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A random walk through human behavior,

Youssef Chahir* Youssef Zindi, Mahmoud Ghoniefn Abder ElmoataZ
%GREYC - CNRS UMR 6072, Computer Science Departnigniversity of Caen, Bd Maréchal
Juin, BP 5186, 14032 Caen , France

ABSTRACT

In many applications, such as the video monitorthg, archiving and the video indexing, it is sigraht to recognize
the movements of the people to be able to intethet behaviors. This recognition of activity rées the extraction of
multiple data, the automatic interpretation of imaspquences, and called upon techniques of vidatysis and
techniques of data analysis and data classificafiomuman action being strongly related to the nnoset, we propose
in this paper, an approach for tracking peoplectanfa volume in 3D space (2d+t). This volume whiepresents a
given action will be characterized by 3D geometninaments which are invariants with the translatow the scaling.

In this article, we present a new approach of peaptions categorization based on the Markov rangatks on graph.
The basic idea is to regard the whole of the ast{@rdeos) as a weighted graph G=(V,E). This griapgtefined as a set
of vertices V which are represented by 3D volumethe action, and a set of edges E which represensimilarity
between actions.. This similarity will be calculktby an Euclidean distance between the vectorsactaistic of the
actions. Then, we will describe the implementatidrour approach and we show results of validatioraocorpus of
actions which represent different actions of seveeaple.

Keywords: Random walk, Nystrom, human action, 3D geometrmainents, graph cut, video

1. INTRODUCTION

Recognizing of Human Motion Actions from videosaichallenging re-search problem in computer visibig a key

component in many computer vision applicationshsag video surveillance, human-computer interfaimigo indexing

and browsing, recognition of gestures, analysispafrts events, and dance choreography. It is ef/aekce to both the
scientific and industrial communities. Recent woiksthe computer vision literature have proposeduamber of

successful motion recognition approaches basedoatinear manifold learning techniques. Despite ificgmt recent

developments, general human motion recognitiontiis @ open problem. This problem of identificatidbecomes
crucial when one has an increasing number individduwader various points of view of cameras, andccamplex

environments. To simplify the problem of identificen of the actions, a common strategy was adobyed majority of

researchers which consists in treating the acfimms only one point of view.

Most action recognition approaches rely on supedviearning methods where training is done on efexdd sets of
choreographed actions in order to do recognitionis Tiffers from surveillance where the set of @usi are often
unknown or hand labeling of specific actions noplegable. Usually two distinctions are made betwapproaches to
action recognition. Firstly, template matching[1,approaches convert a video sequence of events $batic

representation such as a single silhouette basagdeinThese templates of activity are then comptrexiored action
prototypes for classification. Template matchinghods suffer from the varying styles and differesmhporal extents of
an action where the template should ideally reprteiee whole temporal extent of an action. Secgnsigite space
methods [3,4,5,6] usually provide a solution to pirase problem with the use of time varying modatsh as the HMM.
A common approach is to define each static featiran action as a state and learn the relationsbipreen these
features. Then a motion sequence can be considsredtour through the state space of these feafliceslassify an
action the joint probability with the maximum valigeselected as the criterion for action classifica Most methods,
both state space and template matching, are baserbmputing either appearance based features sudtom a

silhouette or motion description such as optiaaifl



Various methods based on silhouette features haee proposed. Bobick and Davis[7] proposed a viaset approach
to the representation and recognition of tempaaipiates. They introduce Motion History Images (Wl represent
how an action was performed using different lexalintensity based on the time since the silhouetis captured. A
Motion Energy Image (MEI) is the accumulative shayiethe person over time and captures where theraetas
performed and as introduced, can be used for posarignce. A set of rotational invariant central memts, Hu
moments, were extracted from each action and &lzssdn achieved using a nearest neighbour approblsing
temporal-spatial filters Chomat and Crowley [8] geated motion templates computed by Principal ComapeAnalysis
(PCA) using an Bayesian approach to do action ifiesson. Ali and Aggarwal [9] also make use ofperson
silhouette’s to classify a continuous set of adibg extracting skeleton properties from the sh&par. skeleton features
were introduced by Fujiyoshi and Lipton [10] torxt 2D posture from a silhouette in real time.

In this research, we aim to categorize and recegh human actions such as: walking, bending, jogygumping in

the same place, running, skipping, walking a sigeying two hands, waving one hand and jacking. Therpropose a
random walk approach as a learning algorithm féegarizing these ten actions. Our learning algorite unsupervised
method, we don't give any previous knowledge onti@ining set.

The outline of the paper continues as follows. Pra@posed human action segmentation is presentsettion 2. Section
3 explains the global features used for shape i#ss. Then, in Section 4, we describe in detail categorization and
recognition approaches. Section 5 describes theremental results while Section 6 present conclydemarks.

2. HUMAN ACTION EXTRACTION

We wish to partition human action video into thwarts “person and the background”. To segment the(R€gion Of
Interest) and track the person o each successiveefrwe use an approach based on graph-cut teehmitiion-based
estimation defines regions of foreground, backgdoand boundary blocks. An automatic segmentatioasized by
obtaining prior knowledge from foreground and baockmd blocks. The result also can be improved lgy adjustment.

The segmentation problem is formulated as an enargymization problem which is settled by using mracut
algorithm, according to the user-imposed constrafssa pioneer work of object segmentation usirgyaph cut, the
user-interactive segmentation technique was prapdse Boykov and Jolly [11]. They assumed that aegiwser
imposes certain hard constraints for segmentatipmndicating certain pixels (seeds) that belongtie object and
certain pixels that belong to the background. Thanncontribution of our approach is that the objatl background
seeds(regions) are estimated in every frame ofese@s without user interaction. Basically eaclelpix the image is
viewed as a node in a graph, edges are formed éetaedes with weights denotes how alike two piaets given some
measure of similarity, as well as the distance betwthem. The edges for each pixel can be formbdeba the pixel
with all the other pixels, In attempt to reduce thanber of edges in the graph, we will predeternmeighborhood N
that describes the neighbors of each pixel and Wédevinterested in the similarity “distance” betan each pixel and its
neighbors.

There are two additional terminal nodes: an “oljjéetminal (a SOURCE) and a “background” terminalSINK) (cf.
fig.2). These two terminal nodes don't correspamary pixel in the image but instead they repretenbbject and the
background respectively. The source is connectecdges to all nodes identified as object seedsthadsink is
connected to all background seeds. Edges are folreedeen the source and sink and all other nonit@tnmodes,
where the corresponding weights are determinedgusindels for the object and background. The minafuthe
resulting graph will then be the segmentation @& timage. This segmentation should then be a mertguch that,
similar pixels close to each other will belong e same partition. In addition, as a result oftéreninal weights, pixels
should also be segmented in such a manner so tigeyein the same partition as the terminal noadessponding to the
model(object or backgroundhey are most similar to.

Given an image, we try to find the labeling X th@himizes the energy E:

E(X):)I; Do(Xp )+ ququa(xp,xq) poE

In the above equation, coefficie A specifies the relative importance of the data tB(h and the smoothness term B(.).



X= (X1,X2...)(p..>qp\ )is a binary vector whose component xp specifiesltatn pixels p. Eacixp value can be either 1
or 0 where 1 represents an object and O representmckground area. The vector X defines segmentatio
O(X% Xq ) denotes the delta function defined by XifXq, and 0 otherwise. ThB8pqare defined by:

2
[to=1d]
g2

Bpg=K.ex
| pandlqare intensities/colors at pixels p and q. K is astant. The data term Dp measures how well labditxpixel
p given the observed data. We modeled the objedt mactkground color likelihood’s &(./"Obj." )=P(-/1).
andP(./" Back" )=P(-/0)using Gaussian mixtures in the RGB color spacejgutlie data taken from the previous
frame according to the labels given by the outfthe segmentation process.

(a) Image (d) Segmentation results
4 T
@Efri.gaﬁf"d @'ﬁfnk,ﬁfﬂ'f"d

(b) Graph

Fig.1. Example segmentation of a very simple 3bgrage. Edge thickness corresponds to the assdaage weight.
(Image courtesy of Yuri Boykov.)

In every frame, our object and background estimafioocesses determine O and B which are the setsxefs
belonging to the estimated object and backgrougibns respectively.

We compute the edge weights between pixels asottving. The edge weight between pixels p and i aginoted as
W(pg) and the terminal weights (source and sink) betvgdesi p are given by:

W(p9S=-AIn(P(l »/"Background).
W(p,T)=—AIn(P(l o/"object).
W(p,d))=Bpa.

W(pg) contains the inter-pixel similarity, that ensurésittthe segmentation more cohereM(pS) and W(p.T)
describe how likely a pixel is to being backgroamdl foreground respectively.
In a video we construct a 3D graph that is obtaiinenh a series of images that describes the vilaoh node from the

graph is connected to 26 (Pixels) neighbors, tredma it has a 26 edges with weights calculatecssritbed in the 2D
graph. We applied the same ideas as above withtlglichanges in 3D (cf fig. 2).



Fig.2. Human action extracted by graph cut apgroac

3. GLOBAL FEATURES
1.1 Motion History Image Density

Motion History Image Density uses the same tecteiggi MHI [12] with one major change that it tak#® account
how many times the pixel is belonging to the objach video. It takes a video as an input and nst@D image which
represents the historical information about thidewi that contains the projection of all the imaipea video into one
image 2d.

T if (D(X,yt)=1
He (oY) _{max(o, H(x,y,t-1)-1) otherwise
where H; is Motion History Image and D is the binary diffece between successively images. x,y and t ardspixe

coordinates. is a threshold for extraction of moving patternsiieo image sequence. Thus, MHI is a scalar-valued
image where more recently moving pixels are brightée extend the MHI filter by giving the pixel alue equal to
how many times it is white in the video (it belorigghe object), except pixels that had never cheng

MHI (2D)

Action
« jack »

Example

«jump »

« pjump »




«run »

« side »

« skip »

« bend »

« Walk »

Fig.3. Example of human actions and results of IMHter

1.2 3D-Geometrical moments

In general terms, shape descriptors are a setrabexs that are found to describe a shape in confpant A shape
descriptor should ideally be a simplification o fepresentative region but still hold enough imfation so that different
shapes are discriminated. Usually it either deserihe shape boundary or the image region. In gproach we use the
features based region description. Moments areasune of the spatial distribution of ‘mass’ of 8fepe of an object.
Objects in a binary image are represented as af sehite pixels (in 2D) and voxels (in 3D), videase a 2D+t (time)
images, so we can represent it as a 3D image wéptiDequal to t. A set of 14 moments derived by #likes
information about region-based shape descriptdrattearotation, scaling and translation invariani3D dimensions.

Let (x,y,t) be a binary video, that means its Isxalues equal to 1 for the voxels belonging ® dhject (hand) and
zero for the background. We can define the moment a

A pgr = T T Txpyqtrdxdydt

— 00 — 0o

Ay represent the area of the object gid ) the center of the object.

100 ’ 010 ’ 001

00 00 00 p
X=A y—Aoo t=Ao
Meqr= IIJ( yax 0194) (%/4* 1/4)( 01) dxdyd
In discrete, the integration is changed to summatithe 3D geometrical feature descriptors are tatied from our

videos by applying the 3D geometrical moments diyean the videos. 14 moments are extracted aatarke vector:

M {M 200, M 011,M 101, M 110, M 300, M 030, M 003,
3D 7 \M 210,M 201, M 120,M 021,M 102,M 012,M 111

4. RECOGNITION BY DIFFUSION MAPS
1.3 Kernel Methods basics

Diffusion maps (DM) are based on defining the Markandom walk on the graph of data. By performing tandom
walk for a number of time steps, a measure for ipnitx of the data points is obtained. Using thisasgre, the so-called
diffusion distance is defined. In diffusion mape tiraph of the data is constructed first.



Let G = (V, E) be an undirected graph with vertex TABLE I: Categorization by Diffusion Maps
set\/:{vl,...yn}. In the following we assume that the graph G
is weighted, we compute the weights of the edgebengraph Keywords: Diffusion Maps Approach
using the Gaussian kernel function, leading to shmilarity Input: graph

vertices X :{Xl,XZ, ..... ,Xn} U Rd,t,m,s

. Construct a matrix of similarity. Let W be its wieligd
adjacency matrix.

matrix W of the graph G.

—_ dij £ = A 12
Wi =e—2L wi=exp( |[xi—x;|['/ &)
Wh indicat th . f the G . di; d . Normalization by using the Laplace-Beltrami method
ere ¢ in |c§ es the variance of the Gaussian Gin We=wel(did))
denotes to the distance betwe®n andvj. The degree of a .  caculating the transition matrix:
— - — i n-1
vertex VLV is defined as :dizi‘jwij pi =W /( A/did ;) with di=>" wg
=0 =6
We  define the diagonal matrix D  by; °  Diagonalization of matrix P
Di= D(vy ydand Dj=0 fori#] Diffusion space:
Defining the matrix L such as: +  Compute the first k eigenvectot ...V, of P.

d, -W; _'f Vi =V, _ «  Normalize the eigenvectors, dividing each row byiist
Ly = L(vi,v;) =<5-W, if v; and v, are adjacents value o . /1i :/]i //]0

] [l

0 otherwise . Y = sorting the vectors byl, 12, 3.

While the Laplacian of. graph G can be defined by:, o certhe points( Y. ) _, . in Re with the k-
0=D -1/2LD -172where D;1=0if di=0
means algorithm into cluste@l. . .Ck .

The transition probability of verteXt to vertexVj in each
output: Clusters AL...Ac with A, = {j‘yj U Ci}

step is: pi=wi /di
This defines the transition matrix P of the chaiarkbv.
Ovpv Ospisland) pi=1
iov

We can also writf’=D-MW . Now, we define our approach of categorizatioredagiffusion map in graph. The table
1 shows our categorization approach.

1.4 Kernel Methods and the Nystrom extension:

Let Q:{XL,XZ, ..... Xn}DDd be the set of training points. The kernel is acfiom k :Q x Q — R, such that there exist a
mappinge : Q — H, where H is a Hilbert space and the followinger-product relationship holds

k(X )=y =(@ ) #(x1)) 1,j=L,...n

Let KM nxn be the matrix containing the kernel valués= k(X Xi ) If this matrix is semi definite positive, therika

kernel over the se®. A mapping satisfying the dot product property ¢ah be found by the Eigen-decomposition of the
kernel matrix K:

K=UAUT=U/2AU /Mvz2)r ,Where U is the matrix whose columns are the eigetove @,i=1,...n,)and
AN=diag(Aik,....An is the diagonal matrix of the Eigenvalues in dasieg order. If we defingd(X) to be the i-th

row ofU/l2, and since the Eigenvectors are non-negative tjpessemi definite matrix), we obtain the desired

mapping:
(%) = VAR ALBX),eoe A, ()]



The kernel function can then be considered as &rghration of the dot product, and therefore iaisneasure of
similarity between the input points. The Hilberaisp H is called the feature space. When the afgorio be applied

in the feature space uses only the correspondihgrdducts, only the kernel values are needed outtthe need for the
explicit computation of the mapping functions. Tisi€alled the kernel trick.

Let X Ilabe a new input point not in the training set. Thgstkom extension, states that the j-th coordindtéhe
kernel mapping’ for this point can be approximated as:

$1%)= Ji—ik(xxm () F12.n

J i1

or in vector form:
PX)=—U Tk,

A

where kx=[ k(xx),..... k(XX )] andﬁ stands for(\/Z)—FdiaQ(ﬁ poes jn ). In other words, the new point x is

mapped as a weighted linear combination of theespwnding maps for the training poikts The weights are given,
modulo normalization by the Eigen values, by thengkrelationship K(XX ) representing the similarity between x and

X.

Observe that while extending the mapping, we aksedrnto extend the kernel. This is straightforwattemvthe kernel

defined ovelQ is simply a known function defined in the ambispacelld . In other cases the extension of the kernel is
not trivial.

When the data is sampled from a distribution, & baen shown, that the functions defined by thetrys extension
converge uniformly to the Eigen functions of thaitiof the sequence of data driven kernels, givex this limit exists
and that their Eigen functions also converge. Tdsgmptotic property makes the Nystrom extensiorappealing
approach for the out-of-sample extension probleBj.[1

5. EXPERIMENTS

We aim to categorize these ten human actions: mglldnding, jumping, jumping in the same placening, skipping,
walking a side, waving two hands, waving one hamtljacking. We used data-base of 89 videos fidmyhich

are 9 videos for each action except 8 videos ferstip action. They were taken from 9 persons. Ea&tgp contains a
stable background which makes it easy to segmehéxinact the moving body in a video as the objecthe next parts
we work on the binary videos where the human bediié object in each video.

It turned out to be hard to find which features gwed to categorize these ten actions, becausdifftbsion maps uses
the distances between all the examples. The disteen@ different in the same group of action vidébss leads to

the need of finding a strategy for the categoraratf the ten actions. First we categorize theatgtions as two classes:
classl contains actions that need to move all tayllike (Walking, Jumping, Running, Skipping anaMing a

Side); classll contains actions that need to mawe jpart of the body (mostly the hands) or to mthebody in the
same place like (Bending, Jumping in the same plMving two hands, Waving one hand and Jacking)dd this
categorization we used the three features desceabélge first group features

-(difference area, Distance of Action and Centeiavece on x axis)- as vector descriptor extractethfthe MHI
transformed image of our videos. Results showedthasing these features as input to a Diffusicaph it is possible
to categorize the ten actions into the two claBkesve described above.

Now, after the two classes were categorized walapplied the categorization of a diffusion mape@i44 geometrical
moments in 3d (2d+t) as features descriptor togoaiee the second class (class Il) aiming to rezegwhat is

the action in this class. The 14 moments were ttked on the MHIDT images; it gave good results.



There was only one mistake in all the videos is thass (45 videos of classll), After the procesh® spectral
clustering we can decide what is the action in¢hass by applying the recognition function using Nystrom

extension method. We will get thdp; A, ; A; as result. From the results, we found that theoastin this group can be

categorized by only};, as following:

A Action

< —0.33 Bend
—0.23 < A < 01 Jump in place
—0.33 < Ay < —0.23 | Wave one hand

—01<X <01 Jack

A =01 Wave two hands
For classl actions, we tried several features #wargetrical moments, shape descriptors and 2d meriémtas difficult
to categorize the actions in this lass correctlg fdund that the best way to categorize theseractioby separating
again this class into some classes, for some agtimups we get some good results; For the badtsasalwill show
later what their action is, by using anther feaduk&e found that using the five features (LengtfieBence of the
global rectangle, Length Variance of the globatargle, Width Difference of the upper rectanglen@evariance on
the X axis, Width Difference of the Width Differemof the upper rectangle, Center variance on th&i¥ Width
Difference of the bottom rectangle), describechmfeatures part as the second features grogpdssible to
categorize the five action in this class into thekesses using again the Diffusion Maps technidspsctral clustering”
with g =0.005.
Finally we calculated two features, described enféatures section as the third group, (variandaefconvex Hull -
object), and the Difference between convex Hull abgct). To decide what the action is from thedlulass we use

here a new diffusion map to separate the threers:tWe define the categorization in the recognitimcess by}, ,
A, 0 =0.365 as the following:

A Aa Action
< 0.1 =0 Skip
< 0.1 <0 Jump
= 0.1 | Whatever Run

Results were quite good here. In these three actienhave 26 examples of three actions, our approaegorized and
recognized well 24 videos. However, two videos fiamesent the skip action gave wrong answers. Finalir results
for all the data-base videos achieved activity gadtion rates above 96.6\%. This demonstrates Wititput any
previous learning, our technique performs very \wslhuman motion categorization method.

The categorization and recognition process flow:

Fig.4. MHI of the five actions belonging to class |



Fig.5. MHI of the five actions belonging to classthe order was done by the first Eigen vectohviif = 0:000045

6. CONCLUSION AND FUTURE WORKS

A new approach based on Motion Descriptors, massifes, 3D geometrical moments and Diffusion Mapshitiman
motion action categorization and recognition isspreed. The proposed framework classifies haptipgaties through
the video analysis of human motion actions. Tenionaiction have been tested walking, bending, jmgygumping in
the same place, running, skipping, walking a sighing two hands, waving one hand and jacking.

We present Binary videos, each video contains aanurho is doing an activity. We calculate three srfaatures -
(difference area, Distance of Action and Centefavere on x axis)- from the MHI image of the videcseparate the ten
actions into two classes, using the Diffusion Mdpsthe Kernel method and the Nystrom extensiooritym we

define the two classes.

For the first class I, five features -Length Difface of the global rectangle, some descriptorsditeXariance of the
global rectangle, Width Difference of the uppentaagle, Center variance on the X axis, Width Défeze of the bottom
rectangle) were calculated and presented as irgmiiors. We categorized the five actions in thislas three groups
(First: walk, Second: walk a side, third: (run,mkump)). We used two more features -(varianctef(convex Hull -
object), and the Difference between convex Hull abgct)- to categorize the (run, skip, jump) aasioThe all
categorization processes here were done by usinQiffusion Maps (spectral clustering) algorithime recognition
processes were done by using the Kernel methodNgsilom extension method.

Robust global features are extracted, based one®ihgtrical moments for the class Il actions, Thesors are then
used to categorize the five actions classifiechasecond class by Diffusion Maps.

We tested the proposed algorithm only on our 88 the results for all data-base videos achiaegdity recognition
rates above 96.6\%. This demonstrates that, withioyiprevious learning, our technique performs weglf as human
motion recognition methods.

There are many avenues of future work for this,pactuding the recognition of the human motionaus tracked by
the live camera, improve the recognition systemrider to reduce the recognition errors, the redagnsystem should
correct training data online, we also plan to inygreegmentation algorithm to extract the human bodgal time, also
it will be very important to do a virtual realitystem which simulates the human motion action.
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