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Abstract. Pairings are particular bilinear maps, and as any bilinear maps they factor through the
tensor product as group homomorphisms. Besides, nothing seems to prevent us to construct pairings on
other abelian groups than elliptic curves or more general abelian varieties. The point of view adopted
in this contribution is based on these two observations. Thus we present an elliptic curve free study of
pairings which is essentially based on tensor products of abelian groups (or modules). Tensor products
of abelian groups are even explicitly computed under finiteness conditions. We reveal that the existence
of pairings depends on the non-degeneracy of some universal bilinear map, called the canonical bilinear
map. In particular it is shown that the construction of a pairing on A×A is always possible whatever a
finite abelian group A is. We also propose some new constructions of pairings, one of them being based
on the notion of group duality which is related to the concept of non-degeneracy.
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1 Introduction

A bilinear map is a function of two variables that belong to two finite abelian groups, and with
values in another abelian group, such that when fixing one of its variable the map thus obtained is
a homomorphism of groups. Bilinear maps were originally introduced in cryptography in order to
solve the discrete logarithm problem [24]. Due to bilinearity it is possible to transport this problem
from a group for which it is assumed to be difficult to another one where the problem becomes easier.
Afterwards, bilinear maps were used to define tripartite Diffie-Hellman key exchange protocol [18].
In these two situations, the bilinear maps under consideration are assumed to be non-degenerate,
and are called pairings. For such a map f : A × B → C, this means that apart from the identity
element of A (respectively, B), there is no members of A (respectively, of B) that annihilate every
member of B (respectively, of A). For these kinds of use the groups A,B,C are cyclic groups. Many
pairings considered in the literature are naturally associated to some objects arising in algebraic
(projective) geometry such as elliptic curves and more generally abelian varieties. For a long time
pairings were variants of the Weil [31] and Tate [33] pairings over genus 1 or 2 curves over finite
fields. More recently pairings over more general abelian varieties have been proposed [21] and even
based on dot-products [26] for homomorphic encryption.

More attention was given to pairings over elliptic curves for at least two reasons. First of all, it
seems that the security level of such pairings with respect to the discrete logarithm problem and
to pairing inversions is high (see for instance [8]). Secondly, these pairings may be computed rather
efficiently (with help of an efficient finite field arithmetic [1, 12] or by optimized versions of Miller’s
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algorithm [14, 34]). Apart from these two important cryptographic issues, pairings are bilinear maps
between finite abelian groups, and as any bilinear map, a pairing descends to the tensor product of
abelian groups as a usual group homomorphism. It seems rather natural to study pairings through
the notion of tensor product, and it is the point of view adopted in this contribution. More precisely,
we study, and construct, bilinear maps between finite abelian groups (and more generally between
modules over some fixed ring) seen as homomorphisms from a tensor product to an abelian group
(or a module). This provides an elliptic curve free presentation of pairings between abstract groups.
Not all our results are difficult, some of them are folklore, and lot of them may even be qualified
as simple for group-theorists, but we think that one of the main worth of this work is to provide
a unified treatment of pairings in an abstract setting. This approach is quite natural since many
properties of pairings are independent from algebraic geometry. Because we have chosen to be
located at the abstract groups level, we do not deal with the cryptographic issues of efficiency and
security. We believe that these gaps are balanced by the results stated in this contribution, and our
rather general approach to pairings. We also believe that this work may serve as a basis for new
constructions of cryptographically relevant pairings on other group structures than elliptic curves
(see for instance [21, 26]).

The remainder of this contribution is organized as follows: Section 2 fixes the general notations,
provides basic definitions about bilinear maps and pairings, and contains a brief overview on pairing-
based cryptography. Section 3 is about the tensor product of groups and modules themselves, of
which it provides a number of useful properties. Section 4 is entirely devoted to the tensor product of
finite abelian groups: the rules to compute any such tensor product are presented. It also deals with
the canonical bilinear map (which is canonically attached to a tensor product) and the fact that
non-degeneracy of a bilinear map depends of that of a canonical bilinear map. Section 5 contains
several constructions of pairings. Some properties about known pairings are also recovered.

2 An introduction to pairing-based cryptography

2.1 Some notations and definitions

Before introducing the notion of pairings and their use in cryptography, let us begin with some
notations, useful hereafter in this contribution.

Let f : X×Y → Z be any set-theoretic map. For any x ∈ X, we define the map f(x, ·) : X → Z
by y 7→ f(x, y), and symmetrically, for any y ∈ Y is defined f(·, y) : Y → Z by x 7→ f(x, y). The
identity element of a group G is denoted either by 1G or by 0G whether G is given in multiplicative
or additive notation. Let G,H,K be three groups (abelian or not). A map f : G×H → K is said
to be bilinear if for every g ∈ G, and every h ∈ H, the maps f(g, ·) : H → K and f(·, h) : G → K
are homomorphisms of groups. The set of all bilinear maps from G × H to K is then denoted
by Bil (G × H,K). Actually, this notion may be defined in another setting, that of modules over
some commutative ring. In this contribution, R always denotes a commutative ring with a unit
1R. Given three R-modules, A,B,C, we say that a map f : A×B → C is R-bilinear whenever for
every a ∈ A and every b ∈ B, the maps f(a, ·) : B → C and f(·, b) : A → C are R-linear. When
R = Z, then Z-bilinear maps are exactly bilinear maps between abelian groups. In what follows,
the set of all R-bilinear maps from A×B to C is denoted by Bil R(A×B,C). Moreover, we denote
Bil Z(A × B,C) simply by Bil (A × B,C) since when A,B,C are abelian groups both notions of
bilinearity coincide. Continuing with notations, if G,H are groups, then Hom(G,H) is the set of all
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group homomorphisms from G to H, and if A,B are two R-modules, then HomR(A,B) is the set of
all R-linear maps from A to B. Again if A,B are abelian groups, then Hom(A,B) = HomZ(A,B).

Example 1. Let A be an abelian group. Let R⋆ be the group of invertible elements of R. A bilinear
map f : A×A → R⋆ is called a bicharacter [29]. When furthermore f(a, b)f(b, a) = 1 and f(a, a) =
±1 for every a, b ∈ A, f is said to be a commutation factor [32]. Such commutation factors are used
to define color Lie superalgebras [3].

One of the main feature of a pairing (the definition of which is recalled hereafter) is the notion
of non-degeneracy. Let G,H,K be three groups and A,B,C be three R-modules. Let f ∈ Bil (G×
H,K) (respectively, f ∈ Bil R(A × B,C)). The map f is said to be left non-degenerate if the map
g ∈ G 7→ f(g, ·) (respectively, a ∈ A 7→ f(a, ·)) is one-to-one. In other terms this means that if for
every h ∈ H (respectively, every b ∈ B), f(g, h) = 1K (respectively, f(a, b) = 0C), then g = 1G
(respectively, a = 0A). The notions of right non-degeneracy are the evident symmetric ones, while
we say that a bilinear map f is non-degenerate whenever it is both left and right non-degenerate.
The map f is said to be degenerate if it is not non-degenerate. In its original form, a pairing is
a non-degenerate bilinear map between finite abelian groups. For our purpose the definition of
a pairing is somewhat extended to allow pairings between non-abelian groups or R-modules. In
brief, a pairing is a non-degenerate map f ∈ Bil (G × H,K) (respectively, f ∈ Bil R(A × B,C))
where G,H,K are groups (respectively, A,B,C are R-modules). In particular, there is no size issue
in the definition of a pairing although our examples will be given under finiteness assumptions.
A bilinear map f : A × B → C is said to be perfect if a ∈ A 7→ f(a, ·) ∈ HomR(B,C) and
b ∈ B 7→ f(·, b) ∈ HomR(A,C) are isomorphisms. Obviously a perfect bilinear map is a pairing and
we refer to it as a perfect pairing. We also sometimes use the traditional “bracket” notation 〈· | ·〉
to denote a pairing.

Example 2. Let 1 → A → G → B → 1 be a short exact sequence of groups, where A,B are
abelian groups, and A lies in the center Z(G) of G (i.e., G is a central extension of abelian groups).
Let [g, h] = ghg−1h−1 be the commutator of g, h ∈ G. According to [2], [·, ·] descends to the
quotient as a bilinear map [·, ·] : B × B → A. Moreover it is alternating (i.e., [x, x] = 1 for every
x ∈ B). Finally, it is non-degenerate if, and only if, A = Z(G), so that we obtain a pairing
[·, ·] : G/Z(G) ×G/Z(G) → Z(G) (whenever G/Z(G) is abelian).

2.2 Background on pairing-based cryptography

We recall here the basic facts and definitions of pairings over elliptic curves. Let r be a prime
integer, A,B,C be three abelian groups of order r. A pairing is a bilinear and non-degenerate map
e : A × B → C. We briefly present the most frequent choices for A, B and C in pairing-based
cryptography. Let E be an elliptic curve over the finite field Fq of characteristic p. The integer r
is chosen to be a prime divisor of |E(Fq)|, co-prime with p. A pairing is usually defined over the
points of r-torsion of E: E[r] = {P ∈ E(Fq) : rP = P∞ }, where P∞ is the point at infinity of the
elliptic curve. We know that E[r] ∼= Z/rZ×Z/rZ [31, Chap III Cor. 6.4]. The embedding degree k
of E relatively to r is the smallest integer such that r divides (qk−1). A result of Balasubramanian
and Koblitz [4] ensures that, when k > 1, all the points of E[r] are rational over the extension Fqk

of degree k, i.e., E[r] = E(Fqk). The group A is then the subgroup generated by a point P ∈ E(Fq)
of order r. The subgroup B is chosen as another subgroup of order r of E[r], a popular choice is the
subgroup generated by a point Q of order r over E(Fqk), such that Π(Q) = qQ, where Π represents



4

the Frobenius endormorphism over Fq. Finally, the group C is the unique subgroup of order r of
F
∗
qk

(it exists and is unique because r divides (qk − 1) and F
∗
qk

is a cyclic group). This choice of

subgroups may be seen as the restriction to A×B of the Weil pairing on E[r]× E[r], or the Tate
paring, or one of its variant (reduced Tate, Ate, twisted Ate, optimal pairing or pairing lattices).
The Miller algorithm is used to computed all these pairings.

The original objective of pairings in cryptography was to solve the discrete logarithm problem.
The pairings shift the discrete logarithm problem from a subgroup over an elliptic curve to a discrete
logarithm problem over a finite field. The interest is that the discrete logarithm problem is easier on
finite fields compared to elliptic curves [24]. Later, the pairings were used to compose the tripartite
Diffie-Hellman key exchange [18]. It was a simplification of the Diffie-Hellman key construction
between three entities. Nowadays, pairings are used for several protocols such as identity based
cryptography [5] or short signature schemes [19]. The security of pairing-based cryptography lays
on the discrete logarithm problem over the three groups A, B and C [8].

3 Tensor product of groups (and modules)

The notions of bilinear maps and tensor product are closely related as it is explained hereafter,
and this relation is exploited in section 5 to construct new pairings on finite abelian groups. In
brief, every bilinear map factors through a quotient group – the tensor product – as a linear map.
The original bilinear map is recovered by composing this linear map with a “universal” bilinear
map. Therefore the study of bilinear maps reduces to that of a unique (and universal) bilinear map
and of those linear maps which are defined on a particular kind of groups (or R-modules), namely
the tensor product. In this section are recalled the constructions of the tensor product of groups
and modules together with some of their basic properties. We also explain the reason why it is
somewhat useless to define bilinear maps (or pairings) on non-abelian groups. Other properties of
bilinear maps in the setting of finite abelian groups are presented in section 4.

3.1 Free (commutative) group and abelianization

The basic notions recalled in this subsection may be found for instance in [7].
Let G be a group. For any elements g, h ∈ G, the commutator of g and h is [g, h] = g−1h−1gh

(see example 2). The derived subgroup [G,G] is generated by all the commutators and it turns to
be a normal subgroup of G. It is even the smallest normal subgroup such that the quotient group of
G by this subgroup is abelian.Thus the quotient group G/[G,G], denoted by Ab(G), is an abelian
group, called the abelianization of G. It satisfies the following property: let A be an abelian group,
and f : G → A be a homomorphism of groups, then there is a unique homomorphism of groups
g : Ab(G) → A such that g ◦ π = f , where π denotes the natural epimorphism G → Ab(G).

Let X be a set. There exists a way to construct a group F (X), called the free group over X, that
contains X, and which is the solution3 of the following “universal problem”: for any group G and
any set-theoretic map f : X → G, there exists a unique homomorphism of groups g : F (X) → G
such that g(x) = f(x) for every x ∈ X. The construction is made as follows: for each x ∈ X,
we introduce a new symbol, say x, and we let X denote the totality of these symbols. Then, we
consider the free monoid (X ∪ X)∗ over X ∪ X . It consists of all words (including the empty
word ǫ), i.e., finite sequences of elements of X ∪X . The composition of words is the obvious one

3 Actually a solution of a universal problem is only unique up to a unique isomorphism in some category, see [23].
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(concatenation), and ǫ acts as the identity. Finally, let ∼= be the least congruence of (X ∪ X)∗

containing { (xx, ǫ) : x ∈ X } ∪ { (xx, ǫ) : x ∈ X } (see [9]). It turns that the quotient monoid
(X ∪X)∗/ ∼= (also known as the Grothendieck group completion of (X ∪X)∗) is actually a group
which is precisely the free group F (X).

There also exists a similar construction for abelian groups, and more generally for modules.
Recall that R is a commutative ring with a unit 1R. An element f ∈ RX is said to be finitely
supported whenever the set of all x ∈ X such that f(x) 6= 0 is finite. For instance, for each x ∈ X,
the map δx ∈ RX that vanishes at all y 6= x, and such that δx(x) = 1R is finitely supported. The set
of all such functions is denoted by R(X). It is a free R-module with basis X (under identification
of δx with x for each x ∈ X). In particular, for R = Z, we obtain the free commutative group Z

(X)

on X. As it is expected, Ab(F (X)) ∼= Z
(X) (isomorphic as groups).

3.2 Tensor product: constructions and properties

We are now in position to introduce the tensor product of groups and R-modules. Let G,H be two
groups (in multiplicative notation), and let N be the normal subgroup of F (G×H) generated by
the elements (gg′, h)(g, h)−1(g′, h)−1 and (g, hh′)(g, h)−1(g, h′)−1 for all g, g′ ∈ G, h, h′ ∈ H. The
quotient group F (G×H)/N is denoted by G⊗H. We denote by g⊗h the image of (g, h) ∈ G×H
in G⊗H and this clearly defines a bilinear map from G×H to G⊗H called the canonical bilinear
map. The group G ⊗ H also satisfies a universal property: for every group K and every bilinear
map f : G × H → K, there exists a unique homomorphism of groups f ′ : G ⊗ H → K such that
f ′(g ⊗ h) = f(g, h) for every g ∈ G and h ∈ H.

Lemma 1. The image of ⊗ : G×H → G⊗H generates G⊗H, the group G⊗H is abelian, and
Ab(G)⊗ Ab(H) ∼= G⊗H (in particular, G⊗H is an abelian group).

Proof. The set G×H generates the free group F (G×H), and the natural map F (G×H) → G⊗H
is onto. Then, the group G ⊗ H is generated by the image of G × H. Let f : G × H → K be
a bilinear map, where K is another group (say in additive notation even if it is not assumed to
be commutative). Let g, g′ ∈ G, h, h′ ∈ H. We have f(g, h) + f(g, h′) + f(g′, h) + f(g′, h′) =
f(g, hh′) + f(g′, hh′) = f(gg′, hh′) = f(gg′, h) + f(gg′, h′) = f(g, h) + f(g′, h) + f(g, h′) + f(g′, h′)
so that f(g, h′) + f(g′, h) = f(g′, h) + f(g, h′). Thus any two elements of the image of f commute,
so the image of f generates a commutative subgroup of K. This proves that G⊗H is abelian. Let
γ : G×H → Ab(G)×Ab(H) be the canonical map which is onto. It is clear that if f ∈ Bil (G×H,K),
then f ◦ γ ∈ Bil (Ab(G) × Ab(H),K). We thus define a map Ψ : Bil (G × H,K) → Bil (Ab(G) ×
Ab(H),K) by Ψ(f) = f ◦ γ. It turns that it is one-to-one (since γ is onto). Because the image
of f ∈ Bil (G × H,K) generates an abelian subgroup in K, for a fixed h ∈ H the kernel of the
homomorphism f(·, h) : g ∈ G → f(g, h) ∈ K contains [G,G] in such a way that f(g, h) = f(g′, h)
for every g′g−1 ∈ [G,G]. The same holds for f(g, ·) : h ∈ H 7→ f(g, h) ∈ K for all fixed g ∈ G. This
implies that f = f ′ ◦ γ for some f ′ : Ab(G) × Ab(H) → K. Because γ is onto, it can be checked
that f ′ is bilinear. It follows that Ψ is a bijection, and it is even natural in K (see [23]). The last
statement then follows from usual category theoretic arguments. ⊓⊔

It follows from lemma 1 that it is unnecessary to consider tensor product for non-abelian groups.
This is the reason why historically more consideration is given to bilinear maps between abelian
groups.
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More generally, it is also possible to define the tensor product of R-modules. Let A,B be two
R-modules (in additive notation), and let C be the submodule of R(A×B) generated by the elements
(a+a′, b)−(a, b)−(a′, b), (a, b+b′)−(a, b)−(a, b′), (αa, b)−α(a, b), (a, αb)−α(a, b) for all a, a′ ∈ A,
b, b′ ∈ B, α ∈ R. Then, the quotient R-module R(A×B)/C is called the tensor product of A and
B, and is denoted by A ⊗R B. It is the solution of the following universal problem: let D be a
R-module, and let f ∈ Bil R(A×B,D). Then, there exists a unique R-linear map g : A⊗R B → D
such that g(a ⊗ b) = f(a, b) for all a ∈ A, b ∈ B (where ⊗ : A× B → A ⊗R B is the restriction to
A× B of the canonical epimorphism from R(A×B) to A⊗R B, and it is actually a R-bilinear map
also called the canonical bilinear map).

Remark 1. Taking R to be Z, then we recover the tensor product of abelian groups and it follows
that Ab(G) ⊗Z Ab(H) ∼= G ⊗ H ∼= Ab(G) ⊗ Ab(H) for every groups G,H. Moreover the maps
(a, b) ∈ A × B 7→ a ⊗ b ∈ A ⊗ B and (a, b) ∈ A × B 7→ a ⊗ b ∈ A ⊗Z B are also (essentially) the
same, where A,B are abelian groups.

In what follows, if A,B are two abelian groups, then A ⊗ B stands for A ⊗Z B (according to the
above remark there is no confusion).

It is clear by construction that A⊗RB is spanned as a R-module by a⊗ b where (a, b) ∈ A×B.
Therefore any element of A⊗R B is given as a finite sum α1(a1 ⊗ b1) + · · · + αn(an ⊗ bn), αi ∈ R,
ai ∈ A, bi ∈ B, i = 1, · · · , n. Such elements are referred to as tensors while generating elements of
the form a⊗ b are called elementary (or basic) tensors.

Other properties of the tensor product are recalled below. The first result is given without proof
since it is easy.

Lemma 2. Let A and B be two R-modules with respective spanning sets S and T . Then, A⊗R B
is generated as a R-module by the basic tensors s⊗ t, s ∈ S, t ∈ T .

Lemma 3. Let A,B be two R-modules. There is a unique isomorphism of R-modules σ : A⊗RB ∼=
B ⊗R A such that σ(a⊗ b) = (b⊗ a) for every a ∈ A, b ∈ B.

Proof. Let f : A×B → B⊗RA be given by f(a, b) = b⊗a. This a R-bilinear map. Therefore there
is a unique R-linear map σ : A⊗R B → B ⊗R A such that σ(a⊗ b) = b⊗ a for every a ∈ A, b ∈ B.
Similarly, there is a unique R-linear map τ : B⊗RA → A⊗RA such that τ(b⊗ a) = a⊗ b for every
a ∈ A, b ∈ B. It is now easy to check that σ and τ are inverses one from the other. ⊓⊔

Lemma 4. Let A,B,C be three R-modules. There is a unique isomorphism of R-modules δ : A⊗R

(B ⊕ C) ∼= (A ⊗R B) ⊕ (A ⊗R C) such that δ(a ⊗ (b, c)) = (a ⊗ b, a ⊗ c) for every a ∈ A, b ∈ B,
c ∈ C.

Proof. Let us define f : A×(B⊕C) → (A⊗RB)⊕(A⊗RC) by f(a, (b, c)) = (a⊗b, a⊗c). It is clearly
R-bilinear, and therefore there is a unique R-linear map δ : A⊗R (B ⊕C) → (A⊗R B)⊕ (A⊗R C)
with the convenient property. Let f1 : A×B → A⊗R (B⊕C) be given by f1(a, b) = (a⊗ (b, 0)) and
let f2 : A×C → A⊗R (B⊕C) be given by f2(a, c) = (a⊗ (0, c)). Both maps are R-bilinear and give
rise to R-linear maps γ1 : A⊗RB → A⊗R (B⊕C) and γ2 : A⊗RC → A⊗R(B⊕C). According to the
property of the direct sum, there is a unique R-linear map γ : (A⊗RB)⊕(A⊗RC) → A⊗R (B⊕C)
such that γ(t, 0) = γ1(t) and γ(0, t′) = γ2(t

′) for every t ∈ A ⊗R B, t′ ∈ A ⊗R C. It remains
to check that δ and γ are inverses one from the other. Let a ∈ A, b ∈ B and c ∈ C. We have
δ(γ(a⊗b, a⊗c)) = δ(γ(a⊗b, 0)+γ(0, a⊗c)) = δ(γ1(a⊗b))+δ(γ2(a⊗c)) = δ(a⊗(b, 0))+δ(a⊗(0, c)) =
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δ(a⊗ (b, c)) = (a⊗b, a⊗c). We have γ(δ(a⊗ (b, c))) = γ(a⊗b, a⊗c) = a⊗ (b, c). This is sufficient to
ensure that both maps are inverses one from the other since (a⊗b, a⊗c) spans (A⊗RB)⊕(A⊗RC),
a⊗ (b, c) spans A⊗R (B ⊕ C) (where a, b, c run over A,B,C), and γ, δ are R-linear. ⊓⊔

The distributive property stated in lemma 4 may be generalized as follows.

Lemma 5. Let A be a R-module, and (Bi)i∈I be a family of R-modules. Then, there is a unique
isomorphism of R-modules δ : A⊗R

⊕
i∈I Bi

∼=
⊕

i∈I(A⊗RBi) such that δ(a⊗ (bi)i∈I) = (a⊗ bi)i∈I
for every a ∈ A and (bi)i∈I ∈

⊕
i∈I Bi.

Proof. The proof is essentially the same as that of lemma 4. The map δ is easily constructed.
Now, for each i ∈ I, we consider fi : A × Bi → A ⊗R

⊕
i∈I Bi given by fi(a, b) = (a ⊗ δbi), where

δbi(i) = bi and δbi(j) = 0 for every j 6= i. Since fi is R-bilinear, it gives rise to a R-linear map
γi : A⊗RBi → A⊗R

⊕
i∈I Bi with the corresponding property. By definition of the direct sum, there

is a unique R-linear map γ :
⊕

i∈I(A⊗Bi) → A⊗R
⊕

i∈I Bi such that γ(a⊗ (bi)i∈I) = (a⊗ bi)i∈I .
It is now easy to check that δ and γ are inverses one from the other. ⊓⊔

Remark 2. It may be shown that ⊗R is also “associative”: (A ⊗R B) ⊗R C ∼= A ⊗R (B ⊗R C) for
every R-modules A,B,C (this isomorphism is natural in A,B,C). Together with lemma 3, this
shows that the category of R-modules with the tensor product is a symmetric monoidal category
(see [23]). Loosely speaking this means that the bracketing of factors in a n-fold tensor product
is irrelevant (because any two n-fold tensor products that differ only in the position of brackets
are canonically isomorphic). The notion of multilinear maps f : A1 × · · · × An → B (where the
Ai’s and B are R-modules) (see for instance [6, 10, 13, 16, 30]) is equivalent to that of linear maps
f : A1⊗R· · ·⊗RAn → B (bilinear maps are recovered with n = 2). In particular, any such multilinear
map is actually induced by a unique bilinear map, for instance f : A1 × (A2 ⊗R · · · ⊗R An) → B.
We take advantage of this remark to indicate that the notion of tensor product was already used
in [6] (remark 7.1 and subsection 7.2) but in a somewhat limited way since it was not the purpose
of the authors. In this contribution we limit ourselves to bilinear maps.

4 Tensor product of finite abelian groups

In this section we focus on the tensor product of finite abelian groups that is even explicitly
computed. Moreover we give some conditions under which a pairing may exist.

4.1 Some computations of tensor products

The objective of this subsection is to compute the tensor product of finite abelian groups. So it
seems natural to compute at first the easiest example. In what follows, (a, b) denotes the greatest
common divisor of a and b. The cyclic group of integers modulo a is denoted by Za (and also Ca

when considered multiplicatively written).

Lemma 6. For every positive integers a, b, Za ⊗ Zb
∼= Z(a,b)

Proof. Since (a, b) divides both a and b, the map f : Za×Zb → Z(a,b) given by f(x mod a, y mod b) =
(xy) mod (a, b) is well-defined. Moreover it is bilinear so that it gives rise to a group homomorphism
π : Za⊗Zb → Z(a,b) such that π((x mod a)⊗(y mod b)) = (xy) mod (a, b). We observe that π((x mod
a) ⊗ 1) = x mod (a, b) for every x, so that π is onto. Let Z → Za ⊗ Zb be given by x 7→ x(1 ⊗ 1).
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This is clearly a homomorphism of groups, and for x ∈ aZ, we have x(1⊗1) = ((x mod a)⊗1) = 0.
Similarly, when x ∈ bZ, we have x(1 ⊗ 1) = 1 ⊗ (x mod b) = 0. Therefore, aZ + bZ = (a, b)Z
belongs to its kernel, and we obtain a homomorphism of groups g : Z(a,b) → Za ⊗ Zb such that
g(x mod (a, b)) = x(1⊗1) = ((x mod a)⊗1 = 1⊗(x mod b) for all x. We have π(g(x mod (a, b))) =
π((x mod a) ⊗ 1) = x mod (a, b) for every x. We have g(π(x(1 ⊗ 1))) = xg(1) = x(1 ⊗ 1). This is
sufficient to check that π and g are inverses one from the other because all tensors in Za⊗Zb have the
form x(1⊗1) for some x ∈ Z. Indeed, for an elementary tensor (x mod a)⊗(y mod b) = (xy)(1⊗1).
So sums of elementary tensors are also multiple of 1⊗ 1. ⊓⊔

Remark 3. It follows from lemma 6 that Za ⊗ Zb = (0) if, and only if, a and b are co-prime.

Lemmas 6, 5 and 3 imply the following result that actually covers all examples of finite abelian
groups.

Lemma 7. Let (ai)
m
i=1, and (bj)

n
j=1 be two families of positive integers. Let A =

⊕m
i=1 Zai , and B =⊕n

j=1 Zbj . Then, A⊗B ∼=
⊕

i=1,··· ,m
j=1,··· ,n

Z(ai,bj) where the isomorphism is given by the unique group ho-

momorphism such that ((x1 mod a1, · · · , xm mod am)⊗(y1 mod b1, · · · , yn mod bn)) 7→ ((xiyj) mod

(ai, bj))i=1,··· ,m
j=1,··· ,n

. Moreover, the canonical bilinear map ⊗ is then given by ⊗ : A×B →
⊕

i=1,··· ,m
j=1,··· ,n

Z(ai,bj)

with (x1 mod a1, · · · , xm mod am)⊗ (y1 mod b1, · · · , yn mod bn) = ((xiyj) mod (ai, bj))i=1,··· ,m
j=1,··· ,n

.

Remark 4. Using the same notations as lemma 7, A⊗B ∼= (0) if, and only if, ai and bj are co-prime

for every i = 1, · · · ,m and every j = 1, · · · , n. Moreover, Zm
a ⊗Z

m
a

∼= Z
m2

a , and if (ai)
m
i=1 is a family

of positive integers such that (ai, aj) = 1 for every i 6= j, then A⊗A ∼= A where A =
⊕m

i=1 Zai .

From lemma 7 we deduce an essential finiteness result for tensor products.

Lemma 8. The tensor product of two finite groups is finite.

Proof. Let A and B be two finite abelian groups. Then each of them admits a decomposition in di-
rect sum of finite cyclic groups, and their tensor product is finite according to lemma 7. Because the
tensor product of two groups is isomorphic to the tensor product of their abelianization (lemma 1),
the expected conclusion holds (we implicitly used the two easy facts that the abelianization of a
finite group is finite, and the isomorphism relation of groups preserves the order). ⊓⊔

Remark 5. The tensor product of two finite groups does not depend on the decomposition of the
abelianization of each group into a direct sum of cyclic groups. Indeed, ⊗ is a functor (and even a
bifunctor), and it is an obvious property of functors to transform isomorphisms into isomorphisms.
More precisely, for groups (finite or not) G,G′,H,H ′ such that G ∼= G′ and H ∼= H ′, then G⊗H ∼=
G′ ⊗H ′. The converse assertion is false since for instance Z6 ⊗ Z4

∼= Z2
∼= Z2 ⊗ Z2.

Let A be any abelian group. Let a be a positive integer. We denote by aA the subgroup of A
generated by ag for all g ∈ A if A is given in additive notation.

Lemma 9. Let G be a group, and let a be a positive integer. Then, Za ⊗G ∼= Ab(G)/aAb(G).
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Proof. According to lemma 1, Za⊗G ∼= Za⊗Ab(G), therefore we only need to prove the lemma for
abelian groups. Let A be a commutative group (in additive notation). Let x, y ∈ Z, and g ∈ A. We
have xg−yg = (x−y)g so that x mod a = y mod a implies that xg mod aA = yg mod aA. Therefore
the map f : Za × A → A/aA given by f(x mod a, g) = (xg) mod aA is well-defined. This map is
bilinear, so that there is a unique homomorphism of groups, again denoted by f , f : Za⊗A → A/aA
such that f((x mod a)⊗g) = (xg) mod aA. Let us consider the group homomorphism h : A → Za⊗A
given by h(g) = 1 ⊗ g. It vanishes on aA. Indeed, h(ag) = 1 ⊗ ag = (a mod a) ⊗ g = 0 for
every generator of aA. Therefore it passes to the quotient as a group homomorphism h : A/aA →
Za ⊗ A. Now, f(h(g mod aA)) = f(1⊗ g) = g mod aA for every g ∈ A. Conversely, h(f(1 ⊗ g)) =
h(g mod aA) = 1⊗ g. This is sufficient to prove that f and h are inverses one from the other since
every tensor in Za ⊗A as the form 1⊗ g for some g ∈ A. Indeed, an elementary tensor is given by
(x mod a)⊗ g = 1⊗ xg, and a sum of tensors 1⊗ gi is equal to 1⊗

∑
i gi. ⊓⊔

4.2 Non-degeneracy of the canonical bilinear map

In this subsection we present a sufficient condition for the canonical bilinear map ⊗ to be non-
degenerate. We also prove that the canonical bilinear map from A×A to the tensor square A⊗A
always is non-degenerate for each finite abelian group A, providing an infinite family of pairings.

Lemma 10. Let a and b be two positive integers. The canonical bilinear map ⊗ : (x mod a, y mod
b) ∈ Za × Zb → (xy) mod (a, b) ∈ Z(a,b)

∼= Za ⊗ Zb is non-degenerate if, and only if, a = b.

Proof. If a = b = 1, then all groups are trivial, and the result is obvious. Let a = (a, b) = b 6= 1.
Let x mod a 6= 0 such that for every y, (xy) mod a = 0, then we obtain a contradiction when
y = 1. Therefore, ⊗ is non-degenerate. Now, let us assume that (a, b) < a for instance. Then,
(a, b) mod a 6= 0, and for all y, (a, b)y mod (a, b) = 0 so that ⊗ is degenerate. ⊓⊔

We recall from lemma 7 that if (ai)
m
i=1 is a family of positive integers which are pairwise co-prime,

and A =
⊕m

i=1 Zai , then A⊗A ∼= A. In this case the canonical bilinear map is given by ⊗ : ((x1 mod
a1, · · · , xm mod am), (y1 mod a1, · · · , ym mod am)) ∈ A×A → ((xiyi) mod ai)i=1,··· ,m ∈ A.

Corollary 1. Let (ai)
m
i=1 be a family of positive integers which are pairwise co-prime, and all of

them are > 1. Let A =
⊕m

i=1 Zai. Then, the canonical bilinear map ⊗ : A×A → A is non-degenerate.

Proof. Reasoning by contradiction, let us assume that there exists (x1, · · · , xm) ∈ Z
m such that

there is at least one i0 with xi0 mod ai0 6= 0, and xiyi mod ai = 0 for every yi ∈ Z, i = 1, · · · ,m. In
particular, xi0yi0 mod ai0 = 0 for every yi0 ∈ Z. In particular, with yi0 = 1, xi0 mod ai0 = 0 which
contradicts the assumption on (x1, · · · , xm). ⊓⊔

Even more generally, the following holds (the proof is similar to that of lemma 1).

Corollary 2. Let (ai)
m
i=1 be a family of positive integers which are pairwise co-prime, and all of

them are > 1. For each i = 1, · · · , n, let mi be a positive integer. Let A =
⊕n

i=1 Z
mi
ai . Then, the

canonical map ⊗ : A × A →
⊕n

i=1 Z
m2

i
ai given by (xi,j mod ai) i=1,··· ,n

j=1,··· ,mi

⊗ (yi,j mod ai) i=1,··· ,n
j=1,··· ,mi

=

(xi,jyi,k mod ai) i=1,··· ,n
j=1,··· ,mi

k=1,··· ,mi

is non-degenerate.

Next lemma explains in what non-degeneracy of the canonical bilinear map is essential for the
existence of pairings.
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Lemma 11. Let A,B be two non-trivial R-modules. If there are a R-module C and a pairing
〈· | ·〉 : A×B → C, then the canonical bilinear map ⊗ : A×B → A⊗R B is non-degenerate.

Proof. By contraposition, let us assume that ⊗ : A×B → A⊗R B is degenerate, and for instance
that it is not left non-degenerate. Then, there exists a0 ∈ A, a0 6= 0A, such that for every b ∈ B,
a0 ⊗ b = 0. Let 〈· | ·〉 : A × B → C be a bilinear map. Then, there exists a unique R-linear map
f : A⊗R B → C such that f(a⊗ b) = 〈a | b〉. In particular, 〈a0 | b〉 = f(a0 ⊗ b) = f(0) = 1C for all
b ∈ B. Therefore, 〈· | ·〉 is left degenerate. ⊓⊔

Lemma 11 states that for two non-trivial R-modules which have a degenerate canonical bilinear
map, there is no hope to construct a pairing from their cartesian product. For instance, let a, b, d
be positive integers > 1, (a, b) = 1, then ⊗ : Zda × Zdb → Zd

∼= Zda ⊗ Zdb given by (x mod da) ⊗
(y mod db) = (xy) mod d is degenerate (for instance, (d mod da) ⊗ (y mod db) = (dy) mod d = 0
for every y). Therefore there are no pairings 〈· | ·〉 : Zda × Zdb → C for any abelian group C.

We anticipate a result from subsection 5.4 to state a sufficient condition for the existence of
a pairing, from the cartesian square to the tensor square of some abelian group, provided by the
following result.

Theorem 1. Let A be a finite abelian group. Then, the canonical bilinear map ⊗ : A×A → A⊗A
is non-degenerate.

Proof. Since A is a finite abelian group, it admits a decomposition into cyclic groups A ∼=

n⊕

i=1

Zdi

for some integers di. In subsection 5.4 is proved that there exists at least one pairing (
⊕n

i=1 Zdi)×
(
⊕n

i=1 Zdi) → CN , where CN denotes the cyclic group of order N , with N =
∏n

i=1 di. Therefore
according to lemma 11, the canonical bilinear map ⊗ : (

⊕n
i=1 Zdi) × (

⊕n
i=1 Zdi) → (

⊕n
i=1 Zdi) ⊗

(
⊕n

i=1 Zdi) is non-degenerate. Let φ : A →
⊕n

i=1 Zdi be an isomorphism of groups. Let us assume
that there exists a0 ∈ A such that a0 ⊗ a = 0 for every a ∈ A. Then, φ(a0) ⊗ φ(a) = 0 for every
a ∈ A. Since φ is onto, this implies that φ(a0)⊗ a′ = 0 for every a′ ∈

⊕n
i=1 Zdi . So that φ(a0) = 0

(by non-degeneracy), and thus a0 = 0A. ⊓⊔

Remark 6. Theorem 1 provides an infinite family of pairings because in this situation ⊗ is itself a
pairing. This generalizes some optimized constructions of pairings over elliptic curves on finite fields
as defined in [14] such as Weil ([25]), Tate ([33]) and ate ([15]) pairings which may be defined on
Za×Za for some integer a and with values in the group of a-th roots of the unity µa

∼= Za
∼= Za⊗Za

in a finite field Fpn (where a divides pn − 1). We observe however that these pairings are usually
defined on a bigger cartesian product of groups (see for instance [31] concerning Weil pairing).

5 Constructions of bilinear maps and pairings

Following the same notations and assumptions as in corollaries 1 and 2, the canonical bilinear maps

⊗ : A×A → A and ⊗ : A×A →
⊕n

i=1 Z
m2

i
ai both define a pairing, but in full generality the canonical

bilinear map is not always non-degenerate (even when the tensor product does not collapse to zero).
As stated in lemma 11, non-degeneracy of this function is a necessary condition for the existence
of pairings. In this section, we present other constructions of bilinear maps and pairings using the
fact that the set of all bilinear maps, from some fixed A × B to C, forms an abelian group (or
R-module). Moreover we prove that for a particular choice of A,B and C, Bil (A×B,C) is actually
a ring, and that the pairings are exactly the group of units of this ring (see theorem 2).
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5.1 Abelian group structure of bilinear maps (and pairings)

First of all, we know from the proof of lemma 1 that for every groups G,H,K, Bil (G ×H,K) ∼=
Bil (Ab(G) × Ab(H),K). According to the universal property of tensor product of groups, Bil (G×
H,K) ∼= Hom(G ⊗ H,K). Therefore, for every triple of abelian groups (respectively, R-modules)
A,B,C, Bil (A×B,C) ∼= Hom(A ⊗B,C) (respectively, Bil R(A ×B,C) ∼= HomR(A ⊗R B,C)). But
the later is itself an abelian group (respectively, a R-module) with point-wise operations, so that
Bil (A×B,C) (respectively, Bil R(A×B,C)) becomes an abelian group (respectively, a R-module).
More precisely, let A,B,C be three R-modules, and let us assume that A,B are given in additive
notation (recall that 0A, 0B are the identity elements of A and B) and C is multiplicatively written
(recall that 1C is the identity of C), we have for f, g ∈ Bil R(A×B,C) and α ∈ R, three new bilinear
maps fg, f−1, fα ∈ Bil R(A × B,C) defined by (fg)(a, b) = f(a, b)g(a, b), f−1(a, b) = (f(a, b))−1

and fα(a) = (f(a))α (where the scalar multiplication in C is given by (α, c) 7→ cα because C is
assumed to be in multiplicative notation) for all a ∈ A, b ∈ B. This also defines a structure of
Z-module given by fn(a, b) = (f(a, b))n for all a ∈ A, b ∈ B, n ∈ Z.

Lemma 12. Let f, g be two bilinear maps. If for every a 6= 0A, there exists b ∈ B such that g(a, b) 6=
f(a, b)−1, then fg is left non-degenerate. The symmetric result holds for right non-degeneracy.

Proof. Let a ∈ A, and let us assume that f(a, b)g(a, b) = 1C for every b ∈ B. Then, g(a, b) =
f(a, b)−1 for all b so that a = 0A. ⊓⊔

Next result is obvious.

Lemma 13. Let us assume that f is a left (respectively, right) non-degenerate bilinear map from
A×B to C, then f−1 also is left (respectively, right) non-degenerate. More generally, if g : C → D is
a monomorphism of R-modules and f is left (respectively, right) non-degenerate, then g◦f : A×B →
D is a bilinear map which is also left (respectively, right) non-degenerate.

The following (again obvious) construction uses direct product of modules (or abelian groups).

Lemma 14. Let (Ci)
n
i=1 be a family of R-modules, and A,B be R-modules. Let fi ∈ Bil R(A×B,Ci)

for i = 1, · · · , n. Then, the map (f1, · · · , fn) : A×B → C1×· · ·×Cn defined by (f1, · · · , fn)(a, b) =
(f1(a, b), · · · , fn(a, b)) belongs to Bil R(A×B,C1× · · · ×Cn). Moreover, if at least one of the fi’s is
non-degenerate, then (f1, · · · , fn) itself is non-degenerate.

Remark 7. Lemma 14 implicitly provides a categorical product ([23]) for the category of bilinear
maps as follows. Let BILR(A,B) =

⋃
C Bil R(A×B,C). Let f ∈ Bil R(A×B,C), g ∈ Bil R(A×B,D),

and h ∈ HomR(C,D). The linear map h is said to be a morphism from f to g, which is denoted
by h : f → g, if h ◦ f = g. Together with the usual composition of maps, we obtain a category
with objects the bilinear maps from A×B to some module C (this category is used in [17] for the
construction of the tensor product of modules). Now, let fi ∈ Bil R(A × B,Ci), i = 1, 2. Then, by
lemma 14, (f1, f2) ∈ Bil R(A×B,C1×C2), and the canonical projection πi : C1×C2 → Ci provides a
morphism πi : (f1, f2) → fi, i = 1, 2. Finally, let g ∈ Bil R(A×B,D), and hi : g → fi, i = 1, 2. Then,
there is a unique linear map (h1, h2) : D → C1×C2 such that πi◦(h1, h2) = hi, i = 1, 2 (it is defined
by (h1, h2)(d) = (h1(d), h2(d)) for d ∈ D). Moreover it is clear that (h1, h2) : g → (f1, f2), so that
we get a categorical product for the category BILR(A,B). The unique bilinear map t : A×B → (0)
is a terminal object in this category (since for every C there is a unique linear map tC : C → (0) and
tC ◦ f = t for every f ∈ Bil (A ×B,C), thus we have a unique morphism tC : f → t). Any bilinear



12

map f ∈ Bil R(A×B,C) admits a structure of semigroup in the cartesian category BILR(A,B) with
(associative) multiplication µ : (f, f) → f defined as one of the canonical projections of C×C, and
any semigroup structure on f is obtained likewise. Only f ∈ Bil R(A×B,C), such that f(a, b) = 0C
for every a, b, admits a structure of monoid (since the identity e : t → f should satisfy e ◦ t = f but
in this case e = iC : (0) → C so that e ◦ t : A×B → C is given by e(t(a, b)) = e(0) = 0C for every
a, b).

Let us study the group structure of Bil (A × B,C) in an easy case. For every group G, let
End (G) = Hom(G,G) which is a ring when G is abelian, and similarly, if A is a R-module, then
End R(A) = HomR(A,A). Let d, e be two positive integers. Then, as groups, we have the following
sequence of isomorphisms Bil (Zd×Ze,Z(d,e)) ∼= Hom(Zd⊗Ze,Z(d,e)) ∼= End (Z(d,e)). It easy to check
that End (Zn) ∼= Zn as rings for any n. So that Bil (Zd × Ze,Z(d,e)) may also be equipped with
a structure of commutative ring with a unit isomorphic to Z(d,e). Moreover, as a cyclic group of
order (d, e), and therefore as a Z-module, Bil (Zd×Ze,Z(d,e)) is generated by the canonical bilinear
map ⊗. Thus Bil (Zd × Ze,Z(d,e)) is the free Z(d,e)-module generated by ⊗, or, in other terms, it is
isomorphic to the group Z(d,e), so that for any bilinear map f : Zd×Ze → Z(d,e), there exists a unique

kf ∈ Z(d,e) such that f = ⊗kf , where we recall that ⊗kf (a mod d, b mod e) = kf (ab) mod (d, e). It
follows that f is a pairing if, and only if, (kf , (d, e)) = 1. Thus, a pairing f ∈ Bil (Zd × Ze,Z(d,e))
is exactly a generator of the cyclic group Bil (Zd × Ze,Z(d,e)) of order (d, e). The following result is
proved.

Theorem 2. The set of pairings from Zd × Ze → Z(d,e) forms a group isomorphic to the group of
invertible elements of the ring Z(d,e) under multiplication. In particular, there are exactly φ((d, e))
pairings in this situation, and if f ∈ Bil (Zd × Ze,Z(d,e)) is a pairing, then any other pairing g
has the form kgf , for a unique kg ∈ Z(d,e) invertible modulo (d, e). Moreover, if (d, e) is a prime
number, then Bil (Zd × Ze,Z(d,e)) ∼= Z

∗
(d,e).

Remark 8. Let p be a prime number, and let us assume that d = e = p. Let f ∈ Bil (Zp × Zp,Zp)
be a pairing. According to theorem 2, any other pairing is given by kf for k ∈ Z

∗
p as it was already

noticed in [8] (but we observe that the underlying group structure on pairings was not explicitly
mentioned). In this situation, the integer k was called the logarithm of the pairing to the base f .
This also explains why F. Vercauteren write in [34] that “there is essentially only one pairing”.

Proposition 1. Let d and m be any positive integers. Any pairing from Z
m
d ×Z

m
d to Zd is a perfect

pairing.

Proof. By the universal property of the direct product of groups, Hom(Zm
d ,Zm

d ) ∼= End (Zd)
m ∼= Z

m
d

(isomorphic groups). Let f : Zm
d × Z

m
d → Zd be a pairing. By non-degeneracy, the map a ∈ Z

m
d 7→

f(a, ·) ∈ Hom(Zm
d ,Zm

d ) ∼= Z
m
d is one-to-one, and therefore it is a bijection. ⊓⊔

Remark 9. Weil pairing in its usual version [31] or in its optimized version [15] is thus a perfect
pairing. For certain choices of parameters (for instance when we consider the points of some given
prime order), the Tate pairing in its usual version [4] is also a perfect pairing. Likewise optimized
Tate pairing [15] is a perfect pairing.

Theorem 2 admits the following generalization.
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Theorem 3. Let A,B be two R-modules. The abelian group Bil R(A × B,A ⊗R B) is the left
End R(A ⊗R B)-module generated by the canonical bilinear map ⊗, and as a module, it is free
(on one generator). In particular, Bil R(A×B,A⊗RB) admits a structure of R-algebra isomorphic
to End R(A⊗R B).

Proof. It is clear that if g ∈ End R(A⊗R B) and f ∈ Bil R(A ×B,A⊗R B), then g ◦ f ∈ Bil R(A×
B,A⊗R B). This defines a left End R(A⊗R B)-module structure on Bil R(A×B,A⊗R B). The fact
that, as a module on End R(A⊗RB), Bil R(A×B,A⊗RB) is generated by ⊗ is precisely the universal
property satisfied by ⊗. Freeness of the module structure is clear since Bil R(A × B,A ⊗R B) ∼=
End R(A⊗R B) (isomorphic as abelian groups). ⊓⊔

It is quite clear that if the canonical bilinear map ⊗ : A×B → A⊗R B is non-degenerate, then the
group of units GLR(A⊗R B) of End R(A⊗R B) is equipotent to a subset of pairings from A×B to
A⊗RB. Indeed, let f ∈ GLR(A⊗RB). Let a ∈ A, and let us assume that for every b ∈ B, g(a⊗b) = 0,
then it follows that a⊗ b = 0 for every b, so that a = 0A because of non-degeneracy of ⊗. Therefore
f ◦⊗ ∈ Bil R(A×B,A⊗R B) is left non-degenerate. Right non-degeneracy is obtained similarly, so
that f ◦⊗ is a pairing. In general it is not the case that all pairings are obtained in such a way. Indeed
from non-degeneracy of a paring f , we may deduce that the associated linear map f̃ ∈ End R(A⊗RB)
satisfies the following: if f̃(a⊗b) = 0 for every b ∈ B, then a = 0A, and symmetrically, if f̃(a⊗b) = 0
for every a ∈ A, then b = 0B . But it does not mean that f̃ is one-to-one. First of all, in general,
not all tensors in A ⊗R B are elementary tensors so that injectivity of f̃ on basic tensors does
not imply that f̃ is one-to-one. Secondly, it is possible that for a particular pairing 〈· | ·〉 we have
〈a | b〉 = 0 6= a⊗b, a 6= 0A, b 6= 0B . In such case, the unique linear map associated to 〈· | ·〉 admits a
non-trivial kernel (since it contains a⊗b 6= 0). For instance, let W : (Za×Za)×(Za×Za) → Za be the
Weil pairing (see [31]). It is well-known that it is alternating, i.e., W ((w mod a, x mod a), (y mod
a, z mod a)) = 0 mod a for every w, x, y, z. Let W 4 = (W,W,W,W ) : (Za×Za)× (Za×Za) → Z

4
a
∼=

(Za × Za) ⊗ (Za × Za) (by distributivity of the tensor product). According to lemma 14, W 4 is
non-degenerate but W 4((w mod a, x mod a), (y mod a, z mod a)) = (0, 0, 0, 0) for every w, x, y, z.
In particular W 4((1 mod a, 1 mod a), (1 mod a, 1 mod a)) = (0, 0, 0, 0) 6= (1 mod a, 1 mod a, 1 mod
a, 1 mod a) = (1 mod a, 1 mod a)⊗(1 mod a, 1 mod a). Every pairing induced by an automorphism
f̃ ∈ GLR(A⊗RB) is also a free generator of Bil R(A×B,A⊗RB) as an End R(A⊗RB)-module. We
call such a pairing a principal pairing (so that W 4 is not a principal pairing). All principal pairings
form a group isomorphic to GLR(A⊗R B) (we have fg = (f̃ ◦ ⊗)(g̃ ◦ ⊗) = (f̃ ◦ g̃) ◦ ⊗).

Remark 10. According to the above discussion, it is sometimes possible to find a pairing 〈· | ·〉 : A×
B → A⊗R B such that 〈a | b〉 = 0 6= a⊗ b. But we observe that if a⊗ b = 0 for some a ∈ A, b ∈ B,
then for every bilinear map f ∈ Bil R(A⊗R B,C), f(a, b) = 0C .

Remark 11. When R = Z, A = Zd, B = Ze, theorem 3 reads as Bil R(Zd × Ze,Z(d,e)) is the free
End (Z(d,e)) ∼= Z(d,e)-module generated by ⊗, that is, a group isomorphic to Z(d,e). The principal
pairings in Bil R(Zd × Ze,Z(d,e)) are isomorphic to the group of units of Z(d,e). Moreover, in this
particular situation, every pairing is a principal pairing. Theorem 2 is then recovered.

5.2 Tensor product of linear maps

One of the main feature of the tensor product that has not been used yet in this contribution is
the fact ⊗R is a bifunctor. In particular, it transforms a pair of linear maps into one linear map as
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follows. Let A1, A2, B1, B2 be four R-modules. Let f : A1 → A2, g : B1 → B2 be two R-linear maps.
Then, the map f ⊗ g : A1 ⊗RB1 → A2 ⊗R B2 defined by (f ⊗ g)(a⊗ b) = f(a)⊗ g(b) is a R-module
map (be careful that the same symbol ⊗ denotes the canonical bilinear map Ai × Bi → Ai ⊗R Bi

for i = 1, 2). Since Bil R(A1 ×B1, A2 ⊗R B2) ∼= HomR(A1 ⊗R B1, A2 ⊗R B2), it follows that f ⊗ g is
induced by a (unique) R-bilinear map h : A1 ×B1 → A2 ⊗R B2 such that h(a, b) = f(a)⊗ g(b) for
a ∈ A1, b ∈ B1.

Lemma 15. Let us assume that f is a monomorphism, g is an epimorphism, and that the canonical
R-bilinear map ⊗ : A2 ×B2 → A2 ⊗R B2 is non-degenerate, then h is left non-degenerate.

Proof. Let a ∈ A1 such that for every b ∈ B1, h(a, b) = 0. Then, f(a)⊗ g(b) = 0 for every b ∈ B.
Since g is onto, f(a) ⊗ b′ = 0 for all b′ ∈ B2. Since the canonical bilinear map is non-degenerate,
f(a) = 0A2 , so that a = 0A1 because f is one-to-one. ⊓⊔

5.3 Divide out the kernels

In this subsection is presented a natural way to construct a pairing from a bilinear map by dividing
out two kernels.

Let A,B,C be three R-modules (where R is a commutative ring with a unit). The groups
A,B are written additively, while C is given in multiplicative notation. Let f : A × B → C be a
R-bilinear map. We define two linear maps γf : A → HomR(B,C) and ρf : B → HomR(A,C) given
respectively by γf (a) = f(a, ·) and ρf (b) = f(·, b). Let us define Lf =

⋂
b∈B ker f(·, b) = ker γf ,

Rf =
⋂

a∈A ker f(a, ·) = ker ρf which are respectively a sub-module of A and a sub-module of B
(they are sometimes called the annihilator of A and B respectively, see [11]). We observe that if
a − a′ ∈ Lf , then for all b ∈ B, f(a, b)f(a′, b)−1 = f(a − a′, b) = 1C so that f(a, b) = f(a′, b).
Therefore, there is a well-defined R-bilinear map f1 : A/Lf ×B → C such that f1(a mod Lf , b) =
f(a, b) for all a ∈ A, b ∈ B. Similarly, we have a well-defined R-linear map f2 : A×B/Rf → C such
that f2(a, b mod Rf ) = f(a, b) for all a ∈ A, b ∈ B. The first map is left non-degenerate while the
second is right non-degenerate. We may continue the process in order to get a full non-degeneracy.
Let Rf1 =

⋂
a mod Lf∈A/Lf

ker f1(a mod Lf , ·) = Rf . Similarly we have Lf2 = Lf . We obtain two

well-defined non-degenerate R-bilinear maps f3, f4 : A/Lf ×B/Rf → C such that

f3(a mod Lf , b mod Rf ) = f1(a mod Lf , b)
= f(a, b)
= f2(a, b mod Rf )
= f4(a mod Lf , b mod Rf )

(1)

for each a ∈ A and b ∈ B. Thus the two pairings are the same one.
When the bilinear map f into consideration is the canonical bilinear map ⊗ : A×B → A⊗R B

itself, then we define ⊥B = L⊗, and A⊥ = R⊗. Moreover, let λ : A → A/⊥B and δ : B → B/A⊥ be
the canonical epimorphisms. We have a well-defined non-degenerate pairing ⊗′ : A/⊥B ×B/A⊥ →
A ⊗R B such that λ(a) ⊗′ δ(b) = a ⊗ b for every a ∈ A, b ∈ B. Let us define ⊗̃ = (λ ⊗ δ) ◦ ⊗′ ∈
Bil R(A/

⊥B×B/A⊥, A/⊥B⊗RB/A⊥). It satisfies (λ⊗δ)(λ(a)⊗′δ(b)) = (λ⊗δ)(a⊗b) = λ(a)⊗2δ(b)
for every a ∈ A, b ∈ B, where ⊗2 : A/

⊥B×B/A⊥ → A/⊥B⊗RB/A⊥ is the canonical bilinear map.
Actually it is quite clear that ⊗̃ = ⊗2.

Lemma 16. The canonical bilinear map ⊗2 : A/
⊥B×B/A⊥ → A/⊥B⊗RB/A⊥ is non-degenerate.
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Proof. The bilinear map ⊗′ : A/⊥B × B/A⊥ → A ⊗R B is non-degenerate. Then according to
lemma 11, the canonical bilinear map ⊗2 : : A/⊥B × B/A⊥ → A/⊥B ⊗R B/A⊥ is itself non-
degenerate. ⊓⊔

Remark 12. Let us define the non-degenerate tensor product by A⊗̃RB = A/⊥B⊗RB/A⊥. Together
with (λ ⊗ δ) ◦ ⊗ = ⊗2 ◦ (λ × δ) ∈ Bil R(A × B,A⊗̃RB) (where λ × δ : A × B → A/⊥B × B/A⊥ is
defined by (λ × δ)(a, b) = (λ(a), δ(b)) for every a ∈ A, b ∈ B), it satisfies the following universal
problem. Let f ∈ Bil R(A×B,C) such that ⊥B ⊆ ker γf and A⊥ ⊆ ker ρf . Then, there is a unique
R-linear map f̃ : A⊗̃B → C such that for every a ∈ A, b ∈ B, f̃(λ(a) ⊗2 δ(b)) = f(a, b). It is also
clear that f ′(λ(a), δ(b)) = f(a, b) is a well-defined bilinear map from A/⊥B ×B/A⊥ to C, and the
unique linear map g : A⊗̃B → C such that g(λ(a) ⊗2 δ(b)) = f ′(λ(a), δ(b)) for every a ∈ A, b ∈ B,
is precisely f̃ itself. We finally observe that if ⊥B = ker γf (respectively, A⊥ = ker ρf ), then f ′ is
left non-degenerate (respectively, right non-degenerate).

5.4 Finite abelian group duality and characters

Let A,B,C be three R-modules. One of the main property of a given pairing 〈· | ·〉 : A×B → C is the
non-degeneracy. It exactly states that A embeds into HomR(B,C) as a sub-module by 〈a | ·〉 : B → C
for each a ∈ A, and that B embeds into HomR(A,C) also as a sub-module by 〈· | b〉 : A → C for
each b ∈ B. Using this idea we may construct a pairing. Let A,C be two R-modules, and let B be
a sub-module of HomR(A,C). Let 〈· | ·〉 : A × B → C be defined by 〈a | b〉 = b(a) for every a ∈ A,
b ∈ B. By its very definition, this is a R-bilinear map which clearly is right non-degenerate. We
observe that the elements of A may be seen as linear maps on B as follows: let a ∈ A, and define

â : B → C by â(b) = b(a). The facts that â ∈ HomR(B,C) and (̂·) : a ∈ A → â ∈ HomR(B,C) is
a homomorphism of groups are easily checked. We say that A seperates the points of B (following
a usual terminology from functional analysis) if b(a) = 0C for every b ∈ B implies that a = 0A.
Equivalently, this means that the map â = 〈a | ·〉 is one-to-one for every non-zero a, so that A
embeds into HomR(B,C) as a sub-module. In this case, and only in this case, 〈· | ·〉 as defined above
is a pairing. We now propose two actual examples of such a construction.

Dot-product construction: Let K be any field. Let V be a d-dimensional vector space over
K. Its (algebraic) dual V ∗ is the vector space HomK(V,K) of all linear forms. We observe that V
separates the points of V ∗ since if v ∈ V is non-zero, then it belongs to some basis of V over K so
that we may choose a linear map ℓ : V → K such that ℓ(v) 6= 0 and ℓ takes any value for the other
elements of the basis. Therefore the K-bilinear form 〈· | ·〉 : V × V ∗ → K given by 〈v | ℓ〉 = ℓ(v) is a
pairing. Moreover, if (ei)

d
i=1 is a basis of V over the base field, then for each j = 1, · · · , d, we may

define a linear form ej ∈ V ∗ by the relations ej(ei) = 1 if j = i, and 0 otherwise. It turns that (ei)di=1

is a basis of V ∗ over K called the dual basis of (ei)
d
i=1, and that V ∼= V ∗ (as vector spaces). Under

the isomorphism ei 7→ ei, the pairing becomes 〈v | w〉 =
∑d

i=1 viwi, where vi = ei(v), wi = ei(w)
for each i = 1, · · · , d, and we recover the usual dot-product of Kd.

Remark 13. The above construction works in particular when K is the finite field Fpn with pn

elements of characteristic p. In this case, any finite-dimensional vector space is actually finite, and
we obtain a pairing between finite spaces (and therefore finite abelian groups). When n = 1, we
recover the construction of “dual pairing vector space” from [26, 27].

Generalized duality of finite abelian groups: Let CN be a cyclic group of order N , with
generator γ. Let A be any finite abelian group. A homomorphism of group χ : A → CN is called
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a character. Since for every a ∈ A, a|A| = 1A, it follows that χ(a)|A| = 1. Let d be a divisor
of N , and let χ ∈ Hom(Zd, CN ). Since for every x, χ(x mod d)d = 1, it follows that im(χ) is a

subgroup of the unique cyclic subgroup Cd of CN of order d. Therefore, χ(x mod d) = γ
N
d
j for

some j = 0, · · · , d − 1 that depends on both χ and x. In particular, we have χ(1) = γ
N
d
i for some

i, and then, χ(x mod d) = χ(x1) = χ(1)x = γ
N
d
ix mod d. This means that all characters of Zd have

the form χi : Zd → CN with χi(x mod d) = γ
N
d
ix for i = 1, · · · , d. It is not difficult to check that

Ψ : Zd → Hom(Zd, CN ) given by Ψ(i) = χi is a group isomorphism. (Such a generalized approach
for group characters has been used in [28] for other purposes.)

Lemma 17. Let d1, d2 be two divisors of N . Then, Zd1 ×Zd2 and Hom(Zd1 ×Zd2 , CN ) are isomor-
phic.

Proof. The proof is easy since it suffices to observe that Hom(Zd1 × Zd2 , CN ) and Hom(Zd1 , CN )×
Hom(Zd2 , CN ) are isomorphic since we already know that Hom(Zdi , CN ) is isomorphic to Zdi for i =
1, 2. Let qi : Zdi → Zd1×Zd2 be the canonical injection for i = 1, 2. Let us define the homomorphism
of groups Φ : Hom(Zd1 × Zd2 , CN ) → Hom(Zd1 , CN )× Hom(Zd2 , CN ) by Φ(χ) = (χ ◦ i1, χ ◦ i2) which
is obviously one-to-one. For χ(i) ∈ Hom(Zdi , CN ), i = 1, 2, the map χ : (x1, x2) 7→ χ(1)(x1)χ

(2)(x2)
belongs to Hom(Zd1 × Zd2 , CN ), and Φ(χ) = (χ(1), χ(2)). ⊓⊔

From lemma 17 (and its proof), it is easy to see that Hom(
⊕m

i=1 Z
mi

di
, CN ) ∼=

⊕m
i=1 Hom(Zdi , CN )mi ∼=⊕m

i=1 Z
mi

di
for every divisor di of N and every integer mi, i = 1, · · · ,m. For each i = 1, · · · ,m, and

x = (x1, · · · , xmi
), y = (y1, · · · , ymi

) ∈ Z
mi

di
, we define a dot-product

x · y =

mi∑

j=1

(xjyj) mod dj .

Therefore, an isomorphism from
⊕m

i=1 Z
mi

di
to Hom(

⊕m
i=1 Z

mi

di
, CN ) may be given by Ψ(a(1), · · · , a(m)) =

χa(1),··· ,a(m) for each a(i) ∈ Z
mi

di
, i = 1, · · · ,m, where

χa(1),··· ,a(m)(x(1), · · · , x(m)) =
m∏

i=1

γ
N
di

a(i)·x(i)

for every (x(1), · · · , x(m)) ∈
⊕m

i=1 Z
mi

di
(so that x(i) ∈ Z

mi

di
for each i = 1, · · · ,m). Consequently, one

obtains a bilinear map 〈· | ·〉 :
⊕m

i=1 Z
mi

di
×

⊕m
i=1 Z

mi

di
→ CN such that

〈(x(1), · · · , x(m)) | (y(1), · · · , y(m))〉 =

m∏

i=1

γ
N
di

x(i)·y(i)

(where x(i), y(i) ∈ Z
mi

di
, i = 1, · · · ,m) which is right non-degenerate by construction. But this

bilinear map is clearly symmetric, therefore it is actually non-degenerate and it defines a pairing.

Example 3. Let A =
⊕m

i=1 Z
mi

di
for some integer m.

1. Let γ be a primitive element of the finite field Fpk (see [20]). Let us assume that di is a

divisor of pk − 1 for all i = 1, · · · ,m. Then, we obtain a pairing from A × A to F
∗
pk

given

by 〈(x(1), · · · , x(m)) | (y(1), · · · , y(m))〉 = γ
∑m

i=1
pk−1
di

(x(i)·y(i))
.
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2. Let γ = e
2iπ
N be a primitive N -th square root of unity in the complex field. Let di be a divisor of

N for each i = 1, · · · ,m. Then, we obtain a pairing from A×A to C
∗ given by 〈(x(1), · · · , x(m)) |

(y(1), · · · , y(m))〉 = e
∑m

i=1
2iπ
di

(x(i)·y(i))
.

Remark 14. The above construction still works when we consider usual group characters (see [22])
as it is shown in the second point of example 3. Let A be an abelian group. In the classical setting a
character is a homomorphism of groups from A to the multiplicative group C

∗. Torsion in A implies
that the image of a character belongs to the group of complex e(A)-th roots of unity Ce(A), where
e(A) denotes the exponent of A, i.e., the smallest integer m such that for every a ∈ A, ma = 0A,
equivalently it is the least common multiple of the orders of the elements of A. It is clear that for

every decomposition of A into a sum of cyclic groups

m⊕

i=1

Z
mi

di
, di divides e(A) (since A contains

an element of order di for each i). The above machinery works. Moreover it may be recovered as
follows in an abstract setting: let us denote by Â = Hom(A,Ce(A)) the group of characters, called

dual group of A. It is well-known that the double dual
̂̂
A is naturally isomorphic to A. The natural

bilinear map 〈· | ·〉 : A × Â → Ce(A) is given by 〈a | χ〉 = χ(a). It is clearly right non-degenerate.

Left non-degeneracy follows from A ∼=
̂̂
A. Indeed, the isomorphism into consideration is given by

â(χ) = χ(a) for every a ∈ A, χ ∈ Â. Therefore, â(χ) = χ(a) = 1 for every χ ∈ Â implies that â ≡ 1
which is equivalent to a = 0A. According to lemma 11, this means that for every finite abelian
group A, the canonical bilinear map ⊗ : A×A → A⊗A is non-degenerate.
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