N
N

N

HAL

open science

Hierarchical image partitioning using combinatorial
maps
Y1l Haxhimusa, Adrian Ion, Walter G. Kropatsch, Luc Brun

» To cite this version:

Y1l Haxhimusa, Adrian Ion, Walter G. Kropatsch, Luc Brun. Hierarchical image partitioning using
combinatorial maps. Joint Hungarian-Austrian Conference on Image Processing and Pattern Recog-

nition, 2005, Prague, Czech Republic. pp.179-186. hal-00815662

HAL Id: hal-00815662
https://hal.science/hal-00815662
Submitted on 19 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00815662
https://hal.archives-ouvertes.fr

Hierarchical Image Partitioning using Combinatorial Maps

Yll Haxhimusa *, Adrian Ion ¢, Walter G. Kropatsch *, and Luc Brun b
1) @ Pattern Recognition and Image Processing Group,
Institute of Computer Aided Automation, Vienna University of Technology, Austria
® GREY CNRS UMR 6072,
Ecole Nationale Supérieure d’Ingénieurs de Caen 6, France

“{yll,ion, krw}@prip.tuwien.ac.at, ®luc.brun@greyc.ensicaen. fr

Abstract:

We present a hierarchical partitioning of images using a pairwise similarity function on a com-
binatorial map based representation. We used the idea of minimal spanning tree to find region
borders quickly in a bottom-up way, based on local differences. The result is a hierarchy of im-
age partitions with multiple resolutions suitable for further goal driven analysis. The algorithm
can handle large variation and gradient intensity in images. Dual graph representations lack

an explicit encoding of the orientation of planes, existing in combinatorial maps.

1 Introduction

The authors in [10] suggested to bridge and not to eliminate the representational gap, and to fo-
cus efforts on region segmentation, perceptual grouping, and image abstraction. They employ a
region-adjacency-graph based technique in order to produce meta-regions? of a particular view
of a generic model. They start from a single vertex, representing a single region (silhouette),
which is derived from the input region adjacency graph (produced by the graph-based segmen-
tation method in [5]), by merging in a pairwise manner the regions of an example image. After
having the apexes (of two or more images) they proceed in a top-down manner to find the de-
composition of each apex region into two subregions by comparing corresponding shapes and
relations among the corresponding regions.

The union of regions forming the group is again a region with both internal and external proper-
ties and relations. Low-level cue image segmentation cannot and should not produce a complete
final good segmentation, because there is an intrinsic ambiguity in the exact location of region
boundaries in digital images. Problems emerge because homogeneity of low-level cues will not

map to the semantics [10], and the degree of homogeneity of a region is in general quantified
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2 An output region adjacency graph as abstraction of the particular view.



by threshold(s) for a given measure [6]. A grouping method should have the following proper-
ties [5]: capture perceptually important groupings or regions which reflect global aspects of the
image, be highly efficient, running in time /inear in the number of image pixels (e.g minimal

spanning tree), and creating hierarchical partitions [17].

In a regular image pyramid the number of pixels at any level [, is r times higher than the
number of pixels at the next reduced level [ 4+ 1. The so called reduction factor r is greater
than one and it is the same for all levels [. If s denotes the number of pixels in an image I, the
number of new levels on top of I amounts to log,(s). Thus, the regular image pyramid may be
an efficient structure for fast grouping and access to image objects in top-down and bottom-up
processes. However, the authors in [1] conclude that regular image pyramids have to be rejected
as general-purpose segmentation algorithms, because they lack shift invariance. In [15, 9, 14]
it was shown how these drawbacks can be avoided by irregular image pyramids, the so called

adaptive pyramids, in image segmentation and feature detection.

Region adjacency graphs (RAG), dual graphs [8] and combinatorial maps have been used be-
fore [3] to represent the partitioning of 2D space. From these three structures, we use the com-
binatorial maps because, RAGSs cannot correctly encode multiple boundaries and inclusions,
and dual graphs lack the explicit encoding of edge orientation around vertices (see Section 2.1
for a problem in 2D), present in a combinatorial map [3]. Moreover with combinatorial maps,
its dual must not be explicitly represented because one combinatorial map is enough to fully
characterize the partition, and its dual can be easily deduced anytime.

In this paper we present a hierarchical method, introduced in [8], which, in a bottom-up manner
produces a stack of region adjacency combinatorial maps (called irregular combinatorial pyra-
mid ), and at the same time preserves the proper topology among regions during the merging
processes, suitable for the top-down decomposition (e.g. as in [10]). Combinatorial maps and
combinatorial pyramids are shortly presented in Section 2. Bortivka’s algorithm [2] was used
to build a minimal spanning tree (M ST)), since it was easily integrated in our combinatorial
pyramid concept. Combinatorial map contraction is presented in Section 3. In Section 4 we

present some experimental results.

2 Combinatorial Maps

Combinatorial maps and generalized combinatorial maps define a general framework which

allows to encode any subdivision on nD topological spaces orientable or non-orientable with

3) called lattice in [10].



a)D=(1,-1,2,-2,3,-3,4,-4,5,—5, b)D=(1,-1,2,-2,3, 3,4, —4) ¢) dual graphs
6,—6,7,—7,8,—8,9, —9)

oc=1(1,29)|(-1,8,3)(-2,-3,4) o=(1,-1,2,-2,3,-3,4,—-4) primal: () vertices, — edges
—4,-17,5)(6,—9, —5)(—6,7, —8) dual: [J vertices, - - edges

Figure 1: a), b) Combinatorial maps. b), ¢) Topological case handled correctly only by combinatorial map.

or without boundaries. Using 2D images, combinatorial maps my be understood as a particular
encoding of a planar graph, where each edge is split into two half-edges called darts. Since each
edge connects two vertices, each dart belongs to only one vertex. A 21 combinatorial map is
formally defined by the triplet G = (D, 0, «) [4] where D represent the set of darts and o (d)
is a permutation on D encountered when turning clockwise around each vertex. Finally o(d)
is an involution on D which maps each of the two darts of one edge to the other one. Given a
combinatorial map G' = (D, 7, ), its dual is defined by G = (D, p, @), with ¢ = o o a. The
cycles of permutation ¢ encode the faces of the combinatorial map. In what it follows, the cycles
of a, o(d) and ¢ contain g a dart d will be respectively denoted by a*(d), 0*(d) and ¢*(d) Thus
all graph definitions used in irregular pyramids [11] are analogously defined. A combinatorial
pyramid is a stack of combinatorial maps successively reduced by the set of contraction and
removal operations, i.e. (Gy, ..., Gy), where k represent the levels of the pyramid. Each map
k+1is build from the one below, &, by selecting a set of contraction kernels K, ;1 and applying
it to a given combinatorial map G, to get the reduced Gy = C|Gy, Kip11] = Gi \ K g+1-

More on removal of the redundant edges can be found in [3].

2.1 Combinatorial Maps versus Dual Graphs

Advantages of combinatorial maps over dual graphs come form the embedding, that is inher-
ently present at the former ones. Let us analyze the ’flower’ example given in Figure 1b,c w.r.t

uniqueness of topological representation. The combinatorial map of this ’flower’ is shown and



defined in Figure 1b) by G = (D, 0, ). If the leafs of the *flower’ exchange position for
e.g. leafs 1 and 3, a different o = (3, —3,2,—2,1, —1, 4, —4) will be defined, hence uniquely
encoding the topology. The dual graphs are encoded by a pair of graphs, the (planar) primal
graph vertices) and its dual. For each edge in the primal graph there is a corresponding one in
the dual, that crosses it (Figure 1c). Since there is no ordering of the edges around the vertices,
the dual graph representation does not uniquely encode the topology of the ’flower’, as can be
easily seen if we exchange the position, for e.g. of leafs 1 and 3, the dual graph describing this
configuration is identical to the previous one (the one without exchanging the position of leafs.)

3 Image Partitioning

The authors in [5] define a function, which measures the difference along the boundary of two
components relative to a measure of the differences of components’ internal differences. This
definition tries to encapsulate the intuitive notion of contrast: a contrasted zone is a region con-
taining two connected components whose inner differences (internal contrast) are less than dif-
ferences within it’s context (external contrast). We define an external contrast measure between

two components and an internal contrast measure of each component, analogously to [5, 7].

Let P, = {CC},CCY,...,CCy} be the partitions on the level k of the pyramid i.e Py is the
attributed combinatorial map Gy (D, ok, o, ai), its vertex set ox(Dy) by Vi, edge set E), =
a*(D) and a;, : D — RT a weight function. One way to attribute the darts is given in Section 4.
Every vertex u € V}, is a representative of a component CC; = RF (u;)®) of the partition P.
The equivalent contraction kernel of a vertex u € Vi, Ko x(u) is a set of darts (a subtree) of the
base level Go(Dy, 09, )S that are contracted; i.e. applying the equivalent contraction kernel

on the base level, one contracts the sub combinatorial map G, C G onto the vertex u.

The internal contrast of a connected component C'C; € Py is defined as the largest dissimilarity

between its vertices. Such a dissimilarity is defined as the largest weight of the darts in K j (u;):

Int(CC;) = max{a(d),d € o (Ko r(u))}. (1)

Let u;, u; € Vj be the end vertices of an edge o (d) C Dy, The external contrast between two
components CC;, CC; € Py is the smallest dissimilarity between the components C'C’; and
CC} i.e. the smallest dart weight connecting Ko j(u;) and K (u;) of vertices u; € C'C; and
u; € CCj:

Ext(CC;, CC)) = min{a(d),d € Koi(w;) A og(d) € Kop(uj)}. (2)

1)
5)

o is encoded clockwise, shown with the arrow in Figure 1b).
connected components C'C|, and receptive field (RF)



Algorithm 1 — Construct Hierarchy of Partitions
Input: Attributed combinatorial map GY.

I: k=0

2: repeat

32 Yu € Vi =0;(Dy)

4 Dpin(u) = {d € Dla(d) = min{a(d’)|d € o*(d)}}

5. Yd € Diin,uf = oj(d), ul = oy (a(d)) with Ext(CCF,CCF) < PInt(CCF,CCY)

6:  include d and a(d) in contraction kernel Ky j1

7 contract combinatorial map G, with contraction kernel, Ky, y11: Gr1 = C[Gr, Ky g11)-
8:  seta(di+1) = min{a(dy) | dk+1 = Cld, Kip11]}

9 k=k+1

10: until G, = G,

Output: An attributed combinatorial map at each level of the pyramid (G, Gy, ..., Gy).

The pairwise comparison function Comp(+, -) between two connected components is defined:

True if EI’t(CCZ,OC]) > PI?’Lt(CCZ,OC]),
False otherwise,

Comp(CC;,CCy) = { 3)

where PInt(CC;, CC}) is the minimum internal contrast difference between two components:

PInt(CC;,CC;) = min(1(CC;) + 7(CCy), [(CCy) + 7(CC)). @)

For the function Comp(CC;, CC}) to be true i.e. for the border to exist, the external contrast
difference must be greater than the internal contrast difference. The reason for using a threshold
function 7(C'C) in Eq. (4) is that for small components C'C, Int(C'C') is not a good estimate of
the local characteristics of the data, in extreme case when |CC| = 1, Int(CC') = 0. Any non-
negative function of a single component C'C, can be used for 7(C'C') [5]. One can define 7 to be
function of the size of CC: 7(CC') = /|CC|, where |CC| denotes the size of the component
CC and (3 is a constant. More complex definition of 7(C'C'), which is large for certain shapes
and small otherwise would produce a partitioning which prefers these shapes. Algorithm 1
shows how to build the hierarchy of partitions. Basically the algorithms starts by collecting
darts with the smallest weight around vertices D,,,;,,(u), and then checks if the weights of these
darts fulfill the condition for merging the regions Ext(CCY, CCF) < PInt(CCF,CCY).

4 Experiments on Image Maps

We start with the trivial partition, where each pixel is a homogeneous region. The attributes of
edges can be defined as d(F'(u;), F'(v;)), where d is some distance function and F'(u;) denotes



(a) 0 (160 000) (b) 21 (2387) (c) 27 (321) (d) 37 (41) (e) 42 (9)
Figure 2: Some levels of the partitioning of ‘Tulips’: level (number of components).

the attributes of u;. Using gray level images, d and F' my be respectively defined as the dis-
tances deduced from the L; norm from the gray level intensity of pixels. Using color images,
one may think to valuate each edge by the Euclidean distance between the vertice’s colors using
a perceptual color space such as the C'IE Luv of Lab. However, the use of C'I E color spaces
requires the knowledge of the illuminants defining RG B components which is often not avail-
able. Therefore, for the sake of simplicity and in order to valuate our method we choose in our
experiments a simple Euclidean distance in RG B space. However the choice of the definition
of the weights and the features to be used is in general a hard problem, since the grouping cues

could conflict each other [13].

For the experiments shown in Figure 2, 3, 4, we used as attributes of edges the euclidean dis-
tance between pixel RGB values, a(u;, u;) = |rgb(u;) — rgb(u;)|. To compute the hierarchy of
partitions, we also need to define 7(C'C') = 3/|CC|, where 3 = const and |C'C/| is the number
of elements in C'C, i.e. the size of the region. The algorithm has one running parameter (3,
which is used to compute the function 7. A larger constant 3 sets the preference for larger com-
ponents. Note that as size of |C'C/| gets larger, which happens as the algorithms proceeds toward
the top of the pyramid, the function 7 — 0, which means that the influence of the parameter
[ decreases. We found that = 300 produces the best hierarchy of partitions of the images
shown in Tulips Figure 2, Obj18__355 Figure 3, and Obj59_0 9Figure 4. Figures 2, 3 and 4
show some of the partitions on different levels of the pyramid and the number of components.
In general the top of the pyramid will consist of one vertex, an apex, which represents the whole
image. Note that in all images there are regions of large intensity variability and gradient. This
algorithm copes with this kind of gradient and variability. In contrast to [5]7) the result is a hi-
erarchy of partitions with multiple resolutions, suitable for further goal driven, domain specific
analysis ®. On the lower level of the pyramid the image is over segmented (partitioned) whereas

6)
7
8)

Waterloo image database and Coil 100 image database

In [16] results of different segmentation methods, including the ones in [5] and [13], are shown and compared.
Please note that a whole class of partitions is created, where a partition is not limited to a certain level of
the pyramid, but can be constructed of components from different levels (the receptive fields of the vertices of a
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(a) 0 (16 384) (b) 23 (512) (c) 32 (65) (d) 39 (10) (e)42 (4)
Figure 3: Some levels of the partitioning of ‘Obj18_.355’: level (number of components).

(a) 0 (16 384) (b) 24 (291) (c) 34 (23) (d) 37 (6) ()39 (2)
Figure 4: Some levels of the partitioning of ‘Obj59_0’: level (number of components).

in the upper it is under segmented (partitioned), the help of mid and high level knowledge would
select the proper partitioning. An approach based on some statistical measures to decide which
level is the most appropriate could be used as well [12]. Since the algorithm preserves details
in low-variability regions, a noisy pixel would survive through the hierarchy. Of course, image
smoothing in low variability regions would overcome this problem. We, however do not smooth
the images, as this would introduce another parameter into the method. The hierarchy of parti-
tions can also be built from an over segmented image to overcome the problem of noisy pixels.
The constant (3 is used to handle an over segmented image at the lover levels of the pyramid.
For an over segmented image, where the size of regions is large, there is no need to define the

function 7, thus the algorithm becomes parameterless.

5 Conclusion

In this paper we presented a method for building hierarchical image partitions using Borivka’s
minimal spanning tree algorithm. The hierarchy is presented as a combinatorial pyramid, where
each level is a 2D combinatorial map. Combinatorial maps are defined in any dimension, thus
the current work should lead the way to segmentation of digital video streams using contraction
in 3D combinatorial maps/pyramids. It was shown that the algorithm can handle large variation
and gradient intensity in images. Even though the algorithm makes greedy decisions locally, it

produces perceptually important partitions in a bottom-up way based only on local differences.

multilevel partition occupy the whole image, and do not overlap)



A drawback is that the maximum and the minimum criterion is very sensitive to noise, although

in practice it has a small impact. To overcome the problem of noise, one could start with an over

segmented image produced by a robust method e.g. robust watershed method. A comparison

between the classes of partitions produced by the presented method, and some of the well known

methods (e.g. [5, 17]) is planned.
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