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Thermodynamic model of
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We explain the experimentally observed instability of cold exciton gases and formation of a macro-
scopically ordered exciton state (MOES) in terms of a thermodynamic model accounting for the
phase fluctuations of the condensate. We show that the temperature dependence of the exciton en-
ergy exhibits fundamental scaling behavior with the signature of the second order phase transition.

PACS numbers: Valid PACS appear here

Long-range order and order parameter build up are key
features of Bose-Einstein condensation (BEC) in gases
[1]. All these features have been experimentally observed
in cold gases of indirect excitons in coupled semicon-
ductor quantum wells (CQW) [2]. Indirect excitons are
formed by electrons and holes confined in separate layers
of CQW structure. Being bosonic quasi-particles, exci-
tons have quantum degeneracy temperatures several or-
der of magnitude higher than atoms [3], thus they are
very attractive for studies of BEC.

Recently, the emergence of extended spontaneous co-
herence was observed at low temperatures in a gas of
indirect excitons cooled down to 100 mK [4, 5]. High
et. al. performed shift-interferometry measurements of
the off-diagonal one body density in the external ring
of the exciton photoluminescence pattern. The ring is
formed at the boundary between electron-rich and hole-
rich regions [6]. Since this boundary is far from the laser
excitation spot, the ring is a source of cold excitons [7, 8].
The experimentally observed photoluminescence pattern
changes drastically at the temperatures below 2K. The
ring fragments into regularly spaced beads of high PL in-
tensity, having macroscopic sizes (Fig. 1). Off-diagonal
one-body density appears to be extended well beyond the
thermal de Broglie wavelength in the vicinity of one bead
[4].

Levitov and co-workers [9] explained the transition of
the exciton system into this new macroscopically ordered
state (MOES) in terms of a classical transport theory.
An alternative explanation based on the existence of at-
tractive van der Vaals interactions between the excitons
which might lead to formation of the islands of electron-
hole liquid was proposed simultaneously in [10]. Soon
after Paraskevov et. al. [11] pointed out that both the-
ories neglect the repulsive dipole-dipole exciton interac-
tion which is expected to play an important role in the
process of the bead formation [12]. Levitov’s system of
coupled non-linear diffusion equations supplemented with
the drift term due to Coulomb interactions was subse-
quently studied numerically in [13].

The long-range order build up was explicitly taken into
account in [11]. They showed that the spatially nonuni-

form distribution of the condensate density can be ob-
tained as a standing wave type solution of the quasi-one
dimensional Gross-Pitaevskii equation. However, the re-
cent studies [4] have shown that there is no coherence
between different beads. The MOES is a fragmented
condensate. Similarly to atomic gases, two-body interac-
tions are expected to play significant role in the exciton
condensates yielding to a ritch phenomenology [15–17].

In this context, there is an apparent need of theoreti-
cal description of a system of multiple condensates (or a
fragmented condensate) periodically arranged on a ring.
Here we find the critical conditions for condensate frag-
mentation and describe the ground state of the system
by means of a thermodynamical consideration taking into
account repulsive interactions between the excitons. We
assume that the ring-like cloud of classical excitons un-
dergoes both condensation and fragmentation into beads
with lowering of temperature. The fragmentation, being
purely quantum phenomena, can be regarded as the man-
ifestation of the fundamental uncertainty principle for the
phase and the particles number considered as canonically
conjugated variabes. Our model shows that formation of
a fragmented condensate is driven by spatial fluctuations
of the phase of the order parameter and the localization is
achieved due to the increase of the entropy of the system.
The model reproduces the experimental dependencies of
the number of beads on the pumping power and of the
energy of excitons on temperature.

At the densities achieved in the experiments on MOES
[7], excitons can be viewed as weakly interacting bosons
[2, 15] and treated in the mean field approximation re-
gardless the underlying band structure [18]. The macro-
scopic charge separation can produce an in-plane confine-
ment for the excitons in the radial direction [SI], while the
repulsive electrostatic interaction between the neighbor-
ing beads provides the azimuthal autolocalizing potential.
Thus each bead can be considered as a two-dimensional
condensate in a trap. The latter we will assume to be of
a harmonic type. The relevant energy scale of the prob-
lem will be provided by the critical temperature Tc of the
BEC in a trap which is determined by the total number of
excitons in the ring N [1] fixed by the gate voltage and the
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FIG. 1. Schematic view of the exciton density profile. Ex-
citons (blue) are created on the boundary between electron-
and hole-ritch regions (green and red). In the Thomas-Fermi
limit the condensate density profile takes the form of the in-
verted paraboloid having the height ρmax = µ/V0 fixed by
the chemical potential. The adiabatic topological tranforma-
tion of a bead, shown in the inset, conserves the number of
particles and the energy of the system (see the main text).

laser excitation power [6]. Note that the healing length
characterizing the variation of the exciton density at the
edges of the condensate [1] is much smaller than the size
of a bead [SI] and all quantities can be calculated in the
Thomas-Fermi limit, neglecting the kinetic energy term
in the Gross-Pitaevskii equation. In this case the den-
sity profile of each domain takes the form of the inverted
paraboloid and the fragmentation of the condensate may
be achieved by an adiabatic transition [14] conserving its
potential energy E and chemical potential µ, which is
set by the external reservoir. This essentially topological
result can be understood from the schematic illustration
in the inset of Fig. 1. The height of each paraboloid is
fixed by the chemical potential according to the relation
ρmax = µ/V0, where V0 is the interaction constant [20].
We assume the transverse diameter of the base ellipse w
(the ring width) to be a constant in the first approxima-
tion. Now, if one devides the conjugated diameter of the
initial paraboloid (dashed line) into n parts and replaces
it by n similar paraboloids, then the integrals

∫

d2rρ and
∫

d2rρ2 are conserved. The former (volume of the figure)
is simply the total number of excitons N and the latter,
according to the 2D virial relation [SI], is related to the
energy of a condensate by E = V0

∫

d2rρ2.

Though the beads can in principle have different sizes
(and, consequently, contain different number of excitons),
the ground state of the system is expected to have a
symmetric shape (Fig. 1), since this shape minimizes
the kinetic energy in the small overlapping region be-
tween the neighboring condensates [1, 21]. Thus, the
fragmented condensate will be macroscopycally ordered
in the thermodynamic equilibrium. Below we argue that
the fluctuations of such density distribution are negligi-
ble and show that the transition of the condensate into

this "number squeezed" configuration is driven by spon-
taneous breaking-up of the phase of the condensate, that
increases the entropy of the system.

The transition from a coherent to an incoherent regime
associated with the increase of the spatial fluctuations of
the global phase of the condensate can be conveniently
studied by means of quantized Josephson Hamiltonian,
which in the Φ-representation takes the form [22]

ĤJ = −
1

4
EC

n
∑

i=1

∂2

∂Φ2
i

, (1)

where Φi is the phase of the i-th fragment, EC =
2∂µ/∂N0 is an interaction parameter calculated at N0 =
N/n and n is the number of fragments. The reduced form
(1) corresponds to the limit of no coherence between the
beads. The eigenstates of the Hamiltonian (1) are plain
waves

Ψ{ki} ∼ exp
(

i
n
∑

i=1

kiΦi

)

for set of integer values {ki}, so that the ground state
function is a constant, revealing that the phases of the
beads are distributed in a random way. According to
the uncertainty relation arising from the quantization of
the Josephson equations [22–24] the deviations ki of the
number of particles in coherent state in each site from
their equilibrium values N0 = N/n are instead vanish-
ingly small - the fragments have well-defined number of
excitons (Fock state).

The set of the eigenvalues of the Hamiltonian (1) is
given by

E{ki} = −
EC

4

n
∑

i=1

k2i (2)

and determines the spectrum of elementary excitations
associated with the phase dynamics of the condensate.
One can see that the break-up of the global phase leads to
the appearence of new degrees of freedom. The partition
function of the system can be factorized and it takes the
form

ZΦ ≡
∑

{ki}

e−βE{ki} =
(

∑

k

e−βEk

)n

, (3)

where Ek = ECk
2/4. Using Eq. (3) one can straightfor-

wardly evaluate [SI] the entropy

SΦ =
nkB
2

[

1 + ln
(4π

η

T

Tc

N

n

)]

(4)

and the energy

EΦ =
nkBT

2
(5)
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of the system due to the excitations (2), where we have
substituted EC = µ/N0 holding in the 2D Thomas-Fermi
limit [SI]. The parameter η ≡ µ/kBTc characterizes the
strength of interactions as discussed below (see Eq. (8)).
Substitituting the expressions (4) and (5) to the canoni-
cal potential FΦ = EΦ − TSΦ one can see that the latter
decreases as function of the number of beads n while
n ≪ N . Therefore, an unfragmented state is thermody-
namically unstable and the ring will irreversibly break up
increasing its entropy SΦ. To find the steady state one
needs to go beyond the Thomas-Fermi limit. The upper
limit for the number of beads n would be imposed by the
increase of the kinetic energy due to localization which
we have neglected so far. These "quantum pressure" cor-
rections arise from the small region near the boundary
between the adjacent beads, which is not correctly ac-
counted for in the Thomas-Fermi limit. Its proper de-
scription requires the explicit inclusion of the quantum
effects in the Gross-Pitaevskii equation [21]. Here we
phenomenologically introduce the relevant energy correc-
tion for each bead as σ. It can be considered as an energy
of a boundary separating two beads. It can be shown [SI],
that σ = xkBTc/η, where x is a numerical coefficient de-
fined by the topology of the condensate in the boundary
region between the neighboring fragments. Accounting
for this correction, the free energy of the ring then takes
the form

F = n
x

η
kBTc −

nkBT

2
ln
(4π

η

T

Tc

N

n

)

, (6)

and, considered as a function of n, has a minimum at the
point

n0 =
4π

ηe
tN exp

(

−
2x

η
t−1

)

, (7)

where t ≡ T/Tc is the reduced temperature. Eq. (7)
gives the number of the beads in the steady state of the
fractioned condensate on a ring in a simple form of the
Arrhenius activation law [25] and demonstrates the cru-
cial role of the two-body interactions in the process of
formation of MOES. Only if the interactions are signifi-
cant (η & 0.2) [SI] can the quantum fluctuations of the
phase of the order parameter be sufficiently large to drive
the system into the number squeezed state. The estimate
for η given below shows that this condition is indeed well
satisfied in our case.

The result (7) can be directly compared with the exper-
imental data on the dependence of the number of beads
on the pumping intensity P . Following Snoke et. al. [26]
we will assume the total mean number of excitons in the
steady state depending linearly on the laser excitation
power at the fixed gate voltage. We argue that if, in ad-
dition, the ring radius also depends linearly on P , then
the critical temperature Tc would be P -independent [SI].
Linear dependence of the ring radius on the pumping in-
tensity has been indeed observed experimentaly (see the
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FIG. 2. The number of the beads in a steady state versus
laser excitation power. Red line is a fit to the experimental
data (squares) using Eq. (7), where we substitute Ncon =
N(1 − t2), N = βP for the total number of excitons as a
function of the excitation power P . We take β = 4150 µW−1

which corresponds to the average exciton density in a bead
ρ̄ = 1010 cm−2 and gives a theoretical estimate [SI] for Tc

close to 4.5 K observed experimentally (see Fig. 3). Tc is
assumed to be P-independent providing that the ring radius
increases linearly with P , as indeed observed experimentally
(see the inset). The bath temperature T = 2 K. From the
fitting we deduce x = 3.2 (see the main text).

inset in Fig. 3) and explained theoretically within the
kinetic model of the ring formation [27]. The result of
the fitting using the formula (7) is presented in Fig. 3.
We find x ∼ 1 that is consistent with an estimate for the
quantum pressure done in [21].

So far we assumed sufficiently low bath temperature,
so that one could neglect thermal depletion of the con-
densate and temperature dependence of the chemical po-
tential. Now we are going to extend our model to higher
temperatures in order to explain the nonmonotonic tem-
perature dependence of the exciton energy observed in
[12]. The crucial parameter of the problem will be the
ratio η between the value of the chemical potential cal-
culated using the Thomas-Fermi approximation at T = 0
and the critical temperature Tc for noninteracting parti-
cles [29]. It can be expressed as [SI]

η =

√

π

6

mV0

~2
. (8)

The value of the interaction constant V0 can be estimated
using the well-known plate capacitor formula corrected
by a factor dependent on the distance d between the cen-
ters of the coupled quanum wells [30]. For d = 12 nm we
obtain η = 1.6.

The total energy of the system E at T 6 Tc is a sum
of the condensate energy Econ and the energy of uncon-
densed excitons (thermal component) Eth. The energy
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of the condensate can be calculated by integrating the
thermodynamic relation

∂Econ

∂Ncon
= µ− T

∂µ

∂T
.

The temperature dependence of the chemical potential µ
in the first approximation can be obtained by substitut-
ing the estimate for the number of excitons in the con-
densate Ncon = N(1−t2) obtained in the non-interacting
limit into the 2D Thomas-Fermi expression [SI]

µ(t) = kBTcη
(Ncon

N

)1/2

, (9)

where t = T/Tc is the reduced temperature. One finds

Econ

NkBTc
= 2η(1− t2)1/2. (10)

In what concerns the uncondensed excitons, at T 6 Tc

they can be treated as free particles propagating in
the effective mean field potential Veff (x, y) − µ(t) =
|Vext(x, y)− µ(t)|, which coincides with the trapping po-
tential Vext outside the condensate and is drastically
changed inside where it becomes repulsive [31]. One can
calculate the energy of the thermal component using the
Bose functions [1]. Using the expression (9) for µ(t) one
can find

Eth

NkBTc
=

2

ζ(2)
t3g3[exp(−ηt−1(1 − t2)1/2)], (11)

where g3(z) is a Bose function, in which the chemical
potential µ is replaced by (Veff (x, y) − µ(t)). Summing
the results (10) and (11) we find the total energy of the
system below Tc:

E

NkBTc
=

2

ζ(2)
t3g3[exp(−ηt−1(1−t2)1/2)]+2η(1−t2)1/2.

(12)
Above Tc, the system is very dilute and can be consid-

ered as an ideal gas placed into the confining potential
Vext. Following the general rules of statistical mechanics
we derive the total energy of the ring for T > Tc in the
form

E

NkBTc
=

2

ζ(2)
t3g3(z), (13)

where z is a root of the equation g2(z) = ζ(2)t−2.
Eqs. (12) and (13) are expressed in terms of only two

parameters (η and t), which reflects the fundamental scal-
ing behavior exhibited by the system in the limit of large
N . The scaling behaviour of condensates is also well-
known for the 3D case [31]. The temperature dependence
of the exciton energy in units of kBTc for different values
of η is plotted in Fig. 3. It shows the non-monotonic
behaviour with a minimum corresponding to the critical
temperature. The best agreement with the experimental
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FIG. 3. The exciton energy in units kBTc versus the reduced
temperature t = T/Tc. Solid lines in the region t < 1 (be-
low Tc) are the result of calculation using the formula (12)
for η = 0.2 (black), 0.8 (blue) and 1.6 (red). The result of
the calculation above Tc (the region t > 1) using the ideal
gas model (13) is independent on η and is presented by red
line. Experimental data are taken from [12]. The critical
temperature Tc = 4.5 K. The specific heat at constant vol-
ume CV = ∂E/∂T exhibits the discontinuity at the critical
point.

data is achieved at η = 1.6, which fits excellently to the
value of η calculated above from the microscopic model
[30]. Note, that the specific heat at constant volume
CV = ∂E/∂T exhibits a discontinuity at T = Tc. This
the signature of the second order phase transition.

To conclude, we have presented a thermodynamical
model of formation of a macroscopically ordered exciton
state. It shows that the transition of a ring-like exciton
condensate into the number squeezed fragmented state is
driven by spatial fluctuations of the phase of the conden-
sate. The steady state of the system is determined by the
balance between the kinetic energy and the entropy. Min-
imizing the free energy yields the number of the beads on
the ring which depends on the reduced temperature fol-
lowing the Arrhenius activation law. The method allows
tracing the exciton energy as a function of temperature as
well. Both dependencies exhibit the characteristic scal-
ing behaviour. The excellent agreement of the calculated
exciton energies with the experimental data [12] confirms
aposteriori the presence of the second order phase tran-
sition in the exciton system.
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