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Key Point:
Hybrid discrete-continuum formulation is developed to model natural hydro-driven fracturing.
Pore pressure diffusion is crucial in pattern formation.

Abstract:

Many natural examples of complex joint and vein networks in layered sedimentary rocks are
hydro-fractures that form by a combination of pore fluid overpressure and tectonic stresses. In
this paper, a two-dimensional hybrid hydro-mechanical formulation is proposed to model the
dynamic development of natural hydrofractures. The numerical scheme combines a Discrete
Element Model (DEM) framework that represents a porous solid medium with a supplementary
Darcy based pore-pressure diffusion as continuum description for the fluid. This combination
yields a porosity controlled coupling between an evolving fracture network and the associated
hydraulic field. The model is tested on some basic cases of hydro-driven fracturing commonly
found in nature i.e., fracturing due to local fluid overpressure in rocks subjected to hydrostatic
and nonhydrostatic tectonic loadings. In our models we find that seepage forces created by
hydraulic pressure gradients together with poroelastic feedback upon discrete fracturing play a
significant role in subsurface rock deformation. These forces manipulate the growth and
geometry of hydrofractures in addition to tectonic stresses and the mechanical properties of the
porous rocks. Our results show characteristic failure patterns that reflect different tectonic and
lithological conditions and are qualitatively consistent with existing analogue and numerical
studies as well as field observations. The applied scheme is numerically efficient, can be applied
at various scales and is computational cost effective with the least involvement of sophisticated
mathematical computation of hydrodynamic flow between the solid grains.
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1) Introduction:

Brittle deformation of rocks in association with over pressured fluid plays an important
role in the geophysical, geochemical and structural mechanics of the Earth’s crust in a wide
variety of geological settings [Fyfe et al., 1978]. A number of fluid expansion mechanisms e.g.,
burial compaction, clay dehydration, organic matter decomposition and aquathermal expansion
as well as impermeable rock units which behave as seal to subterraneous fluid flow render the
pore fluid overpressure, which if in excess of the least principal stress (P, > o,) may lead to load

parallel or load oblique tension fracturing (figure 1) in depths of the Earth’s crust.

hydrofractures formwhen
P,=0,+T & 0,-0; <A4T

Fig. 1: Mohr diagram of tensile failure due to fluid overpressure. The blue Mohr circle
represents the initial state of stress with zero fluid pressure. The Mohr circle moves towards the
left hand side (red circles) as a result of fluid overpressure, which results in tensile/shear failure.

The mechanism of hydrofracturing has great implications in the interpretation of field
observations and for the prediction of natural or industrial problems in a broad range of research
disciplines. After pioneering work of [Hubbert and Willis, 1957; Hubbert and Rubey, 1959]
which explored pore fluid pressure as an important factor for small scale hydrofracturing in
tectonic processes, significant efforts have been made in the development of theoretical
fundamentals [Biot et al.,, 1986; J M Cleary and lllinois State Geological Survey., 1958;
Daneshy, 1973; Secor, 1965; Valké and Economides, 1995]. Apart from theoretical aspects, a
significant amount of analytical and numerical solutions have also been put forward by many
investigators to address this coupled process in a qualitative and quantitative manner [M P
Cleary and Wong, 1985; Flekkay et al., 2002; Gordeyev and Zazovsky, 1992; Meyer, 1986;
Tzschichholz et al., 1994; Yu.N, 1993].

Most of the previous numerical tools are built on continuum approaches and consider
fluid flow in fractures of simple geometry (penny-shaped elliptical or vertical cracks) using the
theory of linear elasticity. Much of these approaches however, lack the constitutive relationship
of explicit coupling between the solid and fluid being considered separately and makes strong
approximations upon complex flow and deformation interaction arising from brittle failure,
material disorder and inhomogeneity present at various scales in geo-pressurized problems.
Some porosity controlled models [Boone and Ingraffea, 1990; Flekkay et al., 2002; Mourgues
and Cobbold, 2003; Olson et al., 2009; Wangen, 2002] revealed that the potential response of
inherent poroelastic mechanics is an important parameter in hydro-driven rock failure, where the
seepage forces caused by pore pressure gradients [Engelder and Lacazette, 1990; Rozhko, 2010;
Rozhko et al., 2007] in porous rocks affect the driving stress for fracture initiation and growth.
Regardless of the underlying driving agent hydrofracturing is a complex process which



incorporates the dynamic coupling of at least three sub-processes [Adachi et al., 2007]; 1)
Restructuring of rock skeleton upon elastic/in-elastic strain. 2) Corresponding alteration of both
the permeability and the interstitial fluid pressure. 3) Further mechanical deformation leading to
fracture propagation with concurrent variation in the pore or fracture filled fluid pressure.

Inspired by [Flekkay et al., 2002] we extended the work of [Koehn et al., 2005] to a
hybrid discrete-continuum constitutive modeling approach. The scheme emphasizes the
evolution of rock failure in the light of underlying synergistic evolution of rock permeability
upon fracture growth and the consequent change in interstitial pore pressure. The hypothesis is
that porosity effective pore pressure diffusion along the pressure gradient is critical for the
formation of discrete opening mode fractures and thus may influence the propagation of
hydrofractures at large scale in porous rocks under controlled strain conditions.

The present paper evaluates the theoretical aspects of the numerical scheme for some
basic configurations to which analogue and analytical studies are present i.e., hydrofracturing in
homogeneous porous media under hydrostatic and non-hydrostatic conditions. In the following
section we give details of the fluid-solid two-way coupling scenario of the scheme. In section 3
the validation of the solution is given and in section 4 implementations of the method is
illustrated by means of simulation examples related to simple geometrical problems. Finally,
results from this study are pointed out in section 5. The Alternative Direction Implicit procedure
for the solution of the continuum diffusion is given in the Appendix-A.

2) Formulation

The simulations implemented in this study constitute of a special solution of the Darcy
based Navier Stoke’s equation and its coupling with a discrete poroelastic medium. The basic
assumption is that the poroelastic feedback is behaving according to Biot’s poroelastic theory
within a linear elastic regime. This connects pore-scale force balanced hydro-physics with the
evolution of the effective pressure gradient in a porous rock. Once a fracture initiates, the overall
behavior of the model becomes plastic and Biot’s compressibility is no longer applicable
[Flekkgy et al., 2002]. The numerical scheme can encounter the displacement of discrete
particles or deformation of a solid matrix directly. In this way the hydrodynamics evolve
intrinsically with irreversible micro deformation in a solid matrix through the use of the Kozeny-
Carman porosity-permeability relation.

The solution procedure adopted for this coupled problem is based on the same basic
principles that were successfully used in simulations to model instabilities in fluid filled granular
media [Johnsen et al., 2006, 2007, 2008; McNamara et al., 2000]. The same type of hybrid
models was also used to model gravitational instabilities in Rayleigh-Taylor like situations with
grains falling in a gas [J. L. Vinningland et al., 2007a, 2007b, 2009a, 2009b, 2010], or a fluid
[Niebling et al., 2010a, 2010b; Vinningland et al., 2012], and in situations of aerofracturing, i.e.
injection of gas in granular media [Niebling et al., 2012a, 2012b]. It was shown to reproduce
lubrication in sheared fault gouges due to the presence of an interstitial fluid [Goren et al., 2010,
2011] and a variant of two fluid models is used to model fluidizes beds [Jackson, 2000] and
saturated landslides [Denlinger and lverson, 2001; Spickermann et al., 2012]. In the following
subsections we outline the idealizations employed to set up the hybrid model and describe the
model components along with the formulation of constitutive equations. Then we turn to the



solution of the fluid-solid interaction, deformation mechanism and finally the assumptions made
in this study.

2.1) Methodology:

The numerical scheme is built on a 2D hybrid Particle-Lattice model of unit dimension
that utilizes a small-scale triangular discrete spring network code inherited from the software
‘Latte’ (part of the modeling environment “Elle’, [Bons et al., 2007; Koehn et al., 2005]) as a
deformation isotropic porous material. The discrete lattice is then coupled with a continuum fluid
phase presented by a stationary square grid of equivalent or larger dimension (figure 2).

The computation is governed by a set of two differential equations, one deals with the
translation (elastic deformation) of solid particles and the second solves the time dependent
diffusion of fluid pressure according to local strain rates through a poro-elasto-plastic
relationship. For a given configuration of the pressure field and the solid particles, the respective
constitutive equations are approximated separately by two different numerical procedures. The
elastic media is relaxed by a standard over-relaxation algorithm containing kinematic boundary
conditions (n-u=0) for boundary particles, while the Pressure ADI routine is used for the
solution of the pressure diffusion in a continuum grid (Appendix-A).

.
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Fig 2. Schematic diagram of the hybrid hydro-elastic model, illustrates overlapping regions in
physical space comprising the DEM lattice and the continuum grid.

With a local mass to momentum conservation, the scheme embodies coupling between
the solid and the Darcy continuum description. The porosity dependent evolution of the pressure
gradient imparts fluid drag forces at the particles of the discrete model. Permeability is treated as
an implicit fluid flow property and is an output of the discrete model as a function of change in
local porosity where the change in porosity is determined by the translational movement of mass
centers of the particles.

2.2) Discrete elastic model



The 2D DEM model is assembled by coupling a triangular network of volume-less linear
elastic springs with a particle model where disk shaped particles of constant radius superpose the
nodes of the triangular structure. The particle model has its genesis from molecular dynamic
models and represents the discrete quantities of the solid material, whereas following Hook’s law
of interaction the spring lattice model inherits the micro-mechanical physics between the nodes.
This setup thus mimics isotropic elastic behavior of solid materials and can be used to model
deformation problems in systems described by linear elastic theory. The intrinsic stiffness
constant k of linear springs is related to macro-scale elastic material-parameters (E,v) through

the consistency measures of strain energy between the 2-D elastic lattice of the triangular
network and solid continua [Flekkay et al., 2002].

k=§EI 1)

where | corresponds to the thickness of the 2D particle-lattice model.

The model produces plain strain deformation and a large-scale average stress tensor can
be determined from the local deformations of elastic springs for each time step At. Springs can
break when a prescribed tensile stress threshold is overcome to exhibit discrete mode-1 fractures
in the material. Broken springs are removed from the elastic network, whereas the respective
particles still retain repulsive forces to accommodate the successive tension. The breaking
strength of springs is related to the mode-1 stress intensity factor K, , a key parameter that gives

stress singularities at crack tips and does depend on the size of micro cracks in the material
[Flekkay et al., 2002].

K, =ovra , )
where o, is the critical mode-1 driving stress for the relative displacement of fracture walls and

a is the length of micro cracks in an isotropic medium. The porous model is assumed to be
homogeneous corresponding to its elastic properties on large scale, however inherent disorder
ubiquitous in natural media can be quenched through characteristic distributions of material
properties on particles or annealed disorder (Griffith’s micro cracks and other defects at grain
scale) can be introduced by modifying the elastic properties of mechanical springs. It has been
indicated that fracture patterns observed both in field and laboratory studies can be replicated by
implying the realistic normal distribution of strength threshold in DEM models [Malthe-
Serenssen et al., 1998a, 1998b; Walmann et al., 1996].

To avoid rigid body translation the elastic system is confined (closed system) by elastic
walls at the boundaries. The walls behave as linear elastic springs and exercise a force on the
confronted particles proportional to their distance. For instance, the force by a lateral wall on
particle i contacted at x =X, is

¢ -k, (X +r=x,)n  ifx+r—-x,>0 @)
' 0 else
where r, is the particle radius, n, is a unit vector normal to the wall and k, is a spring constant

for particle wall interaction.

2.3) 2D Pressure diffusion field



With negligible fluid inertia, a time dependent macroscopic diffusion equation is derived
that contains mass and momentum conservation in the bulk simulation of particle and continuum
dynamics. The output is an interstitial fluid flow expressed in terms of a porosity dependent
pressure gradient, which makes the computation simple and efficient. We start with the
continuity equations (both for solid and fluid) at a characteristic scale of a grain diameter.

0. [A=p)p]+V-[L-¢)pu,]=0 (4)

0 (¢p;)+V - (do;u;) =0 (5)

where p,, p, are the densities and u, u, the velocities of the solid particles and fluid
respectively and ¢ is the local porosity. The Darcy equation for the segregation of fluid and
solid gives a local fluid seepage u, for a pressure drop described by the local permeability on a

unit area that is larger than the grain diameter.

ou, —u,) =—vp (6)
u

where u and P stand for the fluid viscosity and pressure, whereas the local permeability K is
expressed as a function of the local solid fraction p according to the empirical Kozeny-Carman
relation for a Darcy like regime.

d*@-p)’
K(p) 1807 (7)
where d is the particle diameter and 1/180 is an empirical constant valid for packing of spheres.
Similar to the quenched noise in elastic material constants, a distribution of hydraulic particle
size can be treated as an epoxy to intrinsic hydraulic heterogeneity (solid fraction, permeability)
in the continuum routine. In general, a larger particle area will result in low permeability and
high pressure gradient and eventually an overall larger fluid drag force at the local fixed scale of
reference and vise versa. To get a fully consistent picture, the fluid adiabatic compressibility g
is included into the continuity equation according to the fluid state equation i.e., proportional
approximation of the fluid density to pressure:

Py =p,(1+ BP) (8)
where p, denotes the fluid density at some reference pressure. Substituting p, and u, into

equation (5) and eliminate 0,¢ from the subsequent equation we end up with the following

diffusion equation for the non-hydrostatic pressure P, with an approximation of finite solid
compressibility relative to fluid.

¢,B(6tP+uSV-P):V-{(1+ﬂP)5VP}—(1+ﬂP)V-uS . (9)
y7i

The left hand side of equation (9) is the Lagrangian derivative of pore pressure, the first
term on the right hand side describes the Darcy diffusion of the fluid pressure relative to particles
and the third term in the equation is distinguished as source term. The source term facilitates a
pressure change as a function of a change in the particle solid fraction if particles move apart in
the local reference scale of Darcy flow. For a detailed dimensional and non-dimensional
derivation of the continuum equation presented above see the reference [Gidaspow, 1994; Goren
et al., 2010, 2011].



The assumption of omitted fluid inertia is evident in equation (9), where the fluid flow is
described by the pressure field P(x,y) only. This diffusive-advective description of the fluid

flow is valid when the Reynold’s number Re=u,d p% is small, where g is dynamic viscosity

1

of the fluid, d the particle size (diameter). The Reynold’s number will be small if particles are
small as is in the considered casees of dense model. Assuming the validity of the current
approach a priori, one can also evaluate the condition of Re<1 using Darcy’s law i.e.,

Re =—(Kd ‘%Z)VP in the simulations (which is true for all the cases subjected d here). As far as

the particle movement (fracture aperture) is comparable to the diameter of particles, the above
assumption of negligible fluid inertia is valid. However, if the fracture aperture becomes broader
(sub-particle scale) the fluid inertia becomes important. This not only affects the particle-fluid
coupling but also the fluid dynamics and in this case an equation describing the flow of fluid
momentum, like the Navier-Stokes equation is required [McNamara et al., 2000]. Nevertheless,
this approach is also valid for flow fields at large Reynold’s numbers [Beetstra et al., 2007].

2.4) Two way solid-continuum interaction

The DEM lattice is blanketed over the continuum grid in a way that the boundaries of the
two parallelized lattices coincide with each other. With the lattice constant of the continuum grid
set to be twice as large as that of the discrete lattice, this setup incorporates the “cloud in a cell”
method (figure 3) to facilitate the two-way interaction between the porous matrix and the
hydrodynamic phase. The particle density p and velocity u are estimated locally on the

continuum grid in each iteration as a function of the local mean particle density specified by a
linear tent weight function upon four nearest grid nodes.

p(6)=2s(5-1) (10)
u(ro):zr;:uis(ri—ro) (11)

where subscript i stands for particle number and the smoothing function s(r—ro) satisfies the
weighted distribution of particle mass relative to its position.
W, W, .
1-—L||1-—2% ifw, <AX, W, <A
s(r-r,)= ( ij( ij ' 2 <2
0 otherwise

(12)

where r(x,y) and r,(x,y,) are the positions of the particle and the continuum node

respectively, w; =|x—x;| and w, =|y—y,| are the relative distances.
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the linear interpolation of particle area weight (grayish color code) to surrounding grid nodes and
in turn the time dependent drag force from grid nodes to encountered particles.

With this configuration, the fluid drag force f, on each particle encountered by a fluid

continuum cell can also be deduced by averaging the pressure gradient at the respective
continuum node.

VP

fo==2.s(r —m)(—} (13)
k Pn Kk

where k runs over four nearest grid nodes. This definition guarantees the mutual and balanced

attribution of the pressure force f  to solid particles from the continuum grid and the

density/momentum contribution of the grains to the respective continuum unit cell as determined
by equation (20) below.

In the coupled scheme, fluid pressure gradients that are approximated between fixed
continuum nodes produce effective stresses at the particles of the DEM lattice. This steers the
particles to displace and leads to stretching of the connected elastic springs, which ultimately
break and be demonstrated as explicit fracturing when the imposed effective stress exceeds a
given tensile stress threshold. Upon the formation of discrete cracks, rearrangement of the
particles in the elastic medium (i.e., fracture opening) devise local changes in the background
void space of the system, which in turn affects the permeability to be used in the successive step
to determine the fluid pore pressure field. This evolution of fluid pore pressure again provides
feedback to the stress field in the system and leads to fracture propagation or opening as a
function of the particle dynamics. The procedure is repeated until both the continuity equation



and the discrete grains are relaxed. The flowchart for one complete cycle of the algorithmic
scheme is given in figure 4.

(BEGIN: Set up initial condition)
< New Time Step

Estimation
From
Particle Lattice

Yes

NO | check norm for

convergence
particle number f
density

optimized
dynamic relaxation

[ solid fraction

: induced boundary
[ ADIfluid condition (pressure) law of motion
pressure diffusion (integrate ag, Ug)

permeabili

imposed boundary T
v condition (strain rate) | «
[ force interpolation for} determine inter-particle
particle i contactforces

*

l =@
\ imposed boundary

body force
y conditions (Stress)
Fig. 4. Flowchart for the complete cycle of the algorithmic scheme.

2.5) Deformation mechanics
The translation motion of the initially relaxed solid particles (solid-solid interaction) is

managed by the momentum exchange between solid and fluid phases in a unit volume cell dV
(with unit third dimension) of the coupled system on account of-the inter-particle contact force
f, (either connected with a spring or repulsive force), fluid force f and gravity loading f,.

m?j—\t/: fo+f,+1, (14)

where the forces f, being aligned along the connected elastic springs are characterized by spring
constant k; times the actual distance between the centroid of the particles minus the equilibrium

distance g; .

fe = Zkij (l aij | - (Xi - Xj))' r’iij (15)



where X and x; are the positions of the connected particles, ﬁij IS unit vector pointing from the
centroid of particle i to particle j and the sum runs over all the connected neighbors j. The
fluid force f, that acts on the surface normal dA of the unit cell is a result of the fluid flow due
to the pressure gradient and is given as:

fo=- j PdA (16)

where P is the local fluid pressure, which is the sum of the hydrostatic pressure p,gz and
extraneous pressure P,. The term gravitational force f; incorporates the gravity effects of both

the fluid and solid masses where the former together with the hydrostatic part of pressure
determines the effective stress o, = (p, — p;)09z on the solid particles.

fo=p,-pdV-g+p;-gdV -g (17)

In the geological realm a transient hydrofracturing is likely to take place by a pore
pressure P in excess to o, . However, for the considered linear elastic model that exhibits
deformation in a quasi-static fashion we only need to assume pore pressure deviations from the

lithostatic pressure. This has been achieved by introducing the effect of gravity in form of
lithostatic stress and results in the calculated stresses minus the lithostatic pressure. The inferred

gravity force on a single cylindrical particle i of volume V, = zr’h with base area A =7xr?,
where h =1 is the thickness in the third dimension is:

f9=prR*gs (18)
with S= 2En A (19)
3E; A

where p, is the material mass density, R, =r, xS with S the dimension of the real system. E,,,
E; and A, A; stand for the Young’s Moduli and areas of particles in the model and the real
system respectively. The factor 2/3 in equation (19) is derived using the expedient strain-stress
relation (o, = goizs & + (ljgl(;fgu) &,) from the generalization of Hooke’s law for a 2D plane
strain problem assuming v =1/3 and zero lateral deformation. This is essential in order to
acquire a compatible one dimensional lithostatic stress o, = pgh for the isotropic 2D linear

elastic solid.

By considering the local fluid velocity a rival of the local particle velocity i.e., high
viscous fluid and substituting the respective constitutive force terms in equation (14) one can
derive the following force-balance equation, which exhibits an explicit coupling between
granular motion and fluid flow in the unit cell (dV = ¥, ).

P @ du VP
S { ,05 (1_¢):| dt i ,0 peff sg ( )

where p, is the particle number density, p. = o, — p; is the effective mass density and g the
gravity. This is the translational equation of each individual particle dragged with velocity u,in



the absence of any frictional and tangential effects. The mass m, in the left term accounts for the

summation of fluid mass to each individual solid particle as a function of the local porosity to
particle number density ratio.

2.6) Assumptions
The assumptions made in order to keep the proposed scheme amenable are:

e The fluid-solid friction force at the surface of the solid particles is not considered,
therefore the pressure gradient AP is the only agent that produces a drag force (in the
direction of fluid flow) on particles.

e The fluid is considered to be purely viscous and therefore any effect like thermal
evolution of the fluid (a pivotal factor in the development of subsurface overpressure e.g.,
dehydration of sediments in intrusive zones in particular) is not taken into account.

e The locally interpolated solid fraction on the 2D continuum grid is multiplied by 2/3.
With this factor we obtain a good mapping of the 2D porosity on the corresponding 3D
equivalent (prerequisite for the 3D Kozeny-Carman permeability) with a match between
closed packed configurations and the empty configurations [McNamara et al., 2000].
Without this correction the qualitative behavior is comparable but quantities like fracture
speed, propagation or the flux for certain pressure gradients can change by a prefactor,
roughly up to a factor 2.

e Analytically the Kozeny-Carman relation works as long as the solid fraction is greater
than zero, but a solid fraction of 0.15 or less presents a solid-fluid composite mainly as a
fluid and is thus inconsistent with the Kozeny-Carman relation (originally established for
dense granular media). We thus chose to apply a threshold to a permeability of a medium
with a solid fraction of 0.15 (e.g., in a broader fracture aperture). The main purpose of
limiting the solid fraction and hence permeability to this upper value is to allow larger
time steps and improve the speed of the model. Effectively, the zones of the model where
the permeability is equal to large values correspond to almost homogeneous pressure
zones. The exact value of this cutoff does not affect the pattern formation significantly, as
different values of the cutoff have been tested (between 0.25 and 0.05) without any
significant changes [Johnsen et al., 2006; Jan Ludvig Vinningland et al., 2007a].

3) Model verification

We first test the linearity of the porosity controlled Darcy flow field and the associated
pressure forces on each particle. If we consider compressible water as fluid in the pore space, the
evolution of seepage forces in the simulations (figure 5) validates the theoretical aspects of the
scheme. A reference model of unit dimension is taken as a porous rock where the solid skeleton
is composed of 11500 disc-shaped adhesive particles. The system is confined mechanically at all
boundaries whereas hydraulically it is restrained only at the side boundaries. Neglecting any
gravitational loading a hydraulic gradient i is established in the system by setting the bottom
boundary at a constant pressure input (normalized P =1.0) and fixing the top boundary at 0.0
pressure respectively. The pressure input value is kept suitably low in order not to produce
fractures.

Two series of simulations are conducted to test the model by considering a homogeneous
(figure 5a) and a heterogeneous (figure 5b) porous rock respectively. In the heterogeneous case a
seal is inserted in the model. The seal is represented by a horizontal layer of low permeability



with a thickness of 0.1 with lower boundary at 0.2 and upper boundary at 0.3. In the test
simulations, initially a high pressure gradient is concentrated in the vicinity of the source
boundary, therefore only the intimate particles are subject to resultant seepage forces and
consolidate along the direction of the pressure drop. However, after 5000 time steps the pressure
gradient becomes linear and the fluid approaches a steady state flow condition in the
homogeneous model. In the heterogeneous medium a strong pressure drop develops across the
layer of relative low permeability. Two linear regimes develop, one below the seal with a
relatively steep gradient and one above the seal with a relatively gentle gradient. Consequently
vertical seepage forces of high contrast in magnitude are measured at the seal boundaries (figure
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Fig. 5. Normalized pore pressure profiles at different time steps, (a) in a homogeneous porous
medium, (b) in a heterogeneous porous medium accompanying a horizontal seal of low porosity
at position 0.2—-0.3 on the y-axis (vertical axis).
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Fig. 6. Overall evolution of the vertical seepage forces as a function of time (T :1000) for a
homogeneous system and at the lower and upper boundary contacts of the seal in a
heterogeneous system. The forces display a sharp contrast in magnitude in the heterogeneous
case, whereas in the homogeneous medium the forces show a gradual increase in pressure force.
Both the heterogeneous and homogeneous cases reach a steady state condition.

4) Model implementation
In the following sections we show two different test cases to illustrate the development of hydro-
fractures in the model.

Foremost, we discuss fracturing in a homogeneous medium where fractures develop
around a point source (fluid is injected locally) in the absence of external deformation.
We investigate the fracture pattern that develops as a function of fluid pressure gradients
under isotropic diffusion of the fluid pressure. In addition we analyze the influence of
changes in background porosity and study the state of stress during fracturing in detail.
Later, the likely influence of background non-hydrostatic stress states (i.e., uniaxial
vertical loading and pure shear deformation) on the growth of hydrofracture is also
examined.

In the second set of two simulations, we advance to simulate fracture patterns due to local
pressure sources in the presence of gravity and tectonic strains. In these cases we use
examples where seepage forces develop due to a local increase in pore pressure caused by
local perturbations in the stress state. In this case the tectonic strain conditions will
control the different fracture patterns.

In each test the model starts from a fully relaxed state and is loaded in small steps

afterwards. According to the boundary conditions loading includes increase of fluid pressure in



the fluid lattice, vertical loading due to gravity or horizontal loading due to tectonic strains by
moving the boundary walls. The mechanical and hydraulic boundary conditions vary accordingly
with respect to the underlying problem to imitate laboratory and field conditions.

4.1) Point source in a homogeneous porous medium
In these simulations the fluid pressure is increased at a point source with a constant rate
(P4 ) at the centre of a homogeneous and isotropic poro-elastic domain. The model is

mechanically confined and bears no-flow boundary conditions. In these simulations the
hydrofracturing process shows two stages, fracture initiation and episodic fracture growth until
the system reaches a steady state (Fig. 7).

The accumulation of fluid pressure at the point source generates an isotropic pressure
gradient in the surrounding which contributes to the evolution of the effective stresses and
deforms the porous rock elastically as a function of Biot’s poro-elastic coefficient. The rock
experiences micro fracturing from the concentration of stress on relatively weak rock elements.
The discrete fractures nucleate at the source location and tend to propagate into the undisturbed
region (Fig. 7a). At this stage, tension cracking accommodates the strain in the system and
results in stress relief and a potential local change in porosity when particles are pushed away by
the pressure force and fractures open. This cycle is repeated following the two-way temporal and
spatial feedback between hydraulic pressure field and elastic field on account of induced
fracturing in the porous matrix until a steady state condition is acquired and fracturing ceases.
The symmetry of the developing fracture pattern at the point of injection is a function of a
circular extension around the fluid source. The symmetric pattern validates the homogeneous
existence of pore pressure in the rock matrix. The seepage forces that develop due to the pressure
diffusion modify the force balance in the porous rock sample, which deterministically drives the
discrete tensile crack growth along the pressure gradient and results in a regular fracture
geometry.




Fig. 7a. The figures on the left hand side show the development of circular hydro-fractures (T=
model time, blue particles have broken bonds) by a point source overpressure. The figures on the
right hand side show the same simulations and illustrate the associated differential stress states of
the model at the respective failure stages (red=high; blue=low differential stress).

Figure 7b shows the evolution of the effective mean stress in the model (positive mean
stress is extensional) as a function of time and the growth of broken bonds with time for the
simulation shown in figure 7a. In the first steps of the model the effective mean stress increases
in a non-linear fashion due to the diffusive nature of the pore fluid pressure. Once the tensile
strength of the material is reached the rock fractures suddenly and the stress drops significantly.
Subsequently the stress increases slowly, which is followed by subsequent failure events. Finally
fracture growth ceases and the mean stress reaches a steady state. Because the shown stress is an
average of a larger area in the model the fracturing continues locally even though the mean stress
has already reached equilibrium.
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Fig. 7b. Graph shows oscillations in effective mean stress and associated number of broken
bonds in the model. The stress shows the episodic evolution of the fluid pressure. Positive
effective mean stress in the model is defined as extensional stress.
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Fig. 8. Mean stress as a function of background rock porosity, where an increase in porosity
results in a lower driving force because the pressure can diffuse faster. Note: —ve sign in the
model is annotated for compressive stress and +ve sign for extensional stress.

Under the same fluid injection rate a quantitative comparison of the mean stresses in rock
samples with different background porosities is given in figure 8. The graphs in figure 8 show
the evolution of the effective mean stress field and the fracturing behavior of the rock as a
function of porosity. Rocks that inherit low porosity entail the production of high seepage forces
to drive tensile failure at comparable low average tensile stress. A low average stress illustrates
that the stress in a low porosity rock will be very Iocaliqeﬁ/ around the point source. The stress
drop associated with failure of the material will be relatively large. In addition the state of stress
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may be altered in these low porosity rocks due to friction along developing fractures (solid-solid
coupling), where the overall stress regime may become compressive (figure 8). Subsequently
small isolated shear or hybrid extension-shear fractures can develop near the end of the primary
dilational fractures when fracturing happens relatively early in low porosity rocks. When the
porosity becomes larger the initial loading of the system due to the fluid input becomes
successively more non-linear (Fig. 8) up to a point where the pressure just diffuses out of the
system without the creation of fractures.

We also simulated a number of examples (Appendix-B, Appendix-C) with the similar
hydraulic setup but different external boundary conditions. The developing fracture patterns
closely resemble the results observed experimentally by [Bruno and Nakagawa, 1991; Doe and
Boyce, 1989] in rock type material. The simulations manifest the effective influence of pore
pressure on the likelihood of tensile failure and the corresponding fracture propagation under
non-hydrostatic stress conditions in homogenous sedimentary rocks.

4.2) Hydrofracturing in a homogeneous medium under gravity loading

In the second set of simulations, we reproduce the patterns of hydrofracturing caused by a
local pore fluid overpressure under non-hydrostatic tectonic loadings of gravity and lateral
stresses and found the results consistent with [Rozhko et al., 2007]. The problem is analogous to
various geological systems (magmatic intrusions, hydrothermal venting, volcanoes etc.), which
yield a local perturbation in the effective stress field with the induction of localized pore
overpressure.

Figures 9 and 10 show simulations with a local point source at the bottom of the model,
where the former sustains a stress regime of horizontal extension and the later horizontal
compression. The model material is homogeneous and the gravitational loading is followed by
equation (18). In order to incorporate the effect of gravitational loading, the model is subjected to
a two-stage deformation in both cases. First, the model is let to settle under uniaxial gravitational
loading assuming the model is 1 km in depth with fixed side walls, a rock density of 2.5 kg/m®,
Young modulus of 80GPa and Poisson ratio of 1/3. This setup yields a global stress anisotropy
where vertical and horizontal stresses differ due to Poisson effects. Secondly, we apply a lateral
extension or compression with a relative small horizontal strain rate in order to have a fluid
dominated effective state of stress in the rock. A hydraulic anisotropy is produced in the
simulations by inducing a pressure drop with a zero assigned pressure at the upper boundary and
no flow boundary conditions at the side-walls.
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Fig. 9. Vertical hydrofracture in a rock model subjected to lateral extensional strain. A vertical
gravitational load is applied to the system and fluid is injected at a point source in the middle of
the system at the lower boundary.
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Fig. 10. Conjugate shear fractures under compressive state of stress. A vertical gravitational load
is applied to the system and fluid is injected at a point source in the middle of the system at the
lower boundary.

The system that is loaded with a gravitational body force experiences buoyancy forces
i.e., P=(p,—p;)0z inequation (9) with the reduction in effective stresses due to an increase in

local pore pressure. This gradient may lead to a quasi-static fracture propagation through parts of
the model.



The failure patterns illustrated in figures 9 and 10 are consistent with the different forces
that are applied. Fracturing nucleates in the areas where fluid pressures are high (point source at
the bottom of the models). The fractures propagate upwards reflecting the gravitational loading
of the system. The horizontal tectonic forces produce almost vertical extensional mode I crack
like failure when the system is extending (figure 9) and conjugate shear failure when the system
is under compression (figure 10). Even though the source of the fracturing is a high fluid
pressure in both cases the pattern that develops is strongly influenced by the heterogeneous stress
field due to gravity and tectonic loading. This is clearly illustrated when figure 7a is compared,
since figure 7a has the same fluid boundary condition with a point source as figures 9 and 10 but
the fracture pattern is very different in the later cases due to the external stress field.

Discussion and conclusion

Discrete fractures or instant opening of existing cracks as a function of fluid overpressure
drive perturbations in permeability, change the state of stress and the corresponding release of
strain energy on the scale of pores. In this contribution we present a hybrid numerical solution
based on first principles rather than on empirical constitutive relationship with ad hoc fitting
parameters to model natural examples of hydrofractures. First principles constitute the equation
of state separately for the fluid and the solid and the pore scaled forces balance to describe
interactions. The scheme thus combines the pertinent features of both continuum and DEM
descriptions, and examines the dynamic coupling between porous flow and diagenetic process
through fracture mechanics as a response to an applied pressure gradient across the system.

It appears likely that the interplay between the temporal and spatial evolution of the pore
pressure and tectonic/gravitational stresses manipulate hydro-fracturing and the corresponding
permeability changes. Our model shows an evolution of the deformation dependent permeability
illustrating that in hydro-mechanical systems permeability is a nonlinear and time dependent
parameter where fracturing localization is very important. The system reacts to forcing and
produces the permeability that it needs to allow the fluid pressure to diffuse. It has manifested
that small-scale diagenetic events can have adequate impact on the pressure field and in turn the
fracture geometry. In our model this effect is achieved by the idealized hydro-mechanical
constitutive relation of Kozeny-Carman permeability through a weighted interpolated function.
In this relation even small displacements of particles can lead to significant changes in the local
solid density and thus the Darcy fluid flow.

It has been perceived that several key features (flow rate upon compaction, yield surface, strain
softening and hardening etc.) of critical soil mechanics (CSSM) are inconsistent with the
observed porosity and pressure dependent deformation behavior of porous rocks [Cuss et al.,
2003; Gerogiannopoulos and Brown, 1978; Ling et al., 2002; Wong et al., 1992; Wong et al.,
1997]. Therefore, the use of Kozeny-Carman relation (originally developed for soils) for the
evolution of the permeability field in the presented model is justified. However, concerns may
rise where porosity-permeability relations deviate from the trend of the basic equation [Zhu and
Wong, 1997] e.g., fracturing in subsurface impermeable rocks causes enhancement in the
permeability in contrast to permeable rocks which bear a reduction in permeability. In this case
one can pursue either of the following two ways:

1. Use different modified forms of the permeability dependence on the porosity both for
ductile and brittle dominated deformation zones using the assumption of linearity



between porosity and log permeability with defined parametric values from experimental
data [Sheldon et al., 2006].

2. When approximating the local dimension of induced fracture (aperture), a modified form
of the porosity-permeability relationship can be derived from the cubic law of fluid flow
in fractures [Steefel and Lasaga, 1994].

The simulated results validate the generality of the scheme implying that linear Darcy
flow has an effective factor in the process of hydrofracturing, and the results are in good
agreement with previously reported laboratory and field studies. The numerical scheme can
qualitatively replicate some typical quasi-static field examples of hydrofractures when different
modeling approaches are applied. Representative example problems constitute fracturing in
homogeneous and heterogeneous porous rocks analogous to hydraulic fracturing in pressurize
boreholes and natural fracture patterns due to local fluid overpressure. Simulation results
illustrate that the diffusion of fluid pressure is a crucial mechanism that interacts with the
effective stress field under different geological conditions and produces fracture geometries like
branching fractures at point sources, vertical and shear hydrofractures under
tensional/compressional tectonic settings.

The presented routine defines a fast approach both for qualitative and quantitative
estimation of hydro-driven deformation problems at micro scale. The method can also be used to
analysis large scale problems with the suitable selection of none dimensional parameters. In
general, gravity loading and the associated non-hydrostatic stress fields along with mechanical
heterogeneity in the lithology can have a vital influence over the evolution of buoyant effective
forces and thus the hydrofracture patterns. Therefore future work will attempt to integrate these
physical parameters in order to determine the appropriate geological conditions when analyzing
natural vein and joint networks in real reservoirs.

The presented scheme is also capable to model 3D hydrofracturing, which may have
more significant advantages in understanding the complex growth of fractures under the
influence of 3D heterogeneity and non-hydrostatic conditions. The only change required is the
interpolation of local mass density and velocity over a cubical unit volume of a 3D continuum
grid using the same assigned tent function. In the future we intend to couple the derived
continuum code with a newly developed 3D next-nearest particle lattice code “Melange”
[Sachau and Koehn, in press].

Appendix-A: ADI - 2D Pressure Diffusion

The ADI method is time implicit. With symmetric discretization in time i.e., between a forward
and backward step, this methods is unconditionally stable and the precision is better than with a
purely forward in time implicit method [Press, 1992].

The two-dimensional pressure diffusion equation (9) can be rewritten as
- - Y - .
ap(r’t)=(1+ﬁP) K(r,t) {a P(r,t)+a Prit)| 1
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where g(F,t) is the source term and r stands for position in space. This is a second-order
parabolic partial differential equation.

Corresponding to the time and space discretization of the 2D pressure continuum using forward
difference with time on the left-hand side and central difference with space on the right hand side
of equation (Al).
n+% n
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where i, j and n are the indices in the X, y, and t directions respectively.

9,; (A2

The main idea of the ADI method is to reduce the 2-D problem into a succession of two one-
dimensional problems by proceeding one time step from n to n+1 in two sub-time steps (figure
1). The first half-step (n to n+ %) is taken implicitly in the x-direction and explicitly in the y-

direction followed by the second half-step (n+% to n+1) that is taken implicitly in the y-
direction and explicitly in the x-direction.

R
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T

Step |: x-direction implicit

Fig. (I). Schematic diagram of ADI solution of Finite-difference pressure continuum, after
[Wang and Chen, 2001].



Detailed differential equations in stage-1 for each | at marched time n+% and the

corresponding tridiagonal system of equations for the respective one-dimensional problem can
be derived in form of matrix equation of dimension I:
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By analogy, stage-1l of the ADI method for each i at time n+1, is expressed in tridiagonal
system of dimension J:
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Implementing the Gauss-algorithm with a Dirichlet boundary condition, the derived tridiagonal
system of equation (A4) is solved J times and equation (A6) by | times.



Appendix-B:

Strain controlled boundary (¢, ) Strain controlled boundary (&, ) Strain controlled boundary (¢, )
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Fig. (I1). Different patterns of hydro-fractures in a situation where a constant point source is
injected in a homogeneous media under different remote stresses: (a) with relative smaller o,

the results show the initial development of circular fracturing at the source location (centre) with
elongated fractures oriented parallel to the axis of the applied stress. In contrast to the pattern
shown in (a), in (b) a larger o, dominates the overall pattern and results only in sub-vertical

oriented fractures parallel to the main stress axis and through the source location (central). (c)
The figure shows the state of stress field at the onset of fracturing, where the red color code
represents high differential stress and blue low differential stress.

Appendix-C:

Strain controlled boundary (¢, ) Strain controlled boundary (¢, ) Strain controlled boundary (&, )
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Fig. (111). This figure shows a time series illustrating the influence of the local pore overpressure
on brittle failure in a pure shear stress regime. In this case the extension fractures develop at the
source location (centre) and link up with shear fractures onwards the edges of the simulation box
(time steps T increase from left to right).
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