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Abstract

We propose a multivariate realised kernel to estimate thgost covariation of log-prices. We show
this new consistent estimator is guaranteed to be posiém@-definite and is robust to measurement
error of certain types and can also handle non-synchrorradsg. It is the first estimator which
has these three properties which are all essential for @apwork in this area. We derive the large
sample asymptotics of this estimator and assess its agousaty a Monte Carlo study. We implement
the estimator on some US equity data, comparing our resuftsevious work which has used returns
measured over 5 or 10 minutes intervals. We show that the agmagor is substantially more precise.

Keywords: HAC estimator, Long run variance estimator; Maffkictions; Quadratic variation; Realised
variance.
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1. Introduction

The last seven years has seen dramatic improvements in theamaometricians think about time-varying

financial volatility, first brought about by harnessing hfgbquency data and then by mitigating the influ-
ence of market microstructure effects. Extending this workhe multivariate case is challenging as this
needs to additionally remove the effects of non-synchrericading while simultaneously requiring that the
covariance matrix estimator be positive semi-definite. his paper we provide the first estimator which
achieves all these objectives. This will be called the mailtate realised kernel, which we will define in

equation (1).

We study ad-dimensional log price process = (X®, X@, .., X®@)". These prices are observed
irregularly and non-synchronous over the interi@lT]. For simplicity of exposition we takd = 1
throughout the paper. These observations could be tradgsate updates. The observation times for
thei-th asset will be written ag'’,t.’, ... This means the available database of pricex(ié(tj(”), for
i =12..,NV@, andi = 1,2, ...,d. HereN®(t) counts the number of distinct data points available
for thei-th asset up to time.

X is assumed to be driven b, the efficient price, abstracting from market microstrueteffects. The
efficient price is modelled asBrownian semimartingal€Y € BS.M) defined on some filtered probability

space( 2, F, (F1), P),
t t
Y(t) =/ a(u)du-i-/ o (WdW(u),
0 0

wherea is a vector of elements which are predictable locally bodndigts, o is a cadlag volatility matrix
process andV is a vector of independent Brownian motions. For reviewsheféconometrics of this type
of process see, for example, Ghysels, Harvey & Renault (198& € BSM then its ex-post covariation,

which we will focus on for reasons explained in a moment, is
1
YD) = / Y(u)du, where X =o0/,
0
where

n
(Y1) =plim > {Yt) - Yt} {Yt) - Y-} .
n—o00 j:l
(e.g. Protter (2004, p. 66-77) and Jacod & Shiryaev (200351) for any sequence of deterministic
synchronized partitions € to < t; < ... <ty = 1 with sug{tj;1 — tj} — 0 forn — oo. This is the

quadratic variation oY



The contribution of this paper is to construct a consistensjtive semi-definite (psd) estimator[of] (1)
from our database of asset prices. The challenges of doiagth three fold: (i) there are market mi-
crostructure effectt) = X — Y, (ii) the data is irregularly spaced and non-synchronoiii} tife market
microstructure effects are not statistically independsrhe Y process.

Quadratic variation is crucial to the economics of finandgt. This is reviewed by, for example, An-
dersen, Bollerslev & Diebold (2010) and Barndorff-Niels&28hephard (2007), who provide very extensive
references. The economic importance of this line of reselas recently been reinforced by the insight of
Bollerslev, Tauchen & Zhou (2008) who have showed that ebggestock returns seem well explained by
the variance risk premium (the difference between the imadind realised variance) and this risk premium
is only detectable using the power of high frequency data &8 the papers by Drechsler & Yaron (2008),
Fleming, Kirby & Ostdiek (2003) and de Pooter, Martens & vajkn.d.).

Our analysis builds upon earlier work on the effect of noiseuaivariate estimators dfY](1) by,
amongst others, Zhou (1996), Andersen, Bollerslev, Diel#lLabys (2000), Bandi & Russell (2008),
Zhang, Mykland & Ait-Sahalia (2005), Hansen & Lunde (2Q08ansen, Large & Lunde (2008), Kalnina
& Linton (2008), Zhang (2006), Barndorff-Nielsen, Hanskonde & Shephard (2008), Renault & Werker
(2010), Hansen & Horel (2009), Jacod, Li, Mykland, Podgl&ki/etter (2009) and Andersen, Bollerslev &
Meddahi (2010). The case of no noise is dealt with in the saini¢ as the papers by Andersen, Bollerslev,
Diebold & Labys (2001) and Barndorff-Nielsen & Shephard(2)) Barndorff-Nielsen & Shephard (2004),
Mykland & Zhang (2006), Goncalves & Meddahi (2009), Mykladd&hang (200®) and Jacod & Protter
(1998).

A distinctive feature of multivariate financial data is theepomenon of non-synchronous trading or
nontrading. These two terms are distinct. The first referthéofact that any two assets rarely trade at
the same instant. The latter to situations where one assétsding frequently over a period while some
other assets do not trade. The treatment of non-synchranadisg effects dates back to Fisher (1966).
For several years researchers focused mainly on the effettstale quotes have on daily closing prices.
Campbell, Lo & MacKinlay (1997, chapter 3) provides a sureéythis literature. When increasing the
sampling frequency beyond the inter-hour level severah@sthave demonstrated a severe bias towards
zero in covariation statistics. This phenomenon is oftdéerred to as the Epps effect. Epps (1979) found
this bias for stock returns, and it has also been demondttatéold for foreign exchange returns, see

Guillaume, Dacorogna, Dave, Muller, Olsen & Pictet (1997his is confirmed in our empirical work



where realised covariances computed using high frequeaiay dver specified fixed time periods such as
15 seconds, dramatically underestimate the degree of depee between assets. Some recent econometric
work on this topic includes Malliavin & Mancino (2002), Re(2003), Martens (2003), Hayashi & Yoshida
(2005), Bandi & Russell (2005), Voev & Lunde (2007), Griffin@Gomen (2009) and Large (2007). We will
draw ideas from this work.

Our estimator, thenultivariate realised kerneldiffers from the univariate realised kernel estimator by
Barndorff-Nielsen et al. (2008) in important ways. Thedattonverges a rate* but critically relies
on the assumption that the noise is a white noise processBamtiorff-Nielsen et al. (2008) stress that
their estimator cannot be applied to tick-by-tick data. tdew not to be in obvious violation of the iid
assumption, Barndorff-Nielsen et al. (2008) apply thetinestor to prices that are (on average) sampled
every minute or so. Here, in the present paper, we allow foersel form of noise that is consistent
with the empirical features of tick-by-tick data. For thesason we adopt a larger bandwidth that has the
implication that our multivariate realized kernel estioratonverges at rate'/°. Although this rate is slower
thann¥4 it is, from a practical viewpoint, important to acknowleddmt there are only 390 one-minute
returns in a typical trading day, while many shares tradersdéthousand times, and 390 < 2000"°. So
the rates of convergence will not (alone) tell us which eators will be most accurate in practice — even
for univariate estimation problem. In addition to beingusbto noise with a general form of dependence,
the n'/> convergence rate enables us to construct an estimatorstigataranteed to psd, which is not the
case for the estimator by Barndorff-Nielsen et al. (2008prédver, our analysis of irregularly spaced and
non-synchronous observations cause the asymptoticldistmn of our estimator to be quite different from
that in Barndorff-Nielsen et al. (2008). We discuss theadd@hces between these estimators in greater details
in Section 6.1.

The structure of the paper is as follows. In Section 2 we ssorihe the timing of the multivariate data
using what we call Refresh Time. This allows us to refine higlqéiency returns and in turn the multivariate
realised kernel. Further we make precise the assumptiomaake use of in our theorems to study the be-
haviour of our statistics. In Section 3 we give a detailedwksion of the asymptotic distribution of realised
kernels in the univariate case. The analysis is then extetulthe multivariate case. Section 4 contains a
summary of a simulation experiment designed to investitfaefinite sample properties of our estimator.
Section 5 contains some results from implementing our @stim on some US stock price data taken from

the TAQ database. We analyse up to 30 dimensional covariaatdéces, and demonstrate efficiency gains



that are around 20 fold compared to using daily data. Thislisvied by a Section on extensions and fur-
ther remarks, while the main part of the paper is finished bpmactision. This is followed by an Appendix

which contains the proofs of various theorems given in thgepaand an Appendix with results related to
Refresh Time sampling. More details of our empirical resaitd simulation experiments are given in a web

Appendix which can be found &t t p: // ni t. econ. au. dk/ vi p_.ht ml al unde/ BNHLS/ BNHLS. ht m

2. Defining the multivariate realised kernel
2.1. Synchronizing data: Refresh time

Non-synchronous trading delivers fresh (trade or quotegprat irregularly spaced times which differ across
stocks. Dealing with non-synchronous trading has beentarearea of research in financial econometrics
in recent years, e.g. Hayashi & Yoshida (2005), Voev & Lurigl@0{) and Large (2007). Stale prices are a
key feature of estimating covariances in financial econdogeas recognised at least since Epps (1979), for
they induce cross-autocorrelation amongst asset prigenget

Write the number of observations in theh asset made up to tinteas the counting process® (t),
and the times at which trades are made{8st”, .... We now definerefresh timewhich will be key to
the construction of multivariate realised kernels. Thisdiscale was used in a cointegration study of price

discovery by Harris, Mclnish, Shoesmith & Wood (1995), andridns (2003) has used the same idea in the

context of realised covariances.

Definition 1. Refresh Time for & [0, 1]. We define the first refresh time as= max(t{l), t{‘”), and

then subsequent refresh times as
o @ G)
Tj41 = max(tNgjl)H, tN,(;”+1) .
The resulting Refresh Time sample size is N, while we wiite=nN® (1).

Ther, is the time it has taken for all the assets to trade, i.e. all fhosted price have been updatesl.
is the first time when all the prices are again refreshed. pitdsess is displayed in Figure 1 for= 3.

Our analysis will now be based on this time cldak}. Our approach will be to:

e Assume the entire vector of up to date prices are seen at tefrsshed times((r;), which is not

correct — for we only see a single new price ahd 1 stale prices

ITheir degree of staleness will be limited by their Refresdiconstruction to a single lag in Refresh Time. The extensio
a finite number of lags is given in Section 6.5.



e Show these stale pricing errors have no impact on the asyimplistribution of the realised kernels.
[Figure 1 about here.]

This approach to dealing with non-synchronous data conteetproblem into one where the Refreshed
Times’ sample sizé&\ is determined by the degree of non-synchronicity afti n®, ..., n@. The degree
to which we keep data is measured by the size of the retairtacbdar the original size of the database. For

Refresh Time this ip = dN/ Y, n®. For the data in Figure 1p = 21/27 ~ 0.78.

2.2. Jittering end conditions

It turns out that our asymptotic theory dictates we need &vagyem prices at the very beginning and end
of the day to obtain a consistent estim&tdrhe theory behind this will be explained in Section 6.4, veher
experimentation suggests the best choicerias around two for the kind of data we see in this paper. Now
we define what we mean by jittering. Letm € N, with n — 1+ 2m = N, then set the vector observations

Xo, X1, ..., XpasXj = X(wn,j4m), ] =1, 2,...,n—=1,and

1 1
EEX(TNJ) and Xn:a;)((rN’N_m_H)'

Xo =

So Xp and X, are constructed by jittering initial and final time pointsy Bllowing m to be moderately
large but very small in comparison with it means these observations record the efficient priceowith
much error, as the error is averaged away. These prices afidavdefine the high frequency vector returns:

Xj = Xj — Xj_1, ] =1, 2, ..., n, that the realised kernels are built out of.

2.3. Realised kernel

Having synchronized the high frequency vector retdeqg we can define our class of positive semi-definite
multivariate realised kernel@RK). It takes on the following form
n n
K(X) = Z K(2)Th, wherely, = Z XX]_p,, forh >0, (1)
h=-n j=h+1
andI'y = I'",, for h < 0. HereTl', is theh-th realised autocovariance akd R ~ R is a non-stochastic

weight function. We focus on the class of functiofs,that is characterized by:

2This kind of averaging appears in, for example, Jacod e2@09).



Assumption K. (i) k(0) = 1, kK'(0) = 0; (ii) k is twice differentiable with continuous derivatives; Xiii
definek?® = ¥ k()Zdx, kit = (7K (0)%dx, andk?? = [°k”(x)%dx thenk2?, k11, k22 < oo; (iv)
J75 k(x) expixa)dx > O for all A € R.

The assumptiok(0) = 1 meandy gets unit weight, whil&’(0) = 0 means the kernel gives close to
unit weight toI'y, for small values ofh|. Condition (iv) guaranteek (X) to be positive semi-definite, (e.qg.
Bochner’s theorem and Andrews (1991)).

The multivariate realised kernel has the same form as aatdrictteroskedasticity and autocorrelated
(HAC) covariance matrix estimator familiar in economedr{e.g. Gallant (1987), Newey & West (1987),
and Andrews (1991)). But there are a number of importanegifices. For example, the sums that define
the realised autocovariances are not divided by the sariggleandk’(0) = O is critical in our framework.
Unlike the situation in the standard HAC literature, anrmaator based on the Bartlett kernel will not be
consistent for the ex-post variation of prices, measureduadratic variation, in the present setting. Later
we will recommend using the Parzen kernel (its form is givemable 1) instead.

In some of our results we use the following additional asgionmn the Brownian semimartingale.
Assumption SH.Assume: ando arebounded and we will write, = sup g 1y lo (1)].

This can be relaxed to locally boundedif, o) is an Ito process — e.g. Mykland & Zhang (2@)9

2.4. Some assumptions about refresh time and noise

Having defined the positive semi-definite realised kernelwill now write out our assumptions about the
refresh times{ N, } and the market microstructure effetisthat govern the properties of the vector returns

{x; } and soK (X).

2.4.1. Assumptions about the refresh time

We use the subscriptt to make the dependence dhexplicit. Note thatN is random and we write the
durations asy, — -1 = Anj = N for all .
We make the following assumptions about the durations Etvedservation times.

Assumption D. (i) That E(DL,,HNJIE ) LY % (1), 0 <r <2, as N— oo. Here we assume; (t)

NL[tN]—1

,,,,,

TN, = Oand TN,N+1 = 1.

Remark 1. If we have Poisson sampling the durations are exponentisthemay1, . Ny An,i = Op(log(N)/N),



S0 maxe1,...ny Dni = Op(log(N)). Note both Barndorff-Nielsen et al. (2008) and Mykland & Aba
(2006) assume that max, . n; Dni = Op(1). Phillips & Yu (2008) provided a novel analysis of realised
volatility under random times of trades. We use their assionpD here, applied to the realised kernel.

Deriving results for realised volatility under random tisnef trades is an active research atea.

Example 1. Refresh time. If each individual series has trade times which arrive aseipendent Poisson
processes with the same intensitid, then their scaled durations are D £ exph), j = 1,2, ...,d,

so the refresh time durations are\R = max{D®, ..., D@}, and so (e.g. Embrechts, ifipelberg &
Mikosch (1997, p. 189)) the refresh times have the form ofnawel processni — Tnji-1 = ﬁDN,i,
Dy = Z‘j’:ljloﬁl In particular »y(t) = A1 Z‘j’:lj—l, xo(t) =172 {Z?_lj—2+ (Z?_lj—l>2}. of
interest is how these terms change as d increases. The fasrtteg harmonic series and divergent at the
slow ratelog(d). The conditional variance convergesgé as d— oo, solimp_o 228 — 1. Ford =1,

21 (1)
aa(t) = A7t andax(t) = 2072, s0xa(t) /21 (t) = 2471

2.4.2. Assumptions about the noise

The assumptions about the noise are stated in observatioms-t that is we only model the noise at exactly
the times where there are trades or quote updates. This/&lfor example, Zhou (1998), Bandi & Russell
(2005), Zhang et al. (2005), Barndorff-Nielsen et al. (2088 Hansen & Lunde (2006).
We define the noise associated wXliry, ;) at the observation timey ; asUn j = X(tn,j) — Y (Tn,j)-

Assumption U. Assume the component model

Uni = vni+¢ni, Where vy = th(TN,iflfh)EN,ifha with en; = Aﬁﬁ/z[w(fN,i)_W(TN,ifl)]-

h=0

Here W is a standard Brownian motion an@y i} is a sequence of independent random variables, with
E@N,i[Fy_) = 0andvar(in il Fry; ;) = X (tn,i-1). Furtherey; and¢y; are assumed to be indepen-
dent, While(wh, E;) are bounded and adapted {&+}, with Z‘j"’:o l¥j ()| < oo a.s. uniformly int. We also

assume thab 1l ¢.

Remark 2. The auxiliary Brownian motioWV facilitates a general form of endogenous noise through cor-

relation betweenW and the Brownian motior\V, that drives the underlying process, In fact, the case

3The earliest research on this that we know of is Jacod (19@¢kland & Zhang (2006) and Barndorff-Nielsen et al. (2008)
provided an analysis based on the assumption@agt = Op(1), which is perhaps too strong an assumption here (see remark 1
Barndorff-Nielsen & Shephard (2005) allowed very genepalcing, but assumed times and prices were independent. relceat
important contributions include Hayashi, Jacod & Yoshi#a08) and Li, Mykland, Renault, Zhang & Zheng (2009). Myldata
Zhang (2008) and Jacod (2008) provide insightful analysis.



W = W is permitted under our assumptions.

Remark 3. The standard assumption in this literature is thatt) is zero for allt andh, but this assumption
is known to be shallow empirically. A(t) type term appears in Hansen & Lunde (2006, example 1) and

Kalnina & Linton (2008) in their analysis of endogeneity antvo scale estimator.

The “local” long run variance of is given by, (t) = > 12 vh(t), whereyn(t) = 372, ¥ n (D)9 (1)

for h > 0 andy, (t) = y_n(t) for h < 0, so that the local long run varianceWfis given by
Yy (t) = 2,1 + 2 ().
It is convenient to define the average long run variandg bfy

1
Q:/ >y (u)du,
0

which is ad x d matrix. Whend = 1 we write»? in place of€2, o3 (t) in place ofZy (1), etc. »? appears

frequently later. It reflects the variance of the averagseaifrequent trader would be exposed to.

3. Asymptotic results
3.1. Consistency

We note that the multivariate realised kernel can be wrien
n—-1
KX) =KX +KY.U)+KU.Y)+KU), where KY,U)= > k() D yju| p.
h=—n+1 j

with y; andu; defined analogous to the definitionxf. This implies immediately that
Theorem 1. LetK hold and suppose that &) = Oy (1). Then K(X) — K(Y) = K(U) + Op(v/K(U)).

Theorem 1 is a very powerful result for dealing with endogenooise. Note whatever the relationship
betweenY andU, if K (U) 2o thenK (X) — K(Y) = 0p(1), soif alsoK (Y) £ [Y] thenK (X) LS [Y].
Hansen & Lunde (2006) have shown that endogenous noise isieallp important, particularly for mid-
quote data. The above theorem means endogeneity does et foatonsistency. What matters is that
the realised kernel applied to the noise process vanishaehability.

Because realised kernels are built out of the$égh frequency returns, it is natural to state asymptotic

results in terms oh (rather thanN).



Lemma 1. LetK, SH, D, andU hold. Then as KIn,m — oo with m/n — 0, H = ¢yn”, ¢p > 0, and

ne (1)
H? Py .
TK(X) = [K'(0)| @, if n <1/2, (2
1
K(X) = / T (uydu + 5% [K"(0)| 2 + Op(D), if n=1/2, (3)
0
1
K(X) > / ¥ (u)du, if n > 1/2. )
0

This shows the crucial role dfi. H needs to increase witlhquite quickly to remove the influence on
the estimator of the noise. For very slow rates of increagd the realized kernel will actually estimate a
scaled version of the integrated long-run noise. To esértia integrated variance our preferred approach
is to setH = ¢on®/°, because®” is the optimal rate in the trade-off between (squared) hiasvariance.
In the next section we give a rule for selecting the best ptessj. This approach delivers a positive semi-
definite consistent estimator which is robust to endoggraitl semi-staleness of prices.

The results foH oc n*/? achieve the best available rate of convergence (see bddoivis inconsistent.
The Op(1) remainder in (3) can, in some cases, be shown &) in which case the bias;g2 {k”(O){ Q,
can be removed by using (2) with= 1/5, for example. However, the resulting estimator is not asagly
positive semi-definite and we do not recommend this in apftios.

To study these results in more detail we will develop a cétiimit theory for the realised kernels, which
allows us to select a sensiblé. Before introducing the multivariate results, it is helpfo consider the

univariate case.

3.2. Univariate asymptotic distribution
3.2.1. Core points
The univariate version of the main results in our paper igalewing.

Theorem 2. LetK, SH, D, andU hold. If n — oo, H = ¢on®® and ntt = o(/H/n) = o(n~*/%) we have
that

1 Ls _ ! 2x2(U)
n'/5 (K(X) —/ az(u)du) = MN <c02|k”(0)|w2, 4c0k9’0/ 04(u)—du).
0 0 x1(U)

The notation=S MN means stable convergence to a mixed Gaussian distribufidis notion is im-

portant for the construction of confidence intervals andube of the delta method. The reason is that

10



fola“(u)ﬁ—gﬂ;du is random, and stable convergence guarantees joint ca@naghat is needed here. Stable
convergence is discussed, for example, in Mykland & Zha®§§2, who also provide extensive references.
The minimum mean square error of the = ¢yn®° estimator is achieved by setting = c*£%° so
H = c*£%/°n%/° where
” 1/5
v B SR AR
Notice that the serial dependence in the noise will impaetdoice ofcy with ceteris paribus increasing

dependence leading to larger valuedtf Then

k”(0 1/5
cok®01Q = «?, | C( )| w’> =k, where x =x{lQw}?®, ko= (Ik//(0)| (k9’°)2>
0
Then
1 Ls
n1/5<K(X) —/ az(u)du> — MN (k, 4c?) . (5)
0

This shows both the bias and variance of the realised keritleinarease with the value of the long-run
variance of the noise. Interestingly time-variation in tioése does not, in itself, change the precision of the
realised kernel — all that matters is the average level ofdhg-run variance of the noise. For the Parzen

kernel we haveq = 0.97.

3.2.2. Some additional comments

The conditions omm is caused by end effects, as these induce a bi&s(h) that is of the order B 1w?
Empirically »? is tiny so 2n~1w? will be small even withm = 1, but theoretically this is an important

observation. AssumptioD.i implies Var Dy, |tn)|F~ ) LY awo(t) — xl(t) which is non-negative. Thus

ltn]-1
we have the inequalityz(t) /»21(t) > x1(t), which means thaf0 o“(u)ﬁ—gﬂ;du > fo o*(U)x(U)du. So
the asymptotic variance above is higher than a process withtarying but non-stochastic durations. The
random nature of the durations inflates the asymptotic neeia

The result looks weak compared to the corresponding resutihé flat-top kerneK F (X) introduced by

Barndorff-Nielsen et al. (2008) witk'(0) = 0. They had the nicer result that
nl/“{KF(X) — o (u)du} 5 MN {o 4cok?01Q + £kl [ Wydu + Sk 4},

whenH = cyn?/?, under the (far more restrictive) assumption tbat white noise. Hence, the implication

is that the kernel estimators proposed in this paper wilksgrfiptotically) inferior ta< F (X) in the special

4See also Zhang (2006) who independently obtaine# A consistent estimator using a multiscale approach.
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case wherdJ is white noise. The advantage of our estimator, which#as con®>, is that it is based on
far more realistic assumptions about the noise. This haprical implication thak (X) can be applied
to prices that are sampled at the highest possible frequelitug point is forcefully illustrated in Section
6.1.2 where we compare the two estimatd€gX) and K (X), and show the importance of being robust
to endogeneity and serial dependence. A simulation desigwsthatK (X) is far more accurate than
K F(X) when the noise is serially dependent. Moreover, as an egmafly of constructing our estimator
from K is that it ensures positive semi-definiteness. Naturatig can always truncate an estimator to be
psd, for instance by replacing negative eigenvalues witbszestill, we find it convenient that the estimator
is guaranteed to be psd, because it makes a check for pa$itiveteness and correction for lack thereof,
entirely redundant.

Having an asymptotic bias term in the asymptotic distrinuis familiar from kernel density estimation
with the optimal bandwidth. The bias is modest so longlaacreases at a faster rate than. If k”(0) = 0
we could takeH o< n/? which would result in a faster rate of convergence. Howewenveight function
with k”(0) = 0 can guarantee a positive semi-definite estimate, see Wadi®91, p. 832, comment 5).

The following theorem rules out an important class of estimsawhich seems to be attractive to empir-

ical researchers.

Lemma 2. GivenU and a kernel function with’KO) -4 0 but otherwise satisfigs. Then, as pH, m — oo

we have thatl K (U) 5 2|k (0)| f5 [ (u) + yo(u)} du.

Remark 4. If k' (0) # 0 then there does not exist a consist&r(iX). This rules out, for example, the well

known Bartlett type estimator in this context.

3.2.3. Choosing the bandwidth H and weight function

The relative efficiency of different realised kernels instlilass are determined solely by the constant
IK”(0)(k%9)2|Y/> and so can be universally determined for all Brownian semtingales and noise pro-
cesses. This constant is computed for a variety of kerngjhtdiinctions in Table 1. This shows that the
Quadratic Spectral (QS), Parzen and Fejér weight fungtima attractive in this context. The optimal weight
function minimizes,k”(0)(k%°)2|/5, which is also the situation for HAC estimators, see Andre¥@9().
Thus, using Andrews’ analysis of HAC estimators, it follolwsm our results that the QS kernel is the
optimal weight function within the class of weight functithat are guaranteed to produce a non-negative

realised kernel estimate. A drawback of the QS and Fejgghtéiinctions is that they, in principle, require
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n (all) realised autocovariances to be computed, whereaauher of realised autocovariances needed
for the Parzen kernel is onld — hence we advocate the use of Parzen weight functions. Weliagluss

estimatingg? in Section 3.4.

[Table 1 about here.]

3.3. Multivariate asymptotic distribution
To start we extend the definition of the integrated quaytimitthe multivariate context

2xo(U)

du,
21 (U)

1
Q =/ (W e W)
0
which is ad? x d? random matrix.

Theorem 3. Suppose H= con®°, m~t = o(n=%%), K, SH, D, andU then

1
nl/S{K(X)—/ E(u)du} L MN {c; 2K (0)[€2, 4cok2IQ}.
0

This is the multivariate extension of Theorem 2, yieldingnaitltheorem for the consistent multivariate
estimator in the presence of noise. The bias is determindkedpng-run varianc€, whereas the variance

depends solely on the integrated quarticity.
Corollary 1. An implication of Theorem 3 is that for, & € RY we have
nY/5a’ {K(X) — /Olz(u)du} b= MN {ca?IK" (0)]&' 2D, 4cok? v} IQuap] ,
wherevy, = veo(@). For two different elements’ K (X)b and ¢K (X)d say, their asymptotic covari-
ance is given byicok?%v. IQueg.

So once a consistent estimator for IQ is obtained, Corollargakes it straightforward to compute a

confidence interval for any element of the integrated vagamatrix.

Example 2. In the bivariate case we can write the results as
K(X®) — 3 du
/S| Kx®, XD) = fxidu | S MN (A B), (6)
K(X(j)) — fOlE“du

where
Qi 1 288 2% 25 “
A=c?K'O) | and B= 2cok?’°/ o IiZj+3TF 25T | =du,
Qjj 0 . . 2x.2 1

1l
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which has features in common with the noiseless case detussBarndorff-Nielsen & Shephard (2004,
eg. 18). By the delta method we can deduce the asymptotitbdisin of the kernel based regression and
correlation (extending the work of, for example, Anderdwilerslev, Diebold & Labys (2003), Barndorff-

Nielsen & Shephard (2004) and Dovonon, Goncalves & Medda®07)). For example, wittg(-)) =

folzii du/ folE”du,

/s K (XD, X1
K (X))

o 2IK"(0)|

5 (i — 25 Bi)
0 “ll

—ﬂ“’“) Y MN (A B), where A=

and
2C0k0’0 o ! i 2 + 2 2% X V7 1
B=—— (1 -pg@b [/ < Il i ! )—du}( o )

3.4. Practical issues: Choice oHH

A main feature of multivariate kernels is that there is a Ergandwidth parametdd which controls the
number of leads and lags used for all the series. It must gritviwat raten®®, the key question here is
how to estimate a good constant of proportionality — whichtoals the efficiency of the procedure.

If we applied the univariate optimal mean square error badittivselection to each asset price individ-
ually we would getd bandwidthsH® = ¢*£*°n3/5 wherec* = {k"(0)?/ kﬁ”o}l/5 and&? = ;i /,/1Q;;,
whereXi (u) is the spot variance for theth asset. In practice we usually approxim@zﬂé)—“ by fol %ii (U)du
and uses? = Qii/fol ¥ii (u)du, which can be estimated relatively easily by using a low dewy esti-
mate offol ¥ (uydu and one of many sensible estimatorssaf which use high frequency data. Then
we could construct some ad hoc rules for choosing the glehasuch asHyin = min(H®, ..., H®),
Hmax= maxH®, .., H®) or H=d! Zid:l H®, or many others. In our empirical work we have used
H, while our web Appendix provides an analysis of the impadhaf choice.

An interesting alternative is to optimise the problem foraatfolio, e.g. letting: be ad-dimensional
vector of ones thed~%/K (X): = K (d~*/X), which is like a “market portfolio” ifX contains many assets.
This is easy to carry out, for having converted everything iRefresh Time one computes the market
(V' X//0) return and then carry out a univariate analysis on it, cimgoan optimalH for the market. This
single H is then applied to the multivariate problem.

From the results in Example 2 it is straightforward to detivweoptimal choice foH, when the objective

is to estimate a covariance, a correlation, the inverser@nee matrix (which is important for portfolio
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choice) org-1). For 2 the trade-off is betweecy*|k”(0)|? (212 — szﬂ(m)z, and

Edu

1
200k9’0/ (Z11Z22 + 22, — 4812 1150, + 28077 55) "
0 1

4. Simulation Study

So far the analysis has been asymptotimas co. Here we carry out a simulation analysis to assess the
accuracy of the asymptotic predictions in finite samples.siailate over the interval e [0, 1].

The following multivariate factor stochastic volatilityodel is used
dy® — M(i)dt +dv® —{—dF(i), dv® = p(i)a(i)dB(i), dF® — /1 — (p(i))za(i)dW.

where the elements @& are independent standard Brownian motions\hdL B. HereF® is the common
factor, whose strength is determined,&z‘)‘z — (0%,

This model means that eadt{” is a diffusive SV model with constant drift™ and random spot
volatility o@. In turn the spot volatility obeys the independent processe = exp(ﬁg) + ﬁf)g“)> with
do® = aWpWdt + dB®. Thus there is perfect statistical leverage (correlatietween their innovations)
betweenvV® ands ", while the leverage betweefi’ ando® is p. The correlation betweevi™ (t) and
Y@(t)is \/1_ (,0(1))2\/1— (,0(2))2_

The price process is simulated via an Euler scteraad the fact that the OU-process have an exact

discretization (e.g. Glasserman (2004, pp. 110)). Our kitimns are based on the following configuration
(u®, B, Y, a®, p®) = (0.03 ~5/16,1/8, —1/40, —0.3), so thatg’ = (8{")2/(2«"). Throughout
we have imposed that Gfol o(”z(u)du) = 1. The stationary distribution @f" is utilised in our simulations
to restart the process each dayét(0) ~ N(0, (—2«)~1). For our design we have that the variance of
o?is exp(—Z(ﬁf))z/a(”) — 1 ~ 2.5. This is comparable to the empirical results found in e.gnsén &
Lunde (2005) which motivate our choice fef".

We add noise simulated as

) iid. . N . .
U 1o, Y % N (0.07)  with w2=éz\/N‘1Zj=l"“”“/N)’

where the noise-to-signal ratig? takes the values 0,@01 and 001 This means that the variance of the

noise increases with the volatility of the efficient priceg(eBandi & Russell (2006)).

SWe normalize one second to b¢2B, 400, so that the intervdD, 1] contains 6.5 hours. In generating the observed price, we
discretize[0, 1] into a numbemN = 23, 400 of intervals.
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To model the non-synchronously spaced data we use two indepePoisson process sampling schemes
to generate the times of the actual observati{mﬁ)s} to which we apply our realised kernel. We control the
two Poisson processes y= (11, 1,), such that for examplg = (5, 10) means that on averag€® and
X @ is observed every 5 and 10 second, respectively. This mbeahthe simulated number of observations
will differ between repetitions, but on average the proesssill have 23400x, and 23400, observations,
respectively.

We vary A through the following configuration&3, 6), (5, 10), (10, 20), (15, 30), (30, 60), (60, 120
motivated by the kind of data we see in databases of equitggri

In order to calculatek (X) we need to selecti. To do this we evaluaté’? = [X{"](1)/(2n) and
[X(li/)goo](l), the realised variance estimator based on 15 minute retlihese give us the following feasible

A 3/5 (A2 )3 () 2/5 -
valuesH; = cn¥ (a)5 /[Xl/goo](l)) . The results foHeanare presented in Table 2.

[Table 2 about here.]

Panel A of the table reports the univariate results of edtirgantegrated variance. We give the bias and
root mean square error (MSE) for the realised kernel and eoenpto the standard realised variance. Inthe
no noise case df?> = 0 the RV statistic is quite a bit more precise, especiallymhés large. The positive
bias of the realised kernel can be seen wheéis quite large, but it is small compared to the estimators
variance. In that situation the realised kernel is far moeeige than the realised variance. None of these
results are surprising or novel.

In Panel B we break new ground as it focuses on estimatingntiegrated covariance. We compare
the realised kernel estimator with a realised covarianche Aigh frequency realised covariance is a very
precise estimator of the wrong quantity as its bias is vergeto its very large mean square error. In this
case its bias does not really change very muchiasreases.

The realised kernel delivers a very precise estimator ointiegrated covariance. Itis downward biased
due to the non-synchronous data, but the bias is very modesh wis large and its sampling variance
dominates the root MSE. Taken together this implies thaseglkernel estimators of the correlation and
regression (beta) are strongly negatively biased — whiduésto it being a non-linear function of the noisy
estimates of the integrated variance. The bias is the dorhamemponent of the root MSE in the correlation

case.
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5. Empirical illustration

We analyze high-frequency assets prices for thirty adsétsthe analysis the main focus will be on the
empirical properties of 3& 30 realised kernel estimates. To conserve space we will pnelyent detailed
results for a 10x 10 submatrix of the full 30< 30 matrix. The ten assets we will focus on are Alcoa Inc.
(AA), American International Group Inc. (AIG), American press Co. (AXP), Boeing Co. (BA), Bank of
America Corp. (BAC), Citygroup Inc. (C), Caterpillar IncCAT), Chevron Corp. (CVX), El DuPont de
Nemours & Co. (DD), and Standard & Poor’s Depository RecéyRY). The SPY is an exchange-traded
fund that holds all of the S&P 500 Index stocks and has enaosrtiquidity. The sample period runs from
January 3, 2002 to July 31, 2008, delivering 1503 distingtsdal' he data is the collection of trades and
quotes recorded on the NYSE, taken from the TAQ databaseaghrthe Wharton Research Data Services
(WRDS) system. We present empirical results for both treticsa and mid-quote prices.

Throughout our analysis we will estimate quantities eagh mfathe tradition of the realised volatility
literature following Andersen et al. (2001) and Barnddifélsen & Shephard (2002). This means the target
becomes functions gi¥]s = [Y](s) — [Y](s — 1), s € N. The functions we will deal with are covariances,

correlations and betas.

5.1. Procedure for cleaning the high-frequency data

Careful data cleaning is one of the most important aspeatslafility estimation from high-frequency data.
Numerous problems and solutions are discussed in Falkent2€01), Hansen & Lunde (2006), Brownless
& Gallo (2006) and Barndorff-Nielsen, Hansen, Lunde & Shaph(2009). In this paper we follow the
step-by-step cleaning procedure used in Barndorff-Niekteal. (2009) who discuss in detail the various
choices available and their impact on univariate realistidds. For convenience we briefly review these
steps.

All data: P1) Delete entries with a timestamp outside the 9:30 a.m.ptord window when the exchange
is open. P2) Delete entries with a bid, ask or transactiocegual to zero. P3) Retain entries originating
from a single exchange (NYSE, except INTC and MFST from NA&Dsad for SPY for which all retained
observations are from Pacific). Delete other entries.

Quote data only. Q1) When multiple quotes have the same timestamp, we eplh¢these with a single

entry with the median bid and median ask price. Q2) Deletesrfmw which the spread is negative. Q3)

5The ticker symbols of these assets are AA, AlG, AXP, BA, BACGRT, CVX, DD, DIS, GE, GM, HD, IBM, INTC, JNJ,
JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, SPY, T, UTX, VZ, WMT, ansiOM.

17



Delete rows for which the spread is more that 10 times the amesforead on that day. Q4) Delete rows for
which the mid-quote deviated by more than 10 mean absolwiatis from a centered median (excluding

the observation under consideration) of 50 observations.

Trade data only: T1) Delete entries with corrected trades. (Trades wi@oarection Indicator CORR #

0). T2) Delete entries with abnorm8&kle Condition (Trades where COND has a letter code, except for
“E” and “F”). T3) If multiple transactions have the same tirstamp: use the median price. T4) Delete
entries with prices that are above thekplus the bid-ask spread. Similar for entries with priceowethe

bid minus the bid-ask spread. We note steps P2, T1, T2, T4, Q2nQ8®4 collectively reduce the sample

size by less than 1%.

5.2. Sampling schemes

We applied three different sampling schemes depending epditicular estimator. The simplest one is
the estimator by Hayashi & Yoshida (2005) that uses all ttel@ve observations for a particular asset
combination. Following Andersen et al. (2003) the realisedariation estimator is based on calender time
sampling. Specifically, we consider 15 second, 5 minute,3%hchinute intraday returns, aligned using the
previous tick approach. This results in 1560, 78 and 13 ddikervations, respectively.

For the realised kernel the Refresh Time sampling schenwistisd in section 2.1 is used. In our
analysis we present estimates for the upper leftx100 block of the full 30x 30 integrated covariance
matrix. The estimates are constructed using three diffes@mpling schemes. a) Refresh Time sampling
applied to full set of DJ stocks, b) Refresh Time samplingliagdo only the 10 stock that we focus on and
c) Refresh Time sampling applied to each unique pair of assgb in our analysis we will present three
sets of realized kernel estimates of the elements of thgriied covariance matrix. One set that comes
from a 30x 1 vector of returns, the same set estimated using only théreetj10x 1 vector of returns,
and finally a set constructed from the 45 distinct 2 covariance matrix estimates. Note that the two first
estimators are positive semidefinite by construction, evtiik latter is not guaranteed to be so. We compute
these covariance matrix estimates for each day in our sample

The fraction of the data we retained by constructing Reffiéste is recorded in Table 3 for each of the
45 distinct 2x 2 matrices. It records the average of the dailstatistics defined in Section 2.1 for each pair.
It emerges that we never lose more that half the observafitwmost frequently traded assets. For the least

active assets we typically lose between 30% to 40% of theradi$ens.
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For the 10x 1 case the data loss is more pronounced. Still, on average that 25 percent of the
observations remain in the sample. For transaction datavti@ge number of Refresh Time observations
is 1,470, whereas the corresponding number,id for the quote data. So in most cases we have an
observation on average more often than every 5 seconds ¢oe glata and 15 seconds for trade data. We
observed that the data loss levels off as the dimensionaeese For the 3& 1 case we have on average
more that 17 percent of the observations remaining in theokarfor transaction data the average number
of Refresh Time observations is 966 an®28 for the quote data. This gives an observation on average

more often than every 8 seconds for quote data and 24 seconulade data.

[Table 3 about here.]

5.3. Analysis of the covariance estimatorsCoV, CoV.”Y, Co\'"°¢ and Covs™

Throughout this subsection the target which we wish to esens[Y®, YD) i,j =1,2,...,d,se N. In
what follows the pair, j will only be referred to implicitly. All kernels are compuwtavith Parzen weights.

We compute the realised kernel for the full 30-dimensioredtor, the 10-dimensional sub-vector and
(all possible) pairs of the ten assets. The resulting estisnaf [Y®, Y()]s are denoted by Cgvwo<,
Cov?lmo and CO\EM, respectively. These estimators differ in a number of waysh as the bandwidth
selection and the sampling times (due to the constructidReffesh Time).

To provide useful benchmarks for these estimators we alsgpute: CoQ’Y, the Hayashi & Yoshida
(2005) covariance estimator. Gomhe realised covariance based on intraday returns thatasspaerval of
lengthA, e.g. 5 or 30 minutes (the previous-tick method is used).g’@&vthe outer products of the open to
close returns, which when averaged over many days providstanator of the average covariance between
asset returns.

The empirical analysis of our estimators of the covariarscstarted by recalling the main statistical
impact of market microstructure and the Epps effect. Talienrtains the time series average covariance
computed using the Hayashi & Yoshida (2005) estimatorgt‘fcand the open to close estimator (36\9
Quite a few of these types of tables will be presented and alidyave the same structure. The numbers
above the leading diagonal are results from trade data,uimdars below are from mid-quotes. Itis inter-
esting to note that the CPV estimates are typically much lower than the correspondiog’e® estimate.
Numbers in bold font indicate estimates that are signifigatitferent from CO\?OC at the one percent level.

This assessment is carried out in the following way.
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[Table 4 about here.]

For a given estimator, e.g. CHv?, we consider the difference, = Cov22 — Co\2°%, and com-
pute the sample bias @&sand robust (HAC) variance ﬁ = ¥ + ZZﬂ:1 (1 — %) Yh, Wherey, =
- S0 M istls—h. Herens = e — @andq = int {4(T/100%°}. The number is boldfaced ’f\/fé/s,?‘ >
2.326. The results in Table 4 indicate that €is severely downward bias. Every covariance estimator for

every pair of assets for both trades and quotes are staligtiignificantly biased.

5.4. Results for CoVke0«, CoVf10<10 and Covk2<2

We now move on to more successful estimators. The upper pamable 5 presents the time series average
estimates for Cd{#><®, the middle panel for Cd#><°, and the lower panel give results for 8. The
diagonal elements are the estimates based on transadidirdiagonal numbers are boldfaced if they are
significantly biased (compared to (ﬁB?F) at the 1 percent level. These results are quite encourdgired|

three estimators. The average levels of the three estimaterroughly the same.

[Table 5 about here.]

[Table 6 about here.]

K/ xar

A much tougher comparison is to replace the naisy: CoVt —CoV2*°Cwith s = Coviexd —Covs >,
where the two estimates come from applying the realizedgkeéorprice vectors of dimensiahandd’. Our
tests will then ask if there is a significant difference indélverage. The results reported in our web Appendix
suggest very little difference in the level of the three iseal kernel estimators. When we compute the same
test based ogs = Cov\*¢ — Co2"™ we find that the realized kernels and the realised covarsabased on
5 minutes returns are also quite similar.

The result in that analysis is reinforced by the informafiothe summary Table 6, which shows results
averaged over all asset pairs for both trades and quoteste$hks are not very different for most estimators
as we move from trades to quotes, the counter example i§'Geiich is sensitive to this.

The Table shows C@v><, Cov{>¢ and Coy'>2 have roughly the same average value, which is
slightly below Co¢"°. CoW>2 has a seven times smaller variance than 6y which shows it is a
lot more precise. Of course integrated variance is its sglflom so seven underestimates the efficiency
gain of using Co{f>. If volatility is close to being persistent then GE¥ is at least—22% _ ~ 20

1.612(1-acf;) —

times more informative than the cross product of daily mguiThe same observation holds for mid-quotes.
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Covi**and Coy{'" are very precise estimates of the wrong quantity. ¥as quite close to Cdfeo,
Cowi10<10 and Coyf2<2, with Co\2™ and Coy*<® having a correlation of 942. We note that realised kernel
results seem to show some bias compared t€ovthe difference is however statistically insignificantly
different than zero, as CE¥° turns out to be very noisy.

The corresponding results for correlations are intergstiaturally, the computation of the correlation
involves a non-linear transformation of roughly unbiased aoisy estimates. We should therefore (by
a Jensen inequality argument) expect all these estimatbe tiased. The most persistent estimator is
Corrg/‘"“, but the high autocorrelation merely reflects the large disto that noise has on this estimator, as
is also evident from the sample average of this correlat&iimator. The largest autocorrelation amongst
the more reliable estimators is that of GBr¢, which suggest that this is most effective estimate of the
correlation.

In our web appendix we give time series plots and autocagrafo for the various estimates of realised
covariance for the AA-SPY assets combination using trada. d@hey show Caf#<2 performing much
better than the 30 minute realised covariance but there eioglka great deal of difference between the
statistics when the realised covariance is based on 5 mietlens. The web appendix also presents
scatter plots of estimates based on transaction pricetic@legixis) against the same estimate based on mid-
quotes (horizontal axis) for the same days. These show arkalyla agreement between estimates based
on Co\?2, Cov.™ and Cog°™, while once again CQV/ struggles. Overall Cd{#<2 and Coy™ behave in a
similar manner, with Caf#<2 slightly stronger. Cofo<1° estimates roughly the same level as {o% but

is discernibly noisier.

5.5. Analysis of the correlation estimates

In this subsection we will focus on estimatipg'”’ = [Y®, YD)1s//[YD 1Y, by the realised kernel
correlationpd 1 = K& 13/ KD KED and the corresponding realised correlatigfi.

A table in our web Appendix reports the average estimate$$8r?, p&*% and p2™. It shows the
expected result that<>? is more precise thape >, Both have average values which are quite a bit
below the unconditional correlation of the daily open-tose returns. This is not surprising. All the three

ingredients of theﬁ_fzxz are measured with noise and so when we fééH)K it will be downward bias.
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5.6. Analysis of the beta estimates

Here we will focus on estimating"!’ = [Y®, Y(]s/[Y D], by the realised kernel begd 1 = K&V /K,
Figure 2 presents scatter plots of beta estimates basedrwattion prices (vertical axis) against the same
estimate based on mid-quotes (horizontal axis). The twimasirs arqBSKZX2 to B2M. The results are not

very different in these two cases.

Figure 3 compares the fitted values from ARMA models for the&kand 5 minute estimates of realised
betas for the AA-SPY assets combination. These are basdn omddel estimates for the daily kernel based

realised betas

K _ _ 2
Bs = (]E)gG) + (()0%227\;583 1+ Us O 726us 1, adi—R°=0.213

and for 5 minute based realised betas

Smin_ 11 55“"“ +us —0.821us_;, adj—R?=0.145
(0.0 (0.039

Both models have a significant memory, with autoregressisésrwell above 0.9 and with large moving

average roots. The fit of the realised kernel beta is a littlbditer than that for the realised beta.
[Figure 2 about here.]
[Figure 3 about here.]
We also calculate the encompassing regressions. The &ssifioa the realised kernel betas are

K 5min P2
B = 0084+ 0.8586.%; +0.074631" + us — 0726u, 1, adj-R? = 0.215

with the corresponding 5 minute based realised betas

BSMN — 0,056+ 0.87982"" 4 0.0698K ; + us — 0.822u5_;, adj—R? = 0.150
(0.026) (0.047) (0.035 (0.040

This shows that either estimator dominates the other indefnencompassing, although the realised kernel

has a slightly strongédrstatistic.

5.7. A scalar BEKK

An important use of realised quantities is to forecast ®ituplatilities and correlations of daily returns.

The use of reduced form has been pioneered by Andersen €0fll)(and Andersen et al. (2003). One
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useful way of thinking about the forecasting problem is t@fBARCH type problem with lagged realised
guantities as explanatory variables, e.g. Engle & Gall®@X0Here we follow this route, fitting multivariate
GARCH models with Es|Fs 1) = 0, Cours|Fs_1) = Hs, whererg is thed x 1 vector of daily close to
close returns,Fs_; is the information available at time — 1 to predictrs. A standard Gaussian quasi-
likelihood —2 "1, (log|Hs| + riHs'rs) is used to make inference. The model we fit is a variant on the

scalar BEKK (e.g. Engle & Kroner (1995))
HS = C/C + ﬂHS—l + ars—lré_]_ + st—ls C[, /8’ V Z 0

Here we follow the literature and us#, to denote the conditional variance matrix (not to be cordusih
our bandwidth parameters).

Instead of estimating thd(d + 1)/2 unigue elements df we use a variant of variance targeting as
suggested in Engle & Mezrich (1996). The general idea istimese the intercept matrix by an auxiliary
estimator that is given by

.
A = _ 1 ,
CC=S01—a—pB—yk), S:?;rsrs, (7)

where® denotes the Hadamard product. There is a slight deviatmn the situation considered by Engle
& Mezrich (1996) because K;z is only estimated for the part of the day where the NYSE is opem
accommodate this we follow Shephard & Sheppard (2009) tiiatduce the scaling matrix, in (7) which
we estimate by

A T T

~ MRK ~ — ~ —

b= (") . A=TA Y and =T Y Ke
K ij s=1 s=1

Having S and« at hand the remaining parameters are simply estimated bymizmxg the concentrated

quasi-log-likehood, with
Hs = SQ e V’a + BHs_1 +05rs—1ré_1 +yvKso1, o, B,y = 0.

An interesting question is whetheris statistically different from zero, because this meais tigh fre-
quency data enhances the forecast of future covariatiomutranalysis we will also augment the model
with RV2™,

We estimate scalar BEKK models for the 830, 10x 10, and the 45 % 2 cases. In Table 7 we present
estimates for the two larger dimensions and three selecte@ 2ases. The results in Table 7 suggest that

lagged daily returns are no longer significant for this nvaltiaite GARCH model once we have the realised
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kernel covariance. This is even though the realised kem&lr@ance misses out the overnight effect — the
information in the close-to-open returns. An interestiagttire of the series is that in most cases including
Ks_1 reduces the size of the estimatidg ; term. It is also interesting to note that including_Kin general
gives a higher log-likelihood than including RY. This holds for both the 30-dimensional and the 10-
dimensional cases, and for 40 of the 45 2-dimensional casesur web appendix we report summary
statistics of two likelihood ratio tests applied to all the Z-dimensional cases. The average LR statistic
for removing R\2™, from our most general specification is58, where as the corresponding average for
removing Ks_; is 11.9. These tests can be interpreted as encompassing testgoartk an overwhelming

evidence that the information in R¥Yis contained in i_;.

[Table 7 about here.]

6. Additional remarks
6.1. Relating K (X) to the flat-top realised kernel K (X)

In the univariate case the realised kerkglX) = >"p__ K()Th, with Ty = 31 3 X;Xj_jn. is at first
sight very similar to the unbiased flat-top realised kerfi@arndorff-Nielsen et al. (2008)
n n
KF(X)=To+ Y k(D (OF +T5) . TF = x;xjn.

h=1 j=1
Here thel, andI'{ are not divided by the sample size. This means that the eritmns, the observations
at the start and end of the sample, can have influential sffdittering eliminates the end effectskr(X),
whereas the presencexfy, X 5, ... andXn,1, Xn12, . . . in the the definition thF removes the end effects
from K (X). However, an implication of this is that the resulting estionas not guaranteed to be positive
semi-definite whatever the choice of the weight function.

The alternativeK 7 (X) has the advantage that it (under the restrictive indepenusise assumption)
converges at a'/4 rate and is close to the parametric efficiency bound. It haslibadvantage that it can go
negative, while we see in the next subsection that it is #e@so deviations from independent noise, such as
serial dependence in the noise and endogenous noise, WtiXhis robust to. The requirement thigt(X)
be positive results in the bias-variance trade-off andeesihe best rate of convergence frobf to n'/°.
This resembles the effects seen in the literature on deasiisnation with kernel functions. The property,
fuzk(u)du = 0, reduces the order of the asymptotic bias, but kernel iomsthat satisfy/ u?k(u)du = 0

can result in negative density estimates, see Silverma3t(X&ctions 3.3 and 3.6).
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6.1.1. Positivity

There are three reasons théf (X) can go negativé. The most obvious is the use of a kernel function that
does not satisfyffoOC k(x) exp(ixa)dx > O for all A € R, such as the Tukey-Hanning kernel or the cubic
kernel,k(x) = 1 — 3x2? + 2x3. The flat-top kernels give unit weight §g andy_;, which can mearK 7 (X)
may be negative. This can be verified by rewriting the estimas a quadratic form estimatorfMx, where

M is a symmetric band matril = band3, 1, k(%), k(%), ..., ). The determinant of the upper-left matrix
is given by — {k(%) — 1}2, S0 thatk(ﬁ) = 1 is needed to avoid negative eigenvalues. Repeating this
argument leads tb(%) = 1 for all h, which violates the condition thekl(%) — 0, ash — oco. Finally, the
third reason that the flat-top kernel could produce a negattimate was due to the construction of realized
autocovariancegy, = ZTZl XjXj—n. This requires the use of “out-of-period” intraday retursisch as<;_y .
This formulation was chosen because it makék &)} = 0 whenU is white noise. However, since_y
only appears once in this estimator, with the tety®;_p, it is evident that a sufficiently large value of
X1—n (positive or negative, depending on the signxof will cause the estimator to be negative. We have
overcome the last obstacle by jittering the end-points ctvimakes the use of “out-of-period” redundant.

They can be dropped at the expense @f@n 1) bias.

6.1.2. Efficiency

An important question is how inefficient iK (X) in practice compared to the flat-top realised kernel,
KF(X)? The answer is quite a bit whéh is white noise. Table 8 gives [BY*{K (X) — [Y]}]Z/a) and
E[nY*{KF(X) - [Y]}]Z/a), the mean square normalised by the rate of convergen&e 0K) (which is
the flat-top realised kernel using the Parzen weight functidn implication is that the scaled MSE for
the K(X) andK ; will increase without bound as — oo because these estimators converge at a rate that
is slower tham'/4). The results are given in the case of Brownian motion olesewith different types
of noise. Results for two flat-tops are given, the Bartl&tf (X)) and ParzenK F (X)) weight functions.
Similar types of results hold for other weight functions.

Consider first the case with Gaussidnwhite noise with variance ab?. The results show that the
variance ofK (X) is much bigger than its squared bias. For smatlhere is not much difference between

the three estimators, but by the time= 4, 096 (which is realistic for our applications) the flat-t&g (X)

"The flat-top kernel is only rarely negative with modern datmwever, if[Y] is very small and the)? very large, which we
saw on slow days on the NYSE when the tick size was $1/8, themihappen quite often when the flat-top realised kerneled.us
We are grateful to Kevin Sheppard for pointing out these tiegdays.
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has roughly half the MSE oK (X) in the univariate case. Hence in ideal (but unrealisticjusitstances
KF (X) has advantages ov&r(X), but we are attracted to the positivity and robustness of).

The robustness advantagekotX) can be seen using four simulation designs whérés modelled as
a dependent process. We consider the moving average sgteifidJ; = ¢; — 0¢;_1, with 6 = £0.5
and the autoregressive specificatidhy, = ¢U;_1 + €;, with ¢ = £0.5, wheree¢; is Gaussian white
noise. The bandwidth for all estimators were to be “optimaitierU being white noise, which is the
default in the literature, sélf = 2.28»%3n?3, HY = 4.77wnY?, andHp = 3.51w%°n%° wherew? =
> b covUj, Uj_p). The results show the robustnesskofX) and the strong asymptotic bias i and
K[ under the non-white noise assumption. The specificatidns, 0.5 andy = —0.5 induce a negative
first-order autocorrelation while = —0.5 andg = 0.5 induce positive autocorrelation. Negative first-order
autocorrelation can be the product of bid-ask bounce &ffe¢kis is particularly the case if sampling only
occurs when the price changes. Positive first-order auteledion would, for example, be relevant for the

noise in bid prices because variation in the bid-ask spreaddinduce such dependence.

[Table 8 about here.]

6.2. Preaveraging without bias correction
6.2.1. Estimating multivariate QV

In independent and concurrent work Vetter (2008, p. 29 amti®e3.2.4) has studied a univariate subop-
timal preaveraging estimator §¥] whose bias is sufficiently small that the estimator does retrto be
explicitly bias corrected to be consistent (the bias ceeckwersion can be negative). Its rate of convergence
does not achieve the optimat /4 rate. Hence his suboptimal preaveraging estimator has sonilarities
to our non-negative realised kernel. Implicit in his workhst his non-corrected preaveraging estimator is
non-negative. However, this is not remarked upon explicidr developed into the multivariate case where
non-synchronously spaced data is crucial.

Here we outline what a simple multivariate uncorrected yeeaEging estimator based on refresh time
would look like. We define it a/ = Y1~ XX}, whereX; = (Y2H) Y23\ g (&) Xj4n, Y2 =
fol g’(u)du. Hereg(u), u € [0, 1] is a non-negative, continuously differentiable weightdiion, with
the properties thag(0) = g(1) = 0 andy» > 0. Now if we setH = #n®>, then the univariate result in
Vetter (2008) would suggest thet converges at rate~%/5, like the univariate version of our multivariate

realised kernel. There is no simple guidance, even in theatiate case, as to how to chodke
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In the univariate bias corrected form, Jacod et al. (2009Wsﬂnat\7 is asymptotically equivalent to
using aK F (X) with k(x) = v, * fxl g(ugu — x)du andH o n2. It is clear the same result will hold
for the relationship betwee¥ and K (X) in the multivariate case wheH = #n¥°. A natural choice of
gisgx) = (1 — x) A X, which delivers.fo1 g?(u)du = 1/12 and &k function which is the Parzen weight
function. Hence one might investigate usifig= c, as in our paper, to drive the choice Hf for V when
applied to refresh time based high frequency returns.

Following the initial draft of this paper Christensen, Katmmock & Podolskij (2009) have defined a bias
corrected preaveraging estimator of the multivarfatewith H = 6n/2, for which they derive limit theory.

Their estimator has the disadvantage that it it is not guaeshto be positive semi-definite.

6.2.2. Estimating integrated quarticity

In order to construct feasible confidence intervals for eatised quantities (see Barndorff-Nielsen & Shep-
hard (2002)) we have to estimate the stochastis d? matrix, IQ. Our approach is based on the no-noise
Barndorff-Nielsen & Shephard (2004) bipower type estimafplied to suboptimal preaveraged data taking
H = on%>. This is not an optimal estimator, it will converge at raté, but it will be positive semidefinite.
The proposed (positive semi-definite) estimator of @€y is Q = n y-1_7'* {c,- c,—3 <c,~ Ciin + Gt c,-)},
wherec; = vedx;X;). That the elements d is consistent using this choice of bandwidth is implicitfiet

thesis of Vetter (2008, p. 29 and Section 3.2.4).

6.3. Finite sample improvements

The realised kernel is non-negative so we can use log-treamsf

1 2
nl/s{lo K (X)) —lo (/ 2udu)} =g VIN X 4 X
g(K (X)) — log n o°(u) = foloz(u)du foloz(u)du

to improve its finite sample performance. When the data isleely spaced and the volatility is constant

thenko 2 = (w/0)%/° [K"(0)|"° (k2)*°, which depends less ar? than the non-transformed version.

6.4. Subtlety of end effects

We have introduced jittering to eliminate end-effects. Tetiger ism the smaller is the end-effects, however
increasingm has the drawback that is reduces the sample mizéhat can be used to compute the realised

autocovariances. GiveN observations, the sample size available after jittering is N — 2(m — 1), so
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extensive jittering will increase the variance of the estion. In this subsection we study this trade-off.

We focus on the univariate case whérds white noise. The mean square error caused by end-effects
is simply the squared bias plus the variancedgtly + UnU/,, which is given by #120? + 4m~—20* =
8w*m2, as shown in the proof of Lemma A.2. The asymptotic variambstfacting from end-effects) is
5c2n~2/5 = 5|k (0)w?|”° (k:0IQ}¥°n~2/5. So the trade-off between contributions from end-effects a

asymptotic variance is given by
gN,wz,IQ(m) — m_280)4 + 5 |k//(o)w2‘2/5 {ks),OIQ}4/5 (N _ m)—2/5'

This function is plotted in Figure 4 for the case whéte= 1, 000 and IQ= 1 andw? = 0.0025 and @O01.
The optimal value o ranges from 1 to 2. The effect of increasimgn optimalm can be seen from Figure
4, where the optimal value ofh has increased a little from Figure 4 m$as increased to, 500. However,

the optimal amount of jittering is still rather modest.

[Figure 4 about here.]

6.5. Finite lag refresh time

In this paper we roughly synchronise our return data usiegctincept of Refresh Time. Refresh Time
guarantees that our returns are not stale by more than oireRaggresh Time. Our proofs need a somewhat
less tight condition, that returns are not stale by more théinite number of lags. This suggests it may
be possible to find a different way of synchronising data Whiaows information away less readily than

Refresh Time. We leave this problem to further research.

6.6. Jumps

In this paper we have assumed thais a pureBSM. The analysis could be extended to the situation
whereY is a pureBSM plus a finite activity jump process. The analysis in Barnfdielsen et al. (2008,
section 5.6) suggests that the realised kernel is consistetne quadratic variatiorfY], at the same rate of

convergence as before, but with a different asymptoticiligion.

7. Conclusions

In this paper we have proposed the multivariate realisedekewhich is a non-normalised HAC type esti-

mator applied to high frequency financial returns, as amedtir of the ex-post variation of asset prices in
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the presence of noise and non-synchronous trading. Theecbhbkernel weight function is important here
— for example the Bartlett weight function yields an incatant estimator in this context.

Our analysis is based on three innovations: (i) we used ah/&igction which delivers biased kernels,
allowing us to use positive semi-definite estimators, (8)aordinate the collection of data through the idea
of refresh time, (iii) we show the estimator is robust to tmaining staleness in the data. We are able to
show consistency and asymptotic mixed Gaussianity of dimator.

Our simulation study indicates our estimator is close todeinbiased for covariances under realistic
situations. Not surprisingly the estimators of correlasi@re downward biased due to the sampling variance
of our estimators of variance. The empirical results baseoun new estimator are striking, providing much
sharper estimates of dependence amongst assets than Wiasiglyebeen available. We have analysed
problems of up to 30 dimensions and have found that efficigiadys of using the high frequency data are
around 20 fold.

Multivariate realised kernels have potentially many arefaapplication, improving our ability to esti-
mate covariances. In particular, this allows us to utililghhfrequency data to significantly improve our
predictive models as well as providing a better understdrdset pricing and management of risk in finan-

cial markets.
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Appendices
Under the assumptions given in this paper, our line of argumwél be as follows.

e Show the realised kernel is consistent and work out its lthréory for synchronized data. This is
shown in Appendix A, where Propositions A1-A5 and Theoren3sA¥ are used to establish the
multivariate result in Theorem 3 and the univariate resulflheorem 2 then follows as a corollary to
Theorem 3.

e Show the staleness left by the definition of refresh time lwaisnpact on the asymptotic distribution
of the equally spaced realised kernel. This is shown in AdpeB.

Appendix A: Proofs for synchronised data
Proof of Theorem 1. We note that for ali, j,

Y ® K(Y®) Ky® ul
K < um ) = ( K(Y® U K (U )y )
is positive semi-definite. This means that by taking the rdeiteant of this matrix and rearranging we see
that K (Y®, U1)2 < K(YD)YK (U D), so that

K(X)=K )+ 0 (\/max K (Y(i))\/maxj K (U(j))) + K (U),

and the result follows]
Next collect limit results abouk (Y) andK (U). Due to Theorem 1 we can safely ignore the cross terms
K(U,Y) as long aK (U) vanishes at the appropriate rate.

A.1l. Results concerningK (U)
The aim of this subsection to is prove the following Proposit

Theorem A.4. UnderK andU then
H2
—-K(U) B K09, asnH,m - cowith H2/(mn) — 0.
Before we prove Theorem A.4, we establish some intermedéstats. The following definitions lead

to a useful representation &f(U). Forh =0, 1, ... we define

n—-1
Vh = Z UjUJ'/,h + Uj_hUj/, and Zh = (UoUé + UhU6) + (UnU,{,,h + Un_hUé).
j=h+1
Proposition A.1. The realised autocovariances of U can be written as
To(U) =Vo—Vi+3Z0— 23 (A1)
Ch(U) +Th(U) = —Vho1 + 2Vh — Vhia + Zn — Znga, (A.2)

so with k = k(}) we have

n—1 n—1
KU) = (ko — k1) Vo — Z (Kn+1 — 2Kn + Kn—1) Vh + 3Z0 — Z (kn — kn-1) Zp. (A.3)
h—1 h=1
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Proof. The first expression, (A.1), follows from

n n-1
Fo(U) =Y "(Uj —Uj_(Uj — Uj_1) = UoU§ + UpU; + > “(UjU] + U U))
j=1 i=1

n—1
=Y (UjU]_; +UjqU)) = (UpU/_y + Un_gU; + UgUj + UsUp).
j=2
and (A.2) is proven similarly]
We note that end-effects can only have an impacKagb)) throughZ,, h =0, 1, ..., becausdJ, and
U, do not appear in the expressions Y6, h=10,1, ....

Proposition A.2. GivenU. Then

1 » { 2[01{E{(u)+yo(u)}du forh =0,

-V
n" Jo AW +wmy}du  forh> 0,

and Z, = Op(m™) forallh = 0,1, ... and as m— oo,

2 ¥i+n(0) + ¥j4n(0) + ¥j4n (D) + ¥j4n (D'} forh > 0.

2{Zy0) + =y (1)} forh =0,
mZ, LY
j=0

Note thatfol {Eg(u) + yo(u)} du is the average local variance Of as oppose to the average long-run
variance2 = fol {Zeu) + Y52 vn(w)} du.
Proof of Proposition A.2. The first result follows by the definition of}, and U. Next, sinceUy =
m-! ZT;olU (tj) it follows that Z,, is stochastic for anyn < oo, and

m—1m-1

mUgUg=m=2 3> upu @) > =y (0).

j=0i=0

and similarmU,U;, Y Yy (1). So the result foh = 0 follows from Zg = 2(UgU; + U,U;). Next, for
h > 0,

MU}, = YT 0U U (mesen) > 52 0r-j-n(0) = Y ¥j4n(0)',
j=0

and similarly we findnU,U/,_, > > ien(D). O

Proof of Theorem A.4. Sincek’(0) = 0 andk”(x) is continuous we havky — ky = —H~2k"(¢)/2, for
some 0< ¢ < H!. Defineayg = —k"(¢) anda, = H?(—Kkjp11 + 2K — Kinj—1), and write V-terms of
K(U), see (A.3), as

n-1

(ko — k)Vo — D (Kns1 — 2Kn + kn_1) Vi
h=1
n—1
=H? > a) UUj y=H7? > a ) UUj ,+H? Y a ) Ujuj .
h=—n+1 j lhj<vH i Ih|>vH j
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By the continuity ofk”(x) it follows that

2
sup |—apn+ k”(O)‘ — 0, asH,n — oo with H/n = 0o(2),

lhi<vH

so that the first termg, Z\mgmah% Zj UjUi_, = —k"(0){>$2 + 0o(z). The second term vanishes be-
cause

ZUUJh

El

n
— > |H%n|- sup
" Ihi=vH = |

Y alsuu,

|h\>\/7 i

7|2 U101 = 0p(.
For theZ-terms we have by Proposition A.2 thag = Op(m‘l), and

|_|

n—-1

> (kn —kn-1)Zn =

h=1

{k’(h/H) +0o(1)} mZ, = Op(m™).
1

Il
i

1
m

O

Proof of Lemma 2. Whenk'(0) # 0 we see that the first term of (A.3) is such tlﬁcko — k)Vo Y
—k'(0)2 fol {E; (u + yo(u)} du. From the proof of Theorem A.4 it follows that the other termgA.3) are
of lower order.CJ

A.2. Results concerningK (Y)

The aim of this subsection to is prove the following Theorbat toncerrK (Y) in the univariate case. Then
we extend the result to the multivariate case in the nextestilos.

Theorem A.5. SupposeK, SH, D, and U hold then as nm, H — oo with H/n = o(1) and nT! =
o(y/H/n), we have

1
| (K(Y) — / oz(u)du> =g VIV (o, 4K00 / 4(u)”2(u) ) (A.4)
H 0 0 x1(U)

Before we prove this Theorem fét (Y) we introduce and analyze two related quantities,
N
K(Y) = Z(nﬁi +ay) and  K(Y) = Z(ﬁﬁﬂ + i)

WhereyN’i = Y('EN)i) — Y(‘L’N’i,]_) andyN’i =0 ('EN,i,]_) (WfN,i — WtN,i—l) and

N—1 N—1
1 2 A(1 ) 2 A2 N N
= Yaie A =i g = 29N, Z KnYion.  Aing = 29N Z KnYNji—hs
h=1 h=1

K is similar toK, except that it is not subjected to the jittering, afds similar toK , but is computed with
auxiliary intraday returns. Note that we have (uniformheoy) the strong approximation (und&H)

Vi = / " du+ / " o WAWU) = §; {1+ 0p(NH2), (A5)

TNi—1 N,i—1
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(Jacod (2008, (6.25)) and Phillips & Yu (2008, equation Ba)Eten ;i = /A (Wey; — Wy, ,) SO that
eni ~ iid N(0,1) and note thafin; = N2 (Tn,i-1) D,{{,izsN,i. We useyy; as our estimate ofy ;
throughout, later showing it makes no impact on the result.

Note thatyn,i — Yn,i = [, {o(U) — o (tni—j-1)} dW(u), so with doJ; = A.dt we find

TNi—j—1

/ oW — o (i) )W) =

TN,i—-1
. A2 D2
Mo / (U= ni-1) dufl+0p(} = =5 {1+ 0p(D)}.

TN,i—1

Proposition A.3. Suppos&, SH, andD hold. Then as r+ oo with H = o(n) and m= O(+/Hn), then

\/E{K(Y)— KON | =0p().

Proof. The difference betweek (Y) and K(Y) is tied to them first andm last observations. So the
difference vanishes ih does not grow at too fast a rate. We have

AL, " Dni 2 1/2\12 m*/2
> Vi = ZTU (tni-1) R {1+ 0p(NTVA)) = Op(—
i—1 i—1
since may.;,..m Dn,i = 0p(m*?), 62 (t) is bounded, and_"; ¢4 ; = Op(m). So we nee ﬁ% =

O(1) which is implied bym®/(HN) < m3/(Hn) = O(1). O

Proposition A.4. Supposé&H andD hold then, so long as H= o(N),

\/E{K(Y)— K(Y)} =0p(1).

Proof. From, for example, Phillips & Yu (2008) it is known that*, ni) — i, = 0p(N~Y2). The only
thing left to do is to prove thal[!, i} — A, = op(v/H/N). First note that

N N N
I om =i = Y YN (Z thN,i-h) = 9. (Z khyN,i—h)

i=1 i=1 h>0 i=1 h>0
N
= (yni — Ini) (ZkhYN| h) +ZVN| (Zkh (Yn.i-h — Inie h)) - (A.6)
i=1 h>0 h>0

The first term of (A.6) is a sum of martingale difference sem@s. Its conditional variance is

2

N
V= ZATN'l (Zkhle h) <

i=1 h>0

N 22 1 ’ g H
Z Ni-1 S ZkhYN,ifh :op(N)op(l)Nop(N):op(H/N),

i=1 h>0

Z|H

_max D,Z\“(
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where we have used that,_,; knyn.i—nh = Op(v/H/N)). The second term is

N N TN,i—h
D 980 D kn (Ynioh — Inion) = D 9N (Z kh/ {o) —o(nin-1)] dW(U)) -

i=1 h>0 i=1 h>0 TN,i—h-1
It has a zero conditional means and its conditional variasce

—h

—ZU TN,i—1 DNleh/ {U(U)—G(TN,i—h—l)}ZdU

h=0 IN,i—h-1

(o1 DN.Zkﬁ 2 NT2DR i n/2{1+0p(D)} ., where dol = At
h>0

IA |
Z|e 2le ]
™M= &Mz

Il
N

1 [N/q] q(j+1)
GZ(IN’i_l)i!E??(N DN’iEmianN’i Z max DY Z k2 {1+ op(D)}
i

il i ‘
—5 1=i+1..qi+q g

=<

2|
=

o2 (tni-1) 0p(NY?) Op(1)0p(q)Ho(log §)
i=1
H

= op(ﬁ), takeq = N¥2/log(N).
Here We have used that max 1. _cim Dni = Op(mY?), that + Zﬂ’j{]‘? k()2 is at most of orden(j 1),
sincet YN k()2 = W LS k()2 is convergent, and tha |- L1 § = O(ogm). O

Proposition A.5. SupposesH andD hold and H= o(N), then as N— oo

1
\/EOQ(Y) —/ oz(u)du) = MN (o, 4kf”°/ A )
: 0 0 W

Proof. We haveK (Y) = Y[, 02 (tnjiz1) Ani + AN + i) - Phillips & Yu (2008) imply that
\/g (ZiN:l(,z (tnji—1) AN — foloz(u) du) = op(ﬁ). This means that

N (> ', N @, @
ﬁ<K(Y)_/O o (U)du)= HE(ﬂN,i‘i‘UN,)‘i‘Op(l),

which is the sum of the martingale diﬁerencésﬂ), + ﬁﬁ),, o, - S0 We just need to compute its contri-
butions to the conditional variance.

The first term,ﬁ,(\,l)I , is the sampling error of the well known realized variancethi present context, it

was studied in Phillips & Yu (2008), and it follows th@/tg SN NG = Op(H™1). This means that unless
H = O(1) this term will be asymptotically irrelevant for the realiskernel. Next

2
(ﬁ(NZ)l)2 = yﬁ i (H_lz khyN,ih) ,
h>1
where(H=2Y", 4 khyN,i_h)z 2 k200 2(y ). SinceNYZ ; = Dy io?(tn,)ed ; we have

k0.0 N
ZG TNI l D2||F‘EN| 1)+0p(1)

N N
ﬁ Zvar(ng\lZ)l |~7:TN,i—1) =
i=1
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Now we follow Phillips & Yu (2008) and write

) E (Dﬁ,i |‘7:TN,i—1)

N E(Dﬁ,ilffN,i—l)
" E (D [ Foy, )

E(DZ;|Fr, ) =D '
( N,|| N, 1) E(DN,iler,i_l)

_ {DN,i — E(DN,i |~7:TN,i71)}

Now

k.0,0 N 4 E(Dﬁ,i ‘]'—TN,i—l)
N ;a (TN,i—l) {DN,i —E (DN,i |.7:TN_i_1)} m

= Op(1)7
as this is a temporal average of a martingale differenceesemu This means that

N ¢ ~(2) 0,0 . 4 E(Dlz\l,ilj:fN.i—l)
a EVar(nN,i |Foni) =K ;U (TN,i—l) Anii m + 0p(1),

1
1,00 4%2(U)
=Kk, /o o, () du + 0p(1),

by Riemann integration. The results then follows by the mgale array CLTO
Proof of Theorem A.5. Follows by combining the results of Propositions A.3, Adda\.5.

A.3. Multivariate Results

Proof of Lemma 1. The results (2) and (4) follow by combining Theorem 1 with psition A.4 and
Theorem A.5. From the proof of Theorem 1 we hd¢éX) = K(Y) + K(U) + Op(v/K(U)), and (3)
follows sinceK (Y) > [Y]andK (U) > %Q whenH = ¢yn?2. O

Proof of Theorem 3. We analyse the joint characteristic function of the redlisernel matrix

d
Eexplitr {AK(X)}] = Eexp|i Y ajtr {K(X)ajaj}
=1

whereA = Z‘j’zl Ajajal is symmetric matrix of constarits Hence it is sufficient for us to study the joint
law of a} K(X)a;, for any fixeda;, j = 1,...,d. This is a convenient form aﬁ K(X)a; = K(a} X), the
univariate kernel applied to the processX. This is very convenient a& X is simple a univariate process
in our class.

The univariate results imply that the only thing left to stud the joint distribution ofK (a}Y). Now
under the conditions of the Theorem withH — oo andH « n” for n € (0,1) andm/n — 0, we will
establish that

t 1
\/E (K(Y) S / E(u)du) LS MN (o, 400 / \P(u)%Z(u)du). (A7)
H 0 0 x1(U)

wherew (u) = X (u) ® X (u). This will then complete the theorem. The univariate progblies we that can
replaceK (@ Y) by K (@ Y) = 31y X2, i +2 311 Xn i Sn 1 KnXn,j.i—h, Wherexy i = &0 (tni—1) Ay en,

n,i

81t is well known that the distribution is characteristed I tmatrix characteristic function E efdgr { A'K (X)}]. Without
loss of generality we can assundeis symmetric aK (X) is symmetric andr (A’K (X)) = Za‘i KX)ji = Zaii K(X)ii +
L i
Y@ 2K =Y (@) +aji)/2KXij = 3tr {(A+ AKX}

i<] i
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anden; = W, — W, , ,. But this raises no new principles and so we can see that tistnsame method
as before

Gl ke |- (O o] (s a0

(agz(u)aj)z (ajE(U)ak)2 xa(U)

(a} E(u)a,-)z x1(U) u

1
=2 MN | 0, 4K20 /
0 (a}z(u)ak>

N

Unwrapping the results delivers (A.7) as required.
Proof of Theorem 2. Follows as a corollary to Theorem 31

A.4. Optimal choice of bandwidth

The problem is simply to minimize the squared bias plus therdmution from the asymptotic variance with
respect tacy. Set 1IQ= fol o*(u)du. The first order conditions of min{—c;*k”(0)%w* + co4k2°IQ} yield
the optimal value fory

1/5

k” (O 2 4N\ 1/5
x (#) =cE¥5 with ¢ = [K'(02/k)
k2010
With H* = ¢*£4°n%/° the asymptotic bias is given by

K’ (0)20% —2/5
_< kE)O_O) |§ ) K/ (w8 = [K'(©?[” {kK2OIQ) "> /s,

and the asymptotic variance is

< k” (0) 26()4

1/5
W) 4k9’0|Qn—2/5 A 4|k//(0)a)2|2/5 {k?’OIQ}4/5 n_2/5. 0

Appendix B: Errors induced by stale prices

The stale prices induce a particular form of noise with anogedous component. The price indexed by
time 7; is, in fact, the price recorded at timé) < 1, fori = 1,...,d. With Refresh Time we have
T > tj(') > 7j_1 SO that

XO@) =Y + 00" = YO + U0 — (YO ) = Y.

U(i>(1’j)

The endogenous component that is induced by refresh tii€ @) —Y(tj(i)), But this is exactly the sort of
dependence that Assumptibhcan accommodate through correlation betwdéandW, and the (random)
coefficientsyh(t), h=10,1, ....
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43




1,000)

RMSE with Jittering (N

1,000)

RMSE with Jittering (N

0.16530 1
0.16525 1
0.16520 1
0.16515 1
0.16510 1
0.16505 1
0.16500 1
0.16495 1
0.16490 1

/

*

/
/

? = 0.0025

0.16485

0.13765 1
0.13760 1
0.13755 1
0.13750 1
0.13745 1
0.13740 1
0.13735 1
0.13730 1
0.13725 1
0.13720 4

=

1 2 3 45 6 7 8 9 10

Level of jittering (m)

? = 0.001

1

4 5 6 7 8 9 10

Level of jittering (m)

*
2 3

5,000)

RMSE with Jittering (N

5,000)

RMSE with Jittering (N

0.11960 1
0.11958 1
0.11956 1
0.11954 1
0.11952 1
0.11950 1
0.11948 1
0.11946 1

N

w? = 0.0025

1 2 3

0.09948 1
0.09947 1
0.09947 1
0.09947 1
0.09946 1
0.09946 1
0.09945 1
0.09945 1
0.09944 1
0.09944 A
0.09943 1

a T T T T T 1

4 5 6 7 8 9 10

Level of jittering (m)

1 2 3

4 5 6 7 8 9 10

Level of jittering (m)
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Table 1: Properties of some realised kernels.

Kernel function k(x) k) k&0 c* k”(O)(k?’o)Z‘l/ >
1— 6x2 + 6x3 0<x<1
—_ 3 1
Parzen k() =121 -x 3=x=1 12 0269 | 351 0.97
0 Xx>1
. 3 /sinx
Quadratic Spectral k(x) = 2 (T - cosx) x>0 1/5 37/5 | 0.46 0.93
; 2
Fejer K(xX) = (?) x>0 23  #/3 | 084 0.94
Tukey-Hanning, K(X) = sin? (5e™) x>0 722 052 | 216 1.06
BNHLS (2008) k(x) = (L+x) e * x>0 1 5/4 | 0.96 1.09

IK”(0)(k%9)2|1/> measures the relative asymptotic efficiency ef K.
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Table 2: Simulation results

Panel A: Integrated Variance

Series A Series B
Ry1im Ry15m K (X) Ry1im Ry15m K (X)
£2=00 R.mse R.mse bias R.mse R.mse R.mse bias R.mse
A= (3,6) 0.113 0.505 0.006 0.147 0.122 0.436 0.003 0.134
A = (10, 20) 0.111 0.547 0.011 0.262 0.114 0.450 0.011 0.224
A = (60,120 0.229 0.504 0.003 0.557 0.227 0.517 0.001 0.490
£2 = 0.001
A= (3,6) 1.509 0.654 0.040 0.253 1.417 0.488 0.033 0.215
A = (10, 20 1.432 0.660 0.041 0.359 1.318 0.492 0.035 0.295
A = (60,120 1.013 0.559 0.014 0.557 0.636 0.554 0.013 0.551
£2=0.01
A= (3,6) 14.39 1.531 0.096 0.410 13.67 1.168 0.084 0.351
A = (10, 20) 14.01 1.452 0.106 0.568 13.15 1.305 0.081 0.424
A = (60,120 8.893 1.222 0.077 0.611 5.386 1.322 0.080 0.776
Panel B: Integrated Covariance/Correlation
Coplm Coplom K (X) Covar K (X) Corr K (X) beta
£2=00 #rets bias R.mse bias R.mse bias R.mse bias R.mse bias R.mse

1= (3,6) 3,121 -0.051 0.076 -0.004 0.183 -0.007 0.062 -0.012 0.016.0160 0.061
»=(5100 1,921 -0.085 0.108 -0.006 0.183 -0.009 0.076 -0.015 0.020.019 0.064
A =(10,200 982 -0.160 0.186 -0.011 0.186 -0.009 0.097 -0.018 0.026 23.M.084
1 =(30,600 332 -0.342 0.395 -0.038 0.188 -0.021 0.142 -0.028 0.042 35.M.125
A= (60,1200 166 -0.445 0.510 -0.071 0.203 -0.034 0.189 -0.036 0.054 350.M.178
£2=0.001

1 =(3,6) 3,121 -0.046 0.091 -0.005 0.191 -0.000 0.090 -0.027 0.032.0340 0.085
A=(5100 1,921 -0.082 0.123 -0.006 0.186 -0.002 0.099 -0.029 0.036.0320 0.083
A=(10,200 982 -0.156 0.189 -0.010 0.195 -0.004 0.118 -0.032 0.040 4.®M.111
L =(30,600 332 -0.344 0.400 -0.039 0.187 -0.019 0.150 -0.039 0.052 49D.®M.153
A= (60,1200 166 -0.445 0.513 -0.074 0.206 -0.034 0.195 -0.044 0.060 49D.M.204
£2=0.01

L= (3,6) 3,121  -0.027 0.398 -0.009 0.263 0.000 0.123 -0.063 0.071 0720.0.132
A=(5100 1,921 -0.073 0.431 -0.005 0.257 -0.002 0.133 -0.067 0.076.0820 0.149
A =(10,200 982 -0.139 0.407 -0.001 0.263 -0.005 0.153 -0.074 0.084 990.M.198
A =(30,60) 332 -0.354 0.486 -0.044 0.236 -0.017 0.180 -0.089 0.104 190.1.242
A= (60,1200 166 -0.451 0.561 -0.083 0.265 -0.032 0.222 -0.092 0.111 2@.10.310

Simulation results for the realised kernel using a factom®lel with non-syncronous observations and measurement
noise. Panel A looks at estimating integrated variance gisealised variance and the Parzen type realised kernel
K (X). Panel B looks at estimating integrated covariance and @ation using realised covariance and realised
kernel. Bias and root mean square error are reported. Thaltesire based on 1000 repetitions.
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Table 3: Summary statistics for the refresh sampling schewg case

2 x 2 case
AA AIG  AXP BA BAC C CAT CVX DD SPY

AA 0.589 0.599 0.595 0.586 0.565 0.593 0.582 0.602 0.574
AlIG 0.635 0.607 0.596 0.616 0.608 0.584 0.605 0.598 0.601
AXP 0.639 0.651 0.613 0.617 0.595 0.596 0.594 0.619 0.584
BA 0.634 0.642 0.652 0.596 0.577 0.595 0.591 0.609 0.582
BAC 0.636 0.656 0.662 0.649 0.631 0.579 0.612 0.597 0.613
C 0.635 0.657 0.660 0.647 0.680 0.554 0.610 0.575 0.619
CAT 0.630 0.631 0.641 0.636 0.633 0.630 0.575 0.597 0.569
CVX 0.641 0.657 0.659 0.651 0.671 0.675 0.634 0.588 0.618
DD 0.639 0.646 0.656 0.649 0.653 0.651 0.639 0.652 0.575

SPY 0.609 0.642 0.630 0.622 0.667 0.685 0.602 0.670 0.625

Average over daily number of high frequency observatioadalie before the Refresh Time transformation

AA AIG  AXP BA BAC CcC CAT CVvX DD SPY
Trades 3,442 4,228 3,461 3,529 4,544 5,480 3,330 4,845 3,307 5,412
Quotes 8,460 9,270 8,626 8,553 10,091 10,809 8,026 10,25%4218, 15,973

Summary statistics for the refresh sampling scheme. Ingbenpanel we present averages over the daily data of the
data maintained by the refresh sampling scheme, measurgd=byd N/ Zid:l n®. The upper panel display this in
the 2<2 case. The upper diagonal is based on transaction pricesreds the lower diagonal is based on mid-quotes.
In the lower panel we average over the daily number of highuexncy observations.
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Table 4: Average high frequency realised covariance and tpelose covariance

Average of Hayashi-Yoshida covariances (all times)

AA AIG AXP BA BAC

AA 4331 0415 0.484 0.383 0.372
AIG 0.225 2.904 0.612 0.387 0.520
AXP 0.251 0.315 3.383 0.447 0.580
BA 0.197 0.206 0.230 3.274 0.344
BAC 0.198 0.275 0.299 0.177 2.466
C 0.237 0.305 0.319 0.199 0.303
CAT 0.227 0.224 0.254 0.210 0.197
CvX 0.194 0.19 0.219 0.176 0.180
DD 0.240 0.225 0.251 0.206 0.196
SPY 0.149 0.152 0.179 0.143 0.142

Open-to-close covariance
AA AIG AXP BA BAC

AA 1.100 1.228 1.091 1.019
AIG 1.092 1.776 0.978 1.808
AXP 1.220 1.763 1.045 1.661
BA 1.075 0976 1.049 0.882
BAC 1.015 1804 1.653 0.887

C 1.265 2.088 2.053 1.077 2.041

CAT 1.365 1.045 1.178 0.981 0.965
CvX 1026 0.671 0862 0.627 0.624
DD 1211 1.070 1.092 0.850 0.923
SPY 1.029 1.120 1177 0.816 0.985

C
0.446
0.597
0.661
0.400
0.596
4.014
0.220
0.190
0.224
0.147

C
1.267
2.076
2.055
1.071
2.036

1.233
0.824
1.134
1.268

CAT CVX DD SPY
0.424 0.360 0.465 0.349
0.415 0.332 0.415 0.361

0.476 0.382 0.477 0.430

0.393 0.319 0.389 0.336

0.374 0.315 0.375 0.345

0.431 0.354 0.430 0.382

2274 0.332 0413 0.341
0.1872.192 0.340 0.305
0.222 0.18@.643 0.342
0.151 0.141 0.142.068

CAT CVX DD SPY
1377 1.027 1.219 1.036
1.062 0.675 1.076 1.120
1.191 0.853 1.101 1.180
0.990 0.630 0.850 0.820
0.967 0.619 0.927 0.988
1230 0.819 1.134 1.261

0.768 1.005 0.933
0.771 0.658 0.705
0.996 0.656 0.829
0.927 0.708 0.829

The upper panel presents average estimate@tmg|Y and the lower panel displays these m\gm? In both panels
the upper diagonal is based on transaction prices, wherkaddwer diagonal is based on mid-quotes. The diagonal
elements are computed with transaction prices. In the uppeel numbers outside the diagonal are boldfaced if the

bias is significant at the 1 percent level.
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Table 5: Averages for alternative integrated covariantienesors

Average of Parzen covariances (380)

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 3.338 0945 1.033 0.808 0.865 1.118 1.055 0.818 1.047 0.862
AIG 0.933 2725 1300 0.722 1.254 1556 0.856 0.533 0.820 0.878
AXP 1.008 1.273 2580 0.780 1.326 1656 0974 0578 0.900 0.930
BA 0.792 0.730 0.773 2.194 0.654 0.831 0.765 0.488 0.702 0.670
BAC 0.850 1.226 1.305 0.658 2.057 1.681 0.805 0.485 0.768 0.811
C 1.102 1528 1.627 0.840 1.649 2942 1.011 0.638 0.986 1.057
CAT 1.028 0.841 0939 0.760 0.792 1.001 2.225 0.603 0.882 0.776
CvX 0.822 0534 0570 0500 0.489 0.640 0.607 1.655 0.576 0.589
DD 1.049 0.813 0.890 0.706 0.759 0984 0874 0589 1.810 0.736
SPY 0862 0.876 0918 0.678 0.808 1.058 0.7750.602 0.744 0.745

Average of Parzen covariances (100)

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 3.400 0.953 1.024 0.808 0.863 1.121 1.040 0.825 1.046 0.868
AIG 0931 2.766 1.298 0.734 1.248 1.553 0.860 0.544 0.829 0.885
AXP 0995 1271 2593 0.778 1.315 1.642 0.957 0.581 0.900 0.926
BA 0.798 0.739 0.783 2.222 0.656 0.845 0.772 0.501 0.712 0.679
BAC 0.844 1.204 1.290 0.660 2.080 1669 0.799 0.493 0.765 0.811
C 1.101 1518 1616 0.854 1625 2985 1.013 0.653 0.992 1.062
CAT 1.019 0.843 0931 0.767 0.785 1.003 2.234 0.613 0.879 0.779
CvX 0824 0544 0583 0512 0501 0.656 0.619 1.682 0.592 0.603
DD 1.045 0.819 0.892 0.719 0.755 0991 0.876 0.603 1.850 0.745
SPY 0865 0.876 0917 0688 0806 1.061 0.7790.616 0.752 0.755

Average of Parzen covariancesx2)

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 3531 0931 0986 0.812 0.837 1.098 1.004 0.824 1.034 0.867
AIG 0.912 2803 1273 0.775 1.180 1490 0.863 0.583 0.847 0.891
AXP 0956 1.238 2.707 0.832 1268 1599 0.945 0.633 0.919 0.941
BA 0.793 0.773 0825 2371 0.679 0.892 0.800 0.560 0.753 0.731
BAC 0.820 1.156 1.237 0.683 2.096 1565 0.786 0.541 0.763 0.811
C 1.078 1.469 1568 0.893 1550 3.108 1.011 0.719 0.995 1.066
CAT 0975 0.851 0914 0.794 0.775 1.005 2.299 0.642 0.883 0.798
CvX 0.810 0.595 0.642 0.577 0553 0.723 0.648 1738 0.637 0.662
DD 1.018 0.842 0.904 0.759 0.760 0.999 0.873 0.644 1961 0.774
SPY 0853 0.875 0.910 0.726 0.795 1.054 0.791 0.664 0.768 0.783

The upper panel presents average estimate€td *>®, the middle panel foEovk*°, and the lower panel gives

results forCov;(M. In both panels the upper diagonal is based on transactiaceg; whereas the lower diagonal is
based on mid-quotes. The diagonal elements are computkdrastsaction prices. Outside the diagonals numbers
are boldfaced if the bias is significant at the 1 percent level
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Table 6: Summary statistics across all asset pairs

Transaction prices
Estimator Average HAC Stdev Bias cor(.,K) acf aclh, achk acfy acfs acfg
Summary stats for covariances
CovKaox30 0.8844[0.089] 1.607 -0.229 1.000 0.67 058 052 045 0.44350.
CowK10x10 0.8862[0.089] 1.596 -0.227 0.992 069 061 054 047 0.45360.
CovK2x2 0.8900[0.088] 1.518 -0.223 0.960 0.75 066 059 053 0.51420.

Co/'Y 0.2113[0.022] 0.362 -0.902 0.767 0.80 0.73 0.68 0.64 0.62530.
Covt/4m 0.4534[0.050] 0.805 -0.660 0.660 0.84 0.74 0.68 0.64 0.61520.
Cov™ 0.8505[0.085] 1.511 -0.262 0.942 0.71 0.62 054 048 0.46370.
Cov3om 0.9049[0.091] 1.838 -0.208 0.866 0.49 046 0.37 0.34 0.35250.
Coveh 0.9566[0.105] 2.659 -0.156 0.640 0.22 025 0.20 0.17 0.16150.
CovPtoc 1.1116[0.150] 4.255 0508 0.12 0.15 0.17 0.14 0.08 0.15
Summary stats for correlations

CorrK30x30 0.3862[0.008] 0.203 1.000 0.28 0.26 0.23 0.23 0.22 0.19
Corr<10x10 0.3825[0.008] 0.188 0.975 0.32 029 026 0.26 0.25 0.22
CorrK2:2 0.3698[0.007] 0.155 0.824 044 040 037 035 0.34 0.30
Corrl/4m 0.1836[0.007] 0.113 0.277 0.78 075 0.72 0.71 0.70 0.66
CorP™ 0.3619[0.007] 0.169 0.756 0.34 031 028 0.26 0.24 0.22
Corr30m 0.4030[0.010] 0.298 0.684 0.14 0.13 0.1 0.12 0.11 0.10
Corrh 0.3869[0.016] 0.594 0.347 0.03 0.03 0.03 0.04 0.02 0.02

Average unconditional Open-to-Close correlation = 0.5185

Mid-quotes
Estimator Average HAC Stdev Bias cor(.,K) acf ach, ack acfy acfs acfig
Summary stats for covariances

CowK30x30 0.8917[0.089] 1.656 -0.221 1.000 062 055 048 043 0.42320.
CowK1ox10 0.8940[0.090] 1.636 -0.219 0.992 0.66 058 051 045 0.44340.
CovK2x2 0.9000[0.089] 1.546 -0.213 0.941 0.74 0.66 059 053 0.51410.

Cov'Y 0.4144[0.038] 0.627 -0.699 0.788 0.82 0.74 0.69 0.65 0.62530.
Covt/4m 0.4470[0.048] 0.776 -0.666 0.669 0.83 0.74 0.68 0.64 0.61520.
Cov™ 0.8530[0.084] 1.481 -0.260 0922 0.72 061 055 050 0.47390.
Cov3om 0.9056[0.091] 1.833 -0.207 0.897 0.50 0.46 0.37 0.34 0.35250.
Cov*" 0.9574[0.105] 2.661 -0.156 0.672 0.22 0.25 0.21 0.17 0.16160.
Co\PtoC 1.1143[0.150] 4.234 0534 0.12 0.15 0.18 0.14 0.08 0.15
Summary stats for correlations

Cor30x30  0,3904[0.009] 0.221 1.000 0.25 0.23 021 0.20 020 0.18
Cor€10x10  0,3870[0.008]  0.200 0.968 0.30 0.27 0.24 024 0.23 0.20
CorrK2:2 0.3763[0.008] 0.165 0.818 041 0.37 034 032 031 027
Corrl/4m 0.1815[0.006] 0.103 0.282 0.75 071 0.69 067 0.66 0.62
CorP™ 0.3650[0.007] 0.168 0.724 035 0.30 0.28 0.26 025 0.22
Corr?0m 0.4027[0.010] 0.299 0.734 014 013 041 012 0.1 0.10
Corrh 0.3873[0.016] 0.593 0.382 0.03 0.04 0.03 004 0.02 0.02

Average unconditional Open-to-Close correlation = 0.5169

Summary statistics across all asset pairs. The first colusentify the estimator, and the second gives the average
estimate across all asset combinations, followed by theageeNewey-West type standard error. The fourth gives the
average standard deviation of the estimator. The fifth isaberage bias. Next is average sample correlation with
our realised kernel. The remaining columns give average@rtelations. The upper panel is based on transaction
prices, whereas the lower panel is based on mid-quotes.
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Table 7: Scalar BEKK models for close-to-close returns

Panel A: 30<30 case

Hs—1

0.943
(0.006
0.742
(0.014
0.984
(0.001
0.777
(0.012

0.784
(0.013

AIG-CAT
Hs-1

0.837
(0.028
0.863
(0.023
0.951
(0.006
0.764
(0.036

0.837
(0.028

Frs—1 (rs—l)/
0.005
(0.000
0.013
(0.001)

0.008
(0.000

0.009
(0.00D

ls—1 (r s—l)/
0.038
(0.008

0.044
(0.007

0.045
(0.005

0.038
(0.008

Ki—1

0.040
(0.00%

0.076
(0.004

0.067
(0.00%

Ki—1

0.126
(0.030

0.236
(0.063

0.126
(0.050

5m
RVS_ 1

0.115
(0.006

0.061
(0.005

0.059
(0.005

5m
RVS_ 1

0.098
(0.025

1O 1O

logL
-27029.9
-27077.7
-28477.5
-26948.3
-26904.3

Panel B: 10<10 case

Hs—1

0768
(0.019
0687
(0.025
®65
(0.003
0705
(0.023
0716
(0.023

Panel C: 2<2 cases

logL
-2584.9
-2591.2
-2629.7
-2592.4
-2584.9

BA-SPY

Hs_1

844
(0.043
0843
(0.041)
®58
(0.006)
0717
(0.074

0837
(0.045

ls—1 (rs—l)/

0.015
(0.003
0.022
(0.003
0.023
(0.001

0.017
(0.003

ls—1 (rs—l)/

0.031
(0.008

0.032
(0.008

0.036
(0.005

0.031
(0.009

Ki—1

0.151
(0.011

0.126
(0.014

0.106
(0.019

Ki—1

0.094
(0.032

0.125
(0.07D

0.068
(0.047

5m
RVS_ 1

0.160
(0.013

0.067
(0.014

0.065
(0.013

5m
RVS_ 1

0.091
(0.030

0.083
(0.065

0.031
(0.045

logL
-7920.7
-7935.9
-8307.5
-7923.3
-7903.0

logL
-1516.9
-1517.8
-1544.4
-1521.1
-1516.6

Estimation results for scalar BEKK models for close-tosel@ = 30, 10, 2 dimensional return vectors.
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Table 8: Relative efficiency of the realised kerikalX)

w? = 0.001
normalised biak normalised variance normalised mse
n KEX)  KEX) KX KEX)  KEX) KX KEX)  KEXO) KX
UeWN
250 0.0 0.0 0.8 16.2 16.3 18.0 16.2 16.3 18.8
1,000 0.0 0.0 2.5 11.7 12.1 16.9 11.7 12.1 19.4
4,000 0.0 0.0 3.1 10.4 10.4 19.0 10.4 10.4 22.1
16,000 0.0 0.0 4.6 10.5 9.5 20.8 10.5 9.5 25.4
Uj =¢€j +05¢; 1
250 1.5 1.2 0.6 15.3 15.7 17.6 16.9 16.9 18.2
1,000 22.1 7.3 2.2 11.0 11.9 16.9 33.0 19.2 19.1
4,000 175.7 18.5 3.2 9.3 10.2 19.0 185.0 28.8 22.2
16,000 898.5 41.0 4.4 9.0 9.4 20.9 907.6 50.4 25.4
Uj =¢€j —0.5€j_1
250 122.7 96.9 3.9 27.5 24.2 18.3 150.2 121.1 22.2
1,000 1,769.1 588.0 6.1 44.8 20.4 16.9 1,813.9 608.3 23.0
4,000 14,195.1 1,490.4 5.0 73.1 13.9 19.3 14,268.2 1,504.4 4.3 2
16,000 72,797.6 3,326.8 55 88.6 10.9 20.8 72,886.2 3,337.726.3
Uj = —0.5Uj_1+€j
250 39.1 30.9 1.3 18.9 18.1 17.9 58.0 49.0 19.2
1,000 1,261.0 74.9 3.3 35.9 13.2 16.8 1,296.9 88.1 20.0
4,000 7,751.7 141.1 3.5 40.8 10.8 18.8 7,792.5 151.9 22.4
16,000 40,973.1 253.8 4.8 52.0 9.7 20.9 41,025.2 263.5 25.7
Uj =05Uj_1 +¢j
250 0.5 0.4 0.3 14.8 15.3 17.7 15.3 15.7 18.0
1,000 9.6 6.3 1.5 9.8 10.8 16.6 19.4 17.1 18.2
4,000 96.0 39.6 2.7 8.5 9.7 19.1 104.4 49.2 21.8
16,000 505.8 141.5 4.2 8.5 9.2 21.1 514.3 150.7 25.3

Estimation results for scalar BEKK models for close-tosel®&elative efficiency of the realised kernéX§ and the flat-top realised
kernel, KF (X). Results for five different types of noise are presentechdtMA(1) and AR(1) designs, the variance efas scaled
such that VatU) = 2. The squared bias, variance, and MSE have been scale&/Bycm In the special case with Gaussian

white noise the asymptotic lower bound for the normalizedN&S8.00 (the normalized MSE for§<(X) converges to 8.54 as
n — oo in this special case). The results are based on 50000 répetit
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