
HAL Id: hal-00815563
https://hal.science/hal-00815563

Submitted on 19 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of fractional integration under temporal
aggregation

Uwe Hassler

To cite this version:
Uwe Hassler. Estimation of fractional integration under temporal aggregation. Econometrics, 2011,
�10.1016/j.jeconom.2011.01.003�. �hal-00815563�

https://hal.science/hal-00815563
https://hal.archives-ouvertes.fr


Accepted Manuscript

Estimation of fractional integration under temporal aggregation

Uwe Hassler

PII: S0304-4076(11)00014-5
DOI: 10.1016/j.jeconom.2011.01.003
Reference: ECONOM 3443

To appear in: Journal of Econometrics

Received date: 17 March 2010
Revised date: 22 January 2011
Accepted date: 24 January 2011

Please cite this article as: Hassler, U., Estimation of fractional integration under temporal
aggregation. Journal of Econometrics (2011), doi:10.1016/j.jeconom.2011.01.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jeconom.2011.01.003


Estimation of Fractional Integration
under Temporal Aggregation

Uwe Hassler∗

Goethe University Frankfurt †

January 25, 2011

Abstract

A result characterizing the effect of temporal aggregation in the fre-
quency domain is known for arbitrary stationary processes and gener-
alized for difference-stationary processes here. Temporal aggregation
includes cumulation of flow variables as well as systematic (or skip)
sampling of stock variables. Next, the aggregation result is applied
to fractionally integrated processes. In particular, it is investigated
whether typical frequency domain assumptions made for semipara-
metric estimation and inference are closed with respect to aggrega-
tion. With these findings it is spelled out, which estimators remain
valid upon aggregation under which conditions on bandwidth selec-
tion.
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ods), C22 (Time-Series Models), C82 (Methodology for Collecting,
Estimating, and Organizing Macroeconomic Data)

1 Introduction

Determining inflation persistence is a prominent issue when it comes to fore-

casting (Stock and Watson, 2007), or when monetary policy recommenda-

tions are at stake, see e.g. Mishkin (2007). The effect of temporal aggrega-

tion on inflation persistence has recently been studied by Paya, Duarte, and

Holden (2007). Fractional integration is one model for inflation persistence

that can be traced back to Hassler and Wolters (1995) or Baillie, Chung,

and Tieslau (1996). The question how aggregation and persistence interact

is of interest beyond inflation, and has troubled applied economists for a

long time, see Christiano, Eichenbaum, and Marshall (1991) for empirical

evidence in the context of the permanent income hypothesis and Rossana

and Seater (1995) for a representative set of economic time series. Using

fractionally integrated models, Chambers (1998) found with macroeconomic

series that the empirical degree of integration may depend on the level of

temporal aggregation, see also Diebold and Rudebusch (1989) or Tschernig

(1995). In empirical finance, too, one of the core issues with respect to real-

ized volatility is optimal sampling, see e.g. Ait-Sahalia, Mykland, and Zhang

(2005) and the results by Drost and Nijman (1993).

In this paper we understand by temporal aggregation both: systematic

sampling (or skip sampling) of stock variables where only every pth data

point is observed, and summation of flow variables where neighbouring ob-

servations are cumulated to determine the total flow. Econometricians have

devoted their attention to both types of temporal aggregation for decades, see

Silvestrini and Veredas (2008) for a recent survey. Early results for autore-

gressive moving-average (ARMA) models were obtained by Brewer (1973)

and Weiss (1984). A treatment of integrated (of order one) ARIMA models

was provided by Wei (1981) and Stram and Wei (1986), for skip sampling
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and cumulating, respectively. In particular, skip sampling can be embedded

in the more general problem of missing observations, see Palm and Nijman

(1984) for an investigation of dynamic regression models. Aspects of forecast-

ing have been addressed by Lütkepohl (1987) and Lütkepohl (2009), while

Marcellino (1999) deals with cointegration and causality under aggregation.

Moreover, the potential interaction of seasonal integration and unit roots at

frequency zero due to temporal aggregation was studied by Granger and Sik-

los (1995), see also Pons (2006). In fact, there is a literature on “span versus

frequency” when it comes to testing the null hypothesis of a unit root, which

started with Shiller and Perron (1985) and came to a preliminary end with

Chambers (2004).

Notwithstanding the vast amount of papers on temporal aggregation,

little attention has been paid to effects in the frequency domain, notable

exceptions being Drost (1994) and Souza (2003). In the frequency domain,

temporal aggregation is accompanied by the so-called aliasing effect, which is

well known under discrete-time sampling from a continuous-time process, see

e.g. Hansen and Sargent (1983). For the special case of fractional integration,

spectral results have been obtained by Chambers (1998), Hwang (2000), Tsai

and Chan (2005b), and Souza (2005). Further, Chambers (1996) and Tsai

and Chan (2005a) cover the related case of discrete-time sampling from a

continuous-time long memory process, while Souza (2007, 2008) focusses on

the effect of temporal aggregation on widely used memory estimators.

We add two aspects to this literature: a general characterization of time

aggregation in the frequency domain for processes that become stationary

only after differencing r times for some natural number r, and an inves-

tigation, which semiparametric estimators of fractionally integrated models

retain their consistency and limiting normality under aggregation. In greater

detail our contributions are the following. We draw from the literature re-

sults on aliasing and moving-averaging in case of temporal aggregation of

arbitrary stationary processes (Lemma 1 and 2), and we combine these lem-

mae to characterize the frequency domain effect of temporal aggregation
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for processes that become stationary only after integer differencing r times,

r = 0, 1, 2, . . . (Proposition 1). Next, the aggregation results are applied

to fractionally integrated processes. In particular, we investigate whether

typical assumptions on fractionally integrated processes, which are made in

the literature to obtain consistency or limiting normality of semiparametric

estimators, are closed with respect to aggregation. In other words: if {zt}
satisfies a set of assumptions used to prove properties of some estimator or

test, does the temporal aggregate fulfill them, too? Differing findings are

obtained for cumulating of flow data (Proposition 2), skip sampling of stocks

(Proposition 3), and for the case of generalized fractional integration where

the singularity may occur at frequencies different from zero (Proposition 4).

In a couple of remarks we discuss as consequences for applied work, which

estimators remain valid upon aggregation (under which conditions on the

bandwidth choice).

The rest of this paper is organized as follows. Section 2 treats the general

aggregation effect in terms of spectral densities. In Section 3, the aggre-

gation results are applied to the semiparametric estimation of the memory

parameter of fractional integration. The last section contains a more detailed

non-technical summary. Proofs are relegated to the Appendix.

2 Aggregation in the frequency domain

For sequences {aj } and {bj }, let aj ∼ bj denote aj/bj → 1 as j → ∞, while

for functions, a(x) ∼ b(x) is short for a(x)/b(x) → 1 as x → 0. Further,

a(x) = O(xc) means that a(x) x−c is bounded as x → 0, while a(x) = o(xc)

signifies a(x) x−c → 0. First-order derivatives are given as a′(x). Finally, let

Z stand for the set of all integers.

2.1 Notation and assumptions

Let {zt}, t = 1, 2, . . . , T , denote some time series to be aggregated over p

periods. The aggregate is constructed for the new time scale τ . In case
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of stock variables, aggregation or systematic sampling means skip sampling

where only every p’th data point is observed,

żτ := zpτ , τ = 1, 2, . . . , (1)

where for the rest of the paper p ≥ 2 is a finite integer. Flow variables are

aggregated by cumulating p neighbouring observations that do not overlap

to determine the total flow over p sub-periods,

z̃τ := zpτ + zpτ −1 + . . . + zp(τ −1)+1 (2)

= Sp(L) zpτ , τ = 1, 2, . . . ,

where Sp(L) := 1+L+ · · · +Lp−1 is the moving average polynomial of degree

p in the usual lag operator L. Hence, {z̃τ } is obtained by skip sampling the

overlapping moving average process {Sp(L)zt}.

Clearly, many economic variables are not stationary. It is often assumed

that the basic variable {zt} is given by integration over stationary increments,

zt = z0 +
t∑

i=1

yi , t = 1, 2, . . . , T .

If {yt} is a stationary fractionally integrated process of order d, d < 0.5, as

defined in a subsequent section, then the partial sum process {zt} is some-

times called fractionally integrated (of order δ = 1 + d) of “type I”, see

Marinucci and Robinson (1999) and Robinson (2005). Some economic vari-

ables are even considered as integrated of order 2. Therefore, we allow for

stationarity and different degrees of nonstationarity at the same time. It is

maintained for some natural number r ∈ {0, 1, 2, . . .} that the process {zt}
solves the following difference equation with ∆ = 1 − L:

∆rzt = yt , t = 1, 2, . . . , T . (3)

Note that differencing changes the status of stock series: While log-prices

pt = log Pt are stocks, the inflation rate πt = ∆pt is a flow variable.

To fully specify the potentially nonstationary processes from (3), we have

to add assumptions on {yt}. Our results will hold for any stationary process
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{yt} with integrable spectral density fy. Since fy is an even and 2π-periodic

function, the definition of the spectral density can be extended to the whole

real range, and we focus on the interval [0, π] in the following assumption.

Assumption 1 The process {yt}, t ∈ Z, is covariance stationary with in-
tegrable spectral density fy(λ) on Π, where Π = [0, π] if fy is well defined
on the whole interval, or Π = [0, π] \ {λ∗ } if fy has a singularity at some
frequency λ∗ ∈ [0, π].

Note that fy does not have to exist everywhere. A singularity at λ∗ might

come from (generalized) fractional integration with long memory, see (12) be-

low. In fact, we might allow for k singularities (having e.g. so-called k-factor

Gegenbauer processes in mind, see Woodward, Cheng, and Gray, 1998). Fur-

ther, we stress that fy(0) = 0 is not excluded. This covers the particular case

of over-differencing. Assume e.g. that no differencing is required to obtain

stationarity, but {zt} is differenced in practice. This case is dealt with by

r = 1 in (3) with the assumption that {yt} is over-differenced.

To set the scene for the next subsection, we define the lag operator L
operating on the aggregate time scale τ , such that L = Lp with L operating

on t (see e.g. Wei, 1990, Ch.16). Let ∇ = 1 − L stand for the differences

of the new time scale τ . In case that r ≥ 1 in (3), we will study the effect

of first aggreating and then differencing. The spectral densities of the dif-

ferenced aggregates {∇rżτ } and {∇rz̃τ } are denoted as ḟ∇rz(λ) and f̃∇rz(λ),

respectively. For r = 0, we have zt = yt and ḟy(λ) or f̃y(λ) represent the

spectra of the stationary aggregates {ẏτ } and {ỹτ }.1

2.2 Result and discussion

The main effect in the frequency domain is the so-called aliasing effect that

arises from skip sampling. Since cumulation of non-overlapping data can be

1 Sometimes stock variables are aggregated by averaging over p non-overlapping obser-
vations, {zτ }, such that p sub-periods are replaced by the mean of p values. Obviously
this is directly connected to cumulation from (2), zτ := z̃τ/p. Let the spectrum of the
differenced aggregate {∇rzτ } be denoted as f ∇rz(λ). There is no need to address the case
of averaging separately since it holds f ∇rz(λ) = f̃∇rz(λ)/p2.
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reduced to skip sampling a moving average, the effect will be present also

with flow data. Therefore, we first pin down the aliasing effect. The following

finding for stationary processes is essentially due to Drost (1994, Lemma 2.1).

We highlight his result as a lemma, since many authors seem to be not aware

of it, see e.g. Chambers (1998), Hwang (2000), Souza (2005), and Tsai and

Chan (2005b), although an equivalent representation can be found in Souza

(2003, Theo. 1).

Lemma 1 (Aliasing) Let {zt} from (3) with r = 0 equal {yt} with Assump-
tion 1, and assume that its spectral density fy is bounded at (λ + 2π j)/p,
j = 1, . . . , (p − 1). It then holds for the spectral density of the skip sampled
aggregate over p periods, {ẏτ }:

ḟy(λ) =
1

p

p−1∑

j=0

fy

(
λ + 2 π j

p

)
.

The summation over the frequencies λ+2πj
p

, j = 0, 1, . . . , p − 1, in Lemma

1 corresponds to the well known aliasing effect that occurs when observing

a continuous-time process at discrete points in time, see e.g. Hansen and

Sargent (1983), or the discussion in Priestley (1981, p.224, p.506): Cycles of

frequency λ+2πj
p

in the basic data become cycles of frequency λ + 2πj upon

skip sampling, and are hence indistinguishable from λ.

A second effect that will be present in case of cumulation on top of aliasing

is the transfer function of the moving average filter Sp(L), see (2). This effect

also shows up when considering differenced aggregates with ∇ = (1 − Lp) =

Sp(L) (1 − L), and it is characterized in the following lemma. The required

transfer function is given e.g. in Priestley (1981, p.270), where Tj(λ) is

proportional to the so-called Fejér kernel, see e.g. Priestley (1981, p.401,

p.418) for a discussion.
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Lemma 2 (Transfer function of Sp(L)) The transfer function |Sp (ei ·)|2
evaluated at (λ + 2π j)/p for j = 0, . . . , p − 1 is equal to

Tj(λ) :=
sin2

(
λ
2

)

sin2
(

λ+2π j
2p

) , λ > 0 ,

where Tj(λ) is continuously differentiable with

T0 (λ) = p2 + O(λ2) , Tj (λ) = O(λ2) , j = 1, . . . , p − 1 ,

T ′
j (λ) = O(λ) , j = 0, . . . , p − 1 ,

as λ → 0.

Now, it is straightforward to prove the general result.

Proposition 1 Let {yt} be from Lemma 1, and let {∆rzt} equal {yt}, r =
0, 1, 2, . . .. It then holds for the spectral densities of the differences of the
aggregates of {zt}

a) in case of skip sampling (∇rżτ):

ḟ∇rz(λ) =
1

p

p−1∑

j=0

fy

(
λ + 2 π j

p

)
[Tj(λ)]r ,

b) and in case of cumulating (∇rz̃τ):

f̃∇rz(λ) =
1

p

p−1∑

j=0

fy

(
λ + 2 π j

p

)
[Tj(λ)]r+1 ,

where Tj(λ), j = 0, 1, . . . , (p − 1), are from Lemma 2.

Proof See Appendix.

It seems advisable to discuss the proposition with a couple of comments.
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First, the cumulated stationary aggregate, f̃∇0z(λ) = f̃y(λ), is subject to

aliasing, too, simply because {ỹτ } is constructed from skip sampling a moving

average. In this case, however, aliasing is superimposed by the factors Tj(λ)

due to the moving average filter Sp(L). Consequently, at frequency zero

the aliased frequencies are squelched out, and it holds in case of cumulation

(λ → 0)

f̃y(λ) ∼ p fy

(
λ

p

)
, f̃ ′

y(λ) ∼ f ′
y

(
λ

p

)
. (4)

In particular, the slope of fy(λ) around frequency zero is inherited by f̃y. A

similar effect shows up for spectra from differences, r ≥ 1.

Second, an immediate consequence of Proposition 1 is that differencing

and temporal aggregation are not exchangeable without required modifica-

tion. Below eq. (3), we noted that differencing stock variables yields flow

data. Consequently, for r = 1, when comparing the spectral densities of the

differenced aggregates (∇z) with the aggregates of the stationary differences

(∆z), we find that differencing skip sampled stock data has the same effect

as cumulating the differences (flows):

ḟ∇z(λ) = f̃∆z(λ) 6= ḟ∆z(λ) , and f̃∇z(λ) 6= f̃∆z(λ) . (5)

Third, Proposition 1 contains a unifying framework for several familiar

results. The result a) for r = 0 of course reproduces the original Lemma 1.

The result b) for r = 0 is from Drost (1994, Lemma 2.2), while an equivalent

representation can be found again in Souza (2003). For the special case of

fractionally integrated ARMA processes Tsai and Chan (2005b, Theo. 1(a))

provide equivalent results under cumulation (Proposition 1 b)). Notice that

they have to spend more than two pages of technically involved derivations

to establish their special case, while our more general result follows in a very

straightforward manner from Lemmae 1 and 2.

Proposition 1 will enable us to investigate systematically which properties

of the basic process are inherited by the aggregates. Such properties are called

closed in the following sense.
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Definition 1 A set of assumptions on some process {zt} is called closed
with respect to temporal aggregation (skip sampling or cumulating), if {żτ } or
{z̃τ }, respectively, satisfy the same set of assumptions for any finite positive
integer p ≥ 2, too.

For practical purposes procedures with properties established under as-

sumptions that are closed with respect to aggregation are desirable, because

in most practical situations a “true” frequency of the DGP is not known or

does not exist. Most economic and financial time series have to be considered

as aggregates. And a statistical procedure relying on a set of assumptions

A cannot be safely applied to an aggregate, unless A is closed with respect

to temporal aggregation. With Proposition 1 at hand we will now discuss

closedness and lack thereof of certain general assumptions about fractionally

integrated processes.

3 Fractional integration

3.1 Assumptions

Let us consider the fractionally integrated process {yt} constructed from the

filter (1 − L)−d with the usual expansion,

yt = (1 − L)−d et , with |d| < 0.5 ,

where the short memory component {et} is a stationary process with spectral

density fe. For {yt} it holds fy(λ) = |1 − eiλ|−2dfe(λ). Equivalently (because

|1 − eiλ|−2d = λ−2d(1 + o(1)) fractional integration is characterized through

the assumption

fy(λ) = λ−2dfe(λ) , |d| < 0.5 . (6)

Papers on semiparametric inference of long memory typically assume that the

observed process has a spectral density like in (6) where the short memory

component fe is characterized by assumptions A as weak as possible. We

consider typical spectral assumptions next.

10



Assumption 2 Let A be a set of assumptions for fy(λ) = λ−2dfe(λ), |d| <
0.5, including

(A0) fe is bounded and bounded away from zero at frequency λ = 0;

(A1) for some β ∈ (0, 2] it holds

fe(λ) = fe(0) + O(λβ) , λ → 0 ;

(A2) fe has a finite first derivative f ′
e in a neighbourhood (0, ε) of zero, and

f ′
e(λ) = O(λ−1) , λ → 0 ;

(A3) fe has a finite first derivative f ′
e at λ = 0.

The first assumption (A0) that fe(0) is bounded and positive is minimal

and common to all papers in order to identify d from (6). Next, assumption

(A1) imposes a rate of convergence on (6) characterizing the smoothness

of the short memory component fe around zero. If {et} is ARMA, then

β = 2. With m denoting the bandwidth of semiparametric estimators and T

standing for the sample size, the parameter β controls the rate the bandwidth

has grow with through the following condition:

1

m
+

m1+2β(log m)2

T 2β
→ 0 , (7)

implying m = o
(
T 2β/(1+2β)

)
. Assumption (A1) is widely used to establish

not only consistency, but also limiting normality of semiparametric memory

estimators, see e.g. Robinson (1995a, Ass. 1′), Robinson (1995b, Ass. 1),

Velasco (1999a, Ass. 2), Velasco (1999b, Ass. 1), Shimotsu and Phillips

(2005, Ass. 1′), and Shimotsu (2010, Ass. 1′).2 While this assumption im-

plies that fe is continuous on (0, ε), some results require that the derivative

f ′
e exists in a neighbourhood of the origin, even if it may diverge at appro-

priate rate as getting close to zero, see Assumption (A2). Although put

2Allowing for tapered data, a slightly stronger, parametric version of assumption (A1)
is required, fe(λ) = b0 + b1λ

β + o(λβ), see e.g. Velasco (1999a, Ass. 8), Velasco (1999b,
Ass. 2), Hurvich and Chen (2000, Ass. 1), and also Abadir, Distaso, and Giraitis (2007,
eq. (2.23)).
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slightly differently such an assumption is found again in Robinson (1995a,

Ass. 2), Velasco (1999a, Ass. 3), and Shimotsu and Phillips (2005, Ass. 2)

or Shimotsu (2010, Ass. 2) when establishing consistency of the local Whit-

tle (LW) estimator and the so-called exact LW estimator, respectively.3 A

related but slightly weaker condition is employed in Robinson (1994, Ass. 4)

and Lobato and Robinson (1996, (C2)) to determine optimal spectral band-

width rates and limiting properties of the averaged periodogram estimator,

respectively. Other papers assume a stronger degree of smoothness of fe at

frequency zero in that they demand the first derivative f ′
e(0) to be finite (or

even zero), which is our assumption (A3). Hurvich, Deo, and Brodsky (1998)

for instance assume f ′
e(0) = 0 when deriving the asymptotic mean squared

error and limiting distribution of the log-periodogram regression (LPR) by

Geweke and Porter-Hudak (1983), while Andrews and Guggenberger (2003)

discuss properties of a bias-reduced version under a smoothness assumption

requiring f ′
e(0) to exist, see also Guggenberger and Sun (2006). Under similar

assumptions Andrews and Sun (2004) improved on the LW estimator.

Since the following results are obtained under temporal aggregation we

need spectral assumptions for λ > 0 due to the aliasing effect. We re-

quire that the spectral density is “well behaved” at multiples of the so-called

Nyquist frequency 2π/p, see Proposition 1. The usual long memory litera-

ture not addressing the aggregation issue does not need Assumption 3. Souza

(2007, Cond. 3 and 9), however, when addressing memory estimation under

cumulation formulates very similar assumptions.

Assumption 3 The process {yt} from Assumption 1 has a spectral density
fy(λ), which at frequencies 2π j/p, j = 1, . . . , (p − 1), is bounded, bounded
away from zero and continuously differentiable with derivative f ′

y.

3.2 Cumulation of flow variables

It has been documented empirically that cumulation of flow variables will

affect memory estimation in finite samples, see e.g. Diebold and Rudebusch

3See also the assumption |f ′
e(λ)| ≤ c λ−1 for λ > 0 in Moulines and Soulier (1999, Ass.

2), and similar although slightly weaker in Soulier (2001, Ass. 1).
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(1989), Tschernig (1995), and Chambers (1998). Experimentally, a finite

sample bias due to cumulation has been reported by Teles, Wei, and Crato

(1999) and Souza (2007). In this subsection, we address the asymptotic

properties of some well-known semiparametric memory estimators for finite

p; the effect of increasing aggregation level (p → ∞) on cumulation has been

investigated by Man and Tiao (2006) in the time domain and by Tsai and

Chan (2005b) with spectral methods.

Let us briefly discuss the cumulation of stationary flow variables, zt = yt.

From (4) it is obvious that a zero or just as well a singularity of fy at frequency

zero is inherited by f̃y, and the spectral slope of {yt} at frequency zero is

carried over to the aggregate {ỹτ }, or in other words: assumptions about

the spectral slope of stationary processes at frequency zero are closed with

respect to cumulating. This confirms the finding by Chambers (1998), Hwang

(2000), and Souza (2005) that the order of fractional integration at the origin

is maintained under cumulated aggregation of flow variables. More formally,

it holds the following result for the stationary and nonstationary case at the

same time; the result for r = 0 was obtained as part of the proof in Souza

(2007, p.721).

Proposition 2 Let {∆rzt} with r = 0, 1, . . . equal {yt} with spectral density
as in (6) satisfying Assumptions 1 and 3. It then holds for the spectral density
of the differences ∇r of {z̃τ }

f̃∇rz(λ) = λ−2dϕ̃r(λ)

with

ϕ̃r(λ) = fe

(
λ

p

) (
p2d+2r+1 + O(λ2)

)
+ λ2dR̃r(λ) ,

where R̃r(λ) is differentiable in a neighbourhood of λ = 0 with

R̃r(λ) = O(λ2r+2) and R̃′
r(λ) = O(λ2r+1) , λ → 0 .

Proof See Appendix.
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We want to spell out explicitly the closedness of the conditions from

Assumption 2. From Proposition 2 it follows for |d| < 0.5:

under (A0): ϕ̃r(0) = p2d+2r+1fe(0);

under (A1): ϕ̃r(λ) = p2d+2r+1(fe(0) + O(λmin(β,2d+2r+2)));

under (A2): ϕ̃′
r(λ) = O(λ−1);

under (A3): ϕ̃′
r(0) = p2d+2rf ′

e(0).

For r ≥ 1, the smoothness parameter β from (A1) of fe carries over to

ϕ̃r, and this holds true for r = 0 with d ≥ 0, too. For r = 0 with d <

0, Assumption (A1) is still closed in that there exists a new smoothness

parameter min(β, 2d + 2) ∈ (0, 2]. Note that the parametric version of (A1)

given in footnote 2 is closed as well. We want to discuss consequences with

respect to statistical inference in two remarks.

Remark A For r = 0, Souza (2007) proved that the LW and the LPR

estimators retain the limiting normal distribution under cumulation of sta-

tionary series. To that end he showed Proposition 1 for r = 0 and established

the closedness of some further sufficient conditions ({et} is a linear sequence

with certain moment and regularity conditions). In addition, we want to

highlight Assumption (A1) for the stationary case:

ϕ̃0(λ) = p2d+1fe(0) + O
(
λmin(β,2d+2)

)
, λ → 0 .

Hence, for d < 0 it may happen that min(β, 2d + 2) < β, implying a

slower rate for the bandwidth according to (7) after cumulation: m =

o
(
T (4d+4)/(5+4d)

)
.

Remark B Velasco (1999a, Theo. 3) and Velasco (1999b, Theo. 3) prove the

limiting normal distribution of the LW and the LPR estimators, respectively,

when applied to nonstationary levels integrated of order 0.5 < δ < 0.75.

More generally, Abadir et al. (2007, Coro. 2.1) showed that the so-called

fully extended LW has a limiting normal distribution when applied to non-

stationary levels integrated of any order δ > 0.5. In all three papers the

main assumption is (A1), which turns out to be closed with respect to cu-

mulation of difference-stationary series (r ≥ 1). Further assumptions they
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require (again, {et} is a linear sequence with certain moment and regularity

conditions) have been established in Souza (2007), see Remark A. Hence, the

asymptotic results by Velasco (1999a,b) or Abadir et al. (2007) for nonsta-

tionary series remain valid after cumulation.

3.3 Skip sampling

Souza and Smith (2002) provide bias approximations for some semiparamet-

ric estimators that are well supported experimentally. Considerable finite

sample biases are found due to skip sampling. Here, we add asymptotic

insights by discussing closedness and lack thereof of Assumption 2 under

skip sampling. We start with nonstationary processes because we know from

Proposition 1 that ḟ∇rz = f̃∇r−1z. Consequently, the results for skip sampling

under r ≥ 1 are contained in Proposition 2 already! Therefore, Remark B

carries over to skip sampling as follows.

Remark C The limiting normality established in Velasco (1999a, Theo. 3),

Velasco (1999b, Theo. 3), and Abadir et al. (2007, Coro. 2.1) continues to

hold when applied to skip sampled nonstationary levels integrated of order

δ as in Remark B.

Now, we turn to the stationary case, r = 0. Before showing a further

proposition, we recollect some findings with respect to Assumption (A0)

from the literature.

Let us consider a stationary process {yt} with fy(0) = 0. Proposition

1 a) yields ḟy(0) = p−1
∑p−1

j=0 fy (2 π j/p). Hence, the assumption fy(0) =

0 is not closed with respect to skip sampling except for the unlikely case

where fy (2 π j/p) = 0 for j = 1, . . . , p − 1. This has first been observed

by Drost (1994, p. 16), and it corrects differing claims made in Chambers

(1998) and Hwang (2000), see also the elucidating discussion by Souza (2005):

Integration of order d in the sense of (6) is not closed under skip sampling for

d < 0. This is a puzzling result at first glance, since fractional processes are

known to be self-similar in that stretching the time scale leaves distributional

15



properties unchanged upon rescaling the process, see e.g. Mandelbrot and

van Ness (1968). In fact, for ARFIMA processes it holds for |d| < 0.5 that

E(ẏτ ẏτ+h) = E(yt yt+p h) ∼ C (ph)2d−1 , h → ∞

for some constant C. Hence, the hyperbolic decay of the autocovariance is

inherited by the skip sampled process irrespective of the sign of d, while

the power law in (6) is lost for d < 0. However, this lack of closedness is

of little practical concern. Note that negative orders of integration typically

arise only after differencing, and differencing a stock variable results in a flow

series, which should be aggregated by cumulating, not by skip sampling.

Next, we provide a formal discussion of the effect of skip sampling sta-

tionary stock variables.

Proposition 3 Let {yt} be I(d) with spectral density as in (6) satisfying
Assumptions 1 and 3. It then holds for the spectral density of the skip sampled
process

ḟy(λ) = λ−2dϕ̇y(λ) with ϕ̇y(λ) = p2d−1 fe

(
λ

p

)
+ λ2dṘy(λ) , (8)

where Ṙy(λ) = ϕ1 + O(λ), 0 < ϕ1 < ∞, and Ṙ′
y(λ) = O(1) as λ → 0.

Proof See Appendix.

Remark D The above discussion illustrates that the case d < 0 may be

ignored when talking about skip sampling. We now assume d ≥ 0. From

Proposition 3 it follows under (A1) with ϕ0 = p2d−1 fe (0):

ϕ̇y(λ) = ϕ0 + O
(
λmin(β,2d)

)
, d > 0 .

Hence, Assumption (A1) is closed with α = min(β, 2d) only as long as

d ≥ 0.4 Similarly, Assumption (A2) implies ϕ̇′
y(λ) = O(λ−1) as long as

4Strictly speaking, the case d = 0 requires separate consideration with

ϕ̇y(λ) = p−1 fe

(
λ

p

)
+ Ṙy(λ) = ϕ0 + ϕ1 + O

(
λβ

)
+ O(λ) = ϕ0 + ϕ1 + O

(
λmin(β,1)

)
.
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d ≥ 0. Therefore, conditions by Robinson (1995a) used to prove consistency

and limiting normality of the local Whittle estimator continue to hold after

systematic sampling for d ≥ 0. However, the order of integration d may

affect the required rate of divergence of the bandwidth m, see (7):

m = o
(
T 2α/(1+2α)

)
, α = min(β, 2d) . (9)

For values of d close to zero with α = 2d, this implies a very slow divergence

of m, and hence a very slow convergence of some semiparametric estimator

d̂ to the limiting distribution since the variance of d̂ is proportional to 1/m.

Remark E Note that Assumption (A3) is never closed with respect to skip

sampling. The aggregated spectral density in (8) displays an unbounded

derivative at the origin for all d < 0.5:

ϕ̇′
y(λ) = p2d−2 f ′

e

(
λ

p

)
+ O(λ2d−1) .

This means that sufficient conditions for consistency or limiting normality

of the log-periodogram regression made by Hurvich et al. (1998) or Andrews

and Guggenberger (2003) do not hold upon systematic sampling, which sheds

some doubt on the use of the LPR in applied work. Notice, however, there is

a trimmed version of the LPR by Robinson (1995b), where trimming means

that the first ` harmonic frequencies are omitted from the regression. Robin-

son (1995b) assumes Assumptions (A1) and (A2), which are closed under

skip sampling for d ≥ 0. To ensure limiting normality of the trimmed LPR,

Robinson (1995b, Ass. 6) requires with α from Remark D

m1/2 log m

`
+

` (log T )2

m
+

m1+1/2α

T
→ 0 ,

which obviously implies (9). While m has again to diverge very slowly for

small values of d, the trimming parameter ` has to diverge faster than
√

m,

which makes appropriate choices of ` and m a delicate matter in practice.

To shed further light on the effect of skip sampling it is elucidating to
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relate to a different strand of the literature. Let {xt} be a fractionally inte-

grated process {yt} perturbed by some I(0) process {ut},

xt = yt + ut , (10)

where we assume that {ut} is independent of the unobservable process {yt}.

Given {yt} is fractionally integrated with (6) it holds in the frequency domain

fx(λ) = λ−2dfe(λ) + fu(λ) = λ−2dϕ(λ)

where the short memory component of the observable {xt} becomes

ϕ(λ) = fe(λ) + fu(λ) λ2d

∼ c0 + c1 λ2d , λ → 0 ,

with c0 = fe(0) and c1 = fu(0). For 0 < d, the perturbed process {xt} is

fractionally integrated of order d where the short memory component ϕ(λ)

behaves like in case of skip sampling, cf. (8): skip sampling has in the

frequency domain the same effect on long memory as adding noise. Therefore,

methods tailored to the estimation of d from {xt} in (10) are candidates for

the estimation of d from skip sampled long memory series. For that reason,

a short and informal review of related work is provided to close down this

subsection.

Most papers dealing with perturbed fractional integration (also called

“long memory plus noise”) are related to the so-called long memory stochastic

volatility model (LMSV) introduced by Breidt, Crato, and de Lima (1998) or

the FIEGARCH model by Bollerslev and Mikkelsen (1996). Such volatility

models assume for return processes {rt} that

log r2
t = µ + yt + εt , (11)

where the perturbation term {εt} is white noise. Sun and Phillips (2003) con-

sidered the more general model (10) under Gaussianity. They proposed an

improved nonlinear version of the LPR estimator that accounts explicitly for

the effect of perturbation. The bandwidth m has to obey m = o
(
T 8d/(8d+1)

)
,
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which is less stringent than our condition (9) only if min(β, 2d) < 4d. Hur-

vich and Ray (2003) proposed a modification of the LW estimator adjusting

explicitly for the noise effect of model (11); further refinements are provided

by Hurvich, Moulines, and Soulier (2005) in that correlation between yt and

εt is allowed for. Finally, it should be noted that the so-called broadband

log-periodogram regression by Moulines and Soulier (1999) remains valid for

a Gaussian LMSV model, see Iouditsky, Moulines, and Soulier (1999).

3.4 General fractional integration

We now briefly touch the case where a singularity may occur at a frequency

λ∗ different from zero:

fy (λ) = |λ∗ − λ|−2d fe (λ) , |d| < 0.5 , λ∗ ∈ [0, π] . (12)

A parametric model for such a spectral behaviour has been proposed by Gray,

Zhang, and Woodward (1989), while the more recent literature focusses on

a semiparametric approach only assuming that fe (λ) is bounded, bounded

away from zero and twice continuously differentiable on (0, π), see for instance

Giraitis, Hidalgo, and Robinson (2001, Ass. A.1, A.1′), Hidalgo (2005, Cond.

C.1), and Dalla and Hidalgo (2005, C1).

The following proposition focusses on the stationary case for convenience;

the extension to r ≥ 1 is obvious. It thus extends Proposition 2 and 3 in

case that r = 0.

Proposition 4 Let {yt} be I(d) with spectral density as in (12) satisfying
Assumptions 1 and 3. It then holds for the spectral density

a) of the skip sampled process

ḟy (λ) = |pλ∗ − λ|−2d ϕ̇∗
y (λ) ,

ϕ̇∗
y (λ) = p2d−1fe

(
λ

p

)
+ |pλ∗ − λ|2d Ṙy (λ) ,

where Ṙy is from Proposition 3;
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b) of the cumulated process

f̃y (λ) = |pλ∗ − λ|−2d ϕ̃∗
y (λ) ,

ϕ̃∗
y (λ) = p2d−1fe

(
λ

p

)
T0(λ) + |pλ∗ − λ|2d R̃0 (λ) ,

where R̃0 is from Proposition 2, and T0(λ) from Lemma 2.

Proof Follows the lines of the proofs of Propositions 2 and 3 and is therefore

omitted.

The final remark collects three comments.

Remark F First, from Proposition 4 we observe that the singularity is

shifted from frequency λ∗ to pλ∗ due to aggregation. If pλ∗ exceeds π, one

may of course rescale due to periodicity and symmetry, and replace pλ∗ by

λ0 ∈ [0, π]:

λ0 =

{
2kπ − pλ∗, if pλ∗ ∈ ((2k − 1)π, 2kπ]
pλ∗ − 2kπ, if pλ∗ ∈ (2kπ, (2k + 1)π]

, k = 1, 2, . . . .

Second, contrary to (4), the moving average filter no longer annihilates the

aliasing effect in case of cumulation (as λ → pλ∗):

f̃y (λ) ∼ |pλ∗ − λ|−2d p2d−1fe (λ∗) T0 (pλ∗) + R̃0 (pλ∗) ,

where R̃0 (pλ∗) is positive in general. Hence, if d < 0, a zero at λ∗ of fy

is not reproduced by f̃y at pλ∗, such that generalized fractional integration

with d < 0 is no longer closed under cumulation. This is not true, however,

in the special case where pλ∗ is a multiple of 2 π, because R̃0 is periodic,

as one can see from its definition in the proof of Proposition 2. Third and

most interestingly, in case d ≥ 0, one may investigate whether assumptions

about fe are inherited by the short memory components ϕ̃∗
y (λ) and ϕ̇∗

y (λ)

of the aggregates. Both short memory components are not differentiable at

frequency pλ∗, thus violating the typical assumption mentioned above made

by Giraitis et al. (2001), Hidalgo (2005), and Dalla and Hidalgo (2005), and

indeed by most other papers working under model (12).
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4 Concluding remarks

We characterize effects of cumulating flow variables as well as systematic sam-

pling stock data of arbitrary stationary or difference-stationary processes in

the frequency domain (Proposition 1). The results are applied to fraction-

ally integrated processes of order d. In particular, we investigate whether

typical assumptions on fractionally integrated processes, which are made

in the literature to justify statistical semiparametric inference about d, are

closed with respect to aggregation. That is we study whether assumptions

that hold for basic data continue to hold for temporal aggregates, such that

semiparametric methods like the log-periodogram regression (LPR) or the

local Whittle (LW) estimator are justified for aggregates, too. It turns out

(Proposition 2) that typical spectral assumptions made for semiparametric

estimation are closed with respect to cumulating flow variables (or averaging

non-overlapping stocks, see footnote 1). Hence, the semiparametric proce-

dures discussed in Remark A for stationary data and in Remark B for the

nonstationary case may be safely applied to those aggregates.

In case of skip sampling fractionally integrated stock variables matters

are more complicated. The methods applied to nonstationary aggregates

continue to hold (Remark C). In the stationary case, we conclude from

Proposition 3 that certain properties that hold for the basic data can not

be maintained for the aggregate, while other assumptions are closed as long

as d ≥ 0. More precisely, it turns out (Remark D) that the LW estimator

can be applied to skip sampled aggregates, although the rate of divergence

of the bandwidth may be influenced by d, such that the bandwidth selection

may become a delicate problem in practice. A similar comment holds for the

trimmed LPR (Remark E), while sufficient conditions for the conventional

LPR do actually not carry over from the basic series to the aggregate. Note,

that in practice such difficulties can be circumvented by aggregating stocks

through averaging non-overlapping observations (see again footnote 1). Fur-

ther, we reveal that skip sampling has the same spectral effect as adding

noise to the data. Hence we suggest that shortcomings when estimating
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long memory under skip sampling may be alleviated using approaches tai-

lored to cope with perturbed fractional integration or so-called long memory

stochastic volatility models. An investigation how fruitful the many different

procedures are in the presence of skip sampled long memory is beyond the

present paper and has to be left for future research.

For the model of general fractional integration, where a spectral singu-

larity may occur at a frequency different from zero, we treat cumulating and

skip sampling in one go (Proposition 4). In Remark F it is concluded that

an assumption that is ever-present in related literature is not closed with

respect to aggregation. Consequently, when applying a model of general

fractional integration one should always stick to the basic data and not work

with aggregated time series.

Appendix

Proof of Proposition 1

We start to prove a). The case r = 0 is covered by Lemma 1. For r ≥ 1 we

observe:

∇rżτ = [(1 − L) Sp (L)]r zpτ = [Sp (L)]r ypτ ,

i.e. {∇rżτ } is obtained by skip sampling {[Sp (L)]r yt}. Consequently, by

Lemma 1,

ḟ∇rz (λ) =
1

p

p−1∑

j=0

fy

(
λ + 2πj

p

) ∣∣∣∣Sp

(
exp

{
i
λ + 2πj

p

})∣∣∣∣
2r

,

which is the required result with Tj(λ) from Lemma 2. For cumulated series

with r ≥ 0 it holds in b):

∇rz̃τ = [(1 − L) Sp (L)]r Sp (L) zpτ = [Sp (L)]r+1 ypτ ,

i.e. {∇rz̃τ } is obtained by skip sampling {[Sp (L)]r+1 yt}. The result follows

as in a), which completes the proof.
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Proof of Proposition 2

By Proposition 1 and Lemma 2, it holds under (6),

f̃∇rz(λ) = λ−2dp2d−1fe

(
λ

p

)
[T0(λ)]r+1 + R̃r(λ)

= λ−2d

[
fe

(
λ

p

) (
p2d+2r+1 + O(λ2)

)
+ λ2dR̃r(λ)

]
,

R̃r(λ) =
1

p

p−1∑

j=1

fy

(
λ + 2πj

p

)
[Tj(λ)]r+1 .

With Assumption 3 it follows from Lemma 2 that R̃r(λ) = O(λ2r+2) and

R̃′
r(λ) = O(λ2r+1), as required. This completes the proof.

Proof of Proposition 3

Lemma 1 yields under (6)

ḟy(λ) =
1

p

[(
λ

p

)−2d

fe

(
λ

p

)
+

p−1∑

j=1

fy

(
λ + 2 π j

p

) ]
,

such that

ϕ̇y(λ) = p2d−1fe

(
λ

p

)
+

λ2d

p

p−1∑

j=1

fy

(
λ + 2 π j

p

)
,

which defines Ṙy with

0 < ϕ1 = p−1

p−1∑

j=1

fy

(
2 π j

p

)
< ∞ .

With Assumption 3 one obtains the required rates for Ṙy and Ṙ′
y, which

completes the proof.
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