms ϕ and ψ are Hermitian, the parallelogram law states that

x + y ϕ + x -y ϕ = 2( x ϕ + y ϕ ),

x + y ψ + x -y ψ = 2( x ψ + y ψ ).
Since λ is the norm of the identity map from (V, . ϕ ) to (V, . ψ ) we have that x + y ψ λ x + y ϕ and x -y ψ λ x -y ϕ . As x and y are vectors in V des we have that x ψ = λ x ϕ and y ψ = λ y ϕ . It follows that

2λ( x ϕ + y ϕ ) = 2( x ψ + y ψ ) = x + y ψ + x -y ψ λ( x + y ϕ + x -y ϕ ) = 2λ( x ϕ + y ϕ ), so x + y ψ = λ x + y ϕ and it follows that x + y ∈ V des .
In particular, as the norms . ψ and . ϕ are proportional with ratio λ on V des we have that µ(V des ) = ln(λ). If W is a subspace of V then the identity map from (Λ r W, . ψ ) to (Λ r W, . ϕ ) has norm λ r (by Hadamard's inequality). This inequality is an equality if and only if the norms . ψ and . ϕ are proportional with ratio λ -or in other words, the space W is contained in V des .

Let V be a non-trivial element of C H . Let µ max (V ) be the slope of V des , which we call the maximal slope of V . We say that V is semi-stable if µ max (V ) = µ(V ), or equivalently V des = V . The element V is semi-stable if and only if the two norms on V are proportional.

For any V , non-trivial element of C H , we construct recursively a sequence of subspaces of V of the form

(6) 0 = V 0 ⊂ V 1 ⊂ . . . ⊂ V n = V such that V i /V i-1 = (V /V i-1
) des for any i ∈ {1, . . . , n} using the quotient norms on

V /V i-1 . Each of the subquotients V i /V i-1 is a semi-stable element of C H . Moreover, if µ i is the slope of V i /V i-1
, then we have that:

(7) µ 1 > µ 2 > . . . > µ n .
These numbers are called the intermediate slopes of V . The flag ( 6) is called the Harder-Narasimhan filtration of V .

Definition 2.2. -Let V be a non-zero element of C H with its Harder-Narasimham filtration and intermediate slopes as defined in ( 6) and [START_REF] Bourbaki | Espaces vectoriels topologiques[END_REF]. We let Z V be the random variable with values in {µ 1 , . . . , µ n } such that

P(Z V = µ i ) = rk(V i /V i-1 ) rk(V )
for any i ∈ {1, . . . , n}.

Remark 2.3. -The above constructions are analogues of Harder-Narasimhan theory for vector bundles on a regular projective curve or hermitian adelic bundles on a number field. As in [9, §2.2.2], we can include the Harder-Narasimhan filtration and the intermediate slopes in a decreasing R filtration. However, contrary to the geometric and arithmetic cases, this R-filtration is not functorial, as explained in [10, remarque 5.10]. Moreover, the Harder-Narasimhan filtration is not necessarily the only filtration whose sub-quotients are semi-stable with strictly decreasing slopes, as can be seen using the counter-example in [10, §4 exemple 2].

Let V be an element of C H of rank r > 0. We let P V be the function on [0, r] whose graph is the upper boundary of the convex closure of the set of points of the form (rk(W ), deg(W )). This is a concave function which is affine on each interval [i -1, i] (i ∈ {1, . . . , r}). We call it the Harder-Narasimhan polygon of V . By definition, P V (0) = 0 and P V (r) = deg(V ). For any i ∈ {1, . . . , r}, we let µ i (V ) be the slope of the function P V on the interval [i -1, i], which we call the i th slope of V . We also introduce a normalised version of the Harder-Narasimhan polygon, defined by

P V (t) := 1 rk(V ) P V (t rk(V )), t ∈ [0, 1].
It follows from the relation

P V (r) = deg(V ) that (8) deg(V ) = µ 1 (V ) + • • • + µ r (V ).
Moreover, the distribution of the random variable Z V (cf. definition 2.2) is given by

1 r r i=1 δ µi(V ) ,
where δ a is a Dirac measure supported at a. The normalised polygon P V , the random variable Z V and the slopes of V are linked by the following simple formula. ( 9)

P V (1) = E[Z V ] = µ(V ).
2.2. The link with eigenvalues.-The Harder-Narasimhan polygon and its intermediate slopes can be thought of as an intrinsic interpretation of the eigenvalues and eigenspaces of the transition matrix between two Hermitian norms. Indeed, given an element V = (V, ϕ, ψ) ∈ C H and an orthonormal basis e = (e i ) r i=1 for V with respect to . ϕ we can construct a Hermitian matrix

A V,e =      e 1 , e 1 ψ e 1 , e 2 ψ • • • e 1 , e r ψ e 2 , e 1 ψ e 2 , e 2 ψ • • • e 1 , e r ψ . . . . . . . . . . . . e r , e 1 ψ e r , e 2 ψ • • • e r , e r ψ      If the intermediate slopes of V are µ 1 > µ 2 > . . . > µ n then the eigenvalues of A V,e
are e 2µ1 , . . . , e 2µn . Moreover, if for any i ∈ {1, . . . , n} we let V (i) be the eigenspace associated to the eigenvalue e 2µi of the endomorphism of V given by the matrix A V,e in the basis e then the flag 0 V (1) V (1) + V (2) . . . V (1) 

+ • • • + V (n) = V
is the Harder-Narasimhan filtration of V . The fact that ϕ and ψ are proportional on each of the subspaces V (i) implies that there is a complete flag (which will be in general finer than the Harder-Narasimhan filtration of V )

0 = V 0 V 1 . . . V r = V such that deg(V i /V i-1 ) = µ i (V ). In particular, P V (i) = deg(V i ).
This can be thought of as a version of the Courant-Fischer theorem for symmetric or Hermitian matrices.

Generalisation to arbitrary norms. -

The above constructions can be naturally generalised to spaces equipped with two arbitrary norms. Let C be the class of finite-dimensional complex vector spaces equipped with two (not necessarily Hermitian) norms. For any non-trivial element

V = (V, ϕ, ψ) in C we let deg(V ) be the number ln vol(B(V, ϕ)) vol(B(V, ψ)) ,
where B(V, ϕ) and B(V, ψ) are the unit balls with respect to the norms ϕ and ψ respectively, and vol is a Haar measure on V . This definition is independent of the choice of Haar measure vol. Moreover, when the norms ϕ and ψ are Hermitian, it is equal to the number defined in [START_REF] Bost | Périodes et isogénies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz)[END_REF]. As in the Hermitian case, we let P V be the concave function on [0, rk(V )] whose graph is the upper boundary of the convex closure of the set of points of the form (rk(W ), deg(W )), where W is a member of the set of subspaces of V . For any i ∈ {1, . . . , rk(V )}, we let µ i (V ) be the slope of the function

P V on the interval [i -1, i].
The equality [START_REF] Chambert-Loir | Théorèmes d'algébricité en géométrie diophantienne[END_REF] holds in this more general context. We let Z V be a random variable whose law is an average of Dirac masses at the intermediate slopes

µ i (V ) : the law of Z V is 1 rk(V ) rk(V ) i=1 δ µi(V ) .
We can also introduce a normalised Harder-Narasimhan polygon :

(10) P V (t) = 1 rk(V ) P V (t rk(V )), t ∈ [0, 1].
Equation ( 9) holds in this more general setting : we have that

(11) P V (1) = E[Z V ] = µ(V ).
The following result compares Harder-Narasimhan polygons.

Proposition 2.4. -Let (V, ϕ, ψ) be an element of C. If ψ ′ is another norm on V such that (2) ψ ′ ψ then we have that P (V,ϕ,ψ ′ ) P (V,ϕ,ψ) as functions on [0, rk(V )].
Proof.

-For any subspace W on V we have that B(W, ψ) ⊂ B(W, ψ ′ ) and it follows that deg(W, ϕ, ψ) ≥ deg(W, ϕ, ψ ′ ). The point (rk(W ), deg(W, ϕ, ψ ′ )) is therefore always below the graph of P (V,ϕ,ψ) . It follows that P (V,ϕ,ψ ′ ) P (V,ϕ,ψ) .

Remark 2.5. -Similarly, if (V, ϕ, ψ) is an element of C and ϕ ′ is another norm on V such that ϕ ′ ϕ then we have that P (V,ϕ ′ ,ψ) P (V,ϕ,ψ) as functions on [0, rk(V )].

If V is a non-trivial finite dimensional complex vector space and ψ and ψ ′ are two norms on V then we denote by d(ψ, ψ ′ ) the quantity

sup 0 =x∈V ln x ψ -ln x ψ ′ .
Corollary 2.6. -Let (V, ϕ, ψ) be a non-trivial element of C and let ϕ ′ and ψ ′ be two norms on V . For any t ∈ [0, rk(V )] we have that

| P (V,ϕ,ψ) (t) -P (V,ϕ ′ ,ψ ′ ) (t)| (d(ϕ, ϕ ′ ) + d(ψ, ψ ′ )) t.
Proof. -We denote by ψ 1 and ψ 2 the norms on V such that . ψ1 = e -d(ψ,ψ ′ ) . ψ and . ψ2 = e d(ψ,ψ ′ ) . ψ .

We have that ψ 1 ψ ′ ψ 2 . Moreover, for any t ∈ [0, 1] we have that

P (V,ϕ,ψ1) (t) = P (V,ϕ,ψ) (t) -d(ψ, ψ ′ ) t, P (V,ϕ,ψ1) (t) = P (V,ϕ,ψ) (t) + d(ψ, ψ ′ ) t.
2. In other words, for any x ∈ V we have that x ψ ′ x ψ .

By the above proposition we have that

| P (V,ϕ,ψ) (t) -P (V,ϕ,ψ ′ ) (t)| d(ψ, ψ ′ ) t.
By the same argument we have that

| P (V,ϕ,ψ ′ ) (t) -P (V,ϕ ′ ,ψ ′ ) (t)| d(ϕ, ϕ ′ ) t.
The sum of these two inequalities gives the required result.

2.4. John and Löwner norms. -Whilst the elements of C do not generally satisfy ( 5), John and Löwner's ellipsoid technique enables us to show that (5) holds up to an error term. Indeed, if V is a complex vector space of rank r > 0 and φ is a norm on V then we can find two Hermitian norms φ L and φ J which satisfy the following properties (cf. [16, page 84]) :

1 √ r . φJ . φ . φJ , . φL . φ √ r . φL Proposition 2.7. -Let V = (V, ϕ, ψ) be an element of C. If 0 = V 0 V 1 . . . V n = V
is a flag of subspaces of V then we have that

(12) deg(V ) - n i=1 deg(V i /V i-1 ) rk(V ) ln(rk(V )).
Proof. -Consider the object (V, ϕ L , ψ J ), which is an element of C H . The following equation holds by formula (5)):

deg(V, ϕ L , ψ J ) = n i=1 deg(V i /V i-1 , ϕ L , ψ J ).
Moreover, since ϕ L ϕ and ψ J ψ, we have that

deg(V i /V i-1 , ϕ, ψ) deg(V i /V i-1 , ϕ L , ψ J ).
It follows that

(13) deg(V, ϕ L , ψ J ) n i=1 deg(V i /V i-1 , ϕ, ψ).
Moreover, it follows from the relations

. ϕ rk(V ) . ϕL and . ψ ( rk(V )) -1 . ψJ that (14) deg(V, ϕ, ψ) deg(V, ϕ L , ψ J ) -rk(V ) ln(rk(V )).
It follows from the inequalities ( 13) and ( 14) that

deg(V ) n i=1 deg(V i /V i-1 ) -rk(V ) ln(rk(V )).
Applying the same argument to (V, ϕ J , ψ L ) we can show that

deg(V ) n i=1 deg(V i /V i-1 ) + rk(V ) ln(rk(V )).
This completes the proof of the proposition.

2.5. Truncation. -Let V be a finite-dimensional complex vector space. If ϕ is a norm on V and a is a real number then we let ϕ(a) be the norm on V such that

∀ x ∈ V, x ϕ(a) = e a x ϕ .
If ϕ and ψ are two norms on V then we denote by ϕ ∨ ψ the norm on V such that

∀ x ∈ V, x ϕ∨ψ = max( x ϕ , x ψ ).
Proposition 2.8. -Let V = (V, ϕ, ψ) be a non-zero element of C and let a be a real number. We have that

deg(V, ϕ, ψ ∨ ϕ(a)) - rk(V ) i=1 max( µ i (V ), a) 2 rk(V ) ln(rk(V )) + rk(V ) 2 ln(2).
Proof. -Let r be the dimension of V . We will first prove the following equation.

(

) r i=1 max( µ i (V ), a) = sup t∈[0,r] P V (t) -at + ar. 15 
As the function

P V (t) -at is affine on each segment [i -1, i] (i ∈ {1, . . . , r}) we get that sup t∈[0,r] P V (t) -at = max i∈{0,...,r} 1 j i µ i (V ) -a = r i=1 max µ i (V ) -a, 0 . It follows that sup t∈[0,r] P V (t) -at + ar = r i=1 max µ i (V ) -a, 0 + a = r i=1 max( µ i (V ), a).
We start by proving the proposition in the special case where ϕ and ψ are Hermitian.

There is then a basis e = (e i ) r i=1 which is orthonormal for ϕ and orthogonal for ψ. For any i ∈ {1, . . . , r} set λ i = e i ψ . Without loss of generality, we may assume that λ 1 . . . λ r . We therefore have that µ i (V ) = ln(λ i ) for any i ∈ {1, . . . , r}. Let ψ ′ be the Hermitian norm on V such that

x 1 e 1 + • • • + x r e r 2 ψ ′ = r i=1 x 2 i max(λ 2 i , e 2a ).
We then have that

x 1 e 1 + • • • + x r e r 2 ψ∨ϕ(a) = max r i=1 x 2 i λ 2 i , r i=1 x 2 i e 2a .
and it follows that

. ψ∨ϕ(a) . ψ ′ √ 2 . ψ∨ϕ(a) .
It follows that

deg(V, ϕ, ψ ∨ ϕ(a)) deg(V, ϕ, ψ ′ ) r 2 log(2) + deg(V, ϕ, ψ ∨ ϕ(a)),
and hence

deg(V, ϕ, ψ ∨ ϕ(a)) - r i=1 max( µ i (V ), a) r 2 log (2) 
.

We now deal with the general case. We choose Hermitian norms ϕ 1 and ψ 1 such that d(ϕ, ϕ 1 ) 1 2 log(r) and d(ψ, ψ 1 ) 1 2 log(r). Applying the above result to (V, ϕ 1 , ψ 1 ) we get that

deg(V, ϕ 1 , ψ 1 ∨ ϕ 1 (a)) - r i=1 max( µ i (V, ϕ 1 , ψ 1 ), a) r 2 log(2).
Moreover, we have that

d(ψ ∨ ϕ(a), ψ 1 ∨ ϕ 1 (a)) max d(ϕ, ϕ 1 ), d(ψ, ψ 1 )
and hence

| deg(V, ϕ, ψ ∨ ϕ(a)) -deg(V, ϕ 1 , ψ 1 ∨ ϕ 1 (a))| d(ϕ, ϕ 1 )r + max(d(ϕ, ϕ 1 ), d(ψ, ψ 1 ))r,
which is bounded above by r ln(r). Moreover, by 2.7 we get that

P V (t) -P (V,ϕ1,ψ1) (t) d(ϕ, ϕ 1 ) + d(ψ, ψ 1 ) t t ln(r) r ln(r),
and hence

sup t∈[0,r] P V (t) -at -sup t∈[0,r] P (V,ϕ1,ψ1) (t) -at r ln(r).
By [START_REF] Okounkov | Brunn-Minkowski inequality for multiplicities[END_REF] we get that

deg(V, ϕ, ψ ∨ ϕ(a)) - r i=1 max( µ i (V ), a) 2r ln(r) + r 2 log(2).
3. The non-Archimedean analogue.

In this section, we develop an analogue for slopes for finite dimensional vector spaces over a non-archimedean field k equipped with two ultrametric norms. Let k be a field equipped with a complete non-archimedean absolute value function |.|.

3.1. Ultrametric norms.-Let V be a k-vector space of dimension r equipped with a norm . . As k is assumed to be complete the topology on V is induced by any isomorphism k r → V . (We refer the reader to [7, I. §2, n • 3] theorem 2 and the remark on page I.15 for a proof of this fact). In particular, any subspace of V is closed (cf. loc. cit. corollary 1 of theorem 2).

Let (V, . ) be a finite-dimensional ultra-normed vector space on k. A basis e = (e i ) r i=1 of V is said to be orthogonal if the following holds :

∀ (λ 1 , . . . , λ r ) ∈ k r , λ 1 e 1 + • • • + λ r e r = max i∈{1,...,r} |λ i | • e i .
An ultra-normed vector space does not necessarily have an orthogonal basis, but the following proposition shows that an asymptotic version of Gram-Schmidt"s algorithm is still valid in this context.

Proposition 3.1. -Let (V, . ) be a ultra-normed k-vector space of dimension r

1. Let 0 = V 0 V 1 V 2 .
. . V r = V be a full flag of subspaces of V . For any ε ∈ ]0, 1[ there is a basis e = (e i ) r i=1 compatible with the flag (3) such that

(16) ∀ (λ 1 , . . . , λ r ) ∈ k r , λ 1 e 1 + • • • + λ r e r (1 -ε) max i∈{1,...,r} |λ i | • e i .
Proof.

-We proceed by induction on r, the dimension of V . The case r = 1 is trivial. Assume the proposition holds for all spaces of dimension < r for some r 2.

Applying the induction hypothesis to V r-1 and the flag 0 = V 0 V 1 . . . V r-1 we get a basis (e 1 , . . . , e r-1 ) compatible with the flag such that

(17) ∀ (λ 1 , . . . , λ r-1 ) ∈ k r-1 , λ 1 e 1 +• • •+λ r-1 e r-1 (1-ε) max i∈{1,...,r-1} |λ i |• e i .
Let x be an element of V \ V r-1 and let y be a point in V r-1 such that

(18) x -y (1 -ε) -1 dist(x, V r-1 ).
(The distance between x and V r-1 is strictly positive because V r-1 is closed in V .)

We choose e r = x -y. The basis e 1 , . . . , e r is compatible with the flag

0 = V 0 V 1 . . . V r = V . Let (λ 1 , .
. . , λ r ) be an element of k r : we wish to find a lower bound for the norm of z = λ 1 e 1 + • • • + λ r e r . By (18) we have that

z |λ r | • dist(x, V r-1 ) (1 -ε)|λ r | • e r .
This provides our lower bound when λ r e r λ 1 e 1 + • • • + λ r-1 e r-1 . If λ r e r < λ 1 e 1 + • • •+ λ r-1 e r-1 then we have z = λ 1 e 1 + • • •+ λ r-1 e r-1 because the norm is ultrametric. By the induction hypothesis [START_REF] Nyström | Transforming metrics on a line bundle to the okounkov body[END_REF] we have that z

(1 -ε)|λ i | • e i for any i ∈ {1, . . . , r -1}. This completes the proof of the proposition. Remark 3.2. -If k is locally compact then the above equation holds for ε = 0 since the distance appearing in (18) is then attained. Definition 3.3. -Let V be an ultra-normed k-vector space and α a real number in ]0, 1]. We say that a basis e = (e 1 , . . . , e r ) of V is α-orthogonal if for any (λ 1 , . . . , λ r ) ∈ k r we have that

λ 1 e 1 + • • • + λ r e r α max(|λ 1 | • e 1 , . . . , |λ r | • e r ).
By definition, 1-orthogonality is the same thing as orthogonality.

For any ultra-normed finite dimensional k-vector space V we let V ∨ = Hom k (V, k) be its dual space with the operator norm. This is also a finite-dimensional ultranormed k-vector space.

3. We say that a basis e is compatible with a full flag 0

= V 0 V 1 V 2 . . . Vr = V if for any i ∈ {1, . . . , r}, we have that card(V i ∩ e) = i.
Proposition 3.4. -Let V be a finite-dimensional ultranormed k-vector space and let (e 1 , . . . , e r ) be an α-orthogonal basis for V for some α ∈ ]0, 1]. The dual basis (e ∨ 1 , . . . , e ∨ r ) is then α-orthogonal. Proof. -Consider an r-tuple (λ 1 , . . . , λ r ) ∈ k r . We then have that

e ∨ i (λ 1 e 1 + • • • + λ r e r ) = λ i . It follows that (19) e ∨ i = sup
(λ1,...,λr) =(0,...,0)

|λ i | λ 1 e 1 + • • • + λ r e r α -1 e i -1 Consider ξ = λ 1 e ∨ 1 + • • • + λ r e ∨ r in V ∨ . As ξ(e i ) = λ i we get that ξ |λ i |/ e i α|λ i | • e ∨ i .
This completes the proof of the proposition.

Let (V 1 , ϕ 1 ) and (V 2 , ϕ 2 ) be two ultra-normed finite-dimensional k-vector spaces. We can then identify V 1 ⊗V 2 with Hom k (V ∨ 1 , V 2 ) and equip it with the operator norm. This ultrametric norm on V 1 ⊗V 2 , is called the tensor norm and is denoted by ϕ 1 ⊗ϕ 2 . We can construct a tensor norm for a tensor product of multiple ultra-normed spaces recursively (cf. [12, remarque 3.8]).

Proposition 3.5. -Let V and W be two finite dimensionel ultra-normed k-vector spaces and let α be a real number in ]0, 1]. If (s i ) n i=1 and (t j ) m j=1 are α-orthogonal bases of V and W respectively then (s i ⊗ t j ) 1 i n

1 j m is an α 2 -orthogonal basis of V ⊗ W . Proof. -Consider (a ij ) 1 i n 1 j m
an n × m matrix with coefficients in k. Let T be the tensor n i=1 m j=1 a ij s i ⊗ t j . We seek a lower bound for the operator norm of T , considered as a k-linear map from V ∨ to W . Let (s ∨ i ) n i=1 be the dual basis of (s i ) n i=1 . By Proposition 3.4 this is a α-orthogonal basis of V ∨ . For any i ∈ {1, . . . , n} we have that

T (s ∨ i ) = m j=1 a ij t j α max j∈{1,...,m} |a ij | • t j .
This proves that

T s ∨ i -1 α max j∈{1,...,m} |a ij | • t j α 2 max j∈{1,...,m} |a ij | • s i • t j ,
where the second inequality follows from (19). This completes the proof of the proposition.

For any k-vector space V of finite dimension r equipped with an ultrametric norm . we equip det(V ) = Λ r (V ) with the quotient norm induced by the canonical map V ⊗r → Λ r (V ). The ultrametric Hadamard inequality implies that for any basis (e 1 , . . . , e r ) of V we have that

(20) e 1 ∧ • • • ∧ e r e 1 ⊗ • • • ⊗ e r = r i=1 e i .
Equality holds when the basis (e 1 , . . . , e r ) is orthogonal. If the basis is α-orthogonal then we have that

(21) e 1 ∧ • • • ∧ e r α r r i=1 e i .
This follows from (4) proposition 3.5.

3.2.

Arakelov degree and the Harder-Narasimhan polygon.-Let C k be the class of finite dimensional k-vector spaces equipped with two ultrametric norms. If V = (V, . ϕ , . ψ ) is an element of C k we let deg(V ) be the following number

-ln s 1 ∧ • • • ∧ s r ϕ + ln s 1 ∧ • • • ∧ s r ψ ,
where (s 1 , . . . , s r ) is an arbitrary k-basis of V . This construction does not depend on the choice of (s 1 , . . . , s r ) by the trivial product formula

∀ a ∈ k × , -ln |a| + ln |a| = 0.
If V is non-trivial we let µ(V ) be the quotient deg(V )/ rk(V ). It follows from Proposition 3.1, Hadamard's inequality (20) and the inverse Hadamard inequality (21) that for any flag of subspaces of V

0 = V 0 V 1 . . . V n = V we have that (22) deg(V ) = n i=1 deg(V i /V i-1 ),
using the subquotient norms.

We let P V be the function on [0, r] whose graph is the concave upper bound of the set of points in R 2 of the form (rk(W ), deg(W )), where W runs over the set of subspaces of V . This is a concave function which is affine on each piece [i -1, i] (i ∈ {1, . . . , r}). For any i ∈ {1, . . . , r} we let µ i (V ) be the slope of this function on [i -1, i]. We introduce a normalised version of P V by setting

∀ t ∈ [0, 1], P V (t) = 1 rk(V ) P V (t rk(V )).
Let Z V be a random variable whose probability law is given by

1 rk(V ) rk(V ) i=1 δ µi(V ) .
The following equality also holds in the non-archimedean case 

(23) µ(V ) = P V (1) = E[Z V ].
• • • ⊗ e σ(r) ) 1 σ(1),...,σ(r) r is an α r -basis of V ⊗r . If ξ = σ aσe σ(1) ⊗ • • • ⊗ e σ(r) is an element of V ⊗n whose image in Λ r V is e 1 ∧ • • • ∧ er then σ∈Sr aσ(-1) sgn(σ) = 1
where Sr is the r-th symmetric group. There is at least one σ ∈ Sr such that |aσ| 1. It follows that ξ α r r i=1 e i .

The results of §2.3 -in particular Proposition 2.4 and Corollary 2.6 -still hold for members of C k (and their proofs are similar). We now summarise these properties:

Proposition 3.6. -Let (V, ϕ, ψ) be an element of C k . Let ϕ ′ and ψ ′ be two ultrametric norms on V .

(1) If ψ ′ ψ then P (V,ϕ,ψ ′ ) P (V,ϕ,ψ) .

(2) If ϕ ′ ϕ then P (V,ϕ ′ ,ψ) P (V,ϕ ′ ,ψ) .

(3) In general we have that

∀ t ∈ [0, rk(V )], P (V,ϕ,ψ) (t) -P (V,ϕ ′ ,ψ ′ ) (t) d(ϕ, ϕ ′ ) + d(ψ, ψ ′ ) t.
The following proposition can be seen as an ultrametric analogue of the Courant-Fischer theorem. Proposition 3.7. -Let V = (V, ϕ, ψ) be an element of C k of dimension r 1. For any i ∈ {1, . . . , r} we have that

(24) P V (i) = sup W ⊂V rk(W )=i deg(W ).
Proof. -We prove by induction on r that for any α ∈ ]0, 1[ there is a basis in V which is α-orthogonal for both ϕ and ψ. The case r = 1 is trivial. Suppose that this statement has been proved for all elements of C k of dimension < r. We choose

e 1 ∈ V \ {0} such that (25) e 1 ψ e 1 ϕ ( 4 √ α) -1 inf 0 =x∈V
x ψ x ϕ .

By Proposition 3.1 there is a subspace W ⊂ V of dimension r -1 such that (26) ∀ y ∈ W, e 1 + y ϕ 4 √ α max( e 1 ϕ , y ϕ ).

By ( 25) and (26) we have that

∀ y ∈ W, e 1 + y ψ 4 √ α • e 1 + y ϕ • e 1 ψ e 1 ϕ √ α • e 1 ψ .
Moreover, as ψ is ultrametric, if y ψ > e 1 ψ then e 1 + y ψ = y ψ . It follows that

(27) e 1 + y ψ √ α max( e 1 ψ , y ψ ).
By the induction hypothesis, there is a basis (e 2 , . . . , e r ) of W which is √ α-orthogonal for both ϕ and ψ. Let us prove that (e 1 , . . . , e r ) is α-orthogonal for both ϕ and ψ. Let (λ 1 , . . . , λ r ) be an element of k r with λ 1 = 0. By (26) we have that

λ 1 e 1 + • • • + λ r e r ϕ 4 √ α • max(|λ 1 | • e 1 ϕ , λ 2 e 2 + • • • + λ r e r ϕ ) 4 √ α • max(|λ 1 | • e 1 ϕ , √ α • max(|λ 2 | • e 2 ϕ , • • • , |λ r | • e r ϕ )) α max(|λ 1 | • e 1 ϕ , . . . , |λ r | • e r ϕ ),
where the second inequality comes from the fact that (e 2 , . . . , e r ) is √ α-orthogonal for W for the norm . ϕ . This inequality also holds when λ 1 = 0 (here we use directly the fact that (e 2 , . . . , e r ) is an √ α-orthogonal basis). Similarly, it follows from ( 27)

that (e 1 , . . . , e r ) is an α-orthogonal basis for V with respect to . ψ . We now prove the proposition. We deal first with the case where there is a basis (s 1 , . . . , s r ) which is orthogonal for both ϕ and ψ. For any i ∈ {1, . . . , r} let a i be the logarithm of the ratio s i ψ / s i ϕ . Without loss of generality we may assume that a 1 a 2 . . . a r . For any integer m ∈ {1, . . . , r} the vectors

s i1 ∧ • • • ∧ s im (1 i 1 < . . . < i m r
) form a basis for Λ m (V ) which is orthogonal for both ϕ abd ψ. For any m-dimensional subspace W ⊂ V , writing a non-zero element of Λ m W as a sum of elements of the form

s i1 ∧ • • • ∧ s im enables us to prove that deg(W ) a 1 + • • • + a m ,
and equality is achieved when W is generated by the s 1 , . . . , s m .

In the general case, the above proposition enables us to construct a sequence of objects (V, ϕ n , ψ n ) (n ∈ N) in C k such that (5) 

lim n→+∞ d(ϕ n , ϕ) + d(ψ n , ψ) = 0
and for any n there is a basis of V which is orthogonal for both ϕ n and ψ n . On the one hand,

P (V,ϕn,ψn) (i) = sup W ⊂V rk(W )=i deg(W, ϕ n , ψ n ),
and on the other, we have that

P (V,ϕn,ψn) (t) -P (V,ϕ,ψ) (t) (d(ϕ n , ϕ) + d(ψ n , ψ))t,
and for any subspace W ⊂ V we have that

deg(W, ϕ n , ψ n ) -deg(W, ϕ, ψ) (d(ϕ n , ϕ) + d(ψ n , ψ)) rk(W ).
As n → +∞ we obtain the desired result.

Truncation. -

The results in §2.5 are still valid for elements of C k . The proof is simpler because we only consider ultrametric norms. Let V be a finite dimensional k-vector space and let ϕ be an ultrametric norm on V . For any real number a let ϕ(a) be the norm on V such that

∀ x ∈ V, x ϕ(a) = e a x ϕ .
If ϕ and ψ are two ultrametric norms on V we let ϕ ∨ ψ be the norm on V such that

∀ x ∈ V, x ϕ∨ψ = max( x ϕ , x ψ ).
This is also an ultrametric norm on V .

5. As in the complex case, for any pair (η, η ′ ) of ultrametric norms on V we set

d(η, η ′ ) = sup 0 =x∈V ln x η -ln x η ′ .
Proposition 3.8. -Let V = (V, ϕ, ψ) be a non-trivial element of C k and let a be a real number. We have that

deg(V, ϕ, ψ ∨ ϕ(a)) = rk(V ) i=1 max( µ i (V ), a)
Proof. -We start with the case where V has a basis (e 1 , . . . , e r ) which is orthogonal for both ϕ and ψ. Without loss of generality, we have that

ln e i ψ e i ϕ = µ i (V ).
The basis (e 1 , . . . , e r ) is also orthogonal for the norm ψ ∨ ϕ(a) and we have that

ln e i ψ e i ϕ = max( µ i (V ), a).
The result follows. In general, we can approximate (ϕ, ψ) by pairs of norms ((ϕ n , ψ n )) n 1 such that for every n the vector space V has a basis orthogonal for both ϕ n and ψ n (cf. the proof of Proposition 3.7). Passing to the limit n → +∞, we get our result.

Equilibrium energy.

In this section we fix a field k, which is either C with the usual absolute value, or a complete field equipped with a non-archimedean absolute value. If k = C then we will denote by C k the class C defined in §2.3.

4.1.

Monomial bases and the Okounkov semi-group.-In this subsection we recall the construction of the Okounkov semi-group of a graded linear series. We refer the reader to [START_REF] Okounkov | Brunn-Minkowski inequality for multiplicities[END_REF][START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF][START_REF] Boucksom | Corps d'okounkov (d'après Andri Okounkov, Robert[END_REF][START_REF] Kaveh | Algebraic equations and convex bodies[END_REF] for more details.

Consider an integral projective scheme X of dimension d 1 defined over the field k. We assume that the scheme X has a regular rational point x: the local ring O X,x is then a regular local ring of dimension d. We fix a regular sequence (z 1 , . . . , z d ) in its maximal ideal m x . The formal completion of O X,x with respect to the maximal ideal m x is isomorphic to the algebra of formal series in the parameters z 1 , . . . , z d (cf. [11, proposition 10.16]).

If we choose a monomial ordering (6) on N d we obtain a decreasing N d -filtration (called the Okounkov filtration) F on O X,x such that F α ( O X,x ) is the ideal generated by monomials of the form z β such that β α. This filtration is multiplicative: we have that

F α ( O X,x )F β ( O X,x ) ⊂ F α+β ( O X,x ).
6. This is a total order on N d such that 0 α for any α ∈ N d and α α ′ implies α + β α ′ + β for any α, α ′ and β in N d .

The filtration F induces by grading an N d -graded algebra gr(O X,x ) which is isomorphic (7) to k[z 1 , . . . , z d ]. In particular, for any α ∈ N d , gr α (O X,x ) is a rank-one vector space on k.

If L is an inversible O X -module then on taking a local trivialisation in a neighbourhood of x we can identify L x with O X,x . The filtration F then induces a decreasing N d -filtration on H 0 (X, L) which is independent of the choice of trivialisation. For any s ∈ H 0 (X, L) we denote by ord(s) the upper bound of the set of α ∈ N d such that s ∈ F α H 0 (X, L). We have that ∀ s, s ′ ∈ H 0 (X, L), ord(s + s ′ ) min ord(s), ord(s ′ ) .

Moreover, for any s ∈ H 0 (X, L) and any a ∈ k × we have that ord(s) = ord(as).

Let L be an invertible O X -module. We let V • (L) be the graded ring n 0 H 0 (X, nL) (with the additive notation for the tensor product of invertible sheaves). By a graded linear system of L we mean a graded subalgebra of V • (L). Any graded linear system V • of L can be identified, on choosing a local trivialisation of L around x, with a graded subalgebra of the algebra of polynomials O X,x [T ]. The filtration F induces a decreasing N d -filtration on each homogeneous piece V n . We denote by gr(V • ) the N d+1 -graded k-algebra induced by this filtration. This is an

N d+1 -graded subalgebra of gr(O X,x )[T ] ∼ = k[z 1 , . . . , z d , T ]. In particular, the elements (n, α) ∈ N d+1 such that gr (n,α) (V • ) = {0} form a sub-semigroup of N d+1 which we denote by Γ(V • ). For any n ∈ N we denote by Γ(V n ) the subset of N d of elements α such that (n, α) ∈ Γ(V • ).
4.2. Monomial norms.-As above, we consider an integral projective scheme X of dimension d 1 over Spec k. We fix a regular rational point x ∈ X(k) (it is assumed that such a point exists), a system of parameters z = (z 1 , . . . , z d ) at x and a monomial order on N d . Let L be an invertible O X -module and let V • be a graded linear system of L. We assume that every k vector space V n is equipped with two norms ϕ n and ψ n , which are ultrametric if k is non-archimedean. We assume moreover that these norms are submultiplicative -ie. that for any (n, m) ∈ N 2 and any (s n , s m ) ∈ V n × V m we have that (28)

s n ⊗ s m ϕn+m s n ϕn • s m ϕm , s n ⊗ s m ψn+m s n ψn • s m ψm .
In this subsection, we study the asymptotic behaviour of deg(V n , ϕ n , ψ n ). As the Harder-Narasimhan filtration is not functorial in C k we cannot study this problem directly using the method developped in [START_REF] Boucksom | Okounkov bodies of filtered linear series[END_REF]. We will avoid this problem by using Okounkov filtrations. The norms ϕ n and ψ n induce quotient norms on each of the sub-quotients

gr α (V n ) (α ∈ Γ(V n ))
which by abuse of notation we will continue to denote by ϕ n and ψ n . By the results of previous sections, notably [START_REF] Gaudron | Pentes de fibrés vectoriels adéliques sur un corps globale[END_REF] and ( 22), we have that

deg(V n , ϕ n , ψ n ) - α∈Γ(Vn) deg(gr α (V n ), ϕ n , ψ n ) A k (rk(V n )),
7. This follows from the fact that O X,x is dense in O X,x .

where

A k (r) = r ln(r) if k = C and A k (r) = 0 if k is non-archimedean. We deduce that (29) lim n→+∞ µ(V n , ϕ n , ψ n ) n - 1 n#Γ(V n ) α∈Γ(Vn) deg(gr α (V n ), ϕ n , ψ n ) = 0.
Moreover, if we equip the space

gr(V n ) = α∈Γ(Vn) gr α (V n )
with norms φn and ψn such that the rank 1 subspaces gr α (V n ) are orthogonal with the induced (subquotient) norms ϕ n and ψ n respectively then we have that

α∈Γ(Vn) deg(gr α (V n ), ϕ n , ψ n ) = deg(gr(V n ), φn , ψn ).
The problem then reduces to the study of the k-algebra of the semi-group Γ(V • ) (isomorphic to gr(V • )) with the appropriate norms. As the semi-group

Γ(V • ) is a multiplicative basis for the algebra k[Γ(V • )] we can construct a new norm η n on each space gr(V n ) which is multiplicative: for any γ ∈ Γ(V • ) we let s γ be the canonical image of γ ∈ Γ(V • ) in the algebra k[Γ(V • )] and we equip gr(V n ) = α∈Γ(Vn) ks (n,α)
with the norm η n such that the vectors s n,α are orthogonal of norm 1. Using these auxillary norms we can write the degree deg(gr(V n ), φn , ψn ) as a difference

deg(gr(V n ), φn , η n ) -deg(gr(V n ), ψn , η n ), or alternatively α∈Γ(Vn) deg(gr α (V n ), ϕ n , η n ) - α∈Γ(Vn) deg(gr α (V n ), ψ n , η n ).
It is easy to see that the real valued functions (n, α) → deg(gr α (V n ), ϕ n , η n ) and (n, α) → deg(gr α (V n ), ϕ n , η n ) defined on Γ(V • ) are superadditive, so their asymptotic behaviour can be studied using the methods developped in [START_REF] Boucksom | Okounkov bodies of filtered linear series[END_REF]. We let Σ(Γ) be the (closed) convex cone in R d+1 generated by Γ. Under the above conditions the projection of

Σ ∩ ({1} × R d ) into R d is a convex body in R d , denoted ∆(Γ)
. Moreover, we have that

lim n→+∞ #Γ n n d = vol(∆(Γ)),
where vol(.) is Lesbesgue measure on R d (cf. [14, proposition 2.1]).

We say that a function Φ :

Γ → R is superadditive if Φ(γ + γ ′ ) Φ(γ) + Φ(γ ′ ).
In what follows, we study the asymptotic properties of super-additive functions.

Lemma 4.1. -Let Φ be a superadditive function defined on Γ such that Φ(0, 0) = 0.

(1) For any real number t the set 

Γ t Φ := {(n, α) ∈ Γ | Φ(n, α) nt} is a sub-semigroup of Γ. (2) If t ∈ R
∆(Γ εt1+(1-ε)t2 Φ ) ⊃ ε∆(Γ t1 Φ ) + (1 -ε)∆(Γ t2 Φ ). By the Brunn-Minkowski theorem, the function t → vol(∆(Γ t Φ )) 1/d is concave on ] -∞, θ[ , where θ = lim n→+∞ sup α∈Γn 1 n Φ(n, α),
so it is continuous on this interval. Moreover, as the set (dense in ∆(Γ))

{α/n : (n, α) ∈ Γ, n 1} is contained in t∈R ∆(Γ t Φ ), we get that vol(∆(Γ)) = lim t→-∞ vol(∆(Γ t Φ )).
The following result is a limit theorem for superadditive functions defined on Γ. It is a natural generalisation of [START_REF] Boucksom | Okounkov bodies of filtered linear series[END_REF]Theorem 1.11] For any integer n 1, we consider Z n = Φ(n, .) as a uniformly distributed random variable on Γ n . The sequence of random variables Z n /n n 1 then converges in law (8) to a limit random variable Z whose law is given by

P(Z t) = vol(∆(Γ t Φ )) vol(∆(Γ))
, t = θ.

Proof ) is also empty, so equation (31) also holds for t > θ. Finally, if the function F is continuous at θ then since both t → P(Z n t) and F are decreasing we also have that lim n→+∞ P(Z n θ) = F (θ). The result follows.

Remark 4.4. -The limit law in the above theorem can also be characterised as the pushforward of Lesbesgue measure on ∆(Γ) by a function determined by Φ. Let G Φ : ∆(Γ) → R ∪ {-∞} be the map sending x to sup{t ∈ R : x ∈ ∆(Γ t Φ )}. This is a real concave function on (9) ∆(Γ) • . The function G Φ is therefore continuous on ∆(Γ) • . By definition, the limit law is equal to the pushforward of normalised Lesbesgue measure on ∆(Γ) by G Φ . In particular, if h is a continuous bounded function then we have that (32)

lim n→+∞ h(Φ(n, α)/n) #Γ n = 1 vol(∆(Γ)) ∆(Γ) • G Φ (x) vol(dx)
8. We say that a sequence of random variables (Zn) n 1 converges in law to a random variable Z if the law of Zn converges weakly to that of Z, i.e., for any continuous bounded function h on R we have that lim This enables us to realise the random variable Z as the function G Φ defined on the convex body ∆(Γ) equipped with normalised Lesbesgue measure.

In the rest of this section we apply these results to the situation described in §4.2. We consider an integral projective scheme X of dimension d 1 defined on a field k and an invertible O X -module L. We also choose a regular rational point (it is assumed that such a point exists) x ∈ X(k), a local system of parameters (z 1 , . . . , z d ) and a monomial order on N d . Let V • be a graded linear system on L whose Okounkov semi-group Γ(V • ) satisfies (10) conditions (a)-(c) of section 4.3. For any n ∈ N let V n be equipped with two norms ϕ n and ψ n which are assumed to be ultrametric for non-archimedean k.

Theorem 4.5. -Assume the norms ϕ n and ψ n satisfy the following conditions:

(1) the system of norms (ϕ n , ψ n ) n∈N is submultiplicative (i.e. satisfies (28));

(2) we have that d(ϕ n , ψ n ) = O(n) as n → +∞;

(3) there is a constant C > 0 such that (11) inf α∈Γ(Vn) ln s (n,α) φn -Cn for any n ∈ N, n 1.

Then the sequence (

1 n µ(V n , ϕ n , ψ n )) n 1 converges in R.
Proof. -We introduce auxillary monomial norms η n as in §4. 

2. Let Φ : Γ(V • ) → R be the function that sends (n, α) ∈ Γ(V • ) to deg(gr α (V n ), ϕ n , η n ).
(V • ) → R the function sending (n, α) ∈ Γ(V • ) to deg(gr α (V n ), ψ n , η n ) and by Z Ψ,n = Ψ(n, .) the random variable on Γ(V n ) such that n ∈ N, n 1. The sequence of random variables (Z Ψ,n /n) n 1 then converges in law to a random variable Z Ψ defined on ∆(Γ(V • )). Moreover, (2) implies that the function |Z Φ -Z Ψ | is bounded on ∆(Γ(V • )) • .
By equation ( 29) and the equality

deg(gr α (V n ), ϕ n , ψ n ) = deg(gr α (V n ), ϕ n , η n ) -deg(gr α (V n ), ψ n , η n ),
10. Note that these three conditions are automatically satified whenever V• contains an ample divisor, ie. Vn = {0} for large enough n and there is an integer p 1, an ample O X -module A and a non-zero section s of pL -A, such that Im H 0 (X, nA)

•s n -→ H 0 (X, npL) ⊂ Vnp
for any n ∈ N, n 1. We refer the reader to [14, lemma 2.12] for a proof.

11. See §4.2 for notation.

it will be enough to prove that the sequence

(E[Z Φ,n /n] -E[Z Ψ,n /n]) n 1 converges in R. Condition (2) of the theorem implies that the functions 1 n |Z Φ,n -Z Ψ,n | (n ∈ N) are uniformly bounded. Let A > 0 be a constant such that ∀ n 1, |Z Φ,n -Z Ψ,n | An.
As (Z Φ,n /n) n 1 and (Z Ψ,n /n) n 1 converge in law to Z Φ and Z Ψ respectively, for any ε > 0 there is a T 0 > 0 and a n 0 ∈ N such that

∀ T T 0 , ∀ n n 0 , P(Z Φ,n -nT ) < ε et P(Z Ψ,n -nT ) < ε. It follows that E[Z Φ,n /n] -E[Z Ψ,n /n] -E[max(Z Φ,n /n, -T )] + E[max(Z Ψ,n /n, -T )] 2εE[|Z Φ,n /n -Z Ψ,n /n|] 2εA (33) 
whenever T T 0 and n n 0 . Moreover, as the random variables Z Φ,n /n and Z Ψ,n /n are uniformly bounded above and the sequences (Z Φ,n /n) n 1 and (Z Ψ,n /n) n 1 converge in law it follows that

lim n→+∞ E[max(Z Φ,n /n, -T )]-E[max(Z Ψ,n /n, -T )] = E[max(Z Φ , -T )-max(Z Ψ , -T )].

Moreover, as the function |Z

Φ -Z Ψ | is bounded, the dominated convergence theorem implies that lim T →+∞ E[max(Z Φ , -T ) -max(Z Ψ , -T )] = E[Z Φ -Z Ψ ]. Equation (33) then implies that lim sup n→+∞ E[Z Φ,n /n] -E[Z Ψ,n /n] -E[Z Φ -Z Ψ ]
2εA.

As ε is arbitrary, we get that

lim n→+∞ 1 n µ(V n , ϕ n , ψ n ) = E[Z Φ -Z Ψ ].
Condition (3) in the above theorem holds whenever ϕ n comes from a continuous metric on the invertible O X -module L. This can be proved by considering a monomial order on N d such that (12) 

α 1 + • • • + α d < β 1 + • • • + β d implies (α 1 , . . . , α d ) < (β 1 , . . . , β d ).
Let X an be the analytic space associated to the k-scheme X (in the Berkovich sense [START_REF] Maclean | Berkovich -Spectral theory and analytic geometry over non-Archimedean fields[END_REF] if k is non-archimedean) and let L an be the pull-back of L to X an . Let C 0 X an be the sheaf of continuous real functions on X an . A continuous metric on L is a morphism of set sheaves, . , from L an ⊗ C 0 X an to C 0 X an which in every point x ∈ X an induces a norm . (x) on the fibre L an (x). Given a continuous metric ϕ on X we can equip H 0 (X, L) with the supremum norm . ϕ,sup such that

∀ s ∈ H 0 (X, L), s ϕ,sup := sup x∈X an s ϕ (x).
For any integer n ∈ N the metric ϕ induces by passage to the tensor product a continuous metric ϕ ⊗n on nL. Let ϕ n be the supremum norm on H 0 (X, nL) induced by ϕ ⊗n (or its restriction to V n by abuse of language): the system of norms (ϕ n ) n 0 then satisfies condition (3) of Theorem 4.5. This follows from Schwarz's (complex or non-archimedean) Lemma (cf. [8, pp.205-206]). This gives us the following corollary.

Corollary 4.6. -Let X be a projective integral scheme defined over a field k and let L be an invertible O X -module equipped with two continuous metrics ϕ and ψ. Let V • be a graded linear system of L such that Γ(V • ) satisfies conditions (a)-(c) above.

For any integer n ∈ N let ϕ n and ψ n be the supremum norms on V n associated to the metrics ϕ ⊗n and ψ ⊗n respectively. The sequence ( µ(V n , ϕ n , ψ n )/n) n 1 then converges in R.

Proof. Similarly, the system of norms (ψ n ) n 0 is also submultiplicative. Moreover, as the topological space X an is compact, we have that . Both methods use the monomial basis to construct super or subadditive functions on the Okounkov semi-group. However, the method in [START_REF] Nyström | Transforming metrics on a line bundle to the okounkov body[END_REF] is based on a comparison between the L 2 metric and the L ∞ metric, whereas we use the Harder-Narasimhan formalism. This new approach is highly flexible and enables us to prove our result in the very general setting of a submultiplicatively normed linear system satisfying moderate conditions, in both the complex and non-archimedean cases.

-

Asymptotic distributions of logarithmic sections

In this section we prove our main theorem.

5.1. A convergence criterium.-In this section we prove a convergence criterium. For any real number x the expression x + denotes max(x, 0).

Proposition 5.1. -Let (Z n ) n 1 be a sequence of uniformly bounded random variables. Assume that for any t ∈ R the sequence (E[max(Z n , t)]) n 1 converges in R.

The sequence of random variables (Z n ) n 1 then converges in law.

Proof. -Note that the condition of the proposition implies that, for any t ∈ R, the sequence (E[(Z n -t) + ]) n 1 converges in R. In fact, one has max(Z n , t) = (Z n -t) + + t.

Let h be a compactly supported smooth function. We have that

E[h(Z n )] = - R h(t) dP(Z n t) = R P(Z n t)h ′ (t) dt,
where the second equality comes from integration by parts. For any a ∈ R we have that and it follows that

E[h(Z n )] = - R h ′ (t) dE[(Z n -t) + ] = R h ′′ (t)E[(Z n -t) + ] dt.
variables Z n are uniformly bounded the dominated convergence theorem implies that the sequence (E[h(Z n )]) n 1 converges in R. Let I(h) be its limit. The functional I(.) is continuous with respect to the supremum norm on the space of compactly supported smooth functions, so it can be extended by continuity to a positive linear form on the space of continuous compactly supported functions, and hence defines a Radon measure on R. As the random variable Z n are uniformly bounded it follows that I(.) is a probability measure on R. The result follows.

Asymptotic distribution of eigenvalues.

-In what follows we fix a valued field k which is either C with the usual absolute value or a complete non-archimedean field. Let X be an integral projective scheme of dimension d 1 defined over k with a regular rational point. In this subsection we prove the following theorem (cf. §2.3 and §3.2 for notations).

Theorem 5.2. -Let L be an invertible O X -module and V • a graded linear subsystem of L whose Okounkov semi-group satisfies conditions (a)-(c) of §4.3. Let ϕ and ψ be two continuous metrics on L, and for any integer n 0 let ϕ n and ψ n be the supremum norms on V n induced by the tensor product metrics ϕ ⊗n and ψ ⊗n respectively. Then we have that [START_REF] Maclean | Berkovich -Spectral theory and analytic geometry over non-Archimedean fields[END_REF] The sequence of random variables ( 1 n Z (Vn,ϕn,ψn) ) n 1 converges in law to a probability measure on R.

(2) the sequence of polygons (P (Vn,ϕn,ψn) ) n 1 converges uniformly to a concave function on [0, 1];

Proof. -For any n ∈ N, n 1 we let Z n denote the random variable for any n 1. The sequence of random variables (Z n ) n 1 is therefore uniformly bounded. By [9, proposition 1.2.9], the second statement follows from the first.

4 .

 4 By induction, Proposition 3.5 implies that (e σ(1) ⊗

4. 3 .

 3 Limit theorem. -In this subsection we fix an integer d 1 and a subsemigroup Γ in N d+1 . For any integer n ∈ N we denote by Γ n the set {α ∈ N d | (n, α) ∈ Γ}. We suppose that the semi-group Γ verifies the following conditions (cf. [14, §2.1]) : (a) Γ 0 = {0}, (b) there is a finite subset B in {1} × N d such that Γ is contained in the sub-monoid of N d+1 generated by B, (c) the group Z d+1 is generated by Γ.

Theorem 4 . 3 .

 43 -Let Φ : Γ → R be a superadditive function such that

  n→+∞ E[h(Zn)] = E[Z], or equivalently, the probability function of Zn converges to that of Z at any point x ∈ R such that P(Z = x) = 0. 9. The set t∈R ∆(Γ t Φ ) is convex and its volume is equal to vol(∆(Γ)) so it contains ∆(Γ) • .

12. When α 1 +

 1 • • • + α d = β 1 + • • • + β d wemay use the lexicographic order, for example.

  ϕ (x), . ψ (x)) < +∞. and it follows that d(ϕ n , ψ n ) = O(n) as n → +∞. Finally, as the norms ϕ n satisfy condition (3) of theorem 4.5, the convergence of ( µ(V n , ϕ n , ψ n )/n) n 1 as a consequence of this theorem. Remark 4.7. -This result invites comparison with a result of Witt Nyström's [17, théorème 1.4]

  n t) dt = E[(Z n -a) + ]

  is a real number such that As Φ is superadditive, for any (n, α) and (m, β) in Γ t Φ we have thatΦ(n + m, α + β) Φ(n, α) + Φ(m, β) nt + mt = (n + m)t,There therefore exists a k 0 1 such that kγ + ξ ∈ Γ t Φ for any ξ ∈ A and k k 0 , so Γ t Φ generates Z d+1 as a group. Remark 4.2. -The superadditivity of Φ implies that

	t < lim n→+∞	sup α∈Γn	1 n	Φ(n, α),
	then Γ t Φ satisfies conditions (a)-(c) above.	
	Proof. -(1) and hence (n + m, α + β) ∈ Γ t Φ . (2) It is easy to check that (a) and (b) are satisfied by Γ t Φ . We now prove (c). Let A be a finite subset of Γ generating Z d+1 as a group. By hypothesis, there exists a
	ε > 0 and a γ = (m, β) ∈ Γ such that Φ(m, β) (n, α) ∈ Γ, we have that Φ(km + n, kβ + α) km + n Φ(n, α) + kΦ(m, β) km + n	(t + ε)m. It follows that for any Φ(n, α) + km(t + ε) km + n t
	for large enough k.			

  . -By Remark 4.2 the function F defined on t ∈ R \ {θ} by F (t) := vol(∆(Γ t Φ ))/vol(∆(Γ)) is decreasing and continuous and lim for large enough positive t and it follows that if we extend the domain of definition of F to R by taking F (θ) to be the limit of F (t) as t tends to θ from the left we get a (left continuous) probability function on R. For any integer n 1 and any real number t we have that

				t→-∞	F (t) = 1. Moreover,
	condition (30) implies that F (t) = 0 P(Z n t) =	#Γ t Φ,n #Γ n	,
	where Γ t Φ,n is the set of all α ∈ N d such that (n, α) ∈ Γ t Φ . By the previous lemma we have that
	(31)	lim n→+∞	P(Z n t) = F (t)
	for any t < θ. Moreover, if t > θ then Γ t Φ,n is empty for any n	1 and ∆(Γ t Φ

  The system of norms (ϕ n ) n 0 is submultiplicative. If s and s ′ are elements of V n and V m respectively we have thats ⊗ s ′ ϕn+m = sup

		x∈X an	s ⊗ s ′	ϕ ⊗(n+m) (x)
	sup x∈X an	s ϕ ⊗n (x) • sup x∈X an	s ′	ϕ

⊗m (x) = s ϕn • s ′ ϕm .

  1 n Z (Vn,ϕn,ψn) .

	We have that		
	|Z n |	x∈X an sup	d( .

ϕ (x), . ψ (x))

We now prove the first statement by using the convergence criterion given in 5.1 and the limit result proved in 4.6. For any real parameter a let ϕ(a) be the continuous metric on L such that

Let ψ ∨ ϕ(a) be the metric on L such that

The supremum norm on V n associated to the metric (ψ ∨ ϕ(a)) ⊗n is ψ n ∨ ϕ n (an) (with the notations as in §2.5 or §3.3). Corollary 4.6 applied to ϕ and ψ ∨ ϕ(a) proves that the sequence

Moreover, by propositions 2.8 and 3.8 we have that

where

As r n = O(n d ) when n → +∞, we have that lim n→+∞ A(r n )/n = 0. It follows that the sequence (E[max(Z n , a)]) n 1 converges. By Proposition 5.1, the result follows.

Remark 5.3. -The above result still holds whenever we replace ϕ n and ψ n by norms ϕ ′ n and ψ ′ n such that

, n → +∞, and the limit laws are the same. If we let Z ′ n be the random variable

then for any a ∈ R we have that

Letting n → +∞ we get that

In particular, this enables us to apply the theorem to L 2 norms when k is the field of complex numbers -see for example Lemma 3.2 of [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF].
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