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Abstract

In this document, we deal with the concept of real prime number together
with the Riemann hypothesis to the real numbers. Thus, we highlight the
new hypothesis by a calculus of integral.

The approach

The Rieman hypothesis states the non trivial zeros of the Riemann zeta
function
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lie in the critical line : § + iy. Let us study this hypothesis.

Definition A real number is composed if it is equal to £p;"...p;" where p;
are integer prime numbers and n; are rationals. We define other real prime

numbers which can not be expressed like this : 7, ¢, In (2). Thus ¢/p = p% is
composed.

Also {/p + 1 is prime, with p prime, hence \/p —1 = (p — 1)(\/p+ 1) ' is
composed !

And 7 and e are primes in stead of 7™ and ™ with (ny — 1)(mo — 1) # 0.
We define the GCD of two numbers : If p; and p, are prime real numbers

pl #pQ = GCD(p17p2) — 1
mny <0 = GCD(p)",pi*) =1
niny > 0 = GCd(py, pi?) = i)

ni_n n; n/ n! n’\ __ g /nf-
GCD(p py..py, p"ips™2..p;™) = [ [ (GCD (@}, ;™))
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And if x = pi*py?..pl" and y = p;?“ ...p;jlj then y divises x if 1 < [, < i and
for [; = j, nymy, > 0, |my,| < |n,|.

Thus 2 does not divise the prime 3, for example.

Let, now, for ¢ integer, the zeta function of Riemann

t:

Euler has proved the following formula
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It remains true for p real prime number, but here, for p real
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And . .
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And with x # 0
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And we see that trivial zeros are » = —2k and non trivial zero lies in z =

1 .

5 1+ y.
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We have proved the hypothesis for real numbers. The Riemann hypothesis
is important because it gives information about the zeros of ((z) and the
distribution of those zeros are related to real primes!
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Conclusion
We did not present it like this, but we have given a proof of the Riemann
hypothesis for real numbers.
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