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1. Introduction

Studying the variations of a stochastic process is of fundamental importance in probabil-
ity theory. In this paper, we are interested in the fractional Brownian motion in Brownian
time, which is defined as follows. Consider a fractional Brownian motion X on R with
Hurst parameterH ∈ (0,1), as well as a standard Brownian motion Y on R+ independent
from X . The process Z =X ◦Y is the so-called fractional Brownian motion in Brownian
time (F.B.M.B.T. in short). It is a self-similar process (of order H/2) with stationary
increments, which is not Gaussian. When H = 1/2, one recovers the celebrated iterated
Brownian motion.
In recent years, starting with the articles of Burdzy [3, 4], there has been an in-

creased interest in iterated processes in which one changes the time parameter with
one-dimensional Brownian motion, see, for example, [5, 8–11] to cite but a few. In the
present paper, we are concerned with the study of the fluctuations of the pth variation
of Z for any integer p, defined as

R(p)
n (t) =

⌊2nt⌋−1∑

k=0

(Z(k+1)2−n −Zk2−n)p, n ∈N, t≥ 0.

At this stage, it is worthwhile noting that we are dealing with the pth variations of Z in
the classical sense when p is even whereas, when p is odd, we are rather dealing with the
signed pth variations of Z . The interested reader may read [1, 6] in order to find relevant
information about power variations.
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After proper normalization, we may expect the f.d.d. convergence to a non-degenerate
limit (to be determined) of

S(p)
n (t) = 2−nκ

⌊2nt⌋−1∑

k=0

((Z(k+1)2−n −Zk2−n)p−E[(Z(k+1)2−n −Zk2−n)p]), n ∈N, t≥ 0,

for some κ > 0 to be discovered. To reach this goal, a classical strategy consists in ex-
panding the power function xp in terms of Hermite polynomials. Doing so, our problem
is reduced to the joint analysis of the following quantities:

U (r)
n (t) = 2−nκ̃

⌊2nt⌋−1∑

k=0

Hr(Z(k+1)2−n −Zk2−n), n ∈N, t≥ 0, r ∈N
∗. (1.1)

Here, κ̃ > 0 is some constant depending a priori on r, whereasHr denotes the rth Hermite
polynomial (H1(x) = x, H2(x) = x2 − 1, etc.). Due to the fact that one cannot separate

X from Y inside Z in the definition of U
(r)
n , working directly with (1.1) seems to be a

difficult task (see also [10], Problem 5.1). This is why, following an idea introduced by

Khosnevisan and Lewis [9] in the study of the case H = 1/2, we will rather analyze U
(r)
n

by means of certain stopping times for Y . The idea is quite simple: by stopping Y as it
crosses certain levels, and by sampling Z at these times, one can effectively separate X
from Y . To be more specific, let us introduce the following collection of stopping times
(with respect to the natural filtration of Y ), noted

Tn = {Tk,n: k ≥ 0}, n≥ 0, (1.2)

which are in turn expressed in terms of the subsequent hitting times of a dyadic grid cast
on the real axis. More precisely, let Dn = {j2−n/2: j ∈ Z}, n≥ 0, be the dyadic partition
(of R) of order n/2. For every n ≥ 0, the stopping times Tk,n, appearing in (1.2), are
given by the following recursive definition: T0,n = 0, and

Tk,n = inf{s > Tk−1,n: Y (s) ∈Dn \ {Y (Tk−1,n)}}, k ≥ 1.

Note that the definition of Tk,n, and therefore of Tn, only involves the one-sided Brownian
motion Y , and that, for every n≥ 0, the discrete stochastic process

Yn = {Y (Tk,n): k ≥ 0}

defines a simple random walk over Dn. As shown in [9], as n tends to infinity the collection
{Tk,n: 1 ≤ k ≤ 2nt} approximates the common dyadic partition {k2−n: 1≤ k ≤ 2nt} of
order n of the time interval [0, t] (see [9], Lemma 2.2, for a precise statement). Based on
this fact, one can introduce the counterpart of (1.1) based on Tn, namely,

V (r)
n (t) = 2−nκ̃

⌊2nt⌋−1∑

k=0

Hr(ZTk+1,n
−ZTk,n

), n ∈N, t≥ 0, r ∈N
∗. (1.3)

We are now in a position to state the main result of the present paper.
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Theorem 1.1. The following two f.d.d. convergences in law take place as n→ ∞ for

any integer N ≥ 1.

(1) Assume that H ≤ 1
2 . One has

2−n/4

{⌊2nt⌋−1∑

k=0

H2r−1(2
nH/2(ZTk+1,n

−ZTk,n
)): 1≤ r ≤N

}

t≥0
(1.4)

f.d.d.−→ {σ2r−1E
(r)
t : 1≤ r ≤N}t≥0,

where σ2r−1 is some (explicit) constant and E = (B(1) ◦ Y, . . . ,B(N) ◦ Y ), with B =

(B(1), . . . ,B(N)) a N -dimensional two-sided Brownian motion independent from Y .
(2) Assume that H < 3

4 . One has

2−3n/4

{⌊2nt⌋−1∑

k=0

H2r(2
nH/2(ZTk+1,n

−ZTk,n
)): 1≤ r ≤N

}

t≥0
(1.5)

f.d.d.−→
{
σ2r

∫ ∞

−∞
Lx
t (Y ) dB(r)

x : 1≤ r ≤N

}

t≥0

,

where σ2r is some (explicit) constant, B = (B(1), . . . ,B(N)) is a N -dimensional two-sided

Brownian motion independent from Y and Lx
t (Y ) stands for the local time of Y before

time t at level x.

The process {
∫
R
Lx
t (Y ) dB

(r)
x }t≥0 appearing in (1.5) is nothing but the Brownian mo-

tion in Random Scenery introduced by Kesten and Spitzer (see [7]).

As a corollary of this theorem, we deduce the fluctuations of the power variation of Z .

Corollary 1.2. The following two f.d.d. convergences in law take place as n→∞ for
any integer N ≥ 1.

(1) Assume that H ≤ 1
2 . One has

{
2(−n/4)(1−(4r−2)H)

⌊2nt⌋−1∑

k=0

(ZTk+1,n
−ZTk,n

)2r−1: 1≤ r ≤N

}

t≥0
(1.6)

f.d.d.−→
{

r∑

k=1

ar,kσ2k−1E
(k)
t : 1≤ r ≤N

}

t≥0

,

where ar,k is some constant given by: ar,k =
∑k−1

l=0
(−1)l(2(r+k−l−1))!

l!(2(k−l)−1)!(r+k−l−1)!2r+k−1 .
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(2) Assume that H < 3
4 . One has

{
2(−3n/4)(1−4rH/3)

⌊2nt⌋−1∑

k=0

((ZTk+1,n
−ZTk,n

)2r − 2−nrHbr,0): 1≤ r ≤N

}

t≥0
(1.7)

f.d.d.−→
{

r∑

k=1

br,kσ2k

∫ ∞

−∞
Lx
t (Y ) dB(k)

x : 1≤ r ≤N

}

t≥0

,

where br,k is some constant given by: br,k =
∑k

l=0
(−1)l(2(r+k−l))!

l!(2(k−l))!(r+k−l)!2r+k .

Note that br,0 =E[(2nH/2(ZTk+1,n
−ZTk,n

))2r ] =E[N2r], with N ∼N (0,1).
In the particular case where H = 1/2 (that is, when Z is an iterated Brownian motion)

and r = 2,3,4, we emphasize that Corollary 1.2 allows one to recovers Theorems 3.2, 4.4
and 4.5 from Khoshnevisan and Lewis [9].

Remark. To keep the length of this paper within bounds, I defer to future analysis the
technical investigation of the tightness of the power variations of F.B.M.B.T given in the
previous corollary.

The organisation of the paper is as follows. In Section 2, we provide some needed
preliminaries. Theorem 1.1 and Corollary 1.2 are then shown in Section 3.

2. Preliminaries

In this section, we collect several results that are useful for the proof of Theorem 1.1.

2.1. An algebraic lemma and some local time estimates

For each integer n≥ 0, k ∈ Z and real number t≥ 0, let Uj,n(t) (resp. Dj,n(t)) denote the
number of upcrossings (resp. downcrossings) of the interval [j2−n/2, (j+1)2−n/2] within
the first ⌊2nt⌋ steps of the random walk {Y (Tk,n)}k≥1, that is,

Uj,n(t) = ♯{k = 0, . . . , ⌊2nt⌋ − 1:
(2.1)

Y (Tk,n) = j2−n/2 and Y (Tk+1,n) = (j + 1)2−n/2};
Dj,n(t) = ♯{k = 0, . . . , ⌊2nt⌋ − 1:

(2.2)
Y (Tk,n) = (j + 1)2−n/2 and Y (Tk+1,n) = j2−n/2}.

The following lemma will play a crucial role in our study of the asymptotic behavior of

V
(r)
n . Its main feature is to separate X from Y , thus providing a representation of V

(r)
n

which is amenable to analysis.
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Lemma 2.1 (See [9], Lemma 2.4). Fix t≥ 0 and r ∈N
∗. Then

V (r)
n (t) = 2−nκ̃

∑

j∈Z

Hr(2
nH/2(X(j+1)2−n/2 −Xj2−n/2))(Uj,n(t) + (−1)rDj,n(t)). (2.3)

Also, in order to prove the second point of Theorem 1.1 we will need estimates on the
local time of Y taken from [9], that we collect in the following statement.

Proposition 2.2.

1. For every x ∈R, p ∈N
∗ and t > 0, we have

E[(Lx
t (Y ))

p
]≤ 2E[(L0

1(Y ))
p
]tp/2 exp

(
−x2

2t

)
.

2. There exists a positive constant µ such that, for every a, b ∈R with ab≥ 0 and t > 0,

E[|Lb
t(Y )−La

t (Y )|2]1/2 ≤ µ
√
|b− a|t1/4 exp

(
−a2

4t

)
.

3. There exists a positive random variable K ∈ L8 such that, for every j ∈ Z, every
n≥ 0 and every t > 0, one has that

|Lj,n(t)−Lj2−n/2

t (Y )| ≤ 2Kn2−n/4

√
Lj2−n/2

t (Y ),

where Lj,n(t) = 2−n/2(Uj,n(t) +Dj,n(t)).

2.2. Breuer–Major Theorem

Let {Gk}k≥1 be a centered stationary Gaussian sequence. In this Gaussian context,
stationary just means that there exist ρ :Z→ R such that E[GkGl] = ρ(k − l), k, l ≥ 1.
Assume further that ρ(0) = 1, that is, each Gk is N (0,1) distributed. Let ϕ :R→R be
a measurable function satisfying

E[ϕ2(G1)] =
1√
2π

∫

R

ϕ2(x)e−x2/2 dx <+∞. (2.4)

The function ϕ may be expanded in L2(R, e
−x2/2
√
2π

dx) (in a unique way) in terms of

Hermite polynomials as follows:

ϕ(x) =

+∞∑

q=0

aqHq(x). (2.5)

Let d ≥ 0 be the Hermite rank of ϕ, that is, the first integer q ≥ 0 such that aq 6= 0 in
(2.5). We then have the celebrated Breuer–Major Theorem (see [2], see also [12] for a
modern proof).
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Theorem 2.3 (Breuer–Major). Let {Gk}k≥1 (with covariance ρ) and ϕ :R→R (with
Hermite index d) be as above. Assume further that

∑
k∈Z

|ρ(k)|d < +∞. Then, as n→
+∞,

2−n/2

{⌊2nt⌋∑

k=1

(ϕ(Gk)−E[ϕ(Gk)])

}

t≥0

f.d.d.→ {σBt}t≥0, (2.6)

with B a standard Brownian motion and σ > 0 given by

σ2 =

+∞∑

q=d

q!a2q
∑

k∈Z

ρ(k)q ∈ [0,+∞[. (2.7)

2.3. Peccati–Tudor Theorem

In a seminal paper of 2005, Nualart and Peccati [13] discovered a surprising central
limit theorem (called the Fourth Moment Theorem nowadays) for sequences of multiple
stochastic integrals of a fixed order: in this context, convergence in distribution to the
standard normal law is actually equivalent to convergence of just the fourth moment.
Shortly afterwards, Peccati and Tudor gave a multidimensional version of this charac-
terization, making use of tools belonging to the Malliavin calculus. Since we will rely on
this result in the present paper, let us give more details.
Let d ≥ 2 and q1, . . . , qd ≥ 1 be some fixed integers. Consider a sequence of random

vectors Fn = (F1,n, . . . , Fd,n) of the following form. Each Fi,n can be written as

Fi,n =

Nn∑

j=0

aj,nHqi(Yj,n),

where Nn is an integer, aj,n are real numbers and {Yj,n}j≥0 is a centered stationary
Gaussian family with unit variance. We then have the following result, shown in [14].

Theorem 2.4 (Peccati–Tudor). Let (Fn) be a sequence as above. Let C ∈Md(R) be a
symmetric and positive matrix, and let N be a centered Gaussian vector with covariance
C. Assume that

lim
n→+∞

E[Fi,nFj,n] =C(i, j), 1≤ i, j ≤ d. (2.8)

Then, as n→+∞, the following two conditions are equivalent:

(a) Fn converges in law to N ;
(b) for every 1≤ i≤ d, Fi,n converges in law to N (0,C(i, i)).
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3. Proof of Theorem 1.1

3.1. Proof of (1.4)

Recall the definition (1.3) of V
(r)
n (t) and let us fix κ̃ = 1/4. First of all, let us apply

Lemma 2.1. Because 2r− 1 is an odd number, we obtain that

V (2r−1)
n (t) = 2−n/4

∑

j∈Z

H2r−1(2
nH/2(X(j+1)2−n/2 −Xj2−n/2))(Uj,n(t)−Dj,n(t)). (3.1)

Now, let us observe (see also [9], Lemma 2.5) that

Uj,n(t)−Dj,n(t) =





1(0≤ j < j∗(n, t)) if j∗(n, t)> 0,
0 if j∗ = 0,
−1(j∗(n, t)≤ j < 0) if j∗(n, t)< 0,

where

j∗(n, t) = 2n/2YT⌊2nt⌋,n
.

As a consequence,

V (2r−1)
n (t) =





2−n/4

j∗(n,t)∑

j=1

H2r−1(2
nH/2(X+

j2−n/2 −X+
(j−1)2−n/2)) if j∗(n, t)> 0,

0 if j∗ = 0,

2−n/4

|j∗(n,t)|∑

j=1

H2r−1(2
nH/2(X−

j2−n/2 −X−
(j−1)2−n/2)) if j∗(n, t)< 0,

where X+
t =Xt for t≥ 0 and X−

−t =Xt for t < 0. Our analysis of V
(2r−1)
n will become

easier if one introduces the following sequence of processes W
(2r−1)
±,n , in which we have

replaced
∑±j∗(n,t)

j=1 by
∑⌊2n/2t⌋

j=1 , namely:

W
(2r−1)
+,n (t) = 2−n/4

⌊2n/2t⌋∑

j=1

H2r−1(2
nH/2(X+

j2−n/2 −X+
(j−1)2−n/2)), t≥ 0,

W
(2r−1)
−,n (t) = 2−n/4

⌊2n/2t⌋∑

j=1

H2r−1(2
nH/2(X−

j2−n/2 −X−
(j−1)2−n/2)), t≥ 0,

W (2r−1)
n (t) =

{
W

(2r−1)
+,n (t) if t≥ 0,

W
(2r−1)
−,n (−t) if t < 0.
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It is clear, using the self-similarity property of X , that the f.d.d. convergence in law of

the vector (W
(2r−1)
+,n ,W

(2r−1)
−,n ,1≤ r ≤N) is equivalent to the f.d.d. convergence in law of

the vector (W
(2r−1)

+,n ,W
(2r−1)

−,n ,1≤ r ≤N) defined as:

W
(2r−1)

+,n (t) = 2−n/4

⌊2n/2t⌋∑

j=1

H2r−1(X
+
j −X+

j−1), t≥ 0,

W
(2r−1)

−,n (t) = 2−n/4

⌊2n/2t⌋∑

j=1

H2r−1(X
−
j −X−

j−1), t≥ 0.

Let Gj =X+
j −X+

j−1. The family {Gj} is Gaussian, stationary, centered, with variance
1; moreover its covariance ρ is given by

ρ(k) =E[GjGj+k] =
1
2 (|k+1|2H + |k− 1|2H − 2|k|2H), (3.2)

so that
∑ |ρ(k)| < ∞ because H ≤ 1

2 . Hence, Breuer–Major Theorem 2.3 applies and
yields that, as n→∞ and for any fixed r,

{W (2r−1)

+,n (t): t≥ 0} f.d.d.−→ σ2r−1{B+,r(t): t≥ 0},

with B+,r a standard Brownian motion and σ2r−1 =
√
(2r− 1)!

∑
a∈Z

ρ(a)2r−1. Note
that

∑
a∈Z

|ρ(a)|2r−1 <∞ if and only if H < 1− 1/(2(2r− 1)), which is satisfied for all
r ≥ 1 since we have supposed that H ≤ 1/2 (the case H = 1/2 may be treated separately).
Similarly,

{W (2r−1)

−,n (t): t≥ 0} f.d.d.−→ σ2r−1{B−,r(t): t≥ 0},
with B−,r a standard Brownian motion and σ2r−1 as above. In order to deduce the

joint convergence in law of (W
(2r−1)

+,n ,W
(2r−1)

−,n ,1≤ r ≤N), from Peccati–Tudor Theorem

2.4 and taking into account that E[W
(2r−1)

±,n (t)W
(2l−1)

±,n (t)] = 0 for l 6= r (since Hermite
polynomials of different orders are orthogonal), it remains to check that, for any integer
r and any real numbers t, s≥ 0,

lim
n→∞

E[W
(2r−1)

+,n (t)W
(2r−1)

−,n (s)] = 0. (3.3)

Let us do it. One can write,

E[W
(2r−1)

+,n (t)W
(2r−1)

−,n (s)]

= 2−n/2

⌊2n/2t⌋∑

k=1

⌊2n/2s⌋∑

l=1

E[H2r−1(X
+
k −X+

k−1)H2r−1(X
−
l −X−

l−1)]
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= (2r− 1)!2−n/2

⌊2n/2t⌋∑

k=1

⌊2n/2s⌋∑

l=1

(E[(X+
k −X+

k−1)(X
−
l −X−

l−1)])
2r−1

= (2r− 1)!2−n/2

⌊2n/2t⌋∑

k=1

⌊2n/2s⌋∑

l=1

(E[(Xk −Xk−1)(X−l −X−l+1)])
2r−1

= (2r− 1)!2−n/2

⌊2n/2t⌋∑

k=1

⌊2n/2s⌋∑

l=1

(
1

2
[2|k+ l− 1|2H − |k+ l|2H − |k+ l− 2|2H ]

)2r−1

.

Setting a= k+ l, we deduce that

E[W
(2r−1)

+,n (t)W
(2r−1)

−,n (s)]

= 2−(2r−1)(2r− 1)!2−n/2

⌊2n/2t⌋∑

k=1

k+⌊2n/2s⌋∑

a=k+1

(2|a− 1|2H − |a|2H − |a− 2|2H)
2r−1

= 2−(2r−1)(2r− 1)!2−n/2

⌊2n/2t⌋+⌊2n/2s⌋∑

a=2

(a−1)∧⌊2n/2t⌋∑

k=(a−⌊2n/2s⌋)∨1

(2|a− 1|2H − |a|2H − |a− 2|2H)
2r−1

= 2−(2r−1)(2r− 1)!2−n/2
∑

a∈N

fn(a),

where

fn(a) := (2|a− 1|2H − |a|2H − |a− 2|2H)
2r−1

((a− 1)∧ ⌊2n/2t⌋ − (a− ⌊2n/2s⌋)∨ 1+ 1)

× 1{2≤a≤⌊2n/2t⌋+⌊2n/2s⌋}.

For any a ∈ {2, . . . , ⌊2n/2t⌋+ ⌊2n/2s⌋}, observe that ⌊2n/2t⌋+ ⌊2n/2s⌋ ≥ 1. Also, we have

2−n/2|(a− 1)∧ ⌊2n/2t⌋|1{2≤a≤⌊2n/2t⌋+⌊2n/2s⌋} ≤ 2−n/2⌊2n/2t⌋ ≤ t,

as well as

2−n/2|(a− ⌊2n/2s⌋)∨ 1|1{2≤a≤⌊2n/2t⌋+⌊2n/2s⌋}

≤ 2−n/2(|a|+ ⌊2n/2s⌋+1)1{2≤a≤⌊2n/2t⌋+⌊2n/2s⌋}

≤ 2−n/2(⌊2n/2t⌋+ 2⌊2n/2s⌋) + 2−n/21{2≤a≤⌊2n/2t⌋+⌊2n/2s⌋}

≤ 2−n/2(⌊2n/2t⌋+ 2⌊2n/2s⌋) + 2−n/2(⌊2n/2t⌋+ ⌊2n/2s⌋)≤ 2t+ 3s,

and

2−n/21{2≤a≤⌊2n/2t⌋+⌊2n/2s⌋} ≤ 2−n/2(⌊2n/2t⌋+ ⌊2n/2s⌋)≤ t+ s.
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Plugging all these inequalities together leads to

2−n/2|fn(a)| ≤ (4t+ 4s)|2|a− 1|2H − |a|2H − |a− 2|2H |2r−1

for all n, with
∑

a∈N
|2|a − 1|2H − |a|2H − |a − 2|2H |2r−1 < ∞ (recall that H ≤ 1/2).

Moreover, 2−n/2fn(a) −→
n→∞

0 for any fixed a because

(a− 1)

2n/2
∧ ⌊2n/2t⌋

2n/2
− (a− ⌊2n/2s⌋)

2n/2
∨ 2−n/2 + 2−n/2 −→

n→∞
0∧ t− (−s)∨ 0 = 0

since t, s≥ 0. Hence, the dominated convergence theorem applies and yields

2−n/2
∑

a∈N

fn(a) −→
n→∞

0,

that is, (3.3) holds true. As we said, using Peccati–Tudor Theorem 2.4 one thus obtains
that

(W
(2r−1)
+,n ,W

(2r−1)
−,n ,1≤ r ≤N)

f.d.d.−→ (σ2r−1B
+,r, σ2r−1B

−,r,1≤ r ≤N), (3.4)

with (B+,r,B−,r,1≤ r ≤N) a 2N -dimensional standard Brownian motion. As a conse-
quence, we have

(W (2r−1)
n (t),1≤ r ≤N)t∈R

f.d.d.−→ (σ2r−1B
(r)(t),1≤ r ≤N)t∈R

, (3.5)

with (B(r),1≤ r ≤N) a N -dimensional two-sided Brownian motion.
On the other hand, let us prove for any r ∈ N

∗ the existence of Cr > 0 such that, for
any n and any s, t ∈R,

E[(W (2r−1)
n (t)−W (2r−1)

n (s))
2
]≤ 8Cr(2

−n/2 + |t− s|). (3.6)

To do so, we distinguish three cases, according to the sign of s, t ∈R (and reducing the
problem by symmetry):

(1) if 0≤ s≤ t:

E[(W (2r−1)
n (t)−W (2r−1)

n (s))
2
]

=E[(W
(2r−1)

+,n (t)−W
(2r−1)

+,n (s))
2
] =

∣∣∣∣∣2
−n/2E

[( ⌊2n/2t⌋∑

j=⌊2n/2s⌋+1

H2r−1(X
+
j −X+

j−1)

)2]∣∣∣∣∣

=

∣∣∣∣∣(2r− 1)!2−n/2

⌊2nt⌋∑

j,k=⌊2ns⌋+1

(ρ(j − k))
2r−1

∣∣∣∣∣

=

∣∣∣∣∣(2r− 1)!2−n/2

⌊2n/2t⌋∑

j=⌊2n/2s⌋+1

j−⌊2n/2s⌋−1∑

a=j−⌊2n/2t⌋
(ρ(a))

2r−1

∣∣∣∣∣



Fluctuations of the power variation of fractional Brownian motion in Brownian time 11

≤ (2r− 1)!2−n/2

×
⌊2n/2t⌋−⌊2n/2s⌋−1∑

a=⌊2n/2s⌋−⌊2n/2t⌋+1

|ρ(a)|2r−1|(a+ ⌊2nt⌋)∧ ⌊2nt⌋ − (a+ ⌊2ns⌋)∨ (⌊2ns⌋)|

≤ (2r− 1)!2−n/2
∑

a∈Z

|ρ(a)|2r−1|⌊2n/2t⌋ − ⌊2n/2s⌋|=Cr2
−n/2|⌊2n/2t⌋ − ⌊2n/2s⌋|

≤Cr(|2−n/2⌊2n/2t⌋ − t|+ |t− s|+ |2−n/2⌊2n/2s⌋ − s|)≤Cr(22
−n/2 + |t− s|)

≤ 2Cr(2
−n/2 + |t− s|),

with Cr = (2r− 1)!
∑

a∈Z
|ρ(a)|2r−1 <∞, hence (3.6) holds true.

(2) If s≤ t≤ 0: by the same argument as above

E[(W (2r−1)
n (t)−W (2r−1)

n (s))
2
]

=E[(W
(2r−1)

−,n (−s)−W
(2r−1)

−,n (−t))
2
]≤Cr(2

−n/2|⌊2n/2|t|⌋ − ⌊2n/2|s|⌋|)

≤Cr(|2−n/2⌊2n/2|t|⌋ − |t||+ ||t| − |s||+ |2−n/2⌊2n/2|s|⌋ − |s||)
≤Cr(22

−n/2 + ||t| − |s||)
≤ 2Cr(2

−n/2 + ||t| − |s||)≤ 2Cr(2
−n/2 + |t− s|),

so that (3.6) holds true as well.
(3) If s < 0< t: using the two previous inequality (point (1) and point (2)) one has

E[(W (2r−1)
n (t)−W (2r−1)

n (s))
2
] ≤ 2E[(W (2r−1)

n (t)−W (2r−1)
n (0))

2
]

+ 2E[(W (2r−1)
n (s)−W (2r−1)

n (0))
2
]

≤ 4Cr(2
−n/2 + t) + 4Cr(2

−n/2 + |s|)
= 8Cr2

−n/2 + 4Cr(t+ |s|)
= 8Cr2

−n/2 + 4Cr|t− s|
≤ 8Cr(2

−n/2 + |t− s|).

This proves (3.6).

Now, let us go back to V
(2r−1)
n . Observe that

V (2r−1)
n (t) =W (2r−1)

n (YT⌊2nt⌋,n
)

and recall from [9], Lemma 2.3, that E[|YT⌊2nt⌋,n
− Y (t)|]→ 0 as n→∞ for any t > 0.

We deduce, combining these two latter facts with (3.6), that

V (2r−1)
n (t)−W (2r−1)

n (Yt)
L2

→ 0 as n→∞.
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But Y is independent from W
(2r−1)
n so, from (3.5), it comes that

(W (2r−1)
n ◦ Y,1≤ r ≤N)

f.d.d.−→ (σ2r−1B
(r) ◦ Y,1≤ r ≤N), (3.7)

from which the desired conclusion (1.4) follows.

3.2. Proof of (1.5)

Recall the definition (1.3) and let us fix κ̃ = 3/4. First of all, let us apply Lemma 2.1.
Because 2r is an even number, we obtain that

V (2r)
n (t) = 2−3n/4

∑

j∈Z

H2r(2
nH/2(X(j+1)2−n/2 −Xj2−n/2))(Uj,n(t) +Dj,n(t)). (3.8)

Set Lj,n(t) = 2−n/2(Uj,n(t) +Dj,n(t)), so that

V (2r)
n (t) = 2−n/4

∑

j∈Z

H2r(2
nH/2(X(j+1)2−n/2 −Xj2−n/2))Lj,n(t).

At this stage, to simplify the exposition, let us introduce the short-hand notation

X
(n)
j = 2nH/2Xj2−n/2 .

Fix t≥ 0. In order to study the convergence in law of V
(2r)
n (t) as n tends to infinity,

we shall consider (separately) the cases when n is even and when n is odd.
When n is even, for any even integers n≥m≥ 0 and any integer p≥ 0, by following

Nourdin and Peccati (see [11]) one can decompose V
(2r)
n (t) as

V (2r)
n (t) =A(2r)

m,n,p(t) +B(2r)
m,n,p(t) +C(2r)

m,n,p(t) +D(2r)
m,n,p(t),

where

A(2r)
m,n,p(t) = 2−n/4

∑

−p2m/2+1≤j≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

H2r(X
(n)
i+1 −X

(n)
i )(Li,n(t)−Li2−n/2

t (Y )),

B(2r)
m,n,p(t) = 2−n/4

∑

−p2m/2+1≤j≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

H2r(X
(n)
i+1 −X

(n)
i )

× (Li2−n/2

t (Y )−Lj2−m/2

t (Y )),

C(2r)
m,n,p(t) = 2−n/4

∑

−p2m/2+1≤j≤p2m/2

Lj2−m/2

t (Y )

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

H2r(X
(n)
i+1 −X

(n)
i ),

D(2r)
m,n,p(t) = 2−n/4

∑

i≥p2n/2

H2r(X
(n)
i+1 −X

(n)
i )Li,n(t) +

∑

i<−p2n/2

H2r(X
(n)
i+1 −X

(n)
i )Li,n(t).
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We can see that since we have taken even integers n≥m≥ 0 then 2m/2, 2(n−m)/2 and
2n/2 are integers as well. This justifies the validity of the previous decomposition.
When n is odd, for any odd integers n ≥ m ≥ 0 we can work with the same de-

composition for V
(2r)
n (t). The only difference is that we have to replace the sum∑

−p2m/2+1≤j≤p2m/2 in A
(2r)
m,n,p(t), B

(2r)
m,n,p(t) and C

(2r)
m,n,p(t) by

∑
−p2(m+1)/2+1≤j≤p2(m+1)/2 .

And instead of
∑

i≥p2n/2 and
∑

i<−p2n/2 in D
(2r)
m,n,p(t), we must consider

∑
i≥p2(n+1)/2 and∑

i<−p2(n+1)/2 respectively. The analysis can then be done mutatis mutandis.

Let us go back to our proof. First, we will prove that A
(2r)
m,n,p(t), B

(2r)
m,n,p(t) and D

(2r)
m,n,p(t)

converge to 0 in L2 by letting n, then m, then p tend to infinity. Second, we will study
the convergence in law (in the sense f.d.d.) of

(C(2r)
m,n,p,1≤ r ≤N), (3.9)

which will then be equivalent to the convergence in law (in the sense f.d.d.) of

(V (2r)
n ,1≤ r ≤N).

We will prove that E[(A
(2r)
m,n,p(t))2]→ 0 as n→∞. We have, with ρ given by (3.2) (note

that
∑

a∈Z
|ρ(a)|2r <∞ if and only if H < 1 − 1/(4r), which is satisfied for any r ≥ 1

because H < 3/4),

E[(A(2r)
m,n,p(t))

2
]

=

∣∣∣∣∣2
−n/2

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

E[H2r(X
(n)
i+1 −X

(n)
i )

×H2r(X
(n)
i′+1 −X

(n)
i′ )]E[(Li,n(t)−Li2−n/2

t (Y ))(Li′,n(t)−Li′2−n/2

t (Y ))]

∣∣∣∣∣

≤ (2r)!2−n/2
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r

× ‖Li,n(t)−Li2−n/2

t (Y )‖2 × ‖Li′,n(t)−Li′2−n/2

t (Y )‖2,

where, in the first equality, we used the independence between X and Y . By the point 3
of Proposition 2.2, we have

‖Li,n(t)−Li2−n/2

t (Y )‖2 ≤ 2n2−n/4‖K‖4‖Li2−n/2

t (Y )‖1/22 . (3.10)



14 R. Zeineddine

On the other hand

‖Li2−n/2

t (Y )‖2 ≤ ‖Li2−n/2

t (Y )−L0
t (Y )‖2 + ‖L0

t (Y )‖2. (3.11)

By the point 2 of Proposition 2.2, we have

‖Li2−n/2

t (Y )−L0
t (Y )‖2 ≤ µ

√
|i|2−n/2t1/4. (3.12)

By combining (3.11) and (3.12), we get that ‖Li2−n/2

t (Y )‖2 ≤ µ
√
|i|2−n/4t1/4 + ‖L0

t (Y )‖2.
Since

√
a+ b≤√

a+
√
b for all a, b≥ 0, we deduce that

‖Li2−n/2

t (Y )‖1/22 ≤√
µ|i|1/42−n/8t1/8 + ‖L0

t (Y )‖1/22 . (3.13)

Finally, (3.13) together with (3.10) show that

‖L(i,n)(t)−Li2−n/2

t (Y )‖2 ≤ 2
√
µ‖K‖4t1/8n2−n/42−n/8|i|1/4

(3.14)
+ 2‖K‖4‖L0

t (Y )‖1/22 n2−n/4.

As a result,

E[(A(2r)
m,n,p(t))

2
]

≤ 4(2r)!µt1/8t1/8‖K‖242−n2−n/4n2 (3.15)

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r|ii′|1/4

+4(2r)!
√
µt1/8‖K‖24‖L0

t (Y )‖1/22 2−n2−n/8n2

(3.16)

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)2r|i|1/4

+4(2r)!
√
µt1/8‖K‖24‖L0

t (Y )‖1/22 2−n2−n/8n2

(3.17)

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r|i′|1/4

+4(2r)!‖K‖24‖L0
t (Y )‖1/22 ‖L0

t (Y )‖1/22 2−nn2

(3.18)

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r
,
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and we are thus left to prove the convergence to 0 of (3.15)–(3.18) as n→∞. Let us do
it.

(a) We have

2−nn2
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r

= 2−nn2

p2n/2−1∑

i=−p2n/2

p2n/2−1∑

i′=−p2n/2

ρ(i− i′)2r

≤ 2−nn2

p2n/2−1∑

i=−p2n/2

∑

i′∈Z

ρ(i′)
2r

=
∑

i′∈Z

ρ(i′)
2r
n22−n(2p2n/2).

Since it is clear that the last quantity converges to 0 as n→∞, one deduces that (3.18)
tends to zero.
(b) Since −p2m/2 + 1 ≤ j′ ≤ p2m/2 and (j′ − 1)2(n−m)/2 ≤ i′ ≤ j′2(n−m)/2 − 1, we

deduce that −p2n/2 ≤ i′ ≤ p2n/2 − 1. So, |i′| ≤ p2n/2. Consequently we have that
|i′|1/4 ≤ p1/42n/8, which shows that

2−n2−n/8n2

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r|i′|1/4

≤ p1/42−nn2

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r

and this last quantity converges to 0 by the same argument as above. This shows that
(3.17) tends to zero.

(c) Following the same strategy as in point (b), one deduces that (3.16) tends to zero.
Details are left to the reader.
(d) By the same arguments as above, one can see that |ii′|1/4 ≤ p1/22n/4. It follows

that

2−n2−n/4n2

×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r|ii′|1/4

≤ p1/22−nn2
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×
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

ρ(i− i′)
2r
,

which converges to 0 by the same arguments as above. Hence, (3.15) tends to zero. The

proof of E[(A
(2r)
m,n,p(t))2]→ 0 as n→∞ is complete.

Now, let us prove the convergence of B
(2r)
m,n,p(t) to 0 in L2 as m→∞, uniformly in n.

We have

E[(B(2r)
m,n,p(t))

2
]

= 2−n/2
∑

−p2m/2+1≤j≤p2m/2

∑

−p2m/2+1≤j′≤p2m/2

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

j′2(n−m)/2−1∑

i′=(j′−1)2(n−m)/2

(2r)!ρ(i− i′)
2r

×E[(Li2−n/2

t (Y )−Lj2−m/2

t (Y ))(Li′2−n/2

t (Y )−Lj′2−m/2

t (Y ))].

By Proposition 2.2 (point 2) and Cauchy–Schwarz, there is a universal constant µ such
that

|E[(Li2−n/2

t (Y )−Lj2−m/2

t (Y ))(Li′2−n/2

t (Y )−Lj′2−m/2

t (Y ))]|

≤ µ2
√
t
√
|i2−n/2 − j2−m/2||i′2−n/2 − j′2−m/2| ≤ µ2

√
t2−m/2.

This yields

sup
n

E[(B(2r)
m,n,p(t))

2
] ≤ µ2(2r)!2−m/2

√
t

× sup
n

{
2−n/2

p2n/2−1∑

i=−p2n/2

p2n/2−1∑

i′=−p2n/2

ρ(i− i′)
2r

}

≤ µ2(2r)!2−m/2
√
t2p
∑

i∈Z

ρ(i)2r,

which converges to 0 as m→∞.

Finally, let us prove that D
(2r)
m,n,p(t) converges to 0 in L2 as p→∞, uniformly in m

and n. We have

E[(D(2r)
m,n,p(t))

2
]

= 2−n/2
∑

i≥p2n/2

∑

j≥p2n/2

E[H2r(X
(n)
i+1 −X

(n)
i )H2r(X

(n)
j+1 −X

(n)
j )Li,n(t)Lj,n(t)] (3.19)

+ 22−n/2
∑

i≥p2n/2

∑

j<−p2n/2

E[H2r(X
(n)
i+1 −X

(n)
i )H2r(X

(n)
j+1 −X

(n)
j )Li,n(t)Lj,n(t)] (3.20)
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+ 2−n/2
∑

i<−p2n/2

∑

j<−p2n/2

E[H2r(X
(n)
i+1 −X

(n)
i )H2r(X

(n)
j+1 −X

(n)
j )Li,n(t)Lj,n(t)],

(3.21)

and we are thus left to prove the convergence to 0 of (3.19)–(3.21) as p→∞, uniformly
in m and n. Let us do it.

(a) We have

∣∣∣∣2
−n/2

∑

i≥p2n/2

∑

j≥p2n/2

E[H2r(X
(n)
i+1 −X

(n)
i )H2r(X

(n)
j+1 −X

(n)
j )Li,n(t)Lj,n(t)]

∣∣∣∣

=

∣∣∣∣2
−n/2

∑

i≥p2n/2

∑

j≥p2n/2

E[H2r(X
(n)
i+1 −X

(n)
i )H2r(X

(n)
j+1 −X

(n)
j )]E[Li,n(t)Lj,n(t)]

∣∣∣∣

= (2r)!2−n/2
∑

i≥p2n/2

∑

j≥p2n/2

ρ(i− j)2rE[Li,n(t)Lj,n(t)],

where, in the second equality, we used the independence between X and Y . It is enough
to prove that, uniformly in n and m, and as p→∞:

2−n/2
∑

i≥p2n/2

∑

j≥p2n/2

ρ(i− j)2rE[Li,n(t)Lj,n(t)]→ 0. (3.22)

We can write

2−n/2
∑

i≥p2n/2

∑

j≥p2n/2

ρ(i− j)2rE[Li,n(t)Lj,n(t)]

≤ 2−n/2
∑

i≥p2n/2

∑

j≥p2n/2

ρ(i− j)2rE

[
1

2
(Li,n(t)

2 +Lj,n(t)
2)

]

= 2−n/2
∑

i≥p2n/2

E[Li,n(t)
2]

∑

j≥p2n/2

ρ(i− j)2r

≤ 2−n/2
∑

i≥p2n/2

E[Li,n(t)
2]
∑

j∈Z

ρ(j)2r =Cr2
−n/2

∑

i≥p2n/2

E[Li,n(t)
2],

where Cr :=
∑

j∈Z
ρ(j)2r <∞. By the third point of Proposition 2.2, we have

|Li,n(t)| ≤ Li2−n/2

t (Y ) + 2Kn2−n/4

√
Li2−n/2

t (Y )

so that

E[Li,n(t)
2]≤ 2E[Li2−n/2

t (Y )2] + 8n22−n/2‖K2‖2‖Li2−n/2

t (Y )‖2. (3.23)
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On the other hand, thanks to the point 1 of Proposition 2.2, we have

E[Li2−n/2

t (Y )2]≤Ct exp

(
− (i2−n/2)2

2t

)
. (3.24)

Consequently, we get

‖Li2−n/2

ta2
(Y )‖2 ≤C1/2t1/2 exp

(
− (i2−n/2)2

4t

)
. (3.25)

By combining (3.23) with (3.24) and (3.25), we deduce that

2−n/2
∑

i≥p2n/2

E[Li,n(t)
2] ≤ 2Ct2−n/2

∑

i≥p2n/2

exp

(
− (i2−n/2)2

2t

)

+ 8C1/2t1/2‖K2‖2n22−n/2

× 2−n/2
∑

i≥p2n/2

exp

(
− (i2−n/2)2

4t

)
.

But, for a ∈ {2,4},

2−n/2
∑

i≥p2n/2

exp

(
− (i2−n/2)2

at

)
≤
∫ ∞

p−1

exp

(−x2

at

)
dx −→

p→∞
0.

This proves (3.22). Hence, we deduce that (3.19) converges to 0 as p→∞ uniformly in
n and m.
(b) Following the same strategy as in point (a), one deduces that (3.20) and (3.21)

converge to 0 as p→∞ uniformly in n and m. Details are left to the reader.

This shows that D
(2r)
m,n,p(t) converges to 0 in L2 as p→∞, uniformly in m and n.

To finish our proof of (1.5), it remains to prove that, by letting n, then m, then p tend
to infinity, we get

{C(2r)
m,n,p(t),1≤ r ≤N}t≥0

f.d.d.−→
{
σ2r

∫ ∞

−∞
Lx
t (Y ) dB(r)

x : 1≤ r ≤N

}

t≥0

. (3.26)

Since H < 3/4, we claim that, as n→∞,

(
2−n/4

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

H2r(X
(n)
i+1 −X

(n)
i ),1≤ r ≤N : −p2m/2 + 1≤ j ≤ p2m/2

)

(3.27)
law−→ (σ2r(B

(r)

(j+1)2−m/2 −B
(r)

j2−m/2),1≤ r ≤N : −p2m/2 +1≤ j ≤ p2m/2),

where (B(1), . . . ,B(N)) is a N -dimensional two-sided Brownian motion.
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Indeed, it is clear, using the self-similarity property of X , that the convergence in law
of

(
2−n/4

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

H2r(X
(n)
i+1 −X

(n)
i ),1≤ r ≤N : −p2m/2 + 1≤ j ≤ p2m/2

)

is equivalent to the convergence in law of

(
2−n/4

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

H2r(Xi+1 −Xi),1≤ r ≤N : −p2m/2 +1≤ j ≤ p2m/2

)
.

Then, Breuer–Major Theorem 2.3 applies and yields that, as n→∞ and for any fixed
1≤ r ≤N ,

(
2−n/4

j2(n−m)/2−1∑

i=(j−1)2(n−m)/2

H2r(Xi+1 −Xi): −p2m/2 + 1≤ j ≤ p2m/2

)

law−→ (σ2r(B
(r)

(j+1)2−m/2 −B
(r)

j2−m/2): −p2m/2 +1≤ j ≤ p2m/2).

In addition, from Peccati–Tudor Theorem 2.4 and taking into account the orthogonality
of Hermite polynomial with different orders, we deduce (3.27). (The detailed proof of
this result is similar to the proof of (3.5).)
As a consequence of (3.27), and thanks to the independence of X and Y , we have that

as n→∞,

{C(2r)
m,n,p(t),1≤ r ≤N}t≥0

f.d.d.−→
{
σ2r

p2m/2∑

j=−p2m/2+1

Lj2−m/2

t (Y )(B
(r)

(j+1)2−m/2 −B
(r)

j2−m/2),1≤ r ≤N

}

t≥0

.

Since, for any fixed t≥ 0 and 1≤ r ≤N and as m→∞,

p2m/2∑

j=−p2m/2+1

Lj2−m/2

t (Y )(B
(r)

(j+1)2−m/2 −B
(r)

j2−m/2)
P−→
∫ p

−p

Lx
t (Y ) dB(r)

x ,

and since
∫ p

−pL
x
t (Y ) dB

(r)
x

P−→
∫
R
Lx
t (Y ) dB

(r)
x as p→∞, we deduce finally that by letting

m, then p tend to infinity, we get

{
σ2r

p2m/2∑

j=−p2m/2+1

Lj2−m/2

t (Y )(B
(r)

(j+1)2−m/2 −B
(r)

j2−m/2),1≤ r ≤N

}

t≥0
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f.d.d.−→
{
σ2r

∫ ∞

−∞
Lx
t (Y ) dB(r)

x : 1≤ r ≤N

}

t≥0

.

This proves (3.26), and consequently (1.5).

3.3. Proof of Corollary 1.2

Let us decompose xp in terms of Hermite polynomials. We have xp =
∑p

k=0 ap,kHk(x),
where ap,k is some (explicit) integer. To calculate ap,k, let N be a centred Gaussian
variable with variance one. We have

Np =

p∑

k=0

ap,kHk(N). (3.28)

Thanks to the orthogonality property of Hermite polynomials with different orders and
to the well known fact that E[Hk(N)2] = k!, we get

ap,k =
1

k!
E[NpHk(N)]. (3.29)

On the other hand (see, e.g., [12], page 19) we have, for all k ≥ 1,

Hk(x) =

⌊k/2⌋∑

l=0

k!(−1)l

l!(k− 2l)!2l
xk−2l. (3.30)

By combining (3.29) with (3.30), we deduce that

ap,k =

⌊k/2⌋∑

l=0

(−1)l

l!(k− 2l)!2l
E(Np+k−2l). (3.31)

Thus,

ap,k =






⌊k/2⌋∑

l=0

(−1)l(p+ k− 2l)!

l!(k− 2l)!2l2(p+k−2l)/2((p+ k− 2l)/2)!
if p and k are odd,

⌊k/2⌋∑

l=0

(−1)l(p+ k− 2l)!

l!(k− 2l)!2l2(p+k−2l)/2((p+ k− 2l)/2)!
if p and k are even,

0 otherwise.

As a result, we deduce that if p is odd, then

xp =

⌊p/2⌋+1∑

k=1

ap,2k−1H2k−1(x), (3.32)
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whereas if p is even, then

xp =

p/2∑

k=0

ap,2kH2k(x), (3.33)

Finally, thanks to (3.32), (3.33), Theorem 1.1 and the Continuous Mapping theorem, we
deduce the content of Corollary 1.2.
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