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Abstract

We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show
this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement
error of certain types and can also handle non-synchronous trading. It is the first estimator which
has these three properties which are all essential for empirical work in this area. We derive the large
sample asymptotics of this estimator and assess its accuracy using a Monte Carlo study. We implement
the estimator on some US equity data, comparing our results to previous work which has used returns
measured over 5 or 10 minutes intervals. We show that the new estimator is substantially more precise.
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1. Introduction

The last seven years has seen dramatic improvements in the way econometricians think about time-varying

financial volatility, first brought about by harnessing highfrequency data and then by mitigating the influ-

ence of market microstructure effects. Extending this workto the multivariate case is challenging as this

needs to additionally remove the effects of non-synchronous trading while simultaneously requiring that the

covariance matrix estimator be positive semi-definite. In this paper we provide the first estimator which

achieves all these objectives. This will be called the multivariate realised kernel, which we will define in

equation (1).

We study ad-dimensional log price processX = (
X(1), X(2), ..., X(d)

)′
. These prices are observed

irregularly and non-synchronous over the interval[0, T ]. For simplicity of exposition we takeT = 1

throughout the paper. These observations could be trades orquote updates. The observation times for

the i -th asset will be written ast (i )1 , t
(i )
2 , . . .. This means the available database of prices isX(i )(t (i )j ), for

j = 1,2, ..., N(i )(1), and i = 1,2, ...,d. HereN(i )(t) counts the number of distinct data points available

for the i -th asset up to timet .

X is assumed to be driven byY, the efficient price, abstracting from market microstructure effects. The

efficient price is modelled as aBrownian semimartingale(Y ∈ B S M) defined on some filtered probability

space(�,F, (Ft ) , P),

Y(t) =
∫ t

0
a(u)du +

∫ t

0
σ (u)dW(u),

wherea is a vector of elements which are predictable locally bounded drifts,σ is a càdlàg volatility matrix

process andW is a vector of independent Brownian motions. For reviews of the econometrics of this type

of process see, for example, Ghysels, Harvey & Renault (1996). If Y ∈ B S M then its ex-post covariation,

which we will focus on for reasons explained in a moment, is

[Y](1) =
∫ 1

0
6(u)du, where 6 = σσ ′,

where

[Y](1) = plim
n→∞

n∑

j =1

{
Y(t j )− Y(t j −1)

} {
Y(t j )− Y(t j −1)

}′
,

(e.g. Protter (2004, p. 66–77) and Jacod & Shiryaev (2003, p.51)) for any sequence of deterministic

synchronized partitions 0= t0 < t1 < ... < tn = 1 with supj {t j +1 − t j } → 0 for n → ∞. This is the

quadratic variation ofY.
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The contribution of this paper is to construct a consistent,positive semi-definite (psd) estimator of[Y](1)
from our database of asset prices. The challenges of doing this are three fold: (i) there are market mi-

crostructure effectsU = X − Y, (ii) the data is irregularly spaced and non-synchronous, (iii) the market

microstructure effects are not statistically independentof theY process.

Quadratic variation is crucial to the economics of financialrisk. This is reviewed by, for example, An-

dersen, Bollerslev & Diebold (2010) and Barndorff-Nielsen& Shephard (2007), who provide very extensive

references. The economic importance of this line of research has recently been reinforced by the insight of

Bollerslev, Tauchen & Zhou (2008) who have showed that expected stock returns seem well explained by

the variance risk premium (the difference between the implied and realised variance) and this risk premium

is only detectable using the power of high frequency data. See also the papers by Drechsler & Yaron (2008),

Fleming, Kirby & Ostdiek (2003) and de Pooter, Martens & van Dijk (n.d.).

Our analysis builds upon earlier work on the effect of noise on univariate estimators of[Y](1) by,

amongst others, Zhou (1996), Andersen, Bollerslev, Diebold & Labys (2000), Bandi & Russell (2008),

Zhang, Mykland & Aı̈t-Sahalia (2005), Hansen & Lunde (2006), Hansen, Large & Lunde (2008), Kalnina

& Linton (2008), Zhang (2006), Barndorff-Nielsen, Hansen,Lunde & Shephard (2008), Renault & Werker

(2010), Hansen & Horel (2009), Jacod, Li, Mykland, Podolskij & Vetter (2009) and Andersen, Bollerslev &

Meddahi (2010). The case of no noise is dealt with in the same spirit as the papers by Andersen, Bollerslev,

Diebold & Labys (2001) and Barndorff-Nielsen & Shephard (2002), Barndorff-Nielsen & Shephard (2004),

Mykland & Zhang (2006), Goncalves & Meddahi (2009), Mykland& Zhang (2009b) and Jacod & Protter

(1998).

A distinctive feature of multivariate financial data is the phenomenon of non-synchronous trading or

nontrading. These two terms are distinct. The first refers tothe fact that any two assets rarely trade at

the same instant. The latter to situations where one assets is trading frequently over a period while some

other assets do not trade. The treatment of non-synchronoustrading effects dates back to Fisher (1966).

For several years researchers focused mainly on the effectsthat stale quotes have on daily closing prices.

Campbell, Lo & MacKinlay (1997, chapter 3) provides a surveyof this literature. When increasing the

sampling frequency beyond the inter-hour level several authors have demonstrated a severe bias towards

zero in covariation statistics. This phenomenon is often referred to as the Epps effect. Epps (1979) found

this bias for stock returns, and it has also been demonstrated to hold for foreign exchange returns, see

Guillaume, Dacorogna, Dave, Müller, Olsen & Pictet (1997). This is confirmed in our empirical work
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where realised covariances computed using high frequency data, over specified fixed time periods such as

15 seconds, dramatically underestimate the degree of dependence between assets. Some recent econometric

work on this topic includes Malliavin & Mancino (2002), Reno(2003), Martens (2003), Hayashi & Yoshida

(2005), Bandi & Russell (2005), Voev & Lunde (2007), Griffin &Oomen (2009) and Large (2007). We will

draw ideas from this work.

Our estimator, themultivariate realised kernel, differs from the univariate realised kernel estimator by

Barndorff-Nielsen et al. (2008) in important ways. The latter converges a raten1/4 but critically relies

on the assumption that the noise is a white noise process, andBarndorff-Nielsen et al. (2008) stress that

their estimator cannot be applied to tick-by-tick data. In order not to be in obvious violation of the iid

assumption, Barndorff-Nielsen et al. (2008) apply their estimator to prices that are (on average) sampled

every minute or so. Here, in the present paper, we allow for a general form of noise that is consistent

with the empirical features of tick-by-tick data. For this reason we adopt a larger bandwidth that has the

implication that our multivariate realized kernel estimator converges at raten1/5. Although this rate is slower

thann1/4 it is, from a practical viewpoint, important to acknowledgethat there are only 390 one-minute

returns in a typical trading day, while many shares trade several thousand times, and 3901/4 < 20001/5. So

the rates of convergence will not (alone) tell us which estimators will be most accurate in practice – even

for univariate estimation problem. In addition to being robust to noise with a general form of dependence,

the n1/5 convergence rate enables us to construct an estimator that is guaranteed to psd, which is not the

case for the estimator by Barndorff-Nielsen et al. (2008). Moreover, our analysis of irregularly spaced and

non-synchronous observations cause the asymptotic distribution of our estimator to be quite different from

that in Barndorff-Nielsen et al. (2008). We discuss the differences between these estimators in greater details

in Section 6.1.

The structure of the paper is as follows. In Section 2 we synchronize the timing of the multivariate data

using what we call Refresh Time. This allows us to refine high frequency returns and in turn the multivariate

realised kernel. Further we make precise the assumptions wemake use of in our theorems to study the be-

haviour of our statistics. In Section 3 we give a detailed discussion of the asymptotic distribution of realised

kernels in the univariate case. The analysis is then extended to the multivariate case. Section 4 contains a

summary of a simulation experiment designed to investigatethe finite sample properties of our estimator.

Section 5 contains some results from implementing our estimators on some US stock price data taken from

the TAQ database. We analyse up to 30 dimensional covariancematrices, and demonstrate efficiency gains
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that are around 20 fold compared to using daily data. This is followed by a Section on extensions and fur-

ther remarks, while the main part of the paper is finished by a Conclusion. This is followed by an Appendix

which contains the proofs of various theorems given in the paper, and an Appendix with results related to

Refresh Time sampling. More details of our empirical results and simulation experiments are given in a web

Appendix which can be found athttp://mit.econ.au.dk/vip htm/alunde/BNHLS/BNHLS.htm.

2. Defining the multivariate realised kernel

2.1. Synchronizing data: Refresh time

Non-synchronous trading delivers fresh (trade or quote) prices at irregularly spaced times which differ across

stocks. Dealing with non-synchronous trading has been an active area of research in financial econometrics

in recent years, e.g. Hayashi & Yoshida (2005), Voev & Lunde (2007) and Large (2007). Stale prices are a

key feature of estimating covariances in financial econometrics as recognised at least since Epps (1979), for

they induce cross-autocorrelation amongst asset price returns.

Write the number of observations in thei -th asset made up to timet as the counting processN(i )(t),

and the times at which trades are made ast (i )1 , t
(i )
2 , .... We now definerefresh timewhich will be key to

the construction of multivariate realised kernels. This time scale was used in a cointegration study of price

discovery by Harris, McInish, Shoesmith & Wood (1995), and Martens (2003) has used the same idea in the

context of realised covariances.

Definition 1. Refresh Time for t∈ [0,1]. We define the first refresh time asτ1 = max
(
t (1)1 , ..., t (d)1

)
, and

then subsequent refresh times as

τ j +1 = max

(
t (1)
N(1)τ j +1

, ..., t (d)
N(d)τ j +1

)
.

The resulting Refresh Time sample size is N, while we write n(i ) = N(i )(1).

Theτ1 is the time it has taken for all the assets to trade, i.e. all their posted price have been updated.τ2

is the first time when all the prices are again refreshed. Thisprocess is displayed in Figure 1 ford = 3.

Our analysis will now be based on this time clock{τ j }. Our approach will be to:

• Assume the entire vector of up to date prices are seen at theserefreshed timesX(τ j ), which is not

correct — for we only see a single new price andd − 1 stale prices1.

1Their degree of staleness will be limited by their Refresh Time construction to a single lag in Refresh Time. The extension to
a finite number of lags is given in Section 6.5.
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• Show these stale pricing errors have no impact on the asymptotic distribution of the realised kernels.

[Figure 1 about here.]

This approach to dealing with non-synchronous data converts the problem into one where the Refreshed

Times’ sample sizeN is determined by the degree of non-synchronicity andn(1),n(2), . . . ,n(d). The degree

to which we keep data is measured by the size of the retained data over the original size of the database. For

Refresh Time this isp = dN/
∑d

i=1 n(i ). For the data in Figure 1,p = 21/27 ≃ 0.78.

2.2. Jittering end conditions

It turns out that our asymptotic theory dictates we need to averagem prices at the very beginning and end

of the day to obtain a consistent estimator.2 The theory behind this will be explained in Section 6.4, where

experimentation suggests the best choice form is around two for the kind of data we see in this paper. Now

we define what we mean by jittering. Letn,m ∈ N, with n − 1+ 2m = N, then set the vector observations

X0, X1, ..., Xn asX j = X(τN, j +m), j = 1,2, ...,n − 1, and

X0 = 1

m

m∑

j =1

X
(
τN, j

)
and Xn = 1

m

m∑

j =1

X(τN,N−m+ j ).

So X0 and Xn are constructed by jittering initial and final time points. By allowing m to be moderately

large but very small in comparison withn, it means these observations record the efficient price without

much error, as the error is averaged away. These prices allowus to define the high frequency vector returns:

x j = X j − X j −1, j = 1,2, ...,n, that the realised kernels are built out of.

2.3. Realised kernel

Having synchronized the high frequency vector returns
{
x j

}
we can define our class of positive semi-definite

multivariate realised kernels(RK). It takes on the following form

K (X) =
n∑

h=−n

k( h
H )Ŵh, whereŴh =

n∑

j =h+1

x j x
′
j −h, for h ≥ 0, (1)

andŴh = Ŵ′
−h for h < 0. HereŴh is theh-th realised autocovariance andk : R y R is a non-stochastic

weight function. We focus on the class of functions,K, that is characterized by:

2This kind of averaging appears in, for example, Jacod et al. (2009).
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Assumption K. (i) k(0) = 1, k′(0) = 0; (ii) k is twice differentiable with continuous derivatives; (iii)

definek0,0
• = ∫∞

0 k(x)2dx, k1,1
• = ∫∞

0 k′(x)2dx, andk2,2
• = ∫∞

0 k′′(x)2dx thenk0,0
• , k1,1

• , k2,2
• < ∞; (iv)

∫∞
−∞ k(x)exp(i xλ)dx ≥ 0 for all λ ∈ R.

The assumptionk(0) = 1 meansŴ0 gets unit weight, whilek′(0) = 0 means the kernel gives close to

unit weight toŴh for small values of|h|. Condition (iv) guaranteesK (X) to be positive semi-definite, (e.g.

Bochner’s theorem and Andrews (1991)).

The multivariate realised kernel has the same form as a standard heteroskedasticity and autocorrelated

(HAC) covariance matrix estimator familiar in econometrics (e.g. Gallant (1987), Newey & West (1987),

and Andrews (1991)). But there are a number of important differences. For example, the sums that define

the realised autocovariances are not divided by the sample size andk′(0) = 0 is critical in our framework.

Unlike the situation in the standard HAC literature, an estimator based on the Bartlett kernel will not be

consistent for the ex-post variation of prices, measured byquadratic variation, in the present setting. Later

we will recommend using the Parzen kernel (its form is given in Table 1) instead.

In some of our results we use the following additional assumption on the Brownian semimartingale.

Assumption SH.Assumeµ andσ arebounded and we will writeσ+ = supt∈[0,1] |σ (t)|.
This can be relaxed to locally bounded if(µ, σ ) is an Ito process — e.g. Mykland & Zhang (2009a).

2.4. Some assumptions about refresh time and noise

Having defined the positive semi-definite realised kernel, we will now write out our assumptions about the

refresh times
{
τN, j

}
and the market microstructure effectsU that govern the properties of the vector returns

{
x j

}
and soK (X).

2.4.1. Assumptions about the refresh time

We use the subscript-N to make the dependence onN explicit. Note thatN is random and we write the

durations asτN,i − τN,i−1 = 1N,i = DN,i
N for all i .

We make the following assumptions about the durations between observation times.

Assumption D. (i) That E(Dr
N,⌊t N⌋|FτN,⌊t N⌋−1)

p→ ̹r (t), 0 < r ≤ 2, as N → ∞. Here we assume̹r (t)

are strictly positive c̀adlàg processes adapted to{Ft}; (ii) maxi∈{ j +1,..., j +R} DN,i = op(R1/2) for any j ; (iii)

τN,0 ≤ 0 andτN,N+1 ≥ 1.

Remark 1. If we have Poisson sampling the durations are exponential and the maxi∈{1,...,N}1N,i = Op(log(N)/N),
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so maxi∈{1,...,N} DN,i = Op(log(N)). Note both Barndorff-Nielsen et al. (2008) and Mykland & Zhang

(2006) assume that maxi∈{1,...,N} DN,i = Op(1). Phillips & Yu (2008) provided a novel analysis of realised

volatility under random times of trades. We use their assumptions D here, applied to the realised kernel.

Deriving results for realised volatility under random times of trades is an active research area.3

Example 1. Refresh time. If each individual series has trade times which arrive as independent Poisson

processes with the same intensityλN, then their scaled durations are D( j ) i.i.d.∼ exp(λ), j = 1,2, ...,d,

so the refresh time durations are DN,i
L= max

{
D(1), ..., D(d)

}
, and so (e.g. Embrechts, Klüppelberg &

Mikosch (1997, p. 189)) the refresh times have the form of a renewal processτN,i − τN,i−1 = 1
N DN,i ,

DN,i
L= ∑d

j =1
1
j D( j ). In particular ̹1(t) = λ−1∑d

j =1 j −1, ̹2(t) = λ−2

{∑d
j =1 j −2 +

(∑d
j =1 j −1

)2
}

. Of

interest is how these terms change as d increases. The formeris the harmonic series and divergent at the

slow ratelog(d). The conditional variance converges toπ
2

6λ2 as d → ∞, so limD→∞ ̹2(t)
̹1(t)

→ 1. For d = 1,

̹1(t) = λ−1 and̹2(t) = 2λ−2, so̹2(t)/̹1(t) = 2λ−1.

2.4.2. Assumptions about the noise

The assumptions about the noise are stated in observations time — that is we only model the noise at exactly

the times where there are trades or quote updates. This follows, for example, Zhou (1998), Bandi & Russell

(2005), Zhang et al. (2005), Barndorff-Nielsen et al. (2008) and Hansen & Lunde (2006).

We define the noise associated withX(τN, j ) at the observation timeτN, j asUN, j = X(τN, j )− Y(τN, j ).

Assumption U.Assume the component model

UN,i = vN,i +ζN,i , where vN,i =
∞∑

h=0

ψh(τN,i−1−h)ǫN,i−h, with ǫN,i = 1
−1/2
N,i [W̃(τN,i )−W̃(τN,i−1)].

Here W̃ is a standard Brownian motion and{ζN,i } is a sequence of independent random variables, with

E(ζN,i |FτN,i−1) = 0 and var(ζN,i |FτN,i−1) = 6ζ (τN,i−1). Further,ǫN,i andζN,i are assumed to be indepen-

dent, while
(
ψh, 6ζ

)
are bounded and adapted to{Ft }, with

∑∞
j =0 |ψ j (t)| < ∞ a.s. uniformly int.We also

assume thatD ⊥⊥ ζ.

Remark 2. The auxiliary Brownian motionW̃ facilitates a general form of endogenous noise through cor-

relation betweenW̃ and the Brownian motion,W, that drives the underlying process,Y. In fact, the case

3The earliest research on this that we know of is Jacod (1994).Mykland & Zhang (2006) and Barndorff-Nielsen et al. (2008)
provided an analysis based on the assumption thatDN,i = Op(1), which is perhaps too strong an assumption here (see remark 1).
Barndorff-Nielsen & Shephard (2005) allowed very general spacing, but assumed times and prices were independent. Morerecent
important contributions include Hayashi, Jacod & Yoshida (2008) and Li, Mykland, Renault, Zhang & Zheng (2009). Mykland &
Zhang (2009a) and Jacod (2008) provide insightful analysis.
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W̃ = W is permitted under our assumptions.

Remark 3. The standard assumption in this literature is thatψh(t) is zero for allt andh, but this assumption

is known to be shallow empirically. Aψ0(t) type term appears in Hansen & Lunde (2006, example 1) and

Kalnina & Linton (2008) in their analysis of endogeneity anda two scale estimator.

The “local” long run variance ofv is given by6ν(t) = ∑∞
h=−∞ γh(t), whereγh(t) = ∑∞

j =1ψ j +h(t)ψ ′
j (t)

for h ≥ 0 andγh(t) = γ−h(t)′ for h < 0, so that the local long run variance ofU is given by

6U (t) = 6ν(t)+ 6ζ (t).

It is convenient to define the average long run variance ofU by

� =
∫ 1

0
6U (u)du,

which is ad × d matrix. Whend = 1 we writeω2 in place of�, σ 2
U (t) in place of6U (t), etc.ω2 appears

frequently later. It reflects the variance of the average noise a frequent trader would be exposed to.

3. Asymptotic results

3.1. Consistency

We note that the multivariate realised kernel can be writtenas

K (X) = K (Y)+ K (Y,U )+ K (U,Y)+ K (U ) , where K (Y,U ) =
n−1∑

h=−n+1

k( h
H )
∑

j

y j u
′
j −h,

with y j andu j defined analogous to the definition ofx j . This implies immediately that

Theorem 1. Let K hold and suppose that K(Y) = Op(1). Then K(X)− K (Y) = K (U )+ Op(
√

K (U )).

Theorem 1 is a very powerful result for dealing with endogenous noise. Note whatever the relationship

betweenY andU , if K (U )
p→ 0 thenK (X)− K (Y) = op(1), so if alsoK (Y)

p→ [Y] thenK (X)
p→ [Y] .

Hansen & Lunde (2006) have shown that endogenous noise is empirically important, particularly for mid-

quote data. The above theorem means endogeneity does not matter for consistency. What matters is that

the realised kernel applied to the noise process vanishes inprobability.

Because realised kernels are built out of thesen high frequency returns, it is natural to state asymptotic

results in terms ofn (rather thanN).
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Lemma 1. Let K, SH, D, andU hold. Then as H,n,m → ∞ with m/n → 0, H = c0nη, c0 > 0, and

η ∈ (0,1)

H2

n
K (X)

p→ ∣∣k′′(0)
∣∣�, if η < 1/2, (2)

K (X) =
∫ 1

0
6(u)du + c−2

0

∣∣k′′(0)
∣∣�+ Op(1), if η = 1/2, (3)

K (X)
p→
∫ 1

0
6(u)du, if η > 1/2. (4)

This shows the crucial role ofH . H needs to increase withn quite quickly to remove the influence on

the estimator of the noise. For very slow rates of increase inH the realized kernel will actually estimate a

scaled version of the integrated long-run noise. To estimate the integrated variance our preferred approach

is to setH = c0n3/5, becausen3/5 is the optimal rate in the trade-off between (squared) bias and variance.

In the next section we give a rule for selecting the best possible c0. This approach delivers a positive semi-

definite consistent estimator which is robust to endogeneity and semi-staleness of prices.

The results forH ∝ n1/2 achieve the best available rate of convergence (see below),but is inconsistent.

The Op(1) remainder in (3) can, in some cases, be shown to beop(1) in which case the bias,c−2
0

∣∣k′′(0)
∣∣�,

can be removed by using (2) withη = 1/5, for example. However, the resulting estimator is not necessarily

positive semi-definite and we do not recommend this in applications.

To study these results in more detail we will develop a central limit theory for the realised kernels, which

allows us to select a sensibleH . Before introducing the multivariate results, it is helpful to consider the

univariate case.

3.2. Univariate asymptotic distribution

3.2.1. Core points

The univariate version of the main results in our paper is thefollowing.

Theorem 2. Let K, SH, D, andU hold. If n → ∞, H = c0n3/5 and m−1 = o(
√

H/n) = o(n−1/5) we have

that

n1/5

(
K (X)−

∫ 1

0
σ 2(u)du

)
Ls→ MN

(
c−2

0 |k′′(0)|ω2,4c0k0,0
•

∫ 1

0
σ 4(u)

̹2(u)

̹1(u)
du

)
.

The notation
Ls→ MN means stable convergence to a mixed Gaussian distribution. This notion is im-

portant for the construction of confidence intervals and theuse of the delta method. The reason is that
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∫ 1
0 σ

4(u)̹2(u)
̹1(u)

du is random, and stable convergence guarantees joint convergence that is needed here. Stable

convergence is discussed, for example, in Mykland & Zhang (2006), who also provide extensive references.

The minimum mean square error of theH = c0n3/5 estimator is achieved by settingc0 = c∗ξ4/5 so

H = c∗ξ4/5n3/5 where

c∗ =
{

k′′(0)2

k0,0•

}1/5

, ξ2 = ω2

√
IQ
, IQ =

∫ 1

0
σ 4(u)

̹2(u)

̹1(u)
du.

Notice that the serial dependence in the noise will impact the choice ofc0 with ceteris paribus increasing

dependence leading to larger values ofH . Then

c0k0,0
• IQ = κ2,

|k′′(0)|
c2

0

ω2 = κ, where κ = κ0 {IQω}2/5 , κ0 =
(
|k′′(0)| (k0,0

•
)2)1/5

.

Then

n1/5

(
K (X)−

∫ 1

0
σ 2(u)du

)
Ls→ MN

(
κ,4κ2

)
. (5)

This shows both the bias and variance of the realised kernel will increase with the value of the long-run

variance of the noise. Interestingly time-variation in thenoise does not, in itself, change the precision of the

realised kernel — all that matters is the average level of thelong-run variance of the noise. For the Parzen

kernel we haveκ0 = 0.97.

3.2.2. Some additional comments

The conditions onm is caused by end effects, as these induce a bias inK (U ) that is of the order 2m−1ω2.

Empirically ω2 is tiny so 2m−1ω2 will be small even withm = 1, but theoretically this is an important

observation. AssumptionD.i implies Var(Dn,⌊tn⌋|Fτ⌊tn⌋−1)
p→ ̹2(t) − ̹2

1(t), which is non-negative. Thus

we have the inequality,̹ 2(t)/̹1(t) ≥ ̹1(t), which means that
∫ 1

0 σ
4(u)̹2(u)

̹1(u)
du ≥ ∫ 1

0 σ
4(u)̹1(u)du. So

the asymptotic variance above is higher than a process with time-varying but non-stochastic durations. The

random nature of the durations inflates the asymptotic variance.

The result looks weak compared to the corresponding result for the flat-top kernelK F (X) introduced by

Barndorff-Nielsen et al. (2008) withk′(0) = 0. They had the nicer result that4

n1/4
{

K F (X)− ∫ 1
0 σ

2(u)du
}

Ls→ MN
{
0,4c0k0,0

• IQ + 8
c0

k1,1
• ω2

∫ 1
0 σ

2(u)du + 4
c3

0
k2,2
• ω4

}
,

whenH = c0n1/2, under the (far more restrictive) assumption thatU is white noise. Hence, the implication

is that the kernel estimators proposed in this paper will be (asymptotically) inferior toK F (X) in the special

4See also Zhang (2006) who independently obtained an1/4 consistent estimator using a multiscale approach.
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case whereU is white noise. The advantage of our estimator, which hasH = c0n3/5, is that it is based on

far more realistic assumptions about the noise. This has thepractical implication thatK (X) can be applied

to prices that are sampled at the highest possible frequency. This point is forcefully illustrated in Section

6.1.2 where we compare the two estimators,K (X) and K F (X), and show the importance of being robust

to endogeneity and serial dependence. A simulation design shows thatK (X) is far more accurate than

K F (X) when the noise is serially dependent. Moreover, as an extra benefit of constructing our estimator

from K is that it ensures positive semi-definiteness. Naturally, one can always truncate an estimator to be

psd, for instance by replacing negative eigenvalues with zeros. Still, we find it convenient that the estimator

is guaranteed to be psd, because it makes a check for positivedefiniteness and correction for lack thereof,

entirely redundant.

Having an asymptotic bias term in the asymptotic distribution is familiar from kernel density estimation

with the optimal bandwidth. The bias is modest so long asH increases at a faster rate than
√

n. If k′′(0) = 0

we could takeH ∝ n1/2 which would result in a faster rate of convergence. However,no weight function

with k′′(0) = 0 can guarantee a positive semi-definite estimate, see Andrews (1991, p. 832, comment 5).

The following theorem rules out an important class of estimators which seems to be attractive to empir-

ical researchers.

Lemma 2. GivenU and a kernel function with k′ (0) 6= 0 but otherwise satisfiesK. Then, as n, H,m → ∞
we have thatHn K (U )

p→ 2
∣∣k′(0)

∣∣ ∫ 1
0

{
6ζ (u)+ γ0(u)

}
du.

Remark 4. If k′ (0) 6= 0 then there does not exist a consistentK (X). This rules out, for example, the well

known Bartlett type estimator in this context.

3.2.3. Choosing the bandwidth H and weight function

The relative efficiency of different realised kernels in this class are determined solely by the constant

|k′′(0)(k0,0
• )2|1/5 and so can be universally determined for all Brownian semimartingales and noise pro-

cesses. This constant is computed for a variety of kernel weight functions in Table 1. This shows that the

Quadratic Spectral (QS), Parzen and Fejér weight functions are attractive in this context. The optimal weight

function minimizes,|k′′(0)(k0,0
• )2|1/5, which is also the situation for HAC estimators, see Andrews (1991).

Thus, using Andrews’ analysis of HAC estimators, it followsfrom our results that the QS kernel is the

optimal weight function within the class of weight functions that are guaranteed to produce a non-negative

realised kernel estimate. A drawback of the QS and Fejér weight functions is that they, in principle, require

12



n (all) realised autocovariances to be computed, whereas thenumber of realised autocovariances needed

for the Parzen kernel is onlyH — hence we advocate the use of Parzen weight functions. We will discuss

estimatingξ2 in Section 3.4.

[Table 1 about here.]

3.3. Multivariate asymptotic distribution

To start we extend the definition of the integrated quarticity to the multivariate context

IQ =
∫ 1

0
{6(u)⊗6(u)} ̹2(u)

̹1(u)
du,

which is ad2 × d2 random matrix.

Theorem 3. Suppose H= c0n3/5, m−1 = o(n−1/5), K , SH, D, andU then

n1/5

{
K (X)−

∫ 1

0
6(u)du

}
Ls→ MN{c−2

0 |k′′(0)|�,4c0k0,0
• IQ}.

This is the multivariate extension of Theorem 2, yielding a limit theorem for the consistent multivariate

estimator in the presence of noise. The bias is determined bythe long-run variance�, whereas the variance

depends solely on the integrated quarticity.

Corollary 1. An implication of Theorem 3 is that for a,b ∈ Rd we have

n1/5a′
{

K (X)−
∫ 1

0
6(u)du

}
b

Ls→ MN
{
c−2

0 |k′′(0)|a′�b,4c0k0,0
• v′

abIQvab

}
,

wherevab = vec(ab′+ba′
2 ). For two different elements, a′K (X)b and c′K (X)d say, their asymptotic covari-

ance is given by4c0k0,0
• v′

abIQvcd.

So once a consistent estimator for IQ is obtained, Corollary1 makes it straightforward to compute a

confidence interval for any element of the integrated variance matrix.

Example 2. In the bivariate case we can write the results as

n1/5




K (X(i ))− ∫ 1
06i i du

K (X(i ), X( j ))− ∫ 1
06i j du

K (X( j ))− ∫ 1
06 j j du


 Ls→ MN (A, B) , (6)

where

A = c−2
0 |k′′(0)|



�i i

�i j

� j j


 and B= 2c0k0,0

•

∫ 1

0




262
i i 26i i6i j 262

i j

• 6i i6 j j +62
i j 26i i6 j i

• • 262
j j


 ̹2

̹1
du,

13



which has features in common with the noiseless case discussed in Barndorff-Nielsen & Shephard (2004,

eq. 18). By the delta method we can deduce the asymptotic distribution of the kernel based regression and

correlation (extending the work of, for example, Andersen,Bollerslev, Diebold & Labys (2003), Barndorff-

Nielsen & Shephard (2004) and Dovonon, Goncalves & Meddahi (2007)). For example, withβ(i, j ) =
∫ 1

06i j du
/∫ 1

06 j j du,

n1/5

(
K (X(i ), X( j ))

K (X( j ))
− β(i, j )

)
Ls→ MN (A, B) , where A= c−2

0 |k′′(0)|
∫ 1

06 j j du

(
�i j −� j j βi j

)
,

and

B = 2c0k0,0
•(∫ 1

06 j j du
)2

(
1, −β(i, j ) )

[∫ 1

0

(
6i i6 j j +62

i j 26i i6 j i

26 j j6i j 262
j j

)
̹2

̹1
du

](
1

−β(i, j )
)
.

3.4. Practical issues: Choice ofH

A main feature of multivariate kernels is that there is a single bandwidth parameterH which controls the

number of leads and lags used for all the series. It must grow with n at raten3/5, the key question here is

how to estimate a good constant of proportionality — which controls the efficiency of the procedure.

If we applied the univariate optimal mean square error bandwidth selection to each asset price individ-

ually we would getd bandwidthsH (i ) = c∗ξ4/5
i n3/5, wherec∗ = {

k′′(0)2/k0,0
•
}1/5

andξ2
i = �i i /

√
IQi i ,

where6i i (u) is the spot variance for thei -th asset. In practice we usually approximate
√

IQi i by
∫ 1

0 6i i (u)du

and useξ2
i = �i i /

∫ 1
0 6i i (u)du, which can be estimated relatively easily by using a low frequency esti-

mate of
∫ 1

0 6i i (u)du and one of many sensible estimators of�i i which use high frequency data. Then

we could construct some ad hoc rules for choosing the globalH , such asHmin = min(H (1), ..., H (d)),

Hmax = max(H (1), ..., H (d)), or H̄ = d−1∑d
i=1 H (i ), or many others. In our empirical work we have used

H̄ , while our web Appendix provides an analysis of the impact ofthis choice.

An interesting alternative is to optimise the problem for a portfolio, e.g. lettingι be ad-dimensional

vector of ones thend−2ι′K (X)ι = K
(
d−1ι′X

)
, which is like a “market portfolio” ifX contains many assets.

This is easy to carry out, for having converted everything into Refresh Time one computes the market

(ι′ X/ι′ι) return and then carry out a univariate analysis on it, choosing an optimalH for the market. This

singleH is then applied to the multivariate problem.

From the results in Example 2 it is straightforward to derivethe optimal choice forH,when the objective

is to estimate a covariance, a correlation, the inverse covariance matrix (which is important for portfolio
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choice) orβ(i, j ). Forβ(1,2) the trade-off is betweenc−4
0 |k′′(0)|2 (�12 −�22β

(1,2)
)2

, and

2c0k0,0
•

∫ 1

0

(
611622 +62

12 − 4β(1,2)611622 + 2β(1,2)2622
) ̹2

̹1
du.

4. Simulation Study

So far the analysis has been asymptotic asn → ∞. Here we carry out a simulation analysis to assess the

accuracy of the asymptotic predictions in finite samples. Wesimulate over the intervalt ∈ [0,1].
The following multivariate factor stochastic volatility model is used

dY(i ) = µ(i )dt + dV (i ) + dF (i ), dV (i ) = ρ(i )σ (i )dB(i ), dF (i ) =
√

1 − (
ρ(i )

)2
σ (i )dW.

where the elements ofB are independent standard Brownian motions andW ⊥⊥ B. HereF (i ) is the common

factor, whose strength is determined by
√

1 − (
ρ(i )

)2
.

This model means that eachY(i ) is a diffusive SV model with constant driftµ(i ) and random spot

volatility σ (i ). In turn the spot volatility obeys the independent processes σ (i ) = exp
(
β
(i )
0 + β

(i )
1 ̺

(i )
)

with

d̺(i ) = α(i )̺(i )dt + dB(i ). Thus there is perfect statistical leverage (correlation between their innovations)

betweenV (i ) andσ (i ), while the leverage betweenY(i ) and̺(i ) is ρ(i ). The correlation betweenY(1)(t) and

Y(2)(t) is
√

1 − (
ρ(1)

)2√
1 − (

ρ(2)
)2
.

The price process is simulated via an Euler scheme5, and the fact that the OU-process have an exact

discretization (e.g. Glasserman (2004, pp. 110)). Our simulations are based on the following configuration

(µ(i ), β
(i )
0 , β

(i )
1 , α

(i ), ρ(i )) = (0.03,−5/16,1/8,−1/40,−0.3), so thatβ(i )0 = (β
(i )
1 )

2/(2α(i )). Throughout

we have imposed that E
(∫ 1

0 σ
(i )2(u)du

)
= 1. The stationary distribution of̺(i ) is utilised in our simulations

to restart the process each day at̺(i )(0) ∼ N(0, (−2α(i ))−1). For our design we have that the variance of

σ 2 is exp(−2(β(i )1 )
2/α(i )) − 1 ≃ 2.5. This is comparable to the empirical results found in e.g. Hansen &

Lunde (2005) which motivate our choice forα(i ).

We add noise simulated as

U (i )
j |σ,Y i.i.d.∼ N

(
0, ω2

)
with ω2 = ξ2

√
N−1

∑N

j =1
σ (i )4( j/N),

where the noise-to-signal ratio,ξ2 takes the values 0, 0.001 and 0.01. This means that the variance of the

noise increases with the volatility of the efficient price (e.g. Bandi & Russell (2006)).

5We normalize one second to be 1/23, 400, so that the interval[0,1] contains 6.5 hours. In generating the observed price, we
discretize[0,1] into a numberN = 23, 400 of intervals.
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To model the non-synchronously spaced data we use two independent Poisson process sampling schemes

to generate the times of the actual observations{t (i )j } to which we apply our realised kernel. We control the

two Poisson processes byλ = (λ1, λ2), such that for exampleλ = (5,10) means that on averageX(1) and

X(2) is observed every 5 and 10 second, respectively. This means that the simulated number of observations

will differ between repetitions, but on average the processes will have 23400/λ1 and 23400/λ2 observations,

respectively.

We varyλ through the following configurations(3,6), (5,10), (10,20), (15,30), (30,60), (60,120)

motivated by the kind of data we see in databases of equity prices.

In order to calculateK (X) we need to selectH . To do this we evaluatêω(i )2δ = [X(i )
δ ](1)/(2n) and

[X(i )
1/900](1), the realised variance estimator based on 15 minute returns. These give us the following feasible

valuesĤi = cn3/5
(
ω̂
(i )2
δ /[X(i )

1/900](1)
)2/5

. The results forHmeanare presented in Table 2.

[Table 2 about here.]

Panel A of the table reports the univariate results of estimating integrated variance. We give the bias and

root mean square error (MSE) for the realised kernel and compare it to the standard realised variance. In the

no noise case ofξ2 = 0 the RV statistic is quite a bit more precise, especially when n is large. The positive

bias of the realised kernel can be seen whenξ2 is quite large, but it is small compared to the estimators

variance. In that situation the realised kernel is far more precise than the realised variance. None of these

results are surprising or novel.

In Panel B we break new ground as it focuses on estimating the integrated covariance. We compare

the realised kernel estimator with a realised covariance. The high frequency realised covariance is a very

precise estimator of the wrong quantity as its bias is very close to its very large mean square error. In this

case its bias does not really change very much asn increases.

The realised kernel delivers a very precise estimator of theintegrated covariance. It is downward biased

due to the non-synchronous data, but the bias is very modest whenn is large and its sampling variance

dominates the root MSE. Taken together this implies the realised kernel estimators of the correlation and

regression (beta) are strongly negatively biased — which isdue to it being a non-linear function of the noisy

estimates of the integrated variance. The bias is the dominant component of the root MSE in the correlation

case.
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5. Empirical illustration

We analyze high-frequency assets prices for thirty assets.6 In the analysis the main focus will be on the

empirical properties of 30× 30 realised kernel estimates. To conserve space we will onlypresent detailed

results for a 10× 10 submatrix of the full 30× 30 matrix. The ten assets we will focus on are Alcoa Inc.

(AA), American International Group Inc. (AIG), American Express Co. (AXP), Boeing Co. (BA), Bank of

America Corp. (BAC), Citygroup Inc. (C), Caterpillar Inc. (CAT), Chevron Corp. (CVX), El DuPont de

Nemours & Co. (DD), and Standard & Poor’s Depository Receipt(SPY). The SPY is an exchange-traded

fund that holds all of the S&P 500 Index stocks and has enormous liquidity. The sample period runs from

January 3, 2002 to July 31, 2008, delivering 1503 distinct days. The data is the collection of trades and

quotes recorded on the NYSE, taken from the TAQ database through the Wharton Research Data Services

(WRDS) system. We present empirical results for both transaction and mid-quote prices.

Throughout our analysis we will estimate quantities each day, in the tradition of the realised volatility

literature following Andersen et al. (2001) and Barndorff-Nielsen & Shephard (2002). This means the target

becomes functions of[Y]s = [Y](s) − [Y](s − 1), s ∈ N. The functions we will deal with are covariances,

correlations and betas.

5.1. Procedure for cleaning the high-frequency data

Careful data cleaning is one of the most important aspects ofvolatility estimation from high-frequency data.

Numerous problems and solutions are discussed in Falkenberry (2001), Hansen & Lunde (2006), Brownless

& Gallo (2006) and Barndorff-Nielsen, Hansen, Lunde & Shephard (2009). In this paper we follow the

step-by-step cleaning procedure used in Barndorff-Nielsen et al. (2009) who discuss in detail the various

choices available and their impact on univariate realised kernels. For convenience we briefly review these

steps.

All data: P1) Delete entries with a timestamp outside the 9:30 a.m. to 4p.m. window when the exchange

is open. P2) Delete entries with a bid, ask or transaction price equal to zero. P3) Retain entries originating

from a single exchange (NYSE, except INTC and MFST from NASDAQ and for SPY for which all retained

observations are from Pacific). Delete other entries.

Quote data only: Q1) When multiple quotes have the same timestamp, we replace all these with a single

entry with the median bid and median ask price. Q2) Delete rows for which the spread is negative. Q3)

6The ticker symbols of these assets are AA, AIG, AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE, GM, HD, IBM, INTC, JNJ,
JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, SPY, T, UTX, VZ, WMT, andXOM.

17



Delete rows for which the spread is more that 10 times the median spread on that day. Q4) Delete rows for

which the mid-quote deviated by more than 10 mean absolute deviations from a centered median (excluding

the observation under consideration) of 50 observations.

Trade data only: T1) Delete entries with corrected trades. (Trades with aCorrection Indicator, CORR 6=
0). T2) Delete entries with abnormalSale Condition. (Trades where COND has a letter code, except for

“E” and “F”). T3) If multiple transactions have the same timestamp: use the median price. T4) Delete

entries with prices that are above theaskplus the bid-ask spread. Similar for entries with prices below the

bid minus the bid-ask spread. We note steps P2, T1, T2, T4, Q2, Q3 and Q4 collectively reduce the sample

size by less than 1%.

5.2. Sampling schemes

We applied three different sampling schemes depending on the particular estimator. The simplest one is

the estimator by Hayashi & Yoshida (2005) that uses all the available observations for a particular asset

combination. Following Andersen et al. (2003) the realisedcovariation estimator is based on calender time

sampling. Specifically, we consider 15 second, 5 minute, and30 minute intraday returns, aligned using the

previous tick approach. This results in 1560, 78 and 13 dailyobservations, respectively.

For the realised kernel the Refresh Time sampling scheme discussed in section 2.1 is used. In our

analysis we present estimates for the upper left 10× 10 block of the full 30× 30 integrated covariance

matrix. The estimates are constructed using three different sampling schemes. a) Refresh Time sampling

applied to full set of DJ stocks, b) Refresh Time sampling applied to only the 10 stock that we focus on and

c) Refresh Time sampling applied to each unique pair of assets. So in our analysis we will present three

sets of realized kernel estimates of the elements of the integrated covariance matrix. One set that comes

from a 30× 1 vector of returns, the same set estimated using only the required 10× 1 vector of returns,

and finally a set constructed from the 45 distinct 2× 2 covariance matrix estimates. Note that the two first

estimators are positive semidefinite by construction, while the latter is not guaranteed to be so. We compute

these covariance matrix estimates for each day in our sample.

The fraction of the data we retained by constructing RefreshTime is recorded in Table 3 for each of the

45 distinct 2×2 matrices. It records the average of the dailyp statistics defined in Section 2.1 for each pair.

It emerges that we never lose more that half the observationsfor most frequently traded assets. For the least

active assets we typically lose between 30% to 40% of the observations.
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For the 10× 1 case the data loss is more pronounced. Still, on average more that 25 percent of the

observations remain in the sample. For transaction data theaverage number of Refresh Time observations

is 1,470, whereas the corresponding number is 4,491 for the quote data. So in most cases we have an

observation on average more often than every 5 seconds for quote data and 15 seconds for trade data. We

observed that the data loss levels off as the dimension increases. For the 30× 1 case we have on average

more that 17 percent of the observations remaining in the sample. For transaction data the average number

of Refresh Time observations is 966 and 2,978 for the quote data. This gives an observation on average

more often than every 8 seconds for quote data and 24 seconds for trade data.

[Table 3 about here.]

5.3. Analysis of the covariance estimators:CovK
s , CovHY

s , CovOtoC
s and Cov1m

s

Throughout this subsection the target which we wish to estimate is[Y(i ),Y( j )]s, i, j = 1,2, ...,d, s ∈ N. In

what follows the pairi, j will only be referred to implicitly. All kernels are computed with Parzen weights.

We compute the realised kernel for the full 30-dimensional vector, the 10-dimensional sub-vector and

(all possible) pairs of the ten assets. The resulting estimates of [Y(i ),Y( j )]s are denoted by CovK30×30
s ,

CovK10×10
s and CovK2×2

s , respectively. These estimators differ in a number of ways,such as the bandwidth

selection and the sampling times (due to the construction ofRefresh Time).

To provide useful benchmarks for these estimators we also compute: CovHY
s , the Hayashi & Yoshida

(2005) covariance estimator. Cov1
s , the realised covariance based on intraday returns that span a interval of

length1, e.g. 5 or 30 minutes (the previous-tick method is used). CovOtoC
s , the outer products of the open to

close returns, which when averaged over many days provide anestimator of the average covariance between

asset returns.

The empirical analysis of our estimators of the covariance is started by recalling the main statistical

impact of market microstructure and the Epps effect. Table 4contains the time series average covariance

computed using the Hayashi & Yoshida (2005) estimator CovHY
s and the open to close estimator CovOtoC

s .

Quite a few of these types of tables will be presented and theyall have the same structure. The numbers

above the leading diagonal are results from trade data, the numbers below are from mid-quotes. It is inter-

esting to note that the CovHY
s estimates are typically much lower than the corresponding CovOtoC

s estimate.

Numbers in bold font indicate estimates that are significantly different from CovOtoC
s at the one percent level.

This assessment is carried out in the following way.
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[Table 4 about here.]

For a given estimator, e.g. CovK2×2
s , we consider the differencees = CovK2×2

s − CovOtoC
s , and com-

pute the sample bias as̄e and robust (HAC) variance ass2
η = γ0 + 2

∑q
h=1

(
1 − h

q+1

)
γh, whereγh =

1
T−h

∑n−h
s=1 ηsηs−h. Hereηs = es − ē andq = int

{
4(T/100)2/9

}
. The number is boldfaced if

∣∣∣
√

Tē/sη
∣∣∣ >

2.326. The results in Table 4 indicate that CovHY
s is severely downward bias. Every covariance estimator for

every pair of assets for both trades and quotes are statistically significantly biased.

5.4. Results forCovK30×30
s , CovK10×10

s and CovK2×2
s

We now move on to more successful estimators. The upper panelof Table 5 presents the time series average

estimates for CovK30×30
s , the middle panel for CovK10×10

s , and the lower panel give results for CovK2×2
s . The

diagonal elements are the estimates based on transactions.Off-diagonal numbers are boldfaced if they are

significantly biased (compared to CovOtoC
s ) at the 1 percent level. These results are quite encouragingfor all

three estimators. The average levels of the three estimators are roughly the same.

[Table 5 about here.]

[Table 6 about here.]

A much tougher comparison is to replace the noisyes = CovK
s −CovOtoC

s with es = CovKd×d
s −Cov

Kd′×d′
s ,

where the two estimates come from applying the realized kernel to price vectors of dimensiond andd′. Our

tests will then ask if there is a significant difference in theaverage. The results reported in our web Appendix

suggest very little difference in the level of the three realised kernel estimators. When we compute the same

test based ones = CovKd×d
s − Cov5m

s we find that the realized kernels and the realised covariances based on

5 minutes returns are also quite similar.

The result in that analysis is reinforced by the informationin the summary Table 6, which shows results

averaged over all asset pairs for both trades and quotes. Theresults are not very different for most estimators

as we move from trades to quotes, the counter example is CovHY
s which is sensitive to this.

The Table shows CovK30×30
s , CovK10×10

s and CovK2×2
s have roughly the same average value, which is

slightly below CovOtoC
s . CovK2×2

s has a seven times smaller variance than CovOtoC
s , which shows it is a

lot more precise. Of course integrated variance is its self random so seven underestimates the efficiency

gain of using CovK2×2
s . If volatility is close to being persistent then CovK30×30

s is at least 4.2552

1.612(1−acf1)
≃ 20

times more informative than the cross product of daily returns. The same observation holds for mid-quotes.
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Cov15s
s and CovHY

s are very precise estimates of the wrong quantity. Cov5m
s is quite close to CovK30×30

s ,

CovK10×10
s and CovK2×2

s , with Cov5m
s and CovK30×30

s having a correlation of 0.942. We note that realised kernel

results seem to show some bias compared to CovOtoC
s , the difference is however statistically insignificantly

different than zero, as CovOtoC
s turns out to be very noisy.

The corresponding results for correlations are interesting. Naturally, the computation of the correlation

involves a non-linear transformation of roughly unbiased and noisy estimates. We should therefore (by

a Jensen inequality argument) expect all these estimates tobe biased. The most persistent estimator is

Corr1/4m
s , but the high autocorrelation merely reflects the large distortion that noise has on this estimator, as

is also evident from the sample average of this correlation estimator. The largest autocorrelation amongst

the more reliable estimators is that of CorrK2×2
s , which suggest that this is most effective estimate of the

correlation.

In our web appendix we give time series plots and autocorrelogram for the various estimates of realised

covariance for the AA-SPY assets combination using trade data. They show CovK2×2
s performing much

better than the 30 minute realised covariance but there not being a great deal of difference between the

statistics when the realised covariance is based on 5 minutereturns. The web appendix also presents

scatter plots of estimates based on transaction prices (vertical axis) against the same estimate based on mid-

quotes (horizontal axis) for the same days. These show a remarkable agreement between estimates based

on CovK2×2
s , Cov5m

s and Cov30m
s , while once again CovHY

s struggles. Overall CovK2×2
s and Cov5m

s behave in a

similar manner, with CovK2×2
s slightly stronger. CovK10×10

s estimates roughly the same level as CovK2×2
s but

is discernibly noisier.

5.5. Analysis of the correlation estimates

In this subsection we will focus on estimatingρ(i, j )s = [Y(i ),Y( j )]s/
√

[Y(i )]s[Y( j )]s by the realised kernel

correlationρ̂(i, j )Ks = K (i, j )
s /

√
K (i,i )

s K ( j , j )
s and the corresponding realised correlationρ̂Xm

s .

A table in our web Appendix reports the average estimates forρ̂
K2×2
s , ρ̂K10×10

s and ρ̂5m
s . It shows the

expected result that̂ρK2×2
s is more precise than̂ρK10×10

s . Both have average values which are quite a bit

below the unconditional correlation of the daily open-to-close returns. This is not surprising. All the three

ingredients of thêρK2×2
s are measured with noise and so when we formρ̂(i, j )Ks it will be downward bias.
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5.6. Analysis of the beta estimates

Here we will focus on estimatingβ(i, j )s = [Y(i ),Y( j )]s/[Y( j )]s, by the realised kernel betaβ(i, j )Ks = K (i, j )
s /K ( j , j )

s .

Figure 2 presents scatter plots of beta estimates based on transaction prices (vertical axis) against the same

estimate based on mid-quotes (horizontal axis). The two estimators areβK2×2
s to β5m

s . The results are not

very different in these two cases.

Figure 3 compares the fitted values from ARMA models for the kernel and 5 minute estimates of realised

betas for the AA-SPY assets combination. These are based on the model estimates for the daily kernel based

realised betas

βK
s = 1.20

(0.06)
+ 0.923

(0.027)
βK

s−1 + us − 0.726
(0.048)

us−1, adj−R2 = 0.213,

and for 5 minute based realised betas

β5 min
s = 1.16

(0.06)
+ 0.950

(0.024)
β5 min

s−1 + us − 0.821
(0.039)

us−1, adj−R2 = 0.145.

Both models have a significant memory, with autoregressive roots well above 0.9 and with large moving

average roots. The fit of the realised kernel beta is a little bit better than that for the realised beta.

[Figure 2 about here.]

[Figure 3 about here.]

We also calculate the encompassing regressions. The estimates for the realised kernel betas are

βK
s = 0.084

(0.031)
+ 0.858

(0.053)
βK

s−1 + 0.074
(0.043)

β5 min
s−1 + us − 0.726

(0.044)
us−1, adj−R2 = 0.215,

with the corresponding 5 minute based realised betas

β5 min
s = 0.056

(0.026)
+ 0.879

(0.047)
β5 min

s−1 + 0.069
(0.035)

βK
s−1 + us − 0.822

(0.040)
us−1, adj−R2 = 0.150.

This shows that either estimator dominates the other in terms of encompassing, although the realised kernel

has a slightly strongert-statistic.

5.7. A scalar BEKK

An important use of realised quantities is to forecast future volatilities and correlations of daily returns.

The use of reduced form has been pioneered by Andersen et al. (2001) and Andersen et al. (2003). One
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useful way of thinking about the forecasting problem is to fita GARCH type problem with lagged realised

quantities as explanatory variables, e.g. Engle & Gallo (2006). Here we follow this route, fitting multivariate

GARCH models with E(rs|Fs−1) = 0, Cov(rs|Fs−1) = Hs, wherers is thed × 1 vector of daily close to

close returns,Fs−1 is the information available at times − 1 to predictrs. A standard Gaussian quasi-

likelihood −1
2

∑T
s=1

(
log |Hs| + r ′

sH−1
s rs

)
is used to make inference. The model we fit is a variant on the

scalar BEKK (e.g. Engle & Kroner (1995))

Hs = C′C + βHs−1 + αrs−1r
′
s−1 + γKs−1, α, β, γ ≥ 0.

Here we follow the literature and useHs to denote the conditional variance matrix (not to be confused with

our bandwidth parameters).

Instead of estimating thed(d + 1)/2 unique elements ofC we use a variant of variance targeting as

suggested in Engle & Mezrich (1996). The general idea is to estimate the intercept matrix by an auxiliary

estimator that is given by

Ĉ′Ĉ = S̄⊙ (1 − α − β − γ κ), S̄ = 1

T

T∑

s=1

rsr
′
s, (7)

where⊙ denotes the Hadamard product. There is a slight deviation from the situation considered by Engle

& Mezrich (1996) because KK2×2
s−1 is only estimated for the part of the day where the NYSE is open. To

accommodate this we follow Shephard & Sheppard (2009) that introduce the scaling matrix,κ, in (7) which

we estimate by

κ̂i j =
(
µ̂RK

µ̂

)

i j

, µ̂ = T−1
T∑

s=1

rsr
′
s and µ̂RK = T−1

T∑

s=1

Ks.

Having S̄ and κ̂ at hand the remaining parameters are simply estimated by maximizing the concentrated

quasi-log-likehood, with

Hs = S̄⊙ (1 − α − β − γ κ̂)+ βHs−1 + αrs−1r
′
s−1 + γKs−1, α, β, γ ≥ 0.

An interesting question is whetherγ is statistically different from zero, because this means that high fre-

quency data enhances the forecast of future covariation. Inour analysis we will also augment the model

with RV5m
s−1

We estimate scalar BEKK models for the 30×30, 10×10, and the 45 2×2 cases. In Table 7 we present

estimates for the two larger dimensions and three selected 2× 2 cases. The results in Table 7 suggest that

lagged daily returns are no longer significant for this multivariate GARCH model once we have the realised
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kernel covariance. This is even though the realised kernel covariance misses out the overnight effect — the

information in the close-to-open returns. An interesting feature of the series is that in most cases including

Ks−1 reduces the size of the estimatedHs−1 term. It is also interesting to note that including Ks−1 in general

gives a higher log-likelihood than including RV5m
s−1. This holds for both the 30-dimensional and the 10-

dimensional cases, and for 40 of the 45 2-dimensional cases.In our web appendix we report summary

statistics of two likelihood ratio tests applied to all the 45 2-dimensional cases. The average LR statistic

for removing RV5m
s−1 from our most general specification is 0.66, where as the corresponding average for

removing Ks−1 is 11.9. These tests can be interpreted as encompassing tests, andprovide an overwhelming

evidence that the information in RV5m
s−1is contained in Ks−1.

[Table 7 about here.]

6. Additional remarks

6.1. Relating K (X) to the flat-top realised kernel K F (X)

In the univariate case the realised kernelK (X) = ∑n
h=−n k( h

H )Ŵh, with Ŵh = ∑n
j =|h|+1 x j x j −|h|, is at first

sight very similar to the unbiased flat-top realised kernel of Barndorff-Nielsen et al. (2008)

K F (X) = Ŵ0 +
n∑

h=1

k( h−1
H+1)

(
ŴF

h + ŴF
−h

)
, ŴF

h =
n∑

j =1

x j x j −h.

Here theŴh andŴF
h are not divided by the sample size. This means that the end conditions, the observations

at the start and end of the sample, can have influential effects. Jittering eliminates the end effects inK (X),

whereas the presence ofx−1, x−2, . . . andxn+1, xn+2, . . . in the the definition ofŴF
h removes the end effects

from K F (X). However, an implication of this is that the resulting estimator is not guaranteed to be positive

semi-definite whatever the choice of the weight function.

The alternativeK F (X) has the advantage that it (under the restrictive independent noise assumption)

converges at an1/4 rate and is close to the parametric efficiency bound. It has the disadvantage that it can go

negative, while we see in the next subsection that it is sensitive to deviations from independent noise, such as

serial dependence in the noise and endogenous noise, whichK (X) is robust to. The requirement thatK (X)

be positive results in the bias-variance trade-off and reduces the best rate of convergence fromn1/4 to n1/5.

This resembles the effects seen in the literature on densityestimation with kernel functions. The property,
∫

u2k(u)du = 0, reduces the order of the asymptotic bias, but kernel functions that satisfy
∫

u2k(u)du = 0

can result in negative density estimates, see Silverman (1986, sections 3.3 and 3.6).
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6.1.1. Positivity

There are three reasons thatK F (X) can go negative.7 The most obvious is the use of a kernel function that

does not satisfy,
∫∞
−∞ k(x)exp(i xλ)dx ≥ 0 for all λ ∈ R, such as the Tukey-Hanning kernel or the cubic

kernel,k(x) = 1 − 3x2 + 2x3. The flat-top kernels give unit weight toγ1 andγ−1, which can meanK F (X)

may be negative. This can be verified by rewriting the estimator as a quadratic form estimator,x′Mx, where

M is a symmetric band matrixM = band(1,1, k( 1
H ), k(

2
H ), . . . , ). The determinant of the upper-left matrix

is given by− {k( 1
H )− 1

}2
, so thatk( 1

H ) = 1 is needed to avoid negative eigenvalues. Repeating this

argument leads tok( h
H ) = 1 for all h, which violates the condition thatk( h

H ) → 0, ash → ∞. Finally, the

third reason that the flat-top kernel could produce a negative estimate was due to the construction of realized

autocovariances,γh = ∑n
j =1 x j x j −h. This requires the use of “out-of-period” intraday returns,such asx1−H .

This formulation was chosen because it makes E{K (U )} = 0 whenU is white noise. However, sincex−H

only appears once in this estimator, with the termx1x1−H , it is evident that a sufficiently large value of

x1−H (positive or negative, depending on the sign ofx1) will cause the estimator to be negative. We have

overcome the last obstacle by jittering the end-points, which makes the use of “out-of-period” redundant.

They can be dropped at the expense of aO(m−1) bias.

6.1.2. Efficiency

An important question is how inefficient isK (X) in practice compared to the flat-top realised kernel,

K F (X)? The answer is quite a bit whenU is white noise. Table 8 gives E
[
n1/4 {K (X)− [Y]}]2 /ω and

E
[
n1/4

{
K F (X)− [Y]}]2 /ω, the mean square normalised by the rate of convergence ofK F

P (X) (which is

the flat-top realised kernel using the Parzen weight function. An implication is that the scaled MSE for

the K (X) andK F
B will increase without bound asn → ∞ because these estimators converge at a rate that

is slower thann1/4). The results are given in the case of Brownian motion observed with different types

of noise. Results for two flat-tops are given, the Bartlett (K F
B (X)) and Parzen (K F

P (X)) weight functions.

Similar types of results hold for other weight functions.

Consider first the case with GaussianU white noise with variance ofω2. The results show that the

variance ofK (X) is much bigger than its squared bias. For smalln there is not much difference between

the three estimators, but by the timen = 4,096 (which is realistic for our applications) the flat-topK F (X)

7The flat-top kernel is only rarely negative with modern data.However, if[Y] is very small and theω2 very large, which we
saw on slow days on the NYSE when the tick size was $1/8, then itcan happen quite often when the flat-top realised kernel is used.
We are grateful to Kevin Sheppard for pointing out these negative days.
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has roughly half the MSE ofK (X) in the univariate case. Hence in ideal (but unrealistic) circumstances

K F (X) has advantages overK (X), but we are attracted to the positivity and robustness ofK (X).

The robustness advantage ofK (X) can be seen using four simulation designs whereU j is modelled as

a dependent process. We consider the moving average specification, U j = ǫ j − θǫ j −1, with θ = ±0.5

and the autoregressive specification,U j = ϕU j −1 + ǫ j , with ϕ = ±0.5, whereǫ j is Gaussian white

noise. The bandwidth for all estimators were to be “optimal”underU being white noise, which is the

default in the literature, soH F
B = 2.28ω4/3n2/3, H F

P = 4.77ωn1/2, and HP = 3.51ω4/5n3/5 whereω2 =
∑∞

h=−∞ cov(U j ,U j −h). The results show the robustness ofK (X) and the strong asymptotic bias ofK F
P and

K F
B under the non-white noise assumption. The specifications,θ = 0.5 andϕ = −0.5 induce a negative

first-order autocorrelation whileθ = −0.5 andϕ = 0.5 induce positive autocorrelation. Negative first-order

autocorrelation can be the product of bid-ask bounce effects, this is particularly the case if sampling only

occurs when the price changes. Positive first-order autocorrelation would, for example, be relevant for the

noise in bid prices because variation in the bid-ask spread would induce such dependence.

[Table 8 about here.]

6.2. Preaveraging without bias correction

6.2.1. Estimating multivariate QV

In independent and concurrent work Vetter (2008, p. 29 and Section 3.2.4) has studied a univariate subop-

timal preaveraging estimator of[Y] whose bias is sufficiently small that the estimator does not need to be

explicitly bias corrected to be consistent (the bias corrected version can be negative). Its rate of convergence

does not achieve the optimaln−1/4 rate. Hence his suboptimal preaveraging estimator has somesimilarities

to our non-negative realised kernel. Implicit in his work isthat his non-corrected preaveraging estimator is

non-negative. However, this is not remarked upon explicitly nor developed into the multivariate case where

non-synchronously spaced data is crucial.

Here we outline what a simple multivariate uncorrected preaveraging estimator based on refresh time

would look like. We define it asV̂ = ∑n−H
j =1 x j x

′
j , wherex j = (ψ2H )−1/2∑H

h=1 g
(

h
H

)
x j +h, ψ2 =

∫ 1
0 g2(u)du. Here g(u), u ∈ [0,1] is a non-negative, continuously differentiable weight function, with

the properties thatg(0) = g(1) = 0 andψ2 > 0. Now if we setH = θn3/5, then the univariate result in

Vetter (2008) would suggest thatV̂ converges at raten−1/5, like the univariate version of our multivariate

realised kernel. There is no simple guidance, even in the univariate case, as to how to chooseθ .
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In the univariate bias corrected form, Jacod et al. (2009) show that V̂ is asymptotically equivalent to

using aK F (X) with k(x) = ψ−1
2

∫ 1
x g(u)g(u − x)du and H ∝ n1/2. It is clear the same result will hold

for the relationship between̂V and K (X) in the multivariate case whenH = θn3/5. A natural choice of

g is g(x) = (1 − x) ∧ x, which delivers
∫ 1

0 g2(u)du = 1/12 and ak function which is the Parzen weight

function. Hence one might investigate usingθ = c0 as in our paper, to drive the choice ofH for V̂ when

applied to refresh time based high frequency returns.

Following the initial draft of this paper Christensen, Kinnebrock & Podolskij (2009) have defined a bias

corrected preaveraging estimator of the multivariate[Y] with H = θn1/2, for which they derive limit theory.

Their estimator has the disadvantage that it it is not guaranteed to be positive semi-definite.

6.2.2. Estimating integrated quarticity

In order to construct feasible confidence intervals for our realised quantities (see Barndorff-Nielsen & Shep-

hard (2002)) we have to estimate the stochasticd2 × d2 matrix, IQ. Our approach is based on the no-noise

Barndorff-Nielsen & Shephard (2004) bipower type estimator applied to suboptimal preaveraged data taking

H = θn3/5. This is not an optimal estimator, it will converge at raten1/5, but it will be positive semidefinite.

The proposed (positive semi-definite) estimator of vec(IQ) is Q̂ = n
∑n−H−1

j =1

{
c j c′

j − 1
2

(
c j c′

j +H + c j +Hc j

)}
,

wherec j = vec(x̄ j x̄′
j ). That the elements of̂Q is consistent using this choice of bandwidth is implicit in the

thesis of Vetter (2008, p. 29 and Section 3.2.4).

6.3. Finite sample improvements

The realised kernel is non-negative so we can use log-transform

n1/5

{
log (K (X))− log

(∫ 1

0
σ 2(u)du

)}
Ls→ MN





κ
∫ 1

0 σ
2(u)du

,4

(
κ

∫ 1
0 σ

2(u)du

)2


 .

to improve its finite sample performance. When the data is regularly spaced and the volatility is constant

thenκσ−2 = (ω/σ )2/5
∣∣k′′(0)

∣∣1/5 (k0,0
•
)2/5

, which depends less onσ 2 than the non-transformed version.

6.4. Subtlety of end effects

We have introduced jittering to eliminate end-effects. Thelarger ism the smaller is the end-effects, however

increasingm has the drawback that is reduces the sample size,n, that can be used to compute the realised

autocovariances. GivenN observations, the sample size available after jittering isn = N − 2(m − 1), so
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extensive jittering will increase the variance of the estimator. In this subsection we study this trade-off.

We focus on the univariate case whereU is white noise. The mean square error caused by end-effects

is simply the squared bias plus the variance ofU0U ′
0 + UnU ′

n, which is given by 4m−2ω4 + 4m−2ω4 =
8ω4m−2, as shown in the proof of Lemma A.2. The asymptotic variance (abstracting from end-effects) is

5κ2n−2/5 = 5
∣∣k′′(0)ω2

∣∣2/5 {k0,0
• IQ

}4/5
n−2/5. So the trade-off between contributions from end-effects and

asymptotic variance is given by

gN,ω2,IQ(m) = m−28ω4 + 5
∣∣k′′(0)ω2

∣∣2/5 {k0,0
• IQ

}4/5
(N − m)−2/5.

This function is plotted in Figure 4 for the case whereN = 1,000 and IQ= 1 andω2 = 0.0025 and 0.001.

The optimal value ofm ranges from 1 to 2. The effect of increasingn on optimalm can be seen from Figure

4, where the optimal value ofm has increased a little from Figure 4 asn has increased to 5,000. However,

the optimal amount of jittering is still rather modest.

[Figure 4 about here.]

6.5. Finite lag refresh time

In this paper we roughly synchronise our return data using the concept of Refresh Time. Refresh Time

guarantees that our returns are not stale by more than one lagin Refresh Time. Our proofs need a somewhat

less tight condition, that returns are not stale by more thana finite number of lags. This suggests it may

be possible to find a different way of synchronising data which throws information away less readily than

Refresh Time. We leave this problem to further research.

6.6. Jumps

In this paper we have assumed thatY is a pureB S M. The analysis could be extended to the situation

whereY is a pureB S M plus a finite activity jump process. The analysis in Barndorff-Nielsen et al. (2008,

section 5.6) suggests that the realised kernel is consistent for the quadratic variation,[Y], at the same rate of

convergence as before, but with a different asymptotic distribution.

7. Conclusions

In this paper we have proposed the multivariate realised kernel, which is a non-normalised HAC type esti-

mator applied to high frequency financial returns, as an estimator of the ex-post variation of asset prices in
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the presence of noise and non-synchronous trading. The choice of kernel weight function is important here

— for example the Bartlett weight function yields an inconsistent estimator in this context.

Our analysis is based on three innovations: (i) we used a weight function which delivers biased kernels,

allowing us to use positive semi-definite estimators, (ii) we coordinate the collection of data through the idea

of refresh time, (iii) we show the estimator is robust to the remaining staleness in the data. We are able to

show consistency and asymptotic mixed Gaussianity of our estimator.

Our simulation study indicates our estimator is close to being unbiased for covariances under realistic

situations. Not surprisingly the estimators of correlations are downward biased due to the sampling variance

of our estimators of variance. The empirical results based on our new estimator are striking, providing much

sharper estimates of dependence amongst assets than has previously been available. We have analysed

problems of up to 30 dimensions and have found that efficiencygains of using the high frequency data are

around 20 fold.

Multivariate realised kernels have potentially many areasof application, improving our ability to esti-

mate covariances. In particular, this allows us to utilize high frequency data to significantly improve our

predictive models as well as providing a better understand of asset pricing and management of risk in finan-

cial markets.
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Appendices

Under the assumptions given in this paper, our line of argument will be as follows.

• Show the realised kernel is consistent and work out its limittheory for synchronized data. This is

shown in Appendix A, where Propositions A1-A5 and Theorems A3-A4 are used to establish the

multivariate result in Theorem 3 and the univariate result in Theorem 2 then follows as a corollary to

Theorem 3.

• Show the staleness left by the definition of refresh time has no impact on the asymptotic distribution

of the equally spaced realised kernel. This is shown in Appendix B.

Appendix A: Proofs for synchronised data

Proof of Theorem 1.We note that for alli, j ,

K

(
Y(i )

U ( j )

)
=
(

K (Y(i )) K (Y(i ),U ( j ))

K (Y(i ),U ( j )) K (U ( j ))

)
,

is positive semi-definite. This means that by taking the determinant of this matrix and rearranging we see

that K (Y(i ),U ( j ))2 ≤ K (Y(i ))K (U ( j )), so that

K (X) = K (Y)+ O

(√
maxi K

(
Y(i )

)√
maxj K

(
U ( j )

))+ K (U ) ,

and the result follows.�
Next collect limit results aboutK (Y) andK (U ). Due to Theorem 1 we can safely ignore the cross terms

K (U,Y) as long asK (U ) vanishes at the appropriate rate.

A.1. Results concerningK (U )

The aim of this subsection to is prove the following Proposition.

Theorem A.4. UnderK andU then

H2

n
K (U )

p→ −k′′(0)�, as n, H,m → ∞ with H2/(mn) → 0.

Before we prove Theorem A.4, we establish some intermediateresults. The following definitions lead

to a useful representation ofK (U ). Forh = 0,1, . . . we define

Vh =
n−1∑

j =h+1

U j U
′
j −h + U j −hU ′

j , and Zh = (
U0U

′
h + UhU ′

0

)+ (UnU ′
n−h + Un−hU ′

n).

Proposition A.1. The realised autocovariances of U can be written as

Ŵ0(U ) = V0 − V1 + 1
2 Z0 − Z1 (A.1)

Ŵh(U )+ Ŵh(U )
′ = −Vh−1 + 2Vh − Vh+1 + Zh − Zh+1, (A.2)

so with kh = k( h
H ) we have

K (U ) = (k0 − k1)V0 −
n−1∑

h=1

(kh+1 − 2kh + kh−1)Vh + 1
2 Z0 −

n−1∑

h=1

(kh − kh−1) Zh. (A.3)
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Proof. The first expression, (A.1), follows from

Ŵ0(U ) =
n∑

j =1

(U j − U j −1)(U j − U j −1)
′ = U0U

′
0 + UnU ′

n +
n−1∑

j =1

(U j U
′
j + U j U

′
j )

−
n−1∑

j =2

(U j U
′
j −1 + U j −1U

′
j )− (UnU ′

n−1 + Un−1U
′
n + U0U

′
1 + U1U

′
0),

and (A.2) is proven similarly.�
We note that end-effects can only have an impact onK (U ) throughZh, h = 0,1, . . . , becauseU0 and

Un do not appear in the expressions forVh, h = 0,1, . . . .

Proposition A.2. GivenU. Then

1

n
Vh

p→
{

2
∫ 1

0

{
6ζ (u)+ γ0(u)

}
du for h = 0,∫ 1

0

{
γh(u)+ γh(u)′

}
du for h> 0,

and Zh = Op(m−1) for all h = 0,1, . . . and as m→ ∞,

mZh
p→




2{6U (0)+6U (1)} for h = 0,
∞∑
j =0

{γ j +h(0)+ γ j +h(0)′ + γ j +h(1)+ γ j +h(1)′} for h > 0.

Note that
∫ 1

0

{
6ζ (u)+ γ0(u)

}
du is the average local variance ofU as oppose to the average long-run

variance� = ∫ 1
0

{
6ζ (u)+∑∞

h=−∞ γh(u)
}

du.

Proof of Proposition A.2. The first result follows by the definition ofVh and U. Next, sinceU0 =
m−1∑m−1

j =0 U (t j ) it follows that Zh is stochastic for anym< ∞, and

mU0U
′
0 = m−1

m−1∑

j =0

m−1∑

i=0

U (t j )U (ti )
′ p→ 6U (0),

and similarmUnU ′
n

p→ 6U (1). So the result forh = 0 follows from Z0 = 2(U0U ′
0 + UnU ′

n). Next, for

h > 0,

mU0U
′
h = ∑m−1

j =0 U (t j )U (tm−1+h)
′ p→ ∑∞

j =0γ− j −h(0) =
∞∑
j =0
γ j +h(0)

′,

and similarly we findmUnU ′
n−h

p→ ∑m−1
j =0 γ j +h(1). �

Proof of Theorem A.4. Sincek′(0) = 0 andk′′(x) is continuous we havek0 − k1 = −H−2k′′(ǫ)/2, for

some 0≤ ǫ ≤ H−1. Definea0 = −k′′(ǫ) andah = H2(−k|h|+1 + 2k|h| − k|h|−1), and writeV-terms of

K (U ), see (A.3), as

(k0 − k1)V0 −
n−1∑

h=1

(kh+1 − 2kh + kh−1)Vh

= H−2
n−1∑

h=−n+1

ah

∑

j

U j U
′
j −h = H−2

∑

|h|≤√
H

ah

∑

j

U j U
′
j −h + H−2

∑

|h|>√
H

ah

∑

j

U j U
′
j −h.
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By the continuity ofk′′(x) it follows that

sup
|h|≤√

H

∣∣∣∣
H2

n
ahn + k′′(0)

∣∣∣∣ → 0, asH,n → ∞ with H/n = o(1),

so that the first termn
H2

∑
|h|≤√

H ah
1
n

∑
j U j U ′

j −h = −k′′(0) n
H2� + o( n

H2 ). The second term vanishes be-

cause

n

H2

∣∣∣∣∣∣
∑

|h|>√
H

ah
1

n

∑

j

U j U
′
j −h

∣∣∣∣∣∣
≤ n

H2

∑

|h|>√
H

∣∣H2ah

∣∣ · sup
|h|>√

H

∣∣∣∣∣∣
1

n

∑

j

U j U
′
j −h

∣∣∣∣∣∣
,

and sup|h|>√
H

∣∣∣1
n

∑
j U j U ′

j −h

∣∣∣ = op(1).

For theZ-terms we have by Proposition A.2 thatZ0 = Op(m−1), and

n−1∑

h=1

(kh − kh−1)Zh = 1

m

1

H

n−1∑

h=1

{
k′(h/H )+ o(1)

}
mZh = Op(m

−1).

�
Proof of Lemma 2. Whenk′(0) 6= 0 we see that the first term of (A.3) is such thatH

n (k0 − k1)V0
p→

−k′(0)2
∫ 1

0

{
6ζ (u)+ γ0(u)

}
du. From the proof of Theorem A.4 it follows that the other terms in (A.3) are

of lower order.�

A.2. Results concerningK (Y)

The aim of this subsection to is prove the following Theorem that concernK (Y) in the univariate case. Then

we extend the result to the multivariate case in the next subsection.

Theorem A.5. SupposeK, SH, D, and U hold then as n,m, H → ∞ with H/n = o(1) and m−1 =
o(

√
H/n), we have

√
n

H

(
K (Y)−

∫ 1

0
σ 2(u)du

)
Ls→ MN

(
0,4k0,0

•

∫ 1

0
σ 4(u)

̹2(u)

̹1(u)
du

)
. (A.4)

Before we prove this Theorem forK (Y) we introduce and analyze two related quantities,

K̃ (Y) =
N∑

i=1

(η
(1)
N,i + η

(2)
N,i ) and K̂ (Y) =

N∑

i=1

(η̂
(1)
N,i + η̂

(2)
N,i )

whereyN,i = Y(τN,i )− Y(τN,i−1) and ŷN,i = σ
(
τN,i−1

) (
WτN,i − WτN,i−1

)
and

η
(1)
N,i = y2

N,i , η̂
(1)
N,i = ŷ2

N,i , η
(2)
N,i = 2yN,i

N−1∑

h=1

khyi−h, η̂
(2)
N,i = 2ŷN,i

N−1∑

h=1

kh ŷN,i−h,

K̃ is similar toK , except that it is not subjected to the jittering, andK̂ is similar toK̃ , but is computed with

auxiliary intraday returns. Note that we have (uniformly over i ) the strong approximation (underSH)

yN,i =
∫ τN,i

τN,i−1

µ(u)du +
∫ τN,i

τN,i−1

σ (u)dW(u) = ŷN,i

{
1 + op(N

−1/2)
}
, (A.5)
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(Jacod (2008, (6.25)) and Phillips & Yu (2008, equation 66))). Let εN,i = √
1N,i

(
WτN,i − WτN,i−1

)
so that

εN,i ∼ i id N(0,1) and note that̂yN,i = N−1/2σ
(
τN,i−1

)
D1/2

N,i εN,i . We useŷN,i as our estimate ofyN,i

throughout, later showing it makes no impact on the result.

Note thatyN,i − ŷN,i = ∫ τN,i− j

τN,i− j −1

{
σ (u)− σ (τN,i− j −1)

}
dW(u), so with d[σ ]t = λtdt we find

∫ τN,i

τN,i−1

{
σ (u)− σ (τN,i−1)

}2
dW(u) =

λ2
τN,i−1

∫ τN,i

τN,i−1

(
u − τN,i−1

)
du
{
1 + op(1)

} = λ2
τN,i−1

2

D2
N,i

N2

{
1 + op(1)

}
.

Proposition A.3. SupposeK, SH, andD hold. Then as n→ ∞ with H = o(n) and m= O( 3
√

Hn), then

√
n

H

{
K (Y)− K̃ (Y)

}
= op(1).

Proof. The difference betweenK (Y) and K̃ (Y) is tied to them first andm last observations. So the

difference vanishes ifm does not grow at too fast a rate. We have

m∑

i=1

y2
N,i =

m∑

i=1

DN,i

N
σ 2
(
τN,i−1

)
ε2

N,i

{
1 + op(N

−1/2)
}2 = op(

m3/2

N
),

since maxi=1,...,m DN,i = op(m1/2), σ 2 (t) is bounded, and
∑m

i=1 ε
2
N,i = Op(m). So we need

√
n
H

m3/2

N =
O(1) which is implied bym3/(H N) ≤ m3/(Hn) = O(1). �

Proposition A.4. SupposeSH andD hold then, so long as H= o(N),

√
N

H

{
K̃ (Y)− K̂ (Y)

}
= op(1).

Proof. From, for example, Phillips & Yu (2008) it is known that
∑N

i=1 η
(1)
N,i − η̂

(1)
N,i = op(N−1/2). The only

thing left to do is to prove that
∑N

i=1 η
(2)
N,i − η̂

(2)
N,i = op(

√
H/N). First note that

1
2

N∑

i=1

η
(2)
N,i − η̂

(2)
N,i =

N∑

i=1

yN,i

(∑

h>0

kh yN,i−h

)
−

N∑

i=1

ŷN,i

(∑

h>0

kh ŷN,i−h

)

=
N∑

i=1

(
yN,i − ŷN,i

)
(∑

h>0

khyN,i−h

)
+

N∑

i=1

ŷN,i

(∑

h>0

kh

(
yN,i−h − ŷN,i−h

)
)
. (A.6)

The first term of (A.6) is a sum of martingale difference sequences. Its conditional variance is

V =
N∑

i=1

λ2
τN,i−1

2

D2
N,i

N2

(∑

h>0

khyN,i−h

)2

≤

max
i=1,...,N

D2
N,i

(
1

N

N∑

i=1

λ2
τN,i−1

2

)
1

N

(∑

h>0

khyN,i−h

)2

= op(N)Op(1)
1

N
Op(

H

N
) = op(H/N),
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where we have used that
∑

h>1 kh yN,i−h = Op(
√

H/N)). The second term is

N∑

i=1

ŷN,i

∑

h>0

kh

(
yN,i−h − ŷN,i−h

) =
N∑

i=1

ŷN,i

(∑

h>0

kh

∫ τN,i−h

τN,i−h−1

{
σ (u)− σ (τN,i−h−1)

}
dW(u)

)
.

It has a zero conditional means and its conditional varianceis

1

N

N∑

i=1

σ 2
(
τN,i−1

)
DN,i

∑

h>0

k2
h

∫ τN,i−h

τN,i−h−1

{
σ (u)− σ (τN,i−h−1)

}2
du

= 1

N

N∑

i=1

σ 2 (τN,i−1
)

DN,i

∑

h>0

k2
hλ

2
τN,i−h−1

N−2D2
N,i−h/2

{
1 + op(1)

}
, , where d[σ ]t = λtdt

≤ 1

N3

N∑

i=1

σ 2 (τN,i−1
)

max
i=1,...,N

DN,i
1

2
max

i
λN,i

⌊N/q⌋∑

j =0

max
i=q j+1,...,q j+q

D2
N,i

q( j +1)∑

h>q j

k2
h

{
1 + op(1)

}

≤ 1

N3

N∑

i=1

σ 2 (τN,i−1
)

op(N
1/2)Op(1)op(q)Ho(log N

q )

= op(
H

N
), takeq = N1/2/ log(N).

Here we have used that maxh∈{c+1,...,c+m} DN,i = op(m1/2), that 1
H

∑q j+q
h>q j k( h

H )
2 is at most of ordero( j −1),

since 1
H

∑N
h=1 k( h

H )
2 ≃ ∑⌊N/q⌋

j =0
1
H

∑q j
h>q( j −1) k(

h
H )

2 is convergent, and that
∑m

j =1
1
j = O(logm). �

Proposition A.5. SupposeSH andD hold and H= o(N), then as N→ ∞
√

N

H

(
K̂ (Y)−

∫ 1

0
σ 2(u)du

)
Ls→ MN

(
0,4k0,0

•

∫ 1

0
σ 4(u)

̹2(u)

̹1(u)
du

)
.

Proof. We haveK̂ (Y) = ∑N
i=1 σ

2
(
τN,i−1

)
1N,i + η̂

(1)
N,i + η̂

(2)
N,i . Phillips & Yu (2008) imply that√

N
H

(∑N
i=1 σ

2
(
τN,i−1

)
1N,i − ∫ 1

0 σ
2 (u)du

)
= op(

1√
H
). This means that

√
N

H

(
K̂ (Y)−

∫ 1

0
σ 2 (u) du

)
=
√

N

H

N∑

i=1

(η̂
(1)
N,i + η̂

(2)
N,i )+ op(1),

which is the sum of the martingale differences:{η̂(1)N,i + η̂
(2)
N,i ,FτN,i }. So we just need to compute its contri-

butions to the conditional variance.

The first term,η̂(1)N,i , is the sampling error of the well known realized variance. Inthe present context, it

was studied in Phillips & Yu (2008), and it follows that
√

N
H

∑N
i=1 η̂

(1)
N,i = Op(H−1). This means that unless

H = O(1) this term will be asymptotically irrelevant for the realised kernel. Next

N

H
(η̂
(2)
N,i )

2 = 4Nŷ2
N,i

(
H−1

∑

h>1

kh ŷN,i−h

)2

,

where
(
H−1∑

h>1 kh ŷN,i−h

)2 p→ k0,0
• σ 2(τN,i ). SinceNŷ2

N,i = DN,i σ
2(τN,i )ε

2
N,i we have

N

H

N∑

i=1

Var(η̂(2)N,i |FτN,i−1) = k0,0
•
N

N∑

i=1

σ 4 (τN,i−1
)

E
(
D2

N,i |FτN,i−1

)+ op(1).
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Now we follow Phillips & Yu (2008) and write

E
(
D2

N,i |FτN,i−1

) = DN,i
E
(
D2

N,i |FτN,i−1

)

E
(
DN,i |FτN,i−1

) − {
DN,i − E

(
DN,i |FτN,i−1

)} E
(
D2

N,i |FτN,i−1

)

E
(
DN,i |FτN,i−1

) .

Now

k0,0
•
N

N∑

i=1

σ 4 (τN,i−1
) {

DN,i − E
(
DN,i |FτN,i−1

)} E
(

D2
N,i |FτN,i−1

)

E
(

DN,i |FτN,i−1

) = op(1),

as this is a temporal average of a martingale difference sequence. This means that

N

H

N∑

i=1

Var(η̂(2)N,i |FτN,i−1) = k0,0
•

N∑

i=1

σ 4 (τN,i−1
)
1N,i

E
(

D2
N,i |FτN,i−1

)

E
(

DN,i |FτN,i−1

) + op(1),

= k0,0
•

∫ 1

0
σ 4

u

̹2(u)

̹1(u)
du + op(1),

by Riemann integration. The results then follows by the martingale array CLT.�
Proof of Theorem A.5.Follows by combining the results of Propositions A.3, A.4, and A.5.�

A.3. Multivariate Results

Proof of Lemma 1. The results (2) and (4) follow by combining Theorem 1 with Proposition A.4 and

Theorem A.5. From the proof of Theorem 1 we haveK (X) = K (Y) + K (U ) + Op(
√

K (U )), and (3)

follows sinceK (Y)
p→ [Y] andK (U )

p→ −k′′(0)
c2

0
� whenH = c0n1/2. �

Proof of Theorem 3.We analyse the joint characteristic function of the realised kernel matrix

E exp[i tr {AK(X)}] = E exp


i

d∑

j =1

λ j tr
{
K (X)a j a

′
j

}

 .

whereA = ∑d
j =1 λ j a j a′

j is symmetric matrix of constants8. Hence it is sufficient for us to study the joint

law of a′
j K (X)a j , for any fixeda j , j = 1, . . . ,d. This is a convenient form asa′

j K (X)a j = K (a′
j X), the

univariate kernel applied to the processa′
j X. This is very convenient asa′

j X is simple a univariate process

in our class.

The univariate results imply that the only thing left to study is the joint distribution ofK (a′
j Y). Now

under the conditions of the Theorem withn, H → ∞ and H ∝ nη for η ∈ (0,1) andm/n → 0, we will

establish that
√

n

H

(
K (Y)−

∫ t

0
6(u)du

)
Ls→ MN

(
0,4k0,0

•

∫ 1

0
9(u)

̹2(u)

̹1(u)
du

)
. (A.7)

where9(u) = 6(u)⊗6(u). This will then complete the theorem. The univariate proof implies we that can

replaceK (a′
j Y) by K̂ (a′

j Y) = ∑n
i=1 x2

n, j ,i +2
∑n

i=1 xn, j ,i
∑n−1

h=1 khxn, j ,i−h, wherexn, j ,i = a′
j σ
(
τn,i−1

)
1

1/2
n,i εn,i

8It is well known that the distribution is characteristed by the matrix characteristic function E exp
[
i tr
{

A′K (X)
}]

. Without

loss of generality we can assumeA is symmetric asK (X) is symmetric andtr (A′K (X)) =
∑

i, j

ai j K (X) j i =
∑

i

ai i K (X)i i +
∑

i< j

(ai j + a j i )K (X)i j =
∑

i, j

(ai j + a j i )/2K (X)i j = 1
2 tr

{
(A + A′)′K (X)

}
.
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andεn,i = Wτn,i − Wτn,i−1 . But this raises no new principles and so we can see that usingthe same method

as before
√

n

H

[{
K (a′

j Y)
K (a′

kY)

}
−
(

a′
j

a′
k

){∫ t

0
6(u)du

} (
a j ak

)]

Ls→ MN


0,4k0,0

•

∫ 1

0




(
a′

j6(u)a j

)2 (
a′

j6(u)ak

)2

(
a′

j6(u)ak

)2 (
a′

j6(u)a j

)2



̹2(u)

̹1(u)
du


 .

Unwrapping the results delivers (A.7) as required.�
Proof of Theorem 2.Follows as a corollary to Theorem 3.�

A.4. Optimal choice of bandwidth

The problem is simply to minimize the squared bias plus the contribution from the asymptotic variance with

respect toc0. Set IQ= ∫ 1
0 σ

4(u)du. The first order conditions of minc0

{−c−4
0 k′′(0)2ω4 + c04k0,0

• IQ
}

yield

the optimal value forc0

c∗
0 =

(
k′′(0)2ω4

k0,0• IQ

)1/5

= c∗ξ4/5, with c∗ = {
k′′(0)2/k0,0

•
}1/5

.

With H ∗ = c∗ξ4/5n3/5 the asymptotic bias is given by

−
(

k′′(0)2ω4

k0,0• IQ

)−2/5

k′′(0)ω2n−1/5 = ∣∣k′′(0)ω2
∣∣1/5 {k0,0

• IQ
}2/5

n−1/5,

and the asymptotic variance is

(
k′′(0)2ω4

k0,0• IQ

)1/5

4k0,0
• IQn−2/5 = 4

∣∣k′′(0)ω2
∣∣2/5 {k0,0

• IQ
}4/5

n−2/5. �

Appendix B: Errors induced by stale prices

The stale prices induce a particular form of noise with an endogenous component. The price indexed by

time τ j is, in fact, the price recorded at timet (i )j ≤ τ j , for i = 1, . . . ,d. With Refresh Time we have

τ j ≥ t (i )j > τ j −1 so that

X(i )(τ j ) = Y(i )(t (i )j )+ Ũ (i )(t (i )j ) = Y(i )(τ j )+ Ũ (i )(t (i )j )− {Y(i )(τ j )− Y(t (i )j )}︸ ︷︷ ︸
U (i )(τ j )

.

The endogenous component that is induced by refresh time isY(i )(τ j )−Y(t (i )j ), But this is exactly the sort of

dependence that AssumptionU can accommodate through correlation betweenW̃ andW, and the (random)

coefficientsψh(t), h = 0,1, . . . .
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Figure 2: Scatter plots for daily realised kernel betas for the AA and SPY asset combination.

42



2002 2003 2004 2005 2006 2007 2008

0

1

2

Assets: AA−SPY

βK2×2  fitted βK2×2  

2002 2003 2004 2005 2006 2007 2008

0

1

2

β5m fitted β5m 

Figure 3: ARMA(1,1) model for transaction based realised kernel betas for the AA and SPY combination.
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Figure 4: Sensitivity to the the choice ofm. The Figure shows the RMSE as a function ofm for the sample
sizesN = 1,000 andN = 5,000, andω2 = 0.001 andω2 = 0.0025.
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Table 1: Properties of some realised kernels.

Kernel function,k(x) |k′′(0)| k0,0• c∗
∣∣∣k′′(0)(k0,0• )2

∣∣∣
1/5

k(x) =





1 − 6x2 + 6x3

2(1 − x)3

0

0 ≤ x ≤ 1
2

1
2 ≤ x ≤ 1

x > 1
Parzen 12 0.269 3.51 0.97

Quadratic Spectral k(x) = 3

x2

(
sinx

x
− cosx

)
x ≥ 0 1/5 3π/5 0.46 0.93

Fejér k(x) =
(

sinx

x

)2
x ≥ 0 2/3 π/3 0.84 0.94

Tukey-Hanning∞ k(x) = sin2 (π
2 e−x) x ≥ 0 π2/2 0.52 2.16 1.06

BNHLS (2008) k(x) = (1 + x) e−x x ≥ 0 1 5/4 0.96 1.09

|k′′(0)(k0,0
• )2|1/5 measures the relative asymptotic efficiency of k∈ K.
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Table 2: Simulation results

Panel A: Integrated Variance

Series A Series B
RV1m RV15m K (X) RV1m RV15m K (X)

ξ2 = 0.0 R.mse R.mse bias R.mse R.mse R.mse bias R.mse

λ = (3,6) 0.113 0.505 0.006 0.147 0.122 0.436 0.003 0.134
λ = (10,20) 0.111 0.547 0.011 0.262 0.114 0.450 0.011 0.224
λ = (60,120) 0.229 0.504 0.003 0.557 0.227 0.517 0.001 0.490

ξ2 = 0.001

λ = (3,6) 1.509 0.654 0.040 0.253 1.417 0.488 0.033 0.215
λ = (10,20) 1.432 0.660 0.041 0.359 1.318 0.492 0.035 0.295
λ = (60,120) 1.013 0.559 0.014 0.557 0.636 0.554 0.013 0.551

ξ2 = 0.01

λ = (3,6) 14.39 1.531 0.096 0.410 13.67 1.168 0.084 0.351
λ = (10,20) 14.01 1.452 0.106 0.568 13.15 1.305 0.081 0.424
λ = (60,120) 8.893 1.222 0.077 0.611 5.386 1.322 0.080 0.776

Panel B: Integrated Covariance/Correlation

Cov1m Cov15m K (X) Covar K (X) Corr K (X) beta
ξ2 = 0.0 #rets bias R.mse bias R.mse bias R.mse bias R.mse bias R.mse
λ = (3,6) 3,121 -0.051 0.076 -0.004 0.183 -0.007 0.062 -0.012 0.016 -0.016 0.061
λ = (5,10) 1,921 -0.085 0.108 -0.006 0.183 -0.009 0.076 -0.015 0.020 -0.019 0.064
λ = (10,20) 982 -0.160 0.186 -0.011 0.186 -0.009 0.097 -0.018 0.026 -0.023 0.084
λ = (30,60) 332 -0.342 0.395 -0.038 0.188 -0.021 0.142 -0.028 0.042 -0.035 0.125
λ = (60,120) 166 -0.445 0.510 -0.071 0.203 -0.034 0.189 -0.036 0.054 -0.035 0.178
ξ2 = 0.001

λ = (3,6) 3,121 -0.046 0.091 -0.005 0.191 -0.000 0.090 -0.027 0.032 -0.034 0.085
λ = (5,10) 1,921 -0.082 0.123 -0.006 0.186 -0.002 0.099 -0.029 0.036 -0.033 0.083
λ = (10,20) 982 -0.156 0.189 -0.010 0.195 -0.004 0.118 -0.032 0.040 -0.042 0.111
λ = (30,60) 332 -0.344 0.400 -0.039 0.187 -0.019 0.150 -0.039 0.052 -0.049 0.153
λ = (60,120) 166 -0.445 0.513 -0.074 0.206 -0.034 0.195 -0.044 0.060 -0.049 0.204
ξ2 = 0.01

λ = (3,6) 3,121 -0.027 0.398 -0.009 0.263 0.000 0.123 -0.063 0.071 -0.072 0.132
λ = (5,10) 1,921 -0.073 0.431 -0.005 0.257 -0.002 0.133 -0.067 0.076 -0.082 0.149
λ = (10,20) 982 -0.139 0.407 -0.001 0.263 -0.005 0.153 -0.074 0.084 -0.099 0.198
λ = (30,60) 332 -0.354 0.486 -0.044 0.236 -0.017 0.180 -0.089 0.104 -0.119 0.242
λ = (60,120) 166 -0.451 0.561 -0.083 0.265 -0.032 0.222 -0.092 0.111 -0.120 0.310

Simulation results for the realised kernel using a factor SVmodel with non-syncronous observations and measurement
noise. Panel A looks at estimating integrated variance using realised variance and the Parzen type realised kernel
K (X). Panel B looks at estimating integrated covariance and correlation using realised covariance and realised
kernel. Bias and root mean square error are reported. The results are based on 1000 repetitions.
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Table 3: Summary statistics for the refresh sampling scheme, 2×2 case

2 × 2 case

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 0.589 0.599 0.595 0.586 0.565 0.593 0.582 0.602 0.574
AIG 0.635 0.607 0.596 0.616 0.608 0.584 0.605 0.598 0.601
AXP 0.639 0.651 0.613 0.617 0.595 0.596 0.594 0.619 0.584
BA 0.634 0.642 0.652 0.596 0.577 0.595 0.591 0.609 0.582
BAC 0.636 0.656 0.662 0.649 0.631 0.579 0.612 0.597 0.613
C 0.635 0.657 0.660 0.647 0.680 0.554 0.610 0.575 0.619
CAT 0.630 0.631 0.641 0.636 0.633 0.630 0.575 0.597 0.569
CVX 0.641 0.657 0.659 0.651 0.671 0.675 0.634 0.588 0.618
DD 0.639 0.646 0.656 0.649 0.653 0.651 0.639 0.652 0.575
SPY 0.609 0.642 0.630 0.622 0.667 0.685 0.602 0.670 0.625

Average over daily number of high frequency observations available before the Refresh Time transformation

AA AIG AXP BA BAC C CAT CVX DD SPY
Trades 3,442 4,228 3,461 3,529 4,544 5,480 3,330 4,845 3,307 5,412
Quotes 8,460 9,270 8,626 8,553 10,091 10,809 8,026 10,254 8,521 15,973

Summary statistics for the refresh sampling scheme. In the upper panel we present averages over the daily data of the
data maintained by the refresh sampling scheme, measured byp = d N/

∑d
i=1 n(i ). The upper panel display this in

the 2×2 case. The upper diagonal is based on transaction prices, whereas the lower diagonal is based on mid-quotes.
In the lower panel we average over the daily number of high frequency observations.
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Table 4: Average high frequency realised covariance and open to close covariance

Average of Hayashi-Yoshida covariances (all times)

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 4.331 0.415 0.484 0.383 0.372 0.446 0.424 0.360 0.465 0.349
AIG 0.225 2.904 0.612 0.387 0.520 0.597 0.415 0.332 0.415 0.361
AXP 0.251 0.315 3.383 0.447 0.580 0.661 0.476 0.382 0.477 0.430
BA 0.197 0.206 0.230 3.274 0.344 0.400 0.393 0.319 0.389 0.336
BAC 0.198 0.275 0.299 0.177 2.466 0.596 0.374 0.315 0.375 0.345
C 0.237 0.305 0.319 0.199 0.303 4.014 0.431 0.354 0.430 0.382
CAT 0.227 0.224 0.254 0.210 0.197 0.220 2.274 0.332 0.413 0.341
CVX 0.194 0.196 0.219 0.176 0.180 0.190 0.1872.192 0.340 0.305
DD 0.240 0.225 0.251 0.206 0.196 0.224 0.222 0.1862.643 0.342
SPY 0.149 0.152 0.179 0.143 0.142 0.147 0.151 0.141 0.1421.068

Open-to-close covariance

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 1.100 1.228 1.091 1.019 1.267 1.377 1.027 1.219 1.036
AIG 1.092 1.776 0.978 1.808 2.076 1.062 0.675 1.076 1.120
AXP 1.220 1.763 1.045 1.661 2.055 1.191 0.853 1.101 1.180
BA 1.075 0.976 1.049 0.882 1.071 0.990 0.630 0.850 0.820
BAC 1.015 1.804 1.653 0.887 2.036 0.967 0.619 0.927 0.988
C 1.265 2.088 2.053 1.077 2.041 1.230 0.819 1.134 1.261
CAT 1.365 1.045 1.178 0.981 0.965 1.233 0.768 1.005 0.933
CVX 1.026 0.671 0.862 0.627 0.624 0.824 0.771 0.658 0.705
DD 1.211 1.070 1.092 0.850 0.923 1.134 0.996 0.656 0.829
SPY 1.029 1.120 1.177 0.816 0.985 1.268 0.927 0.708 0.829

The upper panel presents average estimates forCovHY
s and the lower panel displays these forCovOtoC

s . In both panels
the upper diagonal is based on transaction prices, whereas the lower diagonal is based on mid-quotes. The diagonal
elements are computed with transaction prices. In the upperpanel numbers outside the diagonal are boldfaced if the
bias is significant at the 1 percent level.
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Table 5: Averages for alternative integrated covariance estimators

Average of Parzen covariances (30×30)

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 3.338 0.945 1.033 0.808 0.865 1.118 1.055 0.818 1.047 0.862
AIG 0.933 2.725 1.300 0.722 1.254 1.556 0.856 0.533 0.820 0.878
AXP 1.003 1.273 2.580 0.780 1.326 1.656 0.974 0.578 0.900 0.930
BA 0.792 0.730 0.773 2.194 0.654 0.831 0.765 0.488 0.702 0.670
BAC 0.850 1.226 1.305 0.658 2.057 1.681 0.805 0.485 0.768 0.811
C 1.102 1.528 1.627 0.840 1.649 2.942 1.011 0.638 0.986 1.057
CAT 1.028 0.841 0.939 0.760 0.792 1.001 2.225 0.603 0.882 0.776
CVX 0.822 0.534 0.570 0.500 0.489 0.640 0.607 1.655 0.576 0.589
DD 1.049 0.813 0.890 0.706 0.759 0.984 0.874 0.589 1.810 0.736
SPY 0.862 0.876 0.918 0.678 0.808 1.058 0.7750.602 0.744 0.745

Average of Parzen covariances (10×10)

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 3.400 0.953 1.024 0.808 0.863 1.121 1.040 0.825 1.046 0.868
AIG 0.931 2.766 1.298 0.734 1.248 1.553 0.860 0.544 0.829 0.885
AXP 0.995 1.271 2.593 0.778 1.315 1.642 0.957 0.581 0.900 0.926
BA 0.798 0.739 0.783 2.222 0.656 0.845 0.772 0.501 0.712 0.679
BAC 0.844 1.204 1.290 0.660 2.080 1.669 0.799 0.493 0.765 0.811
C 1.101 1.518 1.616 0.854 1.625 2.985 1.013 0.653 0.992 1.062
CAT 1.019 0.843 0.931 0.767 0.785 1.003 2.234 0.613 0.879 0.779
CVX 0.824 0.544 0.583 0.512 0.501 0.656 0.619 1.682 0.592 0.603
DD 1.045 0.819 0.892 0.719 0.755 0.991 0.876 0.603 1.850 0.745
SPY 0.865 0.876 0.917 0.688 0.806 1.061 0.7790.616 0.752 0.755

Average of Parzen covariances (2×2)

AA AIG AXP BA BAC C CAT CVX DD SPY
AA 3.531 0.931 0.986 0.812 0.837 1.098 1.004 0.824 1.034 0.867
AIG 0.912 2.803 1.273 0.775 1.180 1.490 0.863 0.583 0.847 0.891
AXP 0.956 1.238 2.707 0.832 1.268 1.599 0.945 0.633 0.919 0.941
BA 0.793 0.773 0.825 2.371 0.679 0.892 0.800 0.560 0.753 0.731
BAC 0.820 1.156 1.237 0.683 2.096 1.565 0.786 0.541 0.763 0.811
C 1.078 1.469 1.568 0.893 1.550 3.108 1.011 0.719 0.995 1.066
CAT 0.975 0.851 0.914 0.794 0.775 1.005 2.299 0.642 0.883 0.798
CVX 0.810 0.595 0.642 0.577 0.553 0.723 0.648 1.738 0.637 0.662
DD 1.018 0.842 0.904 0.759 0.760 0.999 0.873 0.644 1.961 0.774
SPY 0.853 0.875 0.910 0.726 0.795 1.054 0.791 0.664 0.768 0.783

The upper panel presents average estimates forCovK30×30
s , the middle panel forCovK10×10

s , and the lower panel gives
results forCovK2×2

s . In both panels the upper diagonal is based on transaction prices, whereas the lower diagonal is
based on mid-quotes. The diagonal elements are computed with transaction prices. Outside the diagonals numbers
are boldfaced if the bias is significant at the 1 percent level.
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Table 6: Summary statistics across all asset pairs

Transaction prices

Estimator Average HAC Stdev Bias cor(.,K) acf1 acf2 acf3 acf4 acf5 acf10

Summary stats for covariances

CovK30×30 0.8844 [ 0.089] 1.607 -0.229 1.000 0.67 0.58 0.52 0.45 0.44 0.35
CovK10×10 0.8862 [ 0.089] 1.596 -0.227 0.992 0.69 0.61 0.54 0.47 0.45 0.36
CovK2×2 0.8900 [ 0.088] 1.518 -0.223 0.960 0.75 0.66 0.59 0.53 0.51 0.42
CovHY 0.2113 [ 0.022] 0.362 -0.902 0.767 0.80 0.73 0.68 0.64 0.62 0.53
Cov1/4m 0.4534 [ 0.050] 0.805 -0.660 0.660 0.84 0.74 0.68 0.64 0.61 0.52
Cov5m 0.8505 [ 0.085] 1.511 -0.262 0.942 0.71 0.62 0.54 0.48 0.46 0.37
Cov30m 0.9049 [ 0.091] 1.838 -0.208 0.866 0.49 0.46 0.37 0.34 0.35 0.25
Cov3h 0.9566 [ 0.105] 2.659 -0.156 0.640 0.22 0.25 0.20 0.17 0.16 0.15
CovOtoC 1.1116 [ 0.150] 4.255 0.508 0.12 0.15 0.17 0.14 0.08 0.15

Summary stats for correlations

CorrK30×30 0.3862 [ 0.008] 0.203 1.000 0.28 0.26 0.23 0.23 0.22 0.19
CorrK10×10 0.3825 [ 0.008] 0.188 0.975 0.32 0.29 0.26 0.26 0.25 0.22
CorrK2×2 0.3698 [ 0.007] 0.155 0.824 0.44 0.40 0.37 0.35 0.34 0.30
Corr1/4m 0.1836 [ 0.007] 0.113 0.277 0.78 0.75 0.72 0.71 0.70 0.66
Corr5m 0.3619 [ 0.007] 0.169 0.756 0.34 0.31 0.28 0.26 0.24 0.22
Corr30m 0.4030 [ 0.010] 0.298 0.684 0.14 0.13 0.11 0.12 0.11 0.10
Corr3h 0.3869 [ 0.016] 0.594 0.347 0.03 0.03 0.03 0.04 0.02 0.02

Average unconditional Open-to-Close correlation = 0.5185

Mid-quotes

Estimator Average HAC Stdev Bias cor(.,K) acf1 acf2 acf3 acf4 acf5 acf10

Summary stats for covariances

CovK30×30 0.8917 [ 0.089] 1.656 -0.221 1.000 0.62 0.55 0.48 0.43 0.42 0.32
CovK10×10 0.8940 [ 0.090] 1.636 -0.219 0.992 0.66 0.58 0.51 0.45 0.44 0.34
CovK2×2 0.9000 [ 0.089] 1.546 -0.213 0.941 0.74 0.66 0.59 0.53 0.51 0.41
CovHY 0.4144 [ 0.038] 0.627 -0.699 0.788 0.82 0.74 0.69 0.65 0.62 0.53
Cov1/4m 0.4470 [ 0.048] 0.776 -0.666 0.669 0.83 0.74 0.68 0.64 0.61 0.52
Cov5m 0.8530 [ 0.084] 1.481 -0.260 0.922 0.72 0.61 0.55 0.50 0.47 0.39
Cov30m 0.9056 [ 0.091] 1.833 -0.207 0.897 0.50 0.46 0.37 0.34 0.35 0.25
Cov3h 0.9574 [ 0.105] 2.661 -0.156 0.672 0.22 0.25 0.21 0.17 0.16 0.16
CovOtoC 1.1143 [ 0.150] 4.234 0.534 0.12 0.15 0.18 0.14 0.08 0.15

Summary stats for correlations

CorrK30×30 0.3904 [ 0.009] 0.221 1.000 0.25 0.23 0.21 0.20 0.20 0.18
CorrK10×10 0.3870 [ 0.008] 0.200 0.968 0.30 0.27 0.24 0.24 0.23 0.20
CorrK2×2 0.3763 [ 0.008] 0.165 0.818 0.41 0.37 0.34 0.32 0.31 0.27
Corr1/4m 0.1815 [ 0.006] 0.103 0.282 0.75 0.71 0.69 0.67 0.66 0.62
Corr5m 0.3650 [ 0.007] 0.168 0.724 0.35 0.30 0.28 0.26 0.25 0.22
Corr30m 0.4027 [ 0.010] 0.299 0.734 0.14 0.13 0.11 0.12 0.11 0.10
Corr3h 0.3873 [ 0.016] 0.593 0.382 0.03 0.04 0.03 0.04 0.02 0.02

Average unconditional Open-to-Close correlation = 0.5169

Summary statistics across all asset pairs. The first column identify the estimator, and the second gives the average
estimate across all asset combinations, followed by the average Newey-West type standard error. The fourth gives the
average standard deviation of the estimator. The fifth is theaverage bias. Next is average sample correlation with
our realised kernel. The remaining columns give average autocorrelations. The upper panel is based on transaction
prices, whereas the lower panel is based on mid-quotes.
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Table 7: Scalar BEKK models for close-to-close returns

Panel A: 30×30 case Panel B: 10×10 case

Hs−1 rs−1
(
rs−1

)′ Kt−1 RV5m
s−1 log L Hs−1 rs−1

(
rs−1

)′ Kt−1 RV5m
s−1 log L

0.943
(0.006)

0.005
(0.000)

0.040
(0.004)

– -27029.9 0.768
(0.017)

0.015
(0.003)

0.151
(0.011)

– -7920.7

0.742
(0.014)

0.013
(0.001)

– 0.115
(0.006)

-27077.7 0.687
(0.025)

0.022
(0.003)

– 0.160
(0.013)

-7935.9

0.984
(0.001)

0.008
(0.000)

– – -28477.5 0.965
(0.003)

0.023
(0.001)

– – -8307.5

0.777
(0.012)

– 0.076
(0.004)

0.061
(0.005)

-26948.3 0.705
(0.023)

– 0.126
(0.014)

0.067
(0.014)

-7923.3

0.784
(0.013)

0.009
(0.001)

0.067
(0.004)

0.059
(0.005)

-26904.3 0.716
(0.023)

0.017
(0.003)

0.106
(0.014)

0.065
(0.013)

-7903.0

Panel C: 2×2 cases

AIG-CAT BA-SPY

Hs−1 rs−1
(
rs−1

)′ Kt−1 RV5m
s−1 log L Hs−1 rs−1

(
rs−1

)′ Kt−1 RV5m
s−1 log L

0.837
(0.028)

0.038
(0.008)

0.126
(0.030)

– -2584.9 0.844
(0.043)

0.031
(0.008)

0.094
(0.032)

– -1516.9

0.863
(0.023)

0.044
(0.007)

– 0.098
(0.025)

-2591.2 0.843
(0.041)

0.032
(0.008)

– 0.091
(0.030)

-1517.8

0.951
(0.006)

0.045
(0.005)

– – -2629.7 0.958
(0.006)

0.036
(0.005)

– – -1544.4

0.764
(0.036)

– 0.236
(0.063)

0
–

-2592.4 0.717
(0.074)

– 0.125
(0.071)

0.083
(0.065)

-1521.1

0.837
(0.028)

0.038
(0.008)

0.126
(0.050)

0
–

-2584.9 0.837
(0.045)

0.031
(0.009)

0.068
(0.047)

0.031
(0.045)

-1516.6

Estimation results for scalar BEKK models for close-to-close d= 30,10,2 dimensional return vectors.
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Table 8: Relative efficiency of the realised kernelK (X)

ω2 = 0.001

normalised bias2 normalised variance normalised mse

n K F
B (X) K F

P (X) K (X) K F
B (X) K F

P (X) K (X) K F
B (X) K F

P (X) K (X)

U ∈ W N
250 0.0 0.0 0.8 16.2 16.3 18.0 16.2 16.3 18.8

1,000 0.0 0.0 2.5 11.7 12.1 16.9 11.7 12.1 19.4
4,000 0.0 0.0 3.1 10.4 10.4 19.0 10.4 10.4 22.1

16,000 0.0 0.0 4.6 10.5 9.5 20.8 10.5 9.5 25.4

U j = ǫ j + 0.5ǫ j −1

250 1.5 1.2 0.6 15.3 15.7 17.6 16.9 16.9 18.2
1,000 22.1 7.3 2.2 11.0 11.9 16.9 33.0 19.2 19.1
4,000 175.7 18.5 3.2 9.3 10.2 19.0 185.0 28.8 22.2

16,000 898.5 41.0 4.4 9.0 9.4 20.9 907.6 50.4 25.4

U j = ǫ j − 0.5ǫ j −1

250 122.7 96.9 3.9 27.5 24.2 18.3 150.2 121.1 22.2
1,000 1,769.1 588.0 6.1 44.8 20.4 16.9 1,813.9 608.3 23.0
4,000 14,195.1 1,490.4 5.0 73.1 13.9 19.3 14,268.2 1,504.4 24.3

16,000 72,797.6 3,326.8 5.5 88.6 10.9 20.8 72,886.2 3,337.726.3

U j = −0.5U j −1 + ǫ j

250 39.1 30.9 1.3 18.9 18.1 17.9 58.0 49.0 19.2
1,000 1,261.0 74.9 3.3 35.9 13.2 16.8 1,296.9 88.1 20.0
4,000 7,751.7 141.1 3.5 40.8 10.8 18.8 7,792.5 151.9 22.4

16,000 40,973.1 253.8 4.8 52.0 9.7 20.9 41,025.2 263.5 25.7

U j = 0.5U j −1 + ǫ j

250 0.5 0.4 0.3 14.8 15.3 17.7 15.3 15.7 18.0
1,000 9.6 6.3 1.5 9.8 10.8 16.6 19.4 17.1 18.2
4,000 96.0 39.6 2.7 8.5 9.7 19.1 104.4 49.2 21.8

16,000 505.8 141.5 4.2 8.5 9.2 21.1 514.3 150.7 25.3

Estimation results for scalar BEKK models for close-to-close Relative efficiency of the realised kernel K(X) and the flat-top realised
kernel, KF (X). Results for five different types of noise are presented. In the MA(1) and AR(1) designs, the variance ofǫ was scaled
such that V ar(U) = ω2. The squared bias, variance, and MSE have been scaled by n1/2/ω. In the special case with Gaussian
white noise the asymptotic lower bound for the normalized MSE is 8.00 (the normalized MSE for KFP (X) converges to 8.54 as
n → ∞ in this special case). The results are based on 50000 repetitions.
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