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Carleman Estimate and Inverse Source Problem for Biot's Equations Describing Wave Propagation in Porous Media

According to Biot's paper in 1956, by using the Lagrangian equations in classical mechanics, we consider a problem of the filtration of a liquid in porous elastic-deformation media whose mechanical behavior is described by the Lamé system coupled with a hyperbolic equation. Assuming the null surface displacement on the whole boundary, we discuss an inverse source problem of determining a body force only by observation of surface traction on a suitable subdomain along a sufficiently large time interval. Our main result is a Hölder stability estimate for the inverse source problem, which is proved by a new Carleman estimat for Biot's system.

Introduction

In 1956, Biot [START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range[END_REF] presented a three-dimensional theory for coupled frame-fluid wave propagation in fluid saturated porous media, treating the solid frame and the saturating fluid as two separate co-located coupled continua. Two second order coupled partial differential equations were derived from this theory. More precisely, let us consider an open and bounded domain Ω of R 3 with C ∞ boundary Γ = ∂Ω, and let ν = ν(x) be the unit outward normal vector to ∂Ω at x. Given T > 0, Biot's equation is written as:

̺ 11 ∂ 2 t u s + ̺ 12 ∂ 2 t u f -∆ µ,λ u s (x, t) -∇ q div u f = F 1 , ̺ 12 ∂ 2 t u s + ̺ 22 ∂ 2 t u f -∇ (q div u s ) -∇ r div u f = F 2 , in Q := Ω × (-T, T ) (1.1)
with the boundary condition u s (x, t) = 0, u f (x, t) • ν = 0, (x, t) ∈ Σ := Γ × (-T, T )

and the initial condition (u s (x, 0), ∂ t u s (x, 0)) = (0, 0) , u f (x, 0), ∂ t u f (x, 0) = (0, 0) , x ∈ Ω (1.3)

where F = (F 1 , F 2 ) T is an external force with F ℓ = (F 1 ℓ , F 2 ℓ , F 3 ℓ ) T , ℓ = 1, 2, and ∆ µ,λ is the elliptic second-order linear differential operator given by ∆ µ,λ v(x) ≡ µ∆v(x) + (µ + λ) (∇div v(x)) + (div v(x)) ∇λ(x) + ∇v + (∇v) T ∇µ(x),

x ∈ Ω.

(1.4)

Throughout this paper, t and x = (x 1 , x 2 , x 3 ) denote the time variable and the spatial variable respectively, and u s = (u s 1 , u s 2 , u s 3 ) T and

u f = u f 1 , u f 2 , u f 3 T
denote respectively the solid frame and fluid phase displacement vectors at the location x and the time t.

Here and henceforth • T denotes the transpose of matrices under consideration. We assume that the Lamé parameters µ and λ satisfy µ(x) > 0, λ(x) + µ(x) > 0, ∀x ∈ Ω.

The function q(x) > 0, x ∈ Ω, is the dilatational coupling factor between the fluid phase and the solid frame. The coefficient r(x) > 0, x ∈ Ω is the bulk modulus of the fluid phase and ̺ 11 (x), ̺ 22 (x) > 0, x ∈ Ω are the corrected mass densities for the solid phase and the fluid phase porosity and ̺ 12 (x) is the inertial coupling factor and see Hörlin an Peter [START_REF] Hörlin | Weak, anisotropic symmetric formulations of Biot's equations for vibroacoustic modelling of porous elastic materials[END_REF].

We assume that the sources terms are given by

F ℓ (x, t) = p ℓ (x)R ℓ (x, t), ℓ = 1, 2, (x, t) ∈ Q, (1.5) 
where p ℓ ∈ H 2 (Ω) is real-valued and

R ℓ = (R 1 ℓ , R 2 ℓ , R 3 ℓ ) T satisfy 3 j=2 ∂ j t R 2 L ∞ (Q) + ∂ j t ∇R 2 L ∞ (Q) ≤ C. (1.6)
The main subject of this paper is the inverse problem of determining p = (p 1 , p 2 ) ∈ (H 2 (Ω)) 2 uniquely from observed data of the displacement vector u = (u s , u f ) in a subdomain ω ⊂ Ω. It is an important problem, for example, in mechanics to determine the source p inside a porous body from measurements of the slide frame and fluid phase displacements in ω.

Inverse problem

Let ω ⊂ Ω be an arbitrarily given subdomain such that ∂ω ⊃ ∂Ω, i.e., ω = Ω ∩ V where V is a neighborhood of Γ in R 3 and let R(x, t) = (R 1 (x, t), R 2 (x, t)) be appropriately given. Then we want to determine p(x) = (p 1 (x), p 2 (x)), x ∈ Ω, by measurements u |ω×(-T,T ) .

Our formulation of the inverse problem requires only a finite number of observations. As for inverse problems for non-stationary Lamé system by infinitely many boundary observations (i.e., Dirichlet-to-Neumann map), we refer to Rachele [START_REF] Rachele | An inverse problem in elastodynamics: uniqueness of the wave speeds in the interior[END_REF], for example.

For the formulation with a finite number of observations, Bukhgeim and Klibanov [START_REF] Bukhgeim | Global uniqueness of class of multidimentional inverse problems[END_REF] created a method based on a Carleman estimate and established the uniqueness for inverse problems of determining spatially varying coefficients for scalar partial differential equations. See also Bellassoued [START_REF] Bellassoued | Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation[END_REF], [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF], Bellassoued and Yamamoto [START_REF] Bellassoued | Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation[END_REF], [START_REF] Bellassoued | Determination of a coeffcient in the wave equation with a single measurment[END_REF], Benabdallah, Cristofol, Gaitan and Yamamoto [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF], Bukhgeim [START_REF] Bukhgeim | Introduction to the Theory of Inverse Problems[END_REF], Bukhgeim, Cheng, Isakov and Yamamoto [START_REF] Bukhgeim | Uniqueness in determining damping corfficients in hyperbolic equations[END_REF], Imanuvilov and Yamamoto [START_REF] Yu | Lipshitz stability in inverse parabolic problems by Carleman estimate[END_REF] - [START_REF] Yu | Determination of a coefficient in an acoustic equation with single measurement[END_REF], Isakov [START_REF] Isakov | A nonhyperbolic Cauchy problem for b c and its applications to elasticity theory[END_REF], [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF], Khaȋdarov [START_REF] Khaȋdarov | On stability estimates in multidimentional inverse problems for differential equation[END_REF], Klibanov [START_REF] Klibanov | Inverse problems in the "large" and Carleman bounds[END_REF], [START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF], Klibanov and Timonov [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF], Klibanov and Yamamoto [START_REF] Klibanov | Lipschitz stability of an inverse problem for an accoustic equation[END_REF], Yamamoto [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF]. In particular, as for inverse problems for the isotropic Lamé system, we can refer to Ikehata, Nakamura and Yamamoto [START_REF] Ikehata | Uniqueness in inverse problems for the isotropic Lamé system[END_REF], Imanuvilov, Isakov and Yamamoto [START_REF] Yu | Carleman estimates for the non-stationary Lamé system and the application to an inverse problem[END_REF], Imanuvilov and Yamamoto [START_REF] Yu | Carleman estimates for the Lamé system with stress boundary condition[END_REF] - [START_REF] Yu | An inverse problem and an observability inequality for the Lame system with stress boundary condition[END_REF], Isakov [START_REF] Isakov | A nonhyperbolic Cauchy problem for b c and its applications to elasticity theory[END_REF], Isakov and Kim [START_REF] Isakov | Carleman estimates with second large parameter and applications to elasticity with residual stress[END_REF].

A Carleman estimate is an inequality for a solution to a partial differential equation with weighted L 2norm and effectively yields the unique continuation for a partial differential equation with non-analytic coefficients. As a pioneering work concerning a Carleman estimate, we refer to Carleman's paper [START_REF] Carleman | Sur un problème d'unicité pour les systeème d'équations aux dérivées partielles à deux variables indépendents[END_REF] where what is called a Carleman estimate was proved and applied it for proving the uniqueness in the Cauchy problem for a two-dimensional elliptic equation. Since [START_REF] Carleman | Sur un problème d'unicité pour les systeème d'équations aux dérivées partielles à deux variables indépendents[END_REF], the theory of Carleman estimates has been developed and we refer, for example, to Hörmander [START_REF] Hörmander | Linear Partial Differential Operators[END_REF] and Isakov [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF] for Carleman estimates for functions having compact supports (that is, they and their derivatives of suitable orders vanish on the boundary of a domain). For Carleman estimates for functions without compact supports, we refer to Bellassoued and Yamamoto [START_REF] Bellassoued | Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases[END_REF], Fursikov and Imanuvilov [START_REF] Fursikov | Imanuvilov: Controllability of Evolution Equations[END_REF], [START_REF] Yu | Imanuvilov: On Carleman estimates for hyperbolic equations[END_REF], Lavrent'ev, Romanov and Shishat•skiȋ [START_REF] Lavrent'ev | skiȋ: Ill-posed Problems of Mathematics Physics and Analysis[END_REF], Tataru [START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF]. Moreover Carleman estimates have been applied for estimating the energy and see e.g., Imanuvilov and Yamamoto [START_REF] Yu | An inverse problem and an observability inequality for the Lame system with stress boundary condition[END_REF], Kazemi and Klibanov [START_REF] Kazemi | Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequality[END_REF], Klibanov and Malinsky [START_REF] Klibanov | Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data[END_REF], Klibanov and Timonov [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF].

Notations and statement of main results

In order to formulate our results, we need to introduce some notations. For x 0 ∈ R 3 \Ω, we define the following set of the scalar coefficients

C (m, θ) = c ∈ C 2 (Ω), c(x) > c * > 0, x ∈ Ω, c C 2 (Ω) ≤ m, ∇c • (x -x 0 ) 2c ≤ 1 -θ , (1.7) 
where the constants m > 0 and θ ∈ (0, 1) are given.

Assumption A.1

Throughout this paper, we assume that the coefficients (̺ ij ) 1≤i,j≤2 , µ, λ, q, r ∈ C 2 (Ω) satisfy the following conditions

̺(x) = ̺ 11 (x)̺ 22 (x) -̺ 2 12 (x) > 0, ∀x ∈ Ω, λ(x)r(x) -q 2 (x) > 0, ∀x ∈ Ω. (1.8) Let A(x) = (a ij (x)) 1≤i,j≤2 be the 2 × 2-matrix given by A(x) = 1 ̺   ̺ 22 -̺ 12 -̺ 12 ̺ 11     2µ + λ q q r   :=   a 11 a 12 a 21 a 22   .
(1.9)

By (1.8), we can prove that (a ij (x)) 1≤i,j≤2 is a positive definite matrix on Ω.

Assumption A.2:

Let A(x) have two distinct positive eigenvalues:

µ 2 (x), µ 3 (x) > 0, µ 2 (x) = µ 3 (x). Moreover setting, µ 1 := ̺ -1 ̺ 22 µ, we assume µ 1 , µ 2 , µ 3 ∈ C (m, θ).
(1.10)

Assumption A.3:

We assume that the solution u = (u s , u f ) satisfies the a priori boundedeness and regularity:

u ∈ H 5 (Q), u H 5 (Q) ≤ M 0 , (1.11) 
for some positive constant M 0 .

Before stating the main result on the stability for the inverse source problem, we present Theorem 1.1 on the unique existence of strong solution to (1.1)-(1.2) with initial condition:

u(•, 0) = u 0 and ∂ t u(•, 0) = u 1 . Let V (Ω) = (H 1 (Ω)) 3 × H(div , Ω), where H(div , Ω) = u ∈ (L 2 (Ω)) 3 ; div u ∈ L 2 (Ω) .
(1.12)

The norm in V (Ω) is chosen as follows 6 . Then there exists a unique solution u(x, t) = u s (x, t), u f (x, t) of (1.1)-(1.2) with initial data (u 0 , u 1 ) such that

(v 1 , v 2 ) 2 V (Ω) = v 1 2 H 1 (Ω) + v 2 2 L 2 (Ω) + div v 2 2 L 2 (Ω) , v = (v 1 , v 2 ) ∈ V (Ω). Theorem 1.1. Let F ∈ H 1 (-T, T ; L 2 (Ω)), (u 0 , u 1 ) ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) 6 × (H 1 (Ω))
u s ∈ C([-T, T ]; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ C 1 ([-T, T ]; H 1 (Ω)) ∩ C 2 ([-T, T ]; L 2 (Ω)) u f ∈ C 2 ([-T, T ]; L 2 (Ω)), div u f ∈ C([-T, T ]; H 1 (Ω)) ∩ C 1 ([-T, T ]; L 2 (Ω)). (1.13)
In particular there exists a constant C > 0 such that

u C 2 ([-T,T ];L 2 (Ω)) ≤ C( F H 1 (-T,T ;L 2 (Ω)) + u 0 H 2 (Ω) + u 1 H 1 (Ω) ).
Moreover, if F = 0, then the energy of the solution u = (u s , u f ) given by

E(t) = 1 2 Ω M (x)∂ t u • ∂ t u + λ|div u s | 2 + 2µ|ε(u s )| 2 + r|div u f | 2 + 2q(div u f )(div u s ) dx is conserved, that is, E(t) = E(0), ∀t ≥ 0.
Here

M (x) = (̺ ij (x)I 3 ) 1,≤i,j≤2 and ε(v) = 1 2 ∇v + (∇v) T .
The proof is based on the Galerkin method and see Santos [START_REF] Santos | Elastic wave propagation in fluid-saturated porous media. I. The existence and uniqueness theorems[END_REF] for the case n = 2. For completeness we will give a proof for dimension 3 in Section 4.

In order to formulate our stability estimates for the inverse problem we introduce some notations. Let ϑ : Ω -→ R be the strictly convex function given by

ϑ(x) = |x -x 0 | 2 , x ∈ Ω. (1.14) Set D 2 = max x∈Ω ϑ(x), d 2 = min x∈Ω ϑ(x), D 2 0 = D 2 -d 2 .
(1.15) By Assumption A.2, there exist constants c * j > 0, j = 1, 2, 3 such that µ j (x) > c * j > 0 for all x ∈ Ω,

j = 1, 2, 3. Let c * 0 = min{c * 1 , c * 2 , c * 3 }. We choose β > 0 such that β + mD 0 c * 0 β < θc * 0 , c * 0 d 2 -βD 2 > 0. (1.16)
Here we note that since x 0 ∈ Ω, such β > 0 exists. We set

T 0 = D 0 √ β .
(1.17)

The main results of this paper can be stated as follows:

Theorem 1.2. (Stability) Assume (A.1), (A.2), and (A.3). Let T > T 0 and u be the solution of (1.1)-(1.2) and (1.3). Moreover let assume that Φ j (x) := R j (x, 0) satisfy

Φ j (x) • (x -x 0 ) = 0 for all x ∈ Ω. (1.18)
Let M > 0. Then there exist constants C > 0 and κ ∈ (0, 1) such that the following estimate holds:

p 1 2 H 1 0 (Ω) + p 2 2 H 1 0 (Ω) ≤ CE ω (u) κ (1.19)
for any

p ℓ ∈ H 2 (Ω), ℓ = 1, 2, such that p ℓ H 2 ≤ M and p ℓ = 0, ∇p ℓ = 0 on Γ.
Here

E ω (u) = 3 j=2 ∂ j t u 2 H 2 (ω×(-T,T )) .
By Theorem 1.2, we can readily derive the uniqueness in the inverse problem:

Corollary 1.1. Under the assumptions in Theorem 1.2, we have the uniqueness: Let u = (u s , u f ) satisfy Biot's system (1.1)-( 1.3) such that u(x, t) = 0, (x, t) ∈ ω × (-T, T ). Then p 1 (x) = p 2 (x) = 0 for all x ∈ Ω and u(x, t) = 0 in Q.

The remainder of the paper is organized as follows. In section 2, we give a Carleman estimate for the Biot's system. In section 3 we prove Theorem 1.2. Section 4 is devoted to the proof of Theorem 1.1.

Carleman estimate for Biot's system

In this section we will prove a Carleman estimate for Biot's system, which is interesting of itself. In order to formulate our Carleman estimate, we introduce some notations. Let ϑ : Ω -→ R be the strictly convex function given by (1.14), where x 0 / ∈ Ω. We define two functions ψ, ϕ :

Ω × R -→ R of class C ∞ by ψ(x, t) = |x -x 0 | 2 -β |t| 2 for all x ∈ Ω, -T ≤ t ≤ T, ϕ(x, t) = e γψ(x,t) , γ > 0, (2.1)
where T > T 0 . Therefore, by (1.17) and (1.15), we have

ϕ(x, 0) ≥ d 0 , ϕ(x, ±T ) < d 0 (2.2)
with d 0 = exp(γd 2 ). Thus, for given η > 0, we can choose sufficiently small ε = ε(η) such that

ϕ(x, t) ≤ d 0 -η ≡ d 1 for all (x, t) ∈ {(x, t) ∈ Q; |t| > T -2ε} , (2.3) ϕ(x, t) ≥ d 0 - η 2 ≡ d 2 for all (x, t) ∈ {(x, t) ∈ Q; |t| < ε} . Let (u s , u f ) satisfy Biot's system ̺ 11 ∂ 2 t u s (x, t) + ̺ 12 ∂ 2 t u f -∆ µ,λ u s (x, t) -∇ q div u f = F 1 , ̺ 12 ∂ 2 t u s (x, t) + ̺ 22 ∂ 2 t u f -∇ (r div u s ) -∇ q div u f = F 2 , in Q. (2.4)
The following theorem is a Carleman estimate for Biot's system (2.4).

Theorem 2.1. There exist τ * > 0 and C > 0 such that the following estimate holds:

Q τ |∇ x,t u s | 2 + |∇ x,t (div u s )| 2 + |∇ x,t (div u f )| 2 e 2τ ϕ dxdt + Q τ 3 |u s | 2 + |div u s | 2 + |div u f | 2 e 2τ ϕ dxdt ≤ C Q |F | 2 + |∇F | 2 e 2τ ϕ dxdt (2.5)
for any τ ≥ τ * and any solution

(u s , u f ) ∈ (H 2 (Q)) 6 to (2.4) which is supported in a fixed compact set K ⊂ int(Q).
In order to prove Theorem 2.1, we use a Carleman estimate for a coupling hyperbolic system, which we discuss in the next subsection.

Carleman estimate for a hyperbolic system

First we recall the following Carleman estimate for a scalar hyperbolic equation. As for the proof, we refer to Bellassoued and Yamamoto [START_REF] Bellassoued | Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases[END_REF], and Imanuvilov and Yamamoto [START_REF] Yu | Determination of a coefficient in an acoustic equation with single measurement[END_REF] for example.

Lemma 2.1. Let c ∈ C (m, θ). There exist constants C > 0 and τ * > 0 such that the following Carleman estimate holds:

C Q e 2τ ϕ τ |∇ x,t y| 2 + τ 3 |y| 2 dxdt ≤ Q e 2τ ϕ (∂ 2 t -c∆)y 2 dxdt whenever y ∈ H 2 (Q) is supported in a fixed compact set K ⊂ int(Q) and any τ ≥ τ * . Let v = (v 1 , v 2 ) ∈ (H 2 (Ω)) 2 satisfy the following hyperbolic system    ∂ 2 t v 1 -b 11 (x)∆v 1 -b 12 (x)∆v 2 = g 1 in Q ∂ 2 t v 2 -b 21 (x)∆v 1 -b 22 (x)∆v 2 = g 2 in Q, (2.6) for g = (g 1 , g 2 ) ∈ (L 2 (Q)) 2 .
We assume that the matrix

B(x) = (b ij (x)) 1≤i,j≤2 has two distinct positive eigenvalues c 1 , c 2 ∈ C (m, θ).
Then, by Lemma 2.1, we have the following Carleman estimate.

Lemma 2.2. There exist constants C > 0 and τ * > 0 such that the following Carleman estimate holds

C Q e 2τ ϕ τ |∇ x,t v| 2 + τ 3 |v| 2 dxdt ≤ Q e 2τ ϕ |g| 2 dxdt
for any τ ≥ τ * , whenever v ∈ H 2 (Q) is a solution of (2.6) and supported in a fixed compact set K ⊂ int(Q).

Proof. The system (2.6) can be written in the equivalent form

∂ 2 t v -B(x)∆v = g in Q. (2.7)
By the assumption on B(x), there exists a matrix P (x) such that

P -1 BP (x) = Diag (c 1 (x), c 2 (x)) = Λ(x), x ∈ Ω.
Therefore system (2.7) can be written in an equivalent form:

∂ 2 t v -Λ(x)∆ v = g + B 1 (x, ∂)v, where v(x, t) = P -1 (x)v(x, t), g(x, t) = P -1 (x)g(x, t), (2.8) 
and B 1 is a first-order differential operator. Since c j ∈ C (m, θ) for j = 1, 2, we can apply Lemma 2.1 for the two components of v and obtain

C Q e 2τ ϕ τ |∇ x,t v| 2 + τ 3 | v| 2 dxdt ≤ Q e 2τ ϕ | g| 2 dxdt + Q e 2τ ϕ |v| 2 + |∇v| 2 dxdt
and, by (2.8), we easily obtain

|v(x, t)| ≤ C | v(x, t)| , |∇v(x, t)| ≤ C (|∇ v(x, t)| + | v(x, t)|) , | g(x, t)| ≤ C |g(x, t)|
for (x, t) ∈ Q. This completes the proof.

Proof of the Carleman estimate for Biot's system

In this section, we derive a global Carleman estimate for a solutions of system (2.4). We consider the 6 × 6-matrix

M (x) =   ̺ 11 (x)I 3 ̺ 12 (x)I 3 ̺ 12 (x)I 3 ̺ 22 (x)I 3   .
(2.9)

Here I 3 is the 3 × 3 identity matrix. Then by Assumption A.1, we have

M -1 (x) = 1 ̺   ̺ 22 (x)I 3 -̺ 12 (x)I 3 -̺ 12 (x)I 3 ̺ 11 (x)I 3   . Let v s = div u s , v f = div u f , v = (v s , v f ) and w s = curl u s . Put G = M -1 F , F = (F 1 , F 2 )
T and apply M -1 to system (2.4), we obtain

∂ 2 t u s -µ 1 ∆u s -(µ 1 + λ 1 ) ∇ (div u s ) -q 1 ∇ div u f = G 1 + R 1 u s + R 0 div u f , in Q ∂ 2 t u f + µ 2 ∆u s -r 2 ∇ div u f -q 2 ∇ (div u s ) = G 2 + R ′ 1 u s + R ′ 0 div u f , in Q.
(2.10) Here, R j , R ′ j , j = 0, 1 are differential operators of order j with coefficients in L ∞ (Q), and

µ 1 = ̺ -1 µ̺ 22 , λ 1 = ̺ -1 (λ̺ 22 -q̺ 12 ) , q 1 = ̺ -1 (q̺ 22 -r̺ 12 ) µ 2 = ̺ -1 µ̺ 12 , q 2 = ̺ -1 (q̺ 11 -(µ + λ)̺ 12 ) , r 2 = ̺ -1 (r̺ 11 -q̺ 12 ) .
(2.11)

Henceforth P j , j = 1, ..., 4 denote some first-order operators with L ∞ (Q)-coefficients.

We apply div to the equations in (2.10), and can derive the following two equations:

∂ 2 t v s -a 11 ∆v s -a 12 ∆v f = div G 1 + P 1 (v f , v s , u s , w s ) ∂ 2 t v f -a 21 ∆v s -a 22 ∆v f = div G 2 + P 2 (v f , v s , u s , w s ), (2.12) 
where (a ij ) 1≤i,j≤2 is given by (1.9). We apply the curl to the first equation (2.10) to obtain

∂ 2 t w s -µ 1 ∆w s = curl G 1 + P 3 (v f , v s , u s , w s ) (2.13) and ∂ 2 t u s -µ 1 ∆u s = G 1 + P 4 (v f , v s , u s , w s ). (2.14) 
Applying Lemma 2.2 to system (2.12), we have for

v = (v s , v f ) C Q e 2τ ϕ τ |∇ x,t v| 2 + τ 3 |v| 2 dxdt ≤ Q e 2τ ϕ |F | 2 + |∇F | 2 dxdt + Q e 2τ ϕ |u s | 2 + |w s | 2 + |∇u s | 2 + |∇w s | 2 dxdt.
Applying Lemma 2.1 to (2.13) and (2.14), we obtain

C Q e 2τ ϕ τ |∇ x,t w s | 2 + τ 3 |w s | 2 + τ |∇ x,t u s | 2 + τ 3 |u s | 2 dxdt ≤ Q e 2τ ϕ |F | 2 + |∇F | 2 dxdt + Q e 2τ ϕ |v| 2 + |∇v| 2 dxdt.
Therefore, for τ sufficiently large, we obtain (2.5). This completes the proof of Theorem 2.1.

3 Proof of Theorem 1.2

In this section we prove the stability (Theorem 1.2) for the inverse source problem.

For the proof, we apply the method in Imanuvilov and Yamamoto [START_REF] Yu | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF] which modified the argument in [START_REF] Bukhgeim | Global uniqueness of class of multidimentional inverse problems[END_REF] and proved the stability for an inverse coefficient problem for a hyperbolic equation. For it, the Carleman (Theorem 2.1) is a key.

Modified Carleman estimate for Biot's system

Let ω T = ω×(-T, T ). We modify Theorem 2.1 for functions which vanish at ±T with first t-derivatives. Lemma 3.1. There exist positive constants τ * , C > 0 and C 0 > 0 such that the following inequality holds:

Q τ |∇ x,t v s | 2 + |∇ x,t (div v s )| 2 + |∇ x,t (div v f )| 2 e 2τ ϕ dxdt + Q τ 3 |v s | 2 + |div v s | 2 + |div v f | 2 e 2τ ϕ dxdt ≤ C Q |G| 2 + |∇G| 2 e 2τ ϕ dxdt + Ce C 0 τ v 2 H 2 (ω T ) (3.1)
for any τ ≥ τ * and any

v = (v s , v f ) ∈ H 2 (Q) satisfying, for G = (G 1 , G 2 ) ̺ 11 ∂ 2 t v s + ̺ 12 ∂ 2 t v f -∆ µ,λ v s -∇ q div v f = G 1 , ̺ 12 ∂ 2 t v s + ̺ 22 ∂ 2 t v f -∇ (q div v s ) -∇ r div v f = G 2 in Q (3.2)
such that

∂ j t v(x, ±T ) = 0 for all x ∈ Ω, j = 0, 1. (3.3) 
Proof. Let ω 0 ⊂ ω. In order to apply Carleman estimate (2.5), we introduce a cut-off function ξ

satisfying 0 ≤ ξ ≤ 1, ξ ∈ C ∞ (R 3 ), ξ = 1 in Ω\ω 0 and Supp ξ ⊂ Ω. Let v ∈ H 2 (Q) satisfy (3.2) and (3.3). Put w(x, t) = ξ(x)v(x, t), (x, t) ∈ Q,
and let Q 0 = (Ω\ω) × (-T, T ). Noting that w ∈ H 2 (Q) is compactly supported in Q and w = v in Q 0 and applying Carleman estimate (2.5) to w, we obtain

Q 0 τ |∇ x,t v s | 2 + |∇ x,t (div v s )| 2 + |∇ x,t (div v f )| 2 e 2τ ϕ dxdt + Q τ 3 |v s | 2 + |div v s | 2 + |div v f | 2 e 2τ ϕ dxdt ≤ C Q |G| 2 + |∇G| 2 e 2τ ϕ dxdt + C Q |Q 2 v| 2 e 2τ ϕ dxdt
for any τ ≥ τ * . Here Q 2 is a differential operator of order 2 whose coefficients are supported in ω.

Therefore Q τ |∇ x,t v s | 2 + |∇ x,t (div v s )| 2 + |∇ x,t (div v f )| 2 e 2τ ϕ dxdt + Q τ 3 |v s | 2 + |div v s | 2 + |div v f | 2 e 2τ ϕ dxdt ≤ C Q |G| 2 + |∇G| 2 e 2τ ϕ dxdt + Ce C 0 τ v 2 H 2 (ω T ) .
This completes the proof of the lemma.

By N τ,ϕ (v) we denote

N τ,ϕ (v) = Q τ |∇ x,t v s | 2 + |∇ x,t (div v s )| 2 + |∇ x,t (div v f )| 2 e 2τ ϕ dxdt + Q τ 3 |v s | 2 + |div v s | 2 + |div v f | 2 e 2τ ϕ dxdt (3.4)
where v = (v s , v f ). Now, we recall (2.2) and (2.3) for the definition of d 0 , η and ε and we introduce a cut-off function

ζ satisfying 0 ≤ ζ ≤ 1, ζ ∈ C ∞ (R) and ζ = 1 in (-T + 2ε, T -2ε), Supp ζ ⊂ (-T + ε, T -ε). (3.5) 
Finally we denote by v the function

v(x, t) = ζ(t)(v s , v f )(x, t), (x, t) ∈ Q. (3.6) Lemma 3.2.
There exist positive constants τ * , C and C 0 such that the following inequality holds:

CN τ,ϕ ( v) ≤ Q |F | 2 + |∇F | 2 e 2τ ϕ dxdt + e C 0 τ v 2 H 2 (ω T ) + e 2d 1 τ v 2 H 1 (-T,T ;H 1 (Ω))
for any τ ≥ τ * and any

v = (v s , v f ) ∈ H 2 (Q) 6 satisfying ̺ 11 ∂ 2 t v s + ̺ 12 ∂ 2 t v f -∆ µ,λ v s -∇ q div v f = F 1 (x, t) ̺ 12 ∂ 2 t v s + ̺ 22 ∂ 2 t v f -∇ (q div v s ) -∇ r div u f = F 2 (x, t), (x, t) ∈ Q Proof. We note that v ∈ H 2 (Q) 6 and 
̺ 11 ∂ 2 t v s + ̺ 12 ∂ 2 t v f -∆ µ,λ v s -∇ q div v f = ζ(t)F 1 (x, t) + P 1 (v, ∂ t v), ̺ 12 ∂ 2 t v s + ̺ 22 ∂ 2 t v f -∇ (q div v s ) -∇ r div v f = ζ(t)F 2 (x, t) + P 2 (v, ∂ t v), (x, t) ∈ Q,
where P 1 and P 2 are zeroth-order operators and supported in |t| > T -2ε. Therefore, applying Lemma 3.1 to v and using (2.3), we complete the proof of the lemma.

Preliminary estimates

Let ϕ(x, t) be the function defined by (2.1). Then

ϕ(x, t) = e γψ(x,t) =: ρ(x)α(t), (3.7) 
where ρ(x) and α(t) are defined by

ρ(x) = e γϑ(x) ≥ d 0 , ∀x ∈ Ω and α(t) = e -βγ t 2 ≤ 1, ∀t ∈ [-T, T ]. (3.8)
Next we present the following Carleman estimate of a first-order partial differential operator:

L(x, D)v = 3 i=1 a i (x)∂ i v + a 0 (x)v, x ∈ Ω where a 0 ∈ C(Ω), a = (a 1 , a 2 , a 3 ) ∈ C 1 (Ω) 3 (3.9) and |a(x) • (x -x 0 )| ≥ c 0 > 0, on Ω (3.10)
with a constant c 0 > 0. Then Lemma 3.3. In addition to (3.9) and (3.10), we assume that a 0 C(Ω) ≤ M and a i C 1 (Ω) ≤ M , 1 ≤ i ≤ 3. Then there exist constants τ * > 0 and C > 0 such that

τ Ω |v(x)| 2 e 2τ ρ(x) dx ≤ C Ω |L(x, D)v(x)| 2 e 2τ ρ(x) dx
for all v ∈ H 1 0 (Ω) and all τ > τ * .

The proof is direct by integration by parts and see e.g., [START_REF] Yu | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF].

Consider now the following system

̺ 11 ∂ 2 t u s + ̺ 12 ∂ 2 t u f -∆ µ,λ u s (x, t) -∇ q div u f = F 1 (x, t), ̺ 12 ∂ 2 t u s + ̺ 22 ∂ 2 t u f -∇ (q div u s ) -∇ r div u f = F 2 (x, t), (x, t) ∈ Q, (3.11) 
with the boundary condition

u s (x, t) = 0, u f (x, t) • ν = 0, (x, t) ∈ Σ (3.12)
and the initial condition

(u s (x, 0), ∂ t u s (x, 0)) = (0, 0), u f (x, 0), ∂ t u f (x, 0) = (0, 0), x ∈ Ω, (3.13) 
where the functions F 1 and F 2 are given by

F 1 (x, t) = p 1 (x)R 1 (x, t), F 2 (x, t) = p 2 (x)R 2 (x, t). (3.14) 
We introduce the following notations:

u = (u s , u f ), v j (x, t) = ∂ j t u(x, t), (x, t) ∈ Q, j = 0, 1, 2, 3. (3.15) 
The functions v j , j = 1, 2, 3 solve the following system

̺ 11 ∂ 2 t v s j + ̺ 12 ∂ 2 t v f j -∆ µ,λ v s j (x, t) -∇ q div v f j = ∂ j t F 1 (x, t), ̺ 12 ∂ 2 t v s j + ̺ 22 ∂ 2 t v f j -∇ q div v s j -∇ r div v f j = ∂ j t F 2 (x, t), (x, t) ∈ Q, (3.16) 
with the boundary condition

v s j (x, t) = 0, v f j (x, t) • ν = 0, (x, t) ∈ Σ. (3.17)
We set v j = ζv j , where ζ(t) is given by (3.5). We apply Lemma 3.2 to obtain the following estimate:

CN τ,ϕ ( v j ) ≤ Q |∂ j t F | 2 + |∇∂ j t F | 2 e 2τ ϕ dxdt + e C 0 τ v j 2 H 2 (ω T ) + e 2d 1 τ v j 2 H 1 (-T,T ;H 1 (Ω)) , j = 0, 1, 2, 3, (3.18)
provided that τ > 0 is large enough.

Lemma 3.4. There exists a positive constant C > 0 such that the following estimate

Ω |z(x, 0)| 2 dx ≤ C Q τ |z(x, t)| 2 + τ -1 |∂ t z(x, t)| 2 dxdt for any z ∈ L 2 (Q) such that ∂ t z ∈ L 2 (Q).
Proof. Let ζ be the cut-off function given by (3.5). By direct computations, we have

Ω ζ 2 (0)|z(x, 0)| 2 dx = 0 -T d dt Ω ζ 2 (t)|z(x, t)| 2 dx dt = 2 0 -T Ω ζ 2 (t)z(x, t)∂ t z(x, t)dxdt +2 0 -T Ω ζ ′ (t)ζ(t)|z(x, t)| 2 dxdt.
Then we have

Ω |z(x, 0)| 2 dx ≤ C Q τ |z(x, t)| 2 + τ -1 |∂ t z(x, t)| 2 dxdt.
This completes the proof of the lemma.

Lemma 3.5. Let φ ℓ (x) = div (p ℓ (x)Φ ℓ (x)). Then there exists a constant C > 0 such that

2 ℓ=1 Ω e 2τ ρ |φ ℓ (x)| 2 + |∇φ ℓ (x)| 2 dx ≤ C (N τ,ϕ ( v 2 ) + N τ,ϕ ( v 3 )) + 2 ℓ=1 Ω |p ℓ | 2 + |∇p ℓ | 2 e 2τ ρ dx,
provided that τ is large.

Proof. We set v (1) = v s 2 and v (2) = v f 2 . Applying Lemma 3.4 for z j (x, t) = e τ ϕ(x,t) div v (j)
2 (x, t), j = 1, 2, we obtain the following inequality:

Cτ 2 Ω e 2τ ρ 2 j=1 div v (j) (x, 0) 2 dx ≤ τ 3 Q e 2τ ϕ 2 j=1 div v (j) (x, t) 2 dxdt + τ Q e 2τ ϕ 2 j=1 ∂ t div v (j) (x, t) 2 dxdt ≤ N τ,ϕ ( v 2 ). (3.19)
Applying Lemma 3.4 again with w j (x, t) = e τ ϕ(x,t) ∇div ( v (j) (x, t)), we obtain

C Ω e 2τ ρ 2 j=1 ∇div v (j) (x, 0) 2 dx ≤ τ Q e 2τ ϕ 2 j=1 ∇div v (j) (x, t) 2 dxdt + τ -1 Q e 2τ ϕ 2 j=1 ∇div ∂ 3 t v s (x, t) 2 + ∇div ∂ 3 t v f (x, t) 2 dxdt ≤ N τ,ϕ ( v 2 ) + N τ,ϕ ( v 3 ). (3.20)
Adding (3.19) and (3.20), we find

Ω e 2τ ρ 2 j=1 div v (j) (x, 0) 2 + ∇div v (j) (x, 0) 2 dx ≤ C (N τ,ϕ ( v 2 ) + N τ,ϕ ( v 3 )) . (3.21) Since M (x) v s 2 (x, 0), v f 2 (x, 0) T = (p 1 (x)Φ 1 (x), p 2 (x)Φ 2 (x)) T , x ∈ Ω we have |φ ℓ (x)| 2 + |∇φ ℓ (x)| 2 ≤ C |v s 2 (x, 0)| 2 + |∇v s 2 (x, 0)| 2 + v f 2 (x, 0) 2 + ∇v f 2 (x, 0) 2 + |div v s 2 (x, 0)| 2 + |∇div v s 2 (x, 0)| 2 + |div v f 2 (x, 0)| 2 + |∇div v f 2 (x, 0)| 2 (3.22)
for x ∈ Ω. On the other hand, using (3.11), we obtain Lemma 3.6. There exists a constant C > 0 such that

|v s 2 (x, 0)| 2 + |∇v s 2 (x, 0)| 2 + v f 2 (x, 0) 2 + ∇v f 2 (x, 0) 2 ≤ C 2 ℓ=1 |p ℓ | 2 + |∇p ℓ | 2 , x ∈ Ω. ( 3 
τ Ω |∇p ℓ (x)| 2 + |p ℓ (x)| 2 e 2τ ρ dx ≤ C Ω |∇φ ℓ (x)| 2 + |φ ℓ (x)| 2 e 2τ ρ(x) dx
for all large τ > 0, ℓ = 1, 2.

Proof. We have

div ((∂ k p ℓ )(x)Φ ℓ (x)) = ∂ k φ ℓ (x) -div (p ℓ ∂ k Φ ℓ (x)) for all k = 1, 2, 3.
Therefore

Ω |div ((∂ k p ℓ )Φ ℓ )| 2 + |div (p ℓ Φ ℓ )| 2 e 2τ ρ dx ≤ Ω |∇φ ℓ | 2 + |φ ℓ | 2 e 2τ ρ(x) dx + C Ω |p ℓ | 2 + |∇p ℓ | 2 e 2τ ρ dx. (3.24) 
Since p ℓ = 0 and ∇p ℓ = 0 on the boundary Γ and ∇Φ ℓ • (xx 0 ) = 0, we can apply Lemma 3.3 respectively with the choice v = p ℓ and v = ∂ k p ℓ to obtain

τ Ω |∂ k p ℓ (x)| 2 + |p ℓ (x)| 2 e 2τ ρ dx ≤ C Ω |div ((∂ k p ℓ )Φ ℓ )| 2 + |div (p ℓ Φ ℓ )| 2 e 2τ ρ dx (3.25) 
for ℓ = 1, 2 and k = 1, 2, 3. Inserting (3.24) into the left-hand side of (3.25) and choosing τ > 0 large, we obtain

τ Ω |∇p ℓ (x)| 2 + |p ℓ (x)| 2 e 2τ ρ dx ≤ C Ω |∇φ ℓ (x)| 2 + |φ ℓ (x)| 2 e 2τ ρ(x) dx.
The proof is completed.

Completion of the proof of Theorem 1.2

By Lemmata 3.5 and 3.6, we obtain

τ 2 ℓ=1 Ω e 2τ ρ(x) |∇p ℓ (x)| 2 + |p ℓ (x)| 2 dx ≤ C 2 ℓ=1 Ω |∇p ℓ (x)| 2 + |p ℓ (x)| 2 e 2τ ρ(x) dx + C (N τ,ϕ ( v 2 ) + N τ,ϕ ( v 3 )) .
Therefore, choosing τ > 0 large to absorb the first term on the right-hand side into the left-hand side and applying (3.19), we obtain

τ 2 ℓ=1 Ω e 2τ ρ(x) |∇p ℓ (x)| 2 + |p ℓ (x)| 2 dx ≤ C 3 j=2 Q |∂ j t F | 2 + |∂ j t ∇F | 2 e 2τ ϕ dxdt + Ce C 0 τ v j 2 H 2 (ω T ) + Ce 2d 1 τ v j 2 H 1 (-T,T ;H 1 (Ω)) ≤ C 2 ℓ=1 Q |∇p ℓ (x)| 2 + |p ℓ (x)| 2 e 2τ ϕ dxdt + Ce C 0 τ E ω (u) + Ce 2d 1 τ M 0 . (3.26)
Then the first term of the right-hand side of (3.26) can be absorbed into the left-hand side if we take large τ > 0.

Since ρ(x) ≥ d 0 , we obtain

2 ℓ=1 Ω |∇p ℓ (x)| 2 + |p ℓ (x)| 2 dx ≤ Ce 2(d 1 -d 0 )τ + e C 0 τ E ω (u) ≤ Ce -ǫτ + e C 0 τ E ω (u). (3.27) 
At the last inequality, we used: By 0 < d 1 < d 0 , we can choose ǫ > 0 such that e 2(d 1 -d 0 )τ ≤ e -ǫτ for sufficiently large τ > 0.

Well posedness of the direct problem

This section is devoted to the study the existence, uniqueness and regularity of solutions of the following system:

̺ 11 ∂ 2 t u s + ̺ 12 ∂ 2 t u f -∆ µ,λ u s (x, t) -∇ q div u f = F 1 (x, t), ̺ 12 ∂ 2 t u s + ̺ 22 ∂ 2 t u f -∇ (q div u s ) -∇ r div u f = F 2 (x, t), (x, t) ∈ Q (4.1)
with the boundary condition

u s (x, t) = 0, u f (x, t) • ν = 0, (x, t) ∈ Σ = Γ × (-T, T ) (4.2) 
and the initial condition

(u s (x, 0), u s t (x, 0)) = (u s 0 , u s 1 ) , u f (x, 0), u f t (x, 0) = u f 0 , u f 1 , x ∈ Ω. (4.3) 

Function spaces

We denote by D(Ω) the space of compactly supported, infinitely differentiable function in Ω equipped with the inductive limit topology. We denote by D ′ (Ω) the space dual to D(Ω). In general, we denote by X ′ the space dual to the function space X. We denote by (f, g) the inner product in L 2 (Ω) and by f, g the value of f ∈ X ′ on g ∈ X. We use usual notations for Sobolev spaces. If X is a Banach space, then we denote by L p (0, T ; X) the space of functions f : (0, T ) -→ X which are measurable, take values in X and satisfy:

T 0 f (t) p X dt 1/p = f L p (0,T ;X) < ∞ for 1 ≤ p < ∞, while f L ∞ (0,T ;X) = esssup t∈(0,T ) f (t) X < ∞ for p = ∞.
It is known that the space L p (0, T ; X) is complete. We define the space

H(div ; Ω) = u ∈ L 2 (Ω) 3 ; div u ∈ L 2 (Ω) , equipped with the norm u H(div ; Ω) = u 2 L 2 (Ω) + div u 2 L 2 (Ω) 1/2 .
Let us consider the space

V (Ω) = H 1 (Ω) 3 × H(div ; Ω), equipped with the norm u V (Ω) = u 2 2 H 1 (Ω) + u 2 2 L 2 (Ω) + div u 2 2 L 2 (Ω) 1/2 .

Generalized solution

We introduce the bilinear form on V (Ω) by

B(u, v) = 1 2 Ω λdiv (u s )div (v s ) + 2µ (ε(u s ) : ε(v s )) + rdiv (u f )div (v f ) dx + 1 2 Ω q div (u f )div (v s ) + div (v f )div (u s ) dx (4.4) for any u = (u s , u f ) ∈ V (Ω), v = (v s , v f ) ∈ V (Ω).
We recall that the matrix M is given by (2.9).

Definition 4.1. We say that u = (u s , u f ) is a generalized solution of problem (4.1)-( 4.2), if u ∈ L 2 (0, T ; V (Ω)) satisfies the initial condition (4.3) and the following identity

M ∂ 2 t u(t), v(t) + B(u(t), v(t)) = (F (t), v(t)) , almost all t ∈ (0, T ) (4.5)
for any v ∈ L 2 (0, T ; V (Ω)).

We note that in (4.5) the integration is only in x.

Lemma 4.1. For η > 0, we set

B η (u, v) = B(u, v) + η (u, v) , u, v ∈ V (Ω).
Then there exists sufficiently large constant η such that the symmetric bilinear form B η satisfies

(i) |B η (u, v)| ≤ C 1 u V (Ω) v V (Ω) , for any u, v ∈ V (Ω), (ii) B η (u, u) ≥ C 2 u 2 V (Ω)
, for any u ∈ V (Ω).

Proof. By (4.4) we obtain, for any u, v ∈ V (Ω)

|B(u, v)| ≤ u s H 1 (Ω) + div u f L 2 (Ω) v s H 1 (Ω) + div v f L 2 (Ω) ≤ C u V v V . (4.6) 
Then for any η, we can derive (i). Now, we note that for a vector u s ∈ H 1 0 (Ω) we have the following Korn's inequality

C 1 u s 2 H 1 (Ω) ≤ Ω ε(u s ) : ε(u s )dx.
Then, for W = div u s , div u f , we have

B(u, u) ≥ µC 1 u s 2 H 1 (Ω) + 1 2 Ω M 0 W • W dx
where M 0 is the symmetric 2 × 2-matrix given by

M 0 (x) =   λ q q r   ≥ γ 0 I 2 .
Which implies

B(u, u) ≥ µC 1 u s 2 H 1 (Ω) + γ 0 2 div u s 2 L 2 (Ω) + div u f 2 L 2 (Ω) ≥ µC 1 u s 2 H 1 (Ω) + γ 0 2 div u f 2 L 2 (Ω) - γ 0 2 u 2 L 2 (Ω) ≥ C 2 u 2 V -η u 2 L 2 (Ω) . (4.7) 
This completes the proof of the lemma.

Construction of approximate solutions

Let A : L 2 (Ω) 6 → L 2 (Ω) 6 be the self-adjoint operator defined by

A u =   ∆ µ,λ u s + ∇ qdiv u f ∇ (qdiv u s ) + ∇ rdiv u f   .
Then system (4.1) can be written as

M ∂ 2 t u -A u = F, (x, t) ∈ Q (4.8) with initial condition u(x, 0) = (u s 0 (x), u f 0 (x)), ∂ t u(x, 0) = (u s 1 (x), u f 1 (x)) (4.9) 
and the boundary condition

u s (x, t) = 0, u f • ν = 0, (x, t) ∈ Σ. (4.10) 
Let (w j ) j≥1 be a sequence of solutions in H 2 (Ω) ∩ H 1 0 (Ω) 6 such that for all m ∈ N, w 1 , ..., w m are linearly independent and all the finite linear combinations of (w j ) j≥1 are dense in H 2 (Ω) 6 .

We seek approximate solutions of the problem in the form

u m (t) = m j=1 g jm (t)w j . (4.11) 
The functions g jm (t) are defined by the solution of the system of ordinary differential equations

M ∂ 2 t u m , w j + B(u m , w j ) = (F (t), w j ) , 1 ≤ j ≤ m, (4.12) 
with the initial conditions

u m (0) = u 0m → u 0 in H 2 (Ω) ∩ H 1 0 (Ω) 6 , ∂ t u m (0) = u 1m → u 1 in H 1 (Ω) 6 .
(4.13)

The system (4.12)-(4.13) depends on g jm (t) and therefore has a solution on some segment [0, t m ]; see [START_REF] Lions | Non-homoeneous Boundary Value Problems and Applications[END_REF]. From a priori estimates below and the theorem on continuation of a solution we deduce that it is possible to take t m = T .

A priori estimates

Multiplying (4.8) by g ′ jm (t) and summing over j from 1 to m, we obtain

M ∂ 2 t u m , ∂ t u m + B(u m , ∂ t u m ) = (F (t), ∂ t u m ) . (4.14) Hence 1 2 d dt M 1/2 ∂ t u m (t) 2 L 2 (Ω) + B η (u m (t), u m (t)) = (F (t), ∂ t u m (t)) + η 2 d dt u m (t) 2 L 2 (Ω) . (4.15) Let Φ 2 (t) = M 1/2 ∂ t u m (t) 2 L 2 (Ω) + B η (u m (t), u m (t)). From (4.15) we obtain 1 2 d dt Φ 2 (t) ≤ C F (t) 2 L 2 (Ω) + ∂ t u m (t) 2 L 2 (Ω) + u m (t) 2 L 2 (Ω) . (4.16) 
Integrating with respect to τ from 0 to t, we obtain

Φ 2 (t) ≤ C F 2 L 2 (Q) + Φ 2 (0) + t 0 ∂ t u m (τ ) 2 L 2 (Ω) + u m (τ ) 2 L 2 (Ω) . (4.17) Since Φ 2 (t) ≥ C ∂ t u m (t) 2 L 2 (Ω) + u m (t) 2 V (Ω) (4.18) 
and

Φ 2 (0) ≤ C + u 0 2 H 2 (Ω) + u 1 2 H 1 (Ω) , (4.19) 
we have from (4.18)

u m (t) 2 V (Ω) + ∂ t u m (t) 2 L 2 (Ω) ≤ R 0 + t 0 ∂ t u m (τ ) 2 L 2 (Ω) + u m (τ ) 2 L 2 (Ω) , (4.20) 
where

R 0 = C + u 0 2 H 2 (Ω) + u 1 2 H 1 (Ω) + F 2 L 2 (Q)
. By the Gronwall inequality, we conclude that

u m (t) 2 V (Ω) + ∂ t u m (t) 2 L 2 (Ω) ≤ R 0 (4.21)
for all t ∈ (0, T ) and m ≥ 1.

In order to obtain the second a priori estimate, we observe that

∂ 2 t u m (0) 2 L 2 (Ω) ≤ C F (0) 2 L 2 (Ω) + u m (0) 2 H 2 (Ω) + ∂ t u m (0) 2 L 2 (Ω) ≤ R 1 . (4.22) 
Indeed, multiplying (4.8) by g ′ jm (0), summing over j and setting t = 0, we obtain

M ∂ 2 t u m (0), ∂ 2 t u m (0) + B(u m (0), ∂ 2 t u m (0)) = F (0), ∂ 2 t u m (0) . (4.23)
Consequently,

M ∂ 2 t u m (0), ∂ 2 t u m (0) = F (0), ∂ 2 t u m (0) + A u 0m , ∂ 2 t u m (0) , (4.24) 
which implies

∂ 2 t u m (0) 2 ≤ C F (0) 2 L 2 (Ω) + u 0m 2 H 2 (Ω) ≤ CR 2 . (4.25)
Differentiating (4.14) with respect to t, multiplying by g jm and summing over j, we obtain the identity

1 2 d dt M 1/2 ∂ t u m (t) 2 L 2 (Ω) + B η (u m (t), u m (t)) = (F (t), ∂ 2 t u m (t)) + η 2 d dt ∂ t u m (t) 2 L 2 (Ω) . (4.26)
Then, we conclude that

∂ 2 t u m (t) 2 L 2 (Ω) + ∂ t u m (t) 2 V ≤ R 2 + ∂ t u m (0) 2 L 2 (Ω) + C t 0 ∂ 2 t u m (τ ) 2 L 2 (Ω) + ∂ t u m (τ ) 2 V dτ. (4.27) 
By (4.27) and the Gronwall inequality, we obtain

∂ 2 t u m (t) 2 L 2 (Ω) + ∂ t u m (t) 2 V ≤ R 1 . (4.28) 
Taking into consideration that u m = 0 in Σ, we see Taking into account that w j are dense in H 2 (Ω) ∩ H 1 0 (Ω) 6 and therefore in V , we obtain M ∂ 2 t u, v + B(u(t), v(t)) = (F (t), v), t ∈ (0, T ) (4. [START_REF] Lions | Non-homoeneous Boundary Value Problems and Applications[END_REF] for all v ∈ L 2 (0, T ; V (Ω)).

u m ∈ L ∞ (0, T ; V (Ω)), ∂ t u m ∈ L ∞ (0, T ; V (Ω)), ∂ 2 t u m ∈ L ∞ (0, T ; L 2 (Ω)). (4.29 
We have B(u(t), v(t)) = -(A u(t), v(t)) for any v ∈ D(Ω), where the application of the differential operator A to u is in the distributional sense in D ′ (Ω). Hence we obtain M ∂ 2 t u -A u = F, in D ′ (Ω), a.e. in(0, T ). (4.36)

On the other hand, ∂ 2 t u, ∂ t u, F ∈ L ∞ (0, T ; L 2 (Ω)). Hence (4.36) holds in L ∞ (0, T ; L 2 (Ω)). The boundary condition (4.2) is satisfied by the choice of the space V (Ω). We prove that the initial conditions are satisfied. Suppose θ ∈ C 1 (0, T ) and θ(T ) = 0. For any j we have Since u 0m (x) = u m (0, x) and u 0m → u 0 , we obtain u(0) = u 0 , and can argue similarly for u 1 .

Then, we conclude that, there exists a solution u of (4.1) such that ∂ t u ∈ L ∞ (0, T ; V (Ω)), and Consequently, ∆ µ, λ u s ∈ C(0, T ; L 2 (Ω)), λ = λ -q 2 r .

∂ 2 t u ∈ L ∞ (0, T ; L 2 (Ω)), (4.38 
Then by the elliptic regularity, u s ∈ H 1 0 (Ω) yields u s ∈ C(0, T ; H 2 (Ω)).

By div u f ∈ C(0, T ; H 1 (Ω)), we see u s ∈ C(0, T ; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ C 1 (0, T ; H 1 (Ω))

u f ∈ C 2 (0, T ; L 2 (Ω)), div u f ∈ C(0, T ; H 1 (Ω)) ∩ C 1 (0, T ; L 2 (Ω)). (4.41)

Uniqueness

Let u 1 and u 2 be two solutions to (4.1)-(4.2) with the same initial data, and set u = u 1u 2 . Then for every function v ∈ V (Ω), we have M ∂ 2 t u, v + B(u, v) = 0, ∀t ∈ (0, T ).

Since ∂ t u ∈ V (Ω), we may take v = ∂ t u, and this equation can be reduced to equality

1 2 d dt M 1/2 ∂ t u 2 L 2 (Ω) + B η (u, u) = η 2 d dt u(t) 2 L 2 (Ω) .
Then

∂ t u(t) 2 L 2 (Ω) + u(t) 2 V (Ω) ≤ C t 0 ∂ t u(τ ) 2 L 2 (Ω) + u(τ ) 2 L 2 (Ω) dτ.
This implies that u V (Ω) = 0 = ∂ t u L 2 (Ω) and u 1 = u 2 a.e. in Q.

The proof of Theorem 1.1 is completed.

. 23 )

 23 Combining (3.23),(3.22) and (3.21), we complete the proof of the lemma.

  )

4. 5 0 M ∂ 2 t 0 (F

 5020 Passage to the limit By (4.29), we can extract a sequence from (u m ) m≥0 , which we denote again by (u m ) m , such thatu m → u in the weak-star topology in L ∞ (0, T ; V (Ω)) ∂ t u m → ∂ t u in the weak-star topology in L ∞ (0, T ; V (Ω)) ∂ 2 t u m → ∂ 2 t u in the weak-star topology in L ∞ (0, T ; L 2 (Ω))(4.30)and (u m , ∂ t u m ) → (u, ∂ t u) a.e., on Σ.Multiplying (4.8) by θ ∈ L 1 (0, T ) and integrating, we haveT u m (t), w j + B(u m , w j ) θ(t)dt = T (t), w j ) θ(t)dt. m , w j )θ(t)dt = -T 0 (u m , A w j )θ(t)dt, m , w j )θ(t)dt =t u(t), w j + B(u,w j ) θ(t)dt = T 0 (F (t), w j )θ(t)dt. (4.34)

  mu), w j θ(t)dt = -(u m (0)u(0), w j ) θ(0) -T 0 (u m (t)u(t), w j ) θ ′ (t)dt.

( 4 .

 4 37) Then, by (4.30), we have lim m→∞ |(u m (0)u(0), w j )| = 0.

) which implies u s ∈ C 1

 1 (0, T ; H 1 0 (Ω)), ∂ 2 t u s ∈ C(0, T ; L 2 (Ω))u f ∈ C 1 (0, T ; H(div , Ω)), ∂ 2 t u f ∈ C(0, T ; L 2 (Ω)).(4.39)On the other hand∇ (qdiv u s ) + ∇ rdiv u f ∈ C(0, T ; L 2 (Ω)),∆ µ,λ u s + ∇ qdiv u f ∈ C(0, T ; L 2 (Ω)). (4.40)
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