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Abstract

We extend PML theory to account for information on the conditional mo-

ments up to order four, but without assuming a parametric model, to avoid a

risk of misspecification of the conditional distribution. The key statistical tool

is the quartic exponential family, which allows us to generalize the PML2 and

QGPML1 methods proposed in Gourieroux, Monfort, and Trognon (1984) to

PML4 and QGPML2 methods, respectively. An asymptotic theory is developed.

The key numerical tool that we use is the Gauss-Freud integration scheme that

solves a computational problem that has previously been raised in several fields.

Simulation exercises demonstrate the feasibility and robustness of the methods.
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1. Introduction

It is well known that the Maximum Likelihood estimator may not only be in-

efficient but also inconsistent under misspecification, that is when the parametric

model providing the likelihood function does not contain the true distribution.

The study of the relations between Maximum Likelihood Theory and misspecifi-

cation has now a long history. Hood and Koopmans (1953) demonstrated that the

conditionally Gaussian ML estimator is consistent and asymptotically Gaussian,

even if the true distribution is not conditionally Gaussian, as soon as the first two

conditional moments are well specified. They coined the label “quasi ML estima-

tor” for this kind of estimator. White (1982) showed that, under misspecification,

the ML estimator is in fact a CAN (consistent asymptotically normal) estimator of

the pseudo-true value (as defined for instance in Sawa (1978)). Gourieroux, Mon-

fort, and Trognon (1984) characterized the parametric families leading to CAN

estimators of the parameters appearing in the first two conditional moments, even

if the true distribution does not belong to this parametric family. These families

are the linear exponential families (when only the first conditional moment is

specified) and the quadratic exponential families (when the first two conditional

moments are specified). The estimators thus obtained were called PML1 and

PML2 estimators, respectively. Bollerslev and Wooldrige (1992) generalized the

properties of the quasi generalized estimator, i.e. the Gaussian PML estimator,

to the dynamic case.

The PML theories described above only consider inference on the parameters

appearing in the first two conditional moments. More recently, however, many

econometric fields are paying greater attention to higher order conditional mo-

ments. This is particularly the case in Financial Econometrics and in Health

Econometrics. Very often, the approach used to account for higher moments

is the ML method based on a choice of a parametric family, which allows for

asymmetry and fat tails. A few such examples, occurring in finance are: Gen-

eralized Hyperbolic distribution [Eberlein and Keller (1995); Barndorff-Nielsen

(1997)], the noncentral Student t distribution [Harvey and Siddique (1999)], and

the Skewed-t distribution [Hansen (1994); Jondeau and Rockinger (2003)]. In

Health Econometrics, some examples are: The Generalized Gamma distribution

proposed by Stacy (1962) and Stacy and Mihram (1965), [Manning, Basu, and
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Mullahy (2005)], and the Pearson Type IV distribution, which may be considered

a skewed-t distribution [Holly and Pentsak (2004)]. More generally, examples

can be found in various fields, including physics, astronomy, image processing,

and in the biomedical sciences [see Genton (2004) and Arellano-Valle and Genton

(2005)].

Current ML approaches have two types of drawbacks. First, some families may

not be flexible enough to span the whole set of possible skewness (s) and kurtosis

(k), namely the domain k ≥ s2 + 1. Second, as mentioned above, the risk of

misspecification may lead to inconsistent estimators. If we are interested in the

first four conditional moments, a natural method is the Generalized Method of

Moments (GMM). There is now a large body of studies, however, suggesting that

GMM estimators can have poor finite sample properties [see e.g. Tauchen (1986),

Andersen and Sorenson (1996), Altonji and Segal (1996), Ziliak (1997), Doran and

Schmidt (2006)]. These difficulties led Kitamura and Stutzer (1997), to propose

an alternative estimation procedure based on the Kullback-Leibler Information

Criterion.

The objective of this paper is to propose another alternative to GMM. It is an

extension of the PML method developed by Gourieroux, Monfort, and Trognon

(1984), henceforth referred to as GMT. This work extends GMT to a situation

where the first four moments (centered or not) are known functions depending on

unknown parameters. Specifically, we show that the PML estimator is consistent

for any specification of the first four conditional moments, any true conditional

distribution of the endogenous variable, and any marginal distribution of the ex-

ogenous variables, if and only if the PML is based on a quartic exponential family.

We shall refer to this extension as PML4. We also propose an extension of the

Quasi-Generalized Pseudo Maximum Likelihood (QGPML) estimator proposed

by GMT (1984) based on the quartic exponential family and called QGPML2.

Beyond the robustness and nice asymptotic properties of the estimates resulting

from the quartic exponential families, two additional features should be noted.

First, the quartic exponential family spans the whole set of possible values for

the mean and the variance as well as the pairs (s, k), except for a set of measure

zero, namely {(s, k), s.t. s = 0, k > 3}. This is not necessarily the case for other

parametric families of distributions such as those mentioned earlier. Second, we

show how the parameters of the quartic exponential family may be obtained from

a given set of moments. Thereby, we solve a numerical problem which had been

already encountered, both in the econometric literature [Zellner and Highfield

(1988), Ormoneit and White (1999)] and other fields [Agmon et al. (1979) or
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Mead and Papanicolaou (1984)], where the exponential family arises as an En-

tropy Maximizing density and which were considered as difficult. The key issue,

from the computational point of view, is the use of the Gauss-Freud quadrature

scheme which seems very promising for computing the numerical integrations

needed in this framework. It is also important to note that, since the quartic

exponential family will be used as a tool providing a convenient set of auxiliary

probability distributions generating the whole set of pairs (s, k) except the set

of measure zero {(s, k), s = 0, k > 3}, it is also possible to exclude the point

(s = 0, k = 3) without any practical consequence; this will be done for sake of

technical simplicity. Of course, as usual in PML theories, this choice of auxiliary

probability distribution does not imply any restriction on the true distribution.

The rest of this paper is organized as follows. Preliminary results are given in

Section 2, where some properties of exponential families are briefly reviewed and

the notion of a quartic exponential family is defined. This section also contains

a brief presentation of the properties of M-Estimators. These preliminary results

are then used to derive important properties of the exponential quartic family

in Section 3. The PML4 method is defined in Section 4, and the asymptotic

properties of the PML4 estimators are derived. In Section 5, we perform a similar

analysis as in Section 4 but for the QGPML2 method. In Section 6, we discuss

the numerical issues and describe numerical algorithms for implementing of the

PML4 and QGPML2 methods. Several Monte-Carlo exercises demonstrating the

usefulness of the methods proposed in our paper are presented in Section 7. This

section contains a discussion on computational issues linked with the quartic

exponential distribution, and it also presents four Monte-Carlo experiments, each

of which numerically demonstrates a different property of PML4 or QGPML2.

Conclusions are presented in Section 8. Finally, to not interrupt our discussion

of the essential ideas of this paper, some proofs and other technical details are

presented in the Appendix.

2. Preliminaries

2.1. Exponential Families.

Let us consider a measure space (Y ,A, ν) where A is a σ−field and ν a σ−finite

measure. An exponential family is a family of probability distributions on (Y ,A)

which are equivalent to ν and with pdfs of the form:

`(y, λ) = exp [λ′T (y)− ψ(λ)] , λ ∈ Λ ⊂ Rp,
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where T (y) is a p−dimensional vector defined on Y , and ψ(λ) is a normalizing

constant, equal to the Log-Laplace transform of νT , equivalent to the image of ν

by T .

Such families have many well-known properties. Some of them will be useful

in the rest of the paper, and they are summarized below [the proofs can be found

for instance in Barndorff-Nielsen (1978), Monfort (1982), or Brown (1986)].

(1) Λ can be taken as the convex set where the Laplace transform of νT is

defined.

(2) For any λ ∈ Λ̊, interior of Λ, all the moments of the statistic T exist, and

in particular, we have:

Eλ(T ) =
∂

∂λ
ψ(λ), Vλ(T ) =

∂2

∂λ∂λ′
ψ(λ),

which implies:

∂Eλ(T )

∂λ′
=

∂2

∂λ∂λ′
ψ(λ) = Vλ(T ).

(3) The Fisher information matrix IF (λ) is equal to Vλ(T ) = ∂2ψ(λ)/∂λ∂λ′.

(4) The model is identifiable if, and only if, IF (λ) is invertible for any λ ∈ Λ.

(5) If the model is identifiable, then the mapping λ→ Eλ(T ) is injective.

2.2. Quartic Exponential Family.

We consider the particular case where Y = R, A = BR (the Borelian σ−field

of R), ν is the Lebesgue measure on R, and T (y) = (y, y2, y3, y4)′.

In other words, we consider the pdfs on R defined by:

`(y, λ) = exp

[
4∑
i=1

λiy
i − ψ(λ)

]
, with λ = (λ1, λ2, λ3, λ4)′. (2.1)

We will also use the notation:

`(y, λ) = exp

[
λ0 +

4∑
i=1

λiy
i

]
, with λ0 = −ψ(λ). (2.2)

This type of density has been extensively used in the entropy literature, e.g.

Golan et al. (1996), since it is obtained by maximizing, with respect to f, the

entropy − ∫R f(y) log f(y) dy, under a set of data moment-consistency constraints∫
R y

if(y) dy = mj, for j = 1, · · · , 4, where the mj are given, as well as a normal-

ization constraint
∫

R f (y) dy = 1.

The set Λ where `(y, λ) is defined is easily obtained. If λ4 < 0, `(y, λ) is always

integrable. If λ4 > 0, `(y, λ) is never integrable. Finally, if λ4 = 0, `(y, λ) is
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integrable if λ3 = 0 and λ2 < 0 and we get the Gaussian family. In other words,

Λ is defined by:

Λ = R× R× R× R−∗ + R× R−∗ × {0} × {0},

where R−∗ is the set of strictly negative numbers.

This family will be called the quartic exponential family and denoted by {Q(λ),

λ ∈ Λ}.
One should note that the variance-covariance matrix of T (Y ) = (Y, Y 2, Y 3, Y 4)′

is invertible everywhere, since otherwise there would exist a linear relation between

Y, Y 2, Y 3, Y 4, i.e. the support of the distribution of Y would be made of at most

four points, which is impossible since this distribution is absolutely continuous

with respect to the Lebesgue measure. Therefore, using the general properties 3)

and 4) we see that the model is identifiable. Moreover, using 5) we conclude that

the mapping λ→ [mi(λ), i = 1, . . . , 4], where mi(λ) = Eλ(Y
i), is injective.

Denoting by s(λ) and k(λ) the skewness and kurtosis [s(λ) = Eλ[Y − E(Y )]3/

[Vλ(Y )]3/2, k(λ) = Eλ[Y −E(Y )]4/[Vλ(Y )]2], respectively, it is also clear that the

mapping:

λ→ [m1(λ),m2(λ), s(λ), k(λ)],

is injective. The same is true for the mapping

λ→ [m(λ), σ2(λ), s(λ), k(λ)],

where m(λ) = m1(λ), and σ2(λ) = m2(λ)−m2
1(λ).

It is important to check whether the previous mapping is also surjective, which

is to say that it can reach any admissible value of (m1,m2, s, k). It is well known

that the set D of admissible values of (m,σ2, s, k) is defined by:

m ∈ R, σ2 ≥ 0, s ∈ R, k ≥ s2 + 1.

The latter inequality is obtained, for instance, by noting that the variance-cova-

riance matrix of (Y, Y 2) where E(Y ) = 0, V (Y ) = 1, is given by(
1 s

s k − 1

)
,

and therefore that k − 1− s2 ≥ 0. Moreover, the boundary k = s2 + 1 is reached

if Y and Y 2 are linked linearly, that is, if the support is made of at most two

points. Therefore, this boundary clearly cannot be reached by the quartic family,

and the boundary point σ2 = 0 cannot be reached either (for the same reason).
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Therefore, the natural question is now the following: is the range of the mapping

λ→ [m(λ), σ2(λ), s(λ), k(λ)] defined by:

D =
{
m ∈ R, σ2 > 0, s ∈ R, k > s2 + 1

}
?

The answer is no, but it can be shown [see Junk (2000)] that the range is almost

equal to this set, in the sense that all the admissible values of (m,σ2, s, k) can

be reached except for those corresponding to the set of measure zero, defined by

s = 0, k > 3.

Moreover, if we exclude the case λ4 = 0 (and therefore λ3 = 0), in other words,

if we restrict the Q(λ) family to the case where λ4 < 0, then the only probability

distributions excluded are the normal distributions (corresponding to s = 0 and

k = 3) and, therefore, the range of the m reached by this restricted family is D

except the points corresponding to s = 0, and k ≥ 3. We will denote by Λ∗ the

set R× R× R× R−∗, and by D∗ the set

D∗ = D − {(m,σ2, s, k), s = 0, k ≥ 3
}
.

There is a one to one relationship between Λ∗ andD∗, and, moreover, all the points

of D not belonging to D∗ can be approached as closely as wished by a distribution

of {Q(λ), λ ∈ Λ∗}. In the sequel, we will take the quartic exponential family

{Q(λ), λ ∈ Λ∗} as the auxiliary family on which the semi-parametric estimator of

the parameters of interest will be based.1

2.3. M-estimators and Quasi-Generalized M-estimators. Let us consider

an endogenous variable Yi and a vector of exogenous variables Xi. For simplic-

ity, we assume that (Yi, Xi) for i = 1, · · · , n are i.i.d. Standard extensions can

be found in Gallant (1987), Holly (1993), or White (1994). To each possible

conditional distribution of the Yi’s given the Xi’s, we associate a parameter

θ ∈ Θ ⊂ RK . In particular, the value of the parameter corresponding to the

true conditional distribution of the Yi’s given the Xi’s is called the true value of

the parameter, and it is denoted by θ0. The true distribution of the sequence

(Yi, Xi, i ∈ N) is denoted by P0. Throughout this paper, we adopt the nota-

tion corresponding to a conditional static model, but the results could be ex-

tended to a stationary conditional dynamic model by replacing Yi by Yt and Xi

by (Yt−1, . . . , Y1, Xt, . . . , X1).

1Note that in particular the moments generated by standard exponential families like the
binomial, gamma, and Poisson are reached, since their skewness is non zero.
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An M-estimator of θ0 is an estimator θ̂n obtained by maximizing, with respect

to θ, an objective function of the form:

n∑
i=1

ϕ(Yi, Xi, θ). (2.3)

Under standard regularity conditions [see e.g. Chamberlain (1987), Newey (1990),

White (1994), Gourieroux and Monfort (1995a)], it can be shown that θ̂n is a

consistent estimator of θ0, for any θ0, if the limit function

ϕ∞(θ, P0) = P0 lim

[
1

n

n∑
i=1

ϕ(Yi, Xi, θ)

]

has a unique maximum at θ = θ0. Moreover, the limit function can be written:

ϕ∞(θ, P0) = EXE0ϕ(Y,X, θ), (2.4)

where E0 is the conditional expectation operator associated to the true conditional

distribution of Yi, given that Xi = x (independent of i) and EX is the expectation

with respect to the distribution PX , of any Xi.

Let us now consider two subvectors θ∗ and θ∗∗ of θ. These subvectors are not

necessarily disjoint, and in particular, we can have θ∗ = θ∗∗ = θ.

We assume that θ∗0, the true value of θ∗, can be consistently estimated by θ̂∗n
defined by:

θ̂∗n = Argmax
θ∗

n∑
i=1

ϕ
[
Yi, Xi, θ

∗, a
(
Xi, θ̂

∗∗
n

)]
, (2.5)

where a is some function, and θ̂∗∗n is a consistent estimator of θ∗∗0 , the true value

of θ∗∗. In other words, θ∗0 gives the unique maximum in θ∗ of:

P0 lim

[
1

n

n∑
i=1

ϕ
[
Yi, Xi, θ

∗, a
(
Xi, θ̂

∗∗
n

)]]
(2.6)

= EXE0ϕ [Y,X, θ∗, a (X, θ∗∗0 )] . (2.7)

Such an estimator is called a Quasi-Generalized M-estimator of θ∗0 (QGM estima-

tor). The corresponding unfeasible M-estimator θ̂∗0n is defined by:

θ̂∗0n = Argmax
θ∗

n∑
i=1

ϕ [Yi, Xi, θ
∗, a (Xi, θ

∗∗
0 )] , (2.8)

and is also consistent.

As far as the asymptotic normality of the M and QGM estimators is concerned,

we have the following properties.
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The asymptotic distribution of
√
n(θ̂n− θ0) is N [0, J−1(θ0)I(θ0)J−1(θ0)] where

J(θ0) = −EXE0

[
∂2ϕ(Y,X, θ0)

∂θ∂θ′

]
, (2.9)

I(θ0) = EXE0

[
∂ϕ(Y,X, θ0)

∂θ

∂ϕ(Y,X, θ0)

∂θ′

]
. (2.10)

A nice property of the QGM-estimator θ̂∗n of θ∗0 is the following. If

E0

[
∂2ϕ(Y,X, θ∗0, a (X, θ∗∗0 ) )

∂θ∗∂a′
| X
]

= 0, (2.11)

then
√
n(θ̂∗n− θ∗0) has the same asymptotic distribution as

√
n(θ̂∗0n− θ∗0). Namely,

N
[
0, J̃−1(θ0)Ĩ(θ0)J̃−1(θ0)

]
, where J̃(θ0) and Ĩ(θ0) are of the same form as (2.9)

and (2.10), θ being replaced by θ∗ and ϕ(Y,X, θ) by ϕ(Y,X, θ∗, a (X, θ∗∗0 )).

3. Properties of the Exponential Quartic Family

Let us denote by:

`(y, λ) = exp(λ0 + λ1y + λ2y
2 + λ3y

3 + λ4y
4),

the pdf of the exponential family, and where λ = (λ1, λ2, λ3, λ4)′, and λ ∈ Λ∗ =

R3 × R−∗. We know that there is a one to one relationship between Λ∗ and D∗

(see Section 2.2). Let us denote by M the range of m = (m1,m2,m3,m4)′, where

mi = E(Y i) corresponding to D∗. The mapping m(λ) from Λ∗ to M is bijective,

and we denote by λ(m) the inverse function and λ0(m) = −ψ [λ(m)].

Proposition 1. We have:

∂λ0(m)

∂m
+
∂λ′(m)

∂m
m = 0. (3.1)

Proof. We have:

Log ` [y, λ(m)] = λ0(m) +
4∑
j=1

λj(m)yj,

∂ Log ` [y, λ(m)]

∂m
=
∂λ0(m)

∂m
+

4∑
j=1

∂λj(m)

∂m
yj.

The result follows by taking the expectation and using the fact that the score

vector is of zero mean. �

Corollary 1. We have:

∂2λ0(m)

∂m∂m′
+

4∑
j=1

∂2λj(m)

∂m∂m′
mj +

∂λ′(m)

∂m
= 0. (3.2)

Proof. The proof is straightforward by differentiating the identity (3.1) of Propo-

sition 1 once more. �
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Let us denote by Σ the variance-covariance matrix of T (Y ) = (Y, Y 2, Y 3,Y 4)′

which is positive definite (since the support of Y is not reduced to point masses).

Proposition 2. We have ∂m/∂λ′ = Σ, and therefore, ∂λ/∂m′ = Σ−1.

Proof. This is a direct consequence of the general property 2) of Subsection 2.1.

�

Proposition 3. For any pair m,m0 ∈M , we have:

λ0(m) + λ′(m)m0 ≤ λ0(m0) + λ′(m0)m0,

and the equality holds if and only if m = m0.

Proof. From Kullback’s inequality, we know that:

Em0 [Log ` [y, λ(m)]] ≤ Em0 [Log ` [y, λ(m0)]] ,

or

Em0 [λ0(m) + λ′(m)T (Y )] ≤ Em0 [λ0(m0) + λ′(m0)T (Y )] ,

or

λ0(m) + λ′(m)m0 ≤ λ0(m0) + λ′(m0)m0,

and the inequality holds.

Moreover, m0 is the unique maximum of λ0(m) + λ′(m)m0 for the following

reasons. When equality holds in Kullback’s inequality, we have, because of the

strict concavity of the Log function, l [y, λ(m)] = l [y, λ(m0)] almost everywhere,

therefore λ(m) = λ(m0) because the quartic family is identifiable (see section 2.2)

and, finally, m = m0 since the mapping between λ and m is one to one.

�

4. PML 4 Method

4.1. Definition.

We adopt a semi-parametric approach based on the specification of the con-

ditional moments up to fourth order. It is obviously equivalent to specifying

(m1,m2,m3,m4) or (m1, σ
2, s, k). Moreover, to satisfy the inequality k > s2 + 1,

it could be convenient to specify (m1, σ
2, s, k∗), where k∗ = k−s2−1, which could

be called the over-kurtosis, since (s, k∗) is only constrained to belong to R+×R+.

We consider the latter parametrization, but the results could be adapted to other

parametrizations in a straightforward manner.

We therefore specify the following functions: m(xi, θ1), σ2(xi, θ2), s(xi, θ3), and

k∗(xi, θ4). Note that θ1, θ2, θ3, and θ4 may have some components in common,

and we denote by θ the union of θ1, θ2, θ3, and θ4 without repetition (in particular,

we could have θ1 = θ2 = θ3 = θ4 = θ). We denote by Θ the range of θ.
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For a given xi and θ, we can compute the coefficients λ0, λ1, λ2, λ3, λ4 of the

quartic exponential distribution having the same mean, variance, skewness and

kurtosis. As mentioned in Section 2, this can always be done unless the skewness

is zero and the kurtosis larger than 3, but even then these values can be closely

approached. Let us denote these coefficients by λj(xi, θ), j = 0, . . . , 4.

Definition 1. The fourth order Pseudo Maximum Likelihood estimator of θ0,

called PML4 and denoted by θ̂n is defined by:

θ̂n = Argmax
θ∈Θ

n∑
i=1

4∑
j=0

λj(xi, θ)y
j
i .

Condition 1. We assume that the semiparametric model is identifiable, i.e. that:

(1) if m1(xi, θ1) = m1(xi, θ̄1), σ2(xi, θ2) = σ2(xi, θ̄2), s(xi, θ3) = s(xi, θ̄3),

k∗(xi, θ4) = k∗(xi, θ̄4) (PX almost surely), then we have θ = θ̄.

Note that Condition 1 is equivalent to

(2) λj(xi, θ) = λj(xi, θ̄), j = 0, . . . , 4 (PX almost surely) implies θ = θ̄.

It is important to stress that the exponential quartic family is a tool providing

estimation procedures but that we do not assume that the true (conditional) p.d.f.

belongs to this family.

4.2. Asymptotic Properties.

Proposition 4. Under standard regularity conditions, if the semi-parametric

model is identifiable, the PML4 estimator θ̂n is consistent.

Proof. From the properties of the M estimators mentioned in Subsection 2.3, we

have to prove that the limit function (2.4) ϕ∞(θ, P0) = EXE0ϕ(Y,X, θ) has a

unique maximum at θ0. Here we have:

ϕ∞(θ, P0) = EXE0

[
4∑
j=0

λj(X, θ)Y
j

]
,

= EX

[
λ0(X, θ) +

4∑
j=1

λj(X, θ)mj0

]
.

Using Proposition 3, we know that

ϕ∞(θ, P0) ≤ϕ∞(θ0, P0),

and that ϕ∞(θ, P0) =ϕ∞(θ0, P0) if and only if λj(X, θ) = λj(X, θ0), j = 0, . . . , 4,

PX almost surely in X, and, therefore, using the identification assumption, if and

only if θ = θ0. The result follows. �



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
11

Proposition 5. Under standard regularity conditions, if the semi-parametric

model is identifiable,
√
n
(
θ̂n − θ0

)
is asymptotically distributed as

N [0, J−1 (θ0) I (θ0) J−1 (θ0)
]
,

where

J(θ0) = EX

[
∂m′(X, θ0)

∂θ
Σ−1(X, θ0)

∂m(X, θ0)

∂θ′

]
,

I(θ0) = EX

[
∂m′(X, θ0)

∂θ
Σ−1(X, θ0)Ω(X)Σ−1(X, θ0)

∂m(X, θ0)

∂θ′

]
,

where Σ(X, θ0) is the conditional variance-covariance matrix of T (Y ) = (Y, Y 2,

Y 3, Y 4)′ given X in the quartic conditional distribution associated with λj(X, θ0),

j = 0, . . . , 4, and where Ω(X) is the true conditional variance-covariance matrix

of T given X.

Proof. See Appendix A. �

Formulas giving J(θ0) and I(θ0) contain the Jacobian matrices ∂m(X, θ0)/

∂θ′. If the parametrization used is not m = (m1,m2,m3,m4)′ but instead µ =

(m1, σ
2, s, k∗)′, we must compute ∂m(X, θ0)/∂θ′ as a function of µ = [m1(X, θ1),

σ2(X, θ2), s(X, θ3), and k∗(X, θ4)]′, and we get:

∂m(X, θ0)

∂θ′
=
∂m

∂µ′
∂µ(X, θ0)

∂θ′
.

Therefore:

Corollary 2. We have,

J(θ0) = EX

[
∂µ′(X, θ0)

∂θ

∂m′

∂µ
Σ−1(X, θ0)

∂m

∂µ′
∂µ(X, θ0)

∂θ′

]
, (4.1)

I(θ0) = EX

[
∂µ′(X, θ0)

∂θ

∂m′

∂µ
Σ−1(X, θ0)Ω(X)

× Σ−1(X, θ0)
∂m

∂µ′
∂µ(X, θ0)

∂θ′

]
. (4.2)

Propositions 4 and 5 show that the PML4 method based on the quartic ex-

ponential family provides consistent and asymptotically normal estimators of the

parameters specifying the conditional moments of order one to four. It is also

important to note that the unique family with these properties is the generalized

quartic family:

exp

[
λ0(m) +

4∑
i=1

λi(m)yi + a(y)

]
,

where m = (m1,m2,m3,m4).
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Proposition 6. Let f(y,m) be a family of pdfs on R indexed by their moments

m = (m1,m2,m3,m4)′. If the PML method based on the maximization of

n∑
i=1

Log f [yi,m1(xi, θ1),m2(xi, θ2),m3(xi, θ3),m4(xi, θ4)]

is consistent for any specification of the conditional moments, any true con-

ditional distribution satisfying the moment specification for some value θ0 of

θ = (θ1, . . . , θ4)′, and any distribution PX of X, then f(y,m) is of the type:

f(y,m) = exp

[
λ0(m) +

4∑
i=1

λi(m)yi + a(y)

]
.

Proof. Under the assumptions of Proposition 6, we must have, in particular, the

consistency property in a model without exogenous variables. Furthermore, this

model must possess the parametrization θi = E(Y i), i = 1, . . . , 4, where θ =

(θ1, θ2, θ3, θ4)′ belongs to the interior of the domain defined by:∣∣∣∣∣ 1 θ1

θ1 θ2

∣∣∣∣∣ ≥ 0;

∣∣∣∣∣∣∣
1 θ1 θ2

θ1 θ2 θ3

θ2 θ3 θ4

∣∣∣∣∣∣∣ ≥ 0.

In other words, if for all θi (i = 1, . . . , 4) we have E(Y i − θi) = 0, then we must

have:

E

[
∂ Log f(Y, θ)

∂θ

]
= 0.

Using a version of the Farkas Lemma [see Lemma 8.1 in Gourieroux-Monfort

(1995a), p. 252], we conclude that:

∂ Log f(y, θ)

∂θ
=

4∑
i=1

λi(θ)(y
i − θi).

Integrating the latter equation gives the result. �

Note that the generalized quartic family can be seen as a quartic family with

respect to the modified measure dν∗(y) = exp(a(y))dν(y), ν being the Lebesgue

measure on R.

5. QGPML2 Method

5.1. Alternative Parametrization.

We have seen that the quartic exponential family can be equivalently parame-

trized by λ = (λ1, λ2, λ3, λ4)′, by m = (m1,m2,m3,m4)′, or by µ = (m1, σ
2, s, k∗)′.

There is a fourth parametrization that will be of great interest, namely (m1, m2,

λ3, λ4)′ or equivalently ν = (m1, σ
2, λ3, λ4)′. First, we have to show that this is

indeed a genuine parametrization.
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Proposition 7. There is a one to one relationship between (λ1, λ2, λ3, λ4) and

(m1,m2, λ3, λ4).

Proof. We have to prove that for any (λ3, λ4) the relationship

(λ1, λ2)→ [m1(λ1, λ2, λ3, λ4),m2(λ1, λ2, λ3, λ4)]

is one to one. We have seen that the Jacobian matrix ∂m/∂λ′ = Σ is symmetric

and positive definite ∀m, so the same is true for the upper (2× 2) block-diagonal

submatrix. Moreover, for any given (λ3, λ4) fixed, the section of Λ∗ is convex, and

therefore, using Theorem 6 in Gale-Nikaido (1965), we obtain the required result.

�

The previous result means that, starting from the quartic family Q(Λ∗), we

can reparameterize it as Q(m1, σ
2, λ3, λ4), and therefore, fixing (λ3, λ4) at any

admissible value (λ0
3, λ

0
4), we get a quadratic exponential family Q(m1, σ

2, λ0
3, λ

0
4)

in the sense of GMT (1984). We denote by λ∗1(m1, σ
2, λ3, λ4), λ∗2(m1, σ

2, λ3, λ4)

and λ∗0(m1, σ
2, λ3, λ4) the functions giving λ1, λ2, λ0 in terms of m1, σ

2, λ3, λ4.

5.2. QGPML2 Method.

We assume that the conditional mean and variance are specified as m1(Xi, θ1)

and σ2(Xi, θ2), and the conditional skewness and over-kurtosis are specified as

s(Xi, θ3) and k∗(Xi, θ4).

We can first estimate (θ1, θ2) by the PML2 method based on the Gaussian

family, i.e. by solving the problem:

(θ̃1n, θ̃2n) = Argmin
θ1,θ2

n∑
i=1

Log σ2(Xi, θ2) +
[Yi −m1(Xi, θ1)]2

σ2(Xi, θ2)
. (5.1)

Next, we compute

ûi =
Yi −m1(Xi, θ̃1n)

σ(Xi, θ̃2n)
,

and obtain consistent estimators of θ̃3n and θ̃4n of θ3 and θ4 from the nonlinear

regressions of û3
i on s(Xi, θ3) and û4

i − s(Xi, θ̃3n)2 − 1 on k∗(Xi, θ4). Explicitly,

this corresponds to obtaining the pair (θ̃3n, θ̃4n), verifying:

θ̃3n = argmin
θ3

N∑
i=1

(û3
i − s(Xi, θ3))2,

θ̃4n = argmin
θ4

N∑
i=1

(û4
i − s(Xi, θ̃3n)2 − 1− k∗(Xi, θ4))2.
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Then, noting θ̃n = (θ̃1n, θ̃2n, θ̃3n, θ̃4n)′, we define:

m̃1i = m1(xi, θ̃1n); σ̃2
i = σ2(xi, θ̃2n);

s̃i = s(xi, θ̃3n); k̃∗i = k∗(xi, θ̃4n);

λ̃ji = λj(m̃1i, σ̃
2
i , s̃i, k̃

∗
i ), j = 3, 4.

Definition 2. The Quasi Generalized PML2 (QGPML2) estimator (θ̂1n, θ̂2n) of

(θ01, θ02) is defined by maximizing with respect to (θ1, θ2) :

L(2)
n (θ1, θ2) =

n∑
i=1

{λ∗0
[
m1(xi, θ1), σ2(xi, θ2), λ̃3i, λ̃4i

]
+ λ∗1

[
m1(xi, θ1), σ2(xi, θ2), λ̃3i, λ̃4i

]
yi

+ λ∗2
[
m1(xi, θ1), σ2(xi, θ2), λ̃3i, λ̃4i

]
y2
i }

Note that, using the parametrization (m1, σ
2, λ3, λ4) the quartic family of pdf

can be written:

f(yi|m1, σ
2, λ3, λ4) = exp

[
λ∗0
(
m1, σ

2, λ3, λ4

)
+ λ∗1

(
m1, σ

2, λ3, λ4

)
yi

+λ∗2
(
m1, σ

2, λ3, λ4

)
y2
i + λ3y

3
i + λ4y

4
i

]
,

and, therefore, the objective function of Definition 2 is equivalent to:

n∑
i=1

Log f(yi | m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ̃n), λ4(xi, θ̃n)),

since the terms λ3(xi, θ̃n)y3
i +λ4(xi, θ̃n)y4

i do not depend on (θ1, θ2). The method is

called QGPML2 because only yi and y2
i are involved, and it is clearly an example

of a Quasi-Generalized M-estimator.

Moreover, we obtain the following important property:

Proposition 8. The QGPML2 estimator (θ̂1n, θ̂2n) is asymptotically equivalent

to the unfeasible estimator based on the maximization of

L
(2)
n0 (θ1, θ2) =

n∑
i=1

{λ∗0
[
m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ0), λ4(xi, θ0)

]
+ λ∗1

[
m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ0), λ4(xi, θ0)

]
yi

+ λ∗2
[
m1(xi, θ1), σ2(xi, θ2), λ3(xi, θ0), λ4(xi, θ0)

]
y2
i }.
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Proof. According to the result given in Equation (2.11), we have to check that:

E0


∂2

∂

(
m1

σ2

)
∂

(
λ3

λ4

)′ (λ∗0 + λ∗1Yi + λ∗2Y
2
i

) | X
 = 0.

Differentiating Log f(yi | xi;m1, σ
2, λ3, λ4) with respect to m1 and σ2 and then

taking the expectation we get:

∂λ∗0

∂

(
m1

σ2

) +
∂λ∗1

∂

(
m1

σ2

)m1 +
∂λ∗2

∂

(
m1

σ2

)m2 = 0,

for any (m1, σ
2, λ3, λ4). Therefore, differentiating further with respect to λ3 and

λ4, we still get zero. �

Proposition 9. The QGPML2 estimator (θ̂1n, θ̂2n) is consistent, asymptotically

normal, and the asymptotic distribution of
√
n[(θ̂1n, θ̂2n)−(θ10, θ20)] is N(0, B(θ0))

with

B(θ0) =

{
EX

[(
∂m1(X,θ10)

∂θ1
2∂m1(X,θ10)

∂θ1
m1(X, θ10)

0 ∂σ2(X,θ20)
∂θ2

)
Ω−1

1 (X, θ0)

×
(

∂m1(X,θ10)
∂θ′1

0

2∂m1(X,θ10)
∂θ′1

m1(X, θ10) ∂σ2(X,θ20)
∂θ′2

)]}−1

. (5.2)

and

Ω1(X, θ0) = V0

[
Y

Y 2
| X
]
.

Proof. See Appendix B. �

It is easily seen that B(θ0) is equal to the semi-parametric efficiency bound

based on the first two conditional moments.

From consistent estimators of the asymptotic variance-covariance matrix B(θ0),

we can deduce Wald and score tests, as well as asymptotic confidence regions.

We also note that, from the proof of Proposition 9, we know that the matrices

Ĩ and J̃ are equal, and therefore we can also use Likelihood-ratio type tests [see

Gourieroux and Monfort 1995b, chapter 18]. More precisely, denoting by θ̂0
1n

and θ̂0
2n the constrained QGMPL2 estimators obtained by maximizing L

(2)
n (θ1, θ2)

under the null, we can use the test statistic:

ξRn = 2
[
L(2)
n (θ̂1n, θ̂2n)− L(2)

n (θ̂0
1n, θ̂

0
2n)
]
. (5.3)

If the null is g(θ1, θ2) = 0 where g is an r−dimensional vector, then, under the

null, ξRn is asymptotically distributed as a χ2(r). If (θ′1, θ
′
2)′ is a p−dimensional
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vector and the null is of the form θ1 = h1(γ) and θ2 = h2(γ), where γ is a

q−dimensional vector, then under the null, ξRn is asymptotically distributed as a

χ2(p− q).

6. Numerical Implementation

The implementation of the PML4 and QGPML2 methods necessitates the nu-

merical algorithms that will be described in this section. To this end, let us first

introduce the useful notion of a canonical quartic family.

6.1. The Canonical Quartic Family.

The PML4 method requires the computation of λ = (λ1, · · · , λ4) ∈ Λ∗ =

R3×R−∗ given ν = (m1, σ
2, s, k) ∈ D∗, where D∗ = D − {(m,σ2, s, k), s = 0,

k ≥ 3} has been defined in Section 2.2. Although the mapping between Λ∗ and

D∗ has been shown to be one to one, it is well know (see Maasoumi 1993, and

Ormoneit and White 1999) that the numerical computation of λ given ν is delicate.

Our contribution to the problem is to show that the computation of this four-

variate function boils down to the computation of a two variates function, thanks

to the introduction of the canonical quartic family.

The following results will be useful:

Proposition 10. i) The quartic family {Q(λ), λ ∈ Λ∗} is globally invariant by

any linear mapping La,b(y) = (y − a)/b, a ∈ R, b > 0.

ii) An equivalence relation is obtained in {Q(λ), λ ∈ Λ∗} by imposing the equal-

ity of the skewness and kurtosis.

iii) An equivalent class is obtained by considering the image of any given ele-

ment of the class, by all the linear mappings La,b(y), a ∈ R, b > 0.

Proof. i) the p.d.f. of the image of Q(λ) by La,b(y) is

exp
[
Log b+ λ0 + λ1(a+ bz) + λ2(a+ bz)2 + λ3(a+ bz)3 + λ4(a+ bz)4

]
,

which is equal to the p.d.f. of Q(λ∗) with

λ∗0 = Log b+ λ0 + λ1a+ λ2a
2 + λ3a

3 + λ4a
4,

λ∗1 = (λ1 + 2λ2a+ 3λ3a
2 + 4λ4a

3)b,

λ∗2 = (λ2 + 3λ3a+ 4λ4a
2)b2,

λ∗3 = (λ3 + 4λ4a)b3,

λ∗4 = λ4b
4.

ii) is obvious and iii) is proved by first noting that the image of a distribution

Q(λ) by La,b(y) has the same skewness and kurtosis as Q(λ) and, second, that

any element of a given equivalence class is obtained as the image of any other
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element of the same class by the linear mapping La,b(y) in which a and b have

been adjusted to get the appropriate mean and variance. �

It is clear from the formulae given in i) that in any equivalence class we can find

an element for which λ∗4 = −1 and λ∗3 = 0, by starting from any Q(λ) of the class

and taking its image by La,b(y) with b = (−λ4)−1/4, a = −λ3/(4λ4). Moreover,

such an element is unique since an other one would be obtained from the first

as the image by a linear mapping which is obviously the identity since for both

distributions, we should have λ4 = −1 and λ3 = 0. This leads to the following

definition:

Definition 3. The canonical quartic family Q∗(α, β) is defined by the family of

probability density functions:

exp
[
α0(α, β) + αz + βz2 − z4

]
, (6.1)

where (α, β) ∈ R2.

The previous results immediately give the following corollary:

Corollary 3. The canonical quartic family {Q∗(α, β), where (α, β) ∈ R2} can be

parametrized by (s, k) ∈ D∗.

It is now clear that the computation of λ = (λ1, · · · , λ4) for a given ν =

(m1, σ
2, s, k) can be done in two steps. First compute the appropriate (α, β)

corresponding to (s, k), second find the linear mapping such that the image of

Q∗(α, β) by this mapping has a mean and a variance equal to (m1, σ
2), and the

image of Q∗(α, β) by this mapping gives the required Q(λ).

The first step necessitates to solve a non-linear two dimensional system. Once

Q∗(α, β) is obtained, the computation of its mean m∗1 and its variance σ∗2 is

straightforward as well as the computation of (a, b) defined by the system m1 =

a + bm∗1, σ = bσ∗. Finally, once the pair (a, b) is known, we immediately have

λ4 = −b−4 and λ3 = −4λ4a = 4ab−4. The remaining parameters λ0,λ1, λ2 are

easily obtained from the first three equations of the system given in the proof of

Proposition 10, in which λ∗0 = α0(α, β), λ∗1 = α, λ∗2 = β, since this system is linear

recursive in λ0,λ1, and λ2, yielding

λ2 = β/b2 − 3aλ3 − 6λ4a
2, (6.2)

λ1 = α/b− 2λ2a− 3λ3a
2 − 4λ4a

3, (6.3)

λ0 = α0(α, β)− Log b− (λ1a+ λ2a
2 + λ3a

3 + λ4a
4). (6.4)
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6.2. Computation of the Functions α(s, k), β(s, k) Using the Gauss-Freud

Method.

In subsection 6.1 we have seen that a key step in the construction of an expo-

nential quartic density is the computation of α and β for a given pair of skewness

and kurtosis, (s, k).

Using the notation:

q(z;α, β) = exp(αz + βz2 − z4),

we have to compute the integrals:

Ij(α, β) =

∫ ∞
−∞

zj q(z;α, β) dz, j = 0, · · · , 4. (6.5)

Once these integrals are known, we easily get the moments:

mj(α, β) = Ij(α, β)/I0(α, β), j = 1, · · · , 4,

and, therefore, s(α, β), k(α, β). Finally, we have to minimize in (α, β) the distance:

[s− s(α, β)]2 + [k − k(α, β)]2. (6.6)

It is well known that the computation of the parameters for such a problem may

be difficult. The basic reason for this is that the function q(z;α, β) may have two

maxima for very different values of z, and it may take very small values in a large

area between these two values of z. Furthermore, one of the maxima may be far

out in the tails and yet contribute a relatively important probability mass. This

implies that integration methods of the Newton type, based on an equidistant

grid, are inadequate. More precisely, approximations of the form:

Îj(α, β) = δ
N∑
i=0

zji exp(αzi + βz2
i − z4

i ),

with zi − zi−1 = δ and i = 1, · · · , N , or even improvements thereof, such as

Simpson’s scheme, may necessitate very large values for N,−z0, and zN to achieve

acceptable precision. Typically, we would have to take values like N = 20′000, and

−z0 = zN = 80, which makes the optimization of (6.6) very difficult. In addition,

“smarter” integration techniques, based on the Gauss-Lagrange scheme, may be

problematic since such a scheme requires first a transform of R into (−1, 1), by the

logistic map. This transform essentially varies in a neighborhood of the origin, and

it tends to lose information contained in the tails. As a consequence, such schemes,

even when performed with a large number of abscissas, tend to be inaccurate even

for relatively low values of kurtosis. For this reason, we adopt the Gauss-Freud

method [see Freud (1986) for the seminal work and Levin and Lubinsky (2000)
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for a recent research-monograph], which is designed to accurately approximate

integrals of the kind:∫ ∞
−∞

f(z) exp(−z4) dz.

This method leads to approximations of the form:

I∗j (α, β) =
N∑
i=0

zji exp(αzi + βz2
i )wi, (6.7)

where the abscissa zi and the weights wi are very precisely adapted to the shape

of the function to be integrated. Further details on how the zi and the wi may be

computed may be found in Gautschi (2004, Part 1).2 Thus, the proposed algo-

rithm has two advantages over the other numerical methods: it uses results on nu-

merical integration specifically related to the integration problem and, moreover,

the calculation of parameters involves computing only two parameters, resulting

in a significant gain in time. We performed all of the numerical integrations using

N = 100.3

6.3. Implementation of the PML4 Method.

In this section we synthesize the previous sections by presenting an algorithm

that describes the computation of λ0, λ1, λ2, λ3, λ4 corresponding to a given m =

(m1,m2, m3,m4)′.

(1) Compute s(m), k(m).4

(2) Find the pair of (α, β) corresponding to s(m), k(m), using the method of

Section 6.2.

2Essentially, the weights wj and abscissa xj can be obtained as eigenvectors and eigen-
values of a Jacobi matrix (see Golub and Welch 1969). This matrix, in turn, requires
a sequence of parameters for which a stable estimation algorithm has been proposed by
Noschese and Pasquini (1999) for the exp(−z4) weight function. Prof. Milovanović imple-
mented this algorithm and made the resulting parameters available to the public via the
website of Prof. Gautschi. On this website, one may find the file: coefffreud4.txt under
www.cs.purdue.edu/archives/2001/wxg/tables. To obtain the xj and wj , we use his routine
Gauss.m to be found under: www.cs.purdue.edu/archives/2002/wxg/codes.

3The time required to compute for given skewness and kurtosis the parameters α and β

represents currently a limitation for the application of these methods to large conditional models.
One possibility to circumvent this computation consists of computing the α and β once and for
all and then use some interpolation scheme. We leave such an optimization of the program to
further research.

4Skewness and kurtosis are given, respectively, by

s(m) =
m3 − 3m2m1 + 2m3

1

(m2 −m2
1)3/2

, k(m) =
m4 − 4m3m1 + 6m2m

2
1 − 3m4

1

(m2 −m2
1)2

.
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(3) Compute the mean m∗1 (α, β) and the variance σ2∗ (α, β) corresponding to

the canonical pdf Q∗(α, β).

(4) The linear transform Y = a + bZ, b > 0, gives m1 = a + bm∗1 (α, β),

and σ = b σ∗ (α, β), where σ2 = m2 − m2
1. That is, b = σ/σ∗(α, β) and

a = m1 − bm∗1 (α, β).

(5) Compute λ4 = −(b)−4, λ3 = −4λ4a, and use equations (6.2), (6.3), and

(6.4) to get λ0, λ1, λ2.

We wish to emphasize that, whereas the previous literature (be it in economet-

rics, physics, or chemistry) involved the resolution of a non-linear system with

four unknowns, our algorithm only involves the resolution of non-linear system

with two unknowns. The rest involves elementary algebra. For this reason, our

approach will not only be numerically more stable but also significantly faster.

6.4. Implementation of the QGPML2 Method.

The numerical problem is the following: given any admissible value of (m1, σ
2,

λ3, λ4), compute λ∗i (m1, σ
2, λ3, λ4), for i = 0, 1, 2.

According to this approach, it is necessary to allow for densities of any given

mean and variance. However, the numerical integration scheme uses the kernel

exp(−z4), a symmetric kernel that weights those observations in a neighborhood

of 0. We expect that this may create numerical difficulties for random variables

whose mean is distant from 0. For this reason, we consider a computation strategy

of the λ∗i where, in a preliminary step, observations are studentized.5

Thus, instead of considering the pdf,

exp
[
λ∗0 + λ∗1y + λ∗2y

2 + λ3y
3 + λ4y

4
]
,

it is useful to characterize the associated density, which has a mean of zero and

a variance of 1. This density is related to the previous one by the linear trans-

formation Y = m1 + σZ, where Z represents a random variable with mean 0

and variance 1. The corresponding density, which will be called the Studentized

exponential quartic, is written as:

exp
[
δ0 + δ1z + δ2z

2 + δ3z
3 + δ4z

4
]
.

We have the relations δ4 = σ4λ4 < 0 and δ3 = σ3λ3 + 4m1

σ
δ4. Since, in the

QGPML2 approach, m1, σ
2, λ3, λ4 are given, the parameters δ3, δ4 are also given.

Once δ0, δ1, δ2 corresponding to a zero mean and unit variance have been obtained

5This studentization is not required for PML4 where the mean m∗
1 (and variances (σ∗)2) turn

out to be close to 0 (1).



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
21

using the method described below, one may revert to the initial parameters using:

λ∗0 =
[
σ4δ0 −m1σ

3δ1 +m2
1σ

2δ2 −m3
1σδ3 +m4

1δ4

]
/σ4 − Log(σ),

λ∗1 =
[
σ3δ1 − 2m1σ

2δ2 + 3m2
1σδ3 − 4m3

1δ4

]
/σ4,

λ∗2 =
[
σ2δ2 − 3m1σδ3 + 6m2

1δ4

]
/σ4.

Using the notation,

q(z; δ1, δ2) = exp
[
δ1z + δ2z

2 + δ3z
3 + δ4z

4
]
,

we have to compute the integrals:

Ij(δ1, δ2) =

∫ ∞
−∞

zj q(z; δ1, δ2) dz, j = 0, · · · , 2. (6.8)

Using the change of variable u = (−δ4)1/4z, these integrals become:

Ij(δ1, δ2) =

∫ +∞

u=−∞

(
(−δ4)−1/4u

)j
exp

[
δ0 + δ1(−δ4)−1/4u+ δ2

(
(−δ4)−1/4u

)2
+

δ3

(
(−δ4)−1/4u

)3 − u4
]

(−δ4)−1/4du j = 0, · · · , 2. (6.9)

Now, the kernel exp(−u4) appears again, and we may use the Gauss-Freud method

outlined in Section 6.2. Once these integrals are efficiently evaluated, we may

compute the moments:

mj(δ1, δ2) = Ij(δ1, δ2)/I0(δ1, δ2), j = 1, 2.

The parameters δ1 and δ2 are obtained by minimizing the distance:

[m1(δ1, δ2)]2 + [σ2(δ1, δ2)− 1]2, (6.10)

where σ2(δ1, δ2) = m2(δ1, δ2)−m2
1(δ1, δ2). Eventually, δ0 = −Log I0(δ1, δ2).

7. Numerical Examples

In this section, after discussing the computation of the parameters of the quartic

exponential for given moments of order 1 to 4, we will discuss several Monte-Carlo

exercises demonstrating the usefulness of the methods at hand. The examples we

want to discuss are 1) a comparison between various estimation techniques for

small samples, 2) a study of the performance of PML4 in the case of misspecifi-

cation, and 3) an illustration of QGPML2.
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7.1. Computation of the Quartic Exponential.

As discussed in Section 6, feasibility of the PML4 estimation hinges on the

ability to efficiently compute the parameters λ0, · · · , λ4 of the quartic exponen-

tial for given m1,m2,m3,m4. Ormoneit and White (1999) attribute to Agmon et

al. (1981) the first attempts to compute the “correct”λ∗. Agmon et al. (1981)

considered the maximization of entropy under moment constraints, that is the so-

called primal problem. They computed the integrations using the Gauss-Lagrange

scheme after mapping the domain of integration (−∞,∞) into (−1, 1). Zellner

and Highfield (1988) propose computation of the λ∗ by seeking the zeros of the

first order conditions that result from the entropy maximization (i.e. the dual ap-

proach). Maasoumi (1983) reported difficulties with this method that Ormoneit

and White (1999) corroborate. Ormoneit and White (1999) also map the domain

(−∞,∞) into (−1, 1), and they use the Gauss-Lagrange scheme. Moreover, they

feed intelligent starting values into their optimization and stabilize the computa-

tion of the exponential to avoid numerical overflow. Last but not least, to our

knowledge, they are the first ones in the literature to have acknowledged numer-

ical difficulties in the λ parameter computation along the segment s = 0,k > 3.

Indeed, we know that no density exists for this segment, based on theoretical

grounds as discussed earlier.

Our method hinges instead on obtaining the parameters α and β of the canon-

ical form for given skewness and kurtosis. In this section, we wish to discuss

the precision of these computations.6 In order to evaluate the algorithm which

gives the parameters α and β of the canonical form, we considered a grid cov-

ering the range of values of kurtosis from 1.5 to 20. For each value of kurtosis,

k, we considered a grid for skewness ranging from 0.1 to
√
k − 1 − 0.1. For each

point of this grid, say s, k, we computed α and β as described in Section 6.2

and recomputed the associated skewness and kurtosis, say s̃, k̃.7 In Figure 1,

circles represent the points of the skewness-kurtosis grid for which we evaluated

the parameters and, + symbols represent those points for which the distance

D = (s− s̃)2 + (k − k̃)2 > 10−5.

This figure demonstrates several interesting phenomena 1) Even though, based

on theoretical grounds, no density can exist on the segment (s = 0, k ≥ 3), it is

6All of the programming was performed in the MATLAB environment. We implemented the
code on both Mac OS X and Windows Vista machines. All of the simulations were performed on
a PC with an Intel quadricore processor running four MATLAB clones in parallel. To increase
the speed of the computations, we transcribed the central part of the programs into the C
language and called it via a MEX interface.

7We perform the required minimization using the Nelder-Meade approach.
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still possible to obtain a density for parameters close to the excluded segment.

2) Even for very large values of kurtosis (limited in the figure to 20), we obtain

a large range of values of skewness for which a highly accurate density may be

obtained. We also constructed a similar graph where kurtosis was allowed to took

values up to 150. We find that, even for a kurtosis of 150, the range of skewness,

where D < 10−5, ranges from 2.5 to 12.1, still a very respectable domain.

Many of the difficulties encountered in earlier attempts at such calculations

disappear in our approach. The linear transform Y = a + bZ allows us to write

the exponential quartic in terms of exp(−z4). Then, by replacing exp(−z4) by

well-behaved discrete weights (this leads to formula (6.7)), we integrate directly

over the range (−∞,∞), thus obviating the use of the logistic map. Next, we

only optimize over two parameters, rather than four. We also feed optimized

starting values for α and β into the optimizer. These starting values are the α

and β corresponding to those points in the domain represented in Figure 1 that

are closest to some given values of skewness and kurtosis. The skewness and

kurtosis, and their associated α and β,are stored once and for all in some file that

is read into memory as the program is initialized.

To further understand some of the difficulties encountered in earlier studies,

we obtained the parameters λj, for j = 0, · · · , 4 for extremely skewed cases, and

evaluated the resulting densities at points far out in the tail (say z = 50 for a

centered and reduced density) and still found a small, yet significant probability

mass. The logistic map, which transforms (−∞,∞) into (−1, 1) used in the

earlier work, may therefore have ‘fudged’ the behavior of the density for relatively

large values of skewness and kurtosis. We also note that earlier work required

many integration points (each evaluation costs time) whereas using abscissas and

weights that are made specifically for the exp(−z4) weighting function reduces

the number of points for which the integrand needs to be evaluated.8

As the numerical exercises that follow will demonstrate, the time necessary to

compute the required α and β parameters is of an order that is suitable for ap-

plying the exponential quartic in many econometric problems. The computation

of one set of α and β requires about 0.015 seconds, allowing for about 66 den-

sity constructions per second. It is clear that the method proposed here is not

confined to econometrics and may prove useful in other fields as well.

8We presently do not incorporate a selection rule on the number of abscissas, N , which may
further decrease the speed of the computation of the α and β.
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Similarly to the protocol described above, in the context of the parameter

estimations related to QGPML2, we verified the precision of the computation of

δi, for i = 0, · · · , 2 for given δ3, δ4, yielding a density with mean 0 and variance 1.

7.2. A First Experiment.

The objective of this first experiment is to demonstrate that the PML4 estima-

tion may provide estimates which are superior to either the PML2 or the GMM

estimators in an unconditional setting. We first discuss the choice of a data gen-

erating process, and then we focus on the estimation techniques. A priori, many

distributions could be used for this experiment (Student-t, distributions in the

Pearson family, Gamma, etc.) Preliminary work made it clear that a distribution

should be chosen from which draws could be obtained in a very rapid manner.

For this reason we settled on the family of skewed Laplace distributions, denoted

sLD. These distributions have been used to price options in the context of extreme

return realizations, for example, by Gourieroux and Monfort (2006). This family

of distributions has three parameters, b0 > 0, b1 > 0, and c, and its pdf is defined

by:

f(z; b0, b1, c) =

{
b0b1
b0+b1

exp [b0(z − c)] , if z ≤ c,
b0b1
b0+b1

exp [−b1(z − c)] , if z > c.
(7.1)

The mean, variance, skewness and kurtosis of this density are given by:

m1(c, b0, b1) = E[Y ] = c+
1

b1

− 1

b0

, (7.2)

σ2(c, b0, b1) = V ar[Y ] =
1

b2
0

+
1

b2
1

, (7.3)

s(c, b0, b1) =
2

σ3

[
1

b3
1

− 1

b3
0

]
, (7.4)

k(c, b0, b1) =
9

σ4

[
1

b4
1

+
1

b4
0

]
+

6

σ4b2
0b

2
1

. (7.5)

Since this density may be viewed as describing a mixture of exponentials, we use

the inverse c.d.f. technique to simulate random draws from it.

In this first experiment, we focus on the situation where c = 0. Indeed, without

an additional assumption on one of the parameters of the sLD, we would not

be able, in the following, to obtain parameter estimates based on the PML2

principle.

We simulated 10,000 samples, each of a length of either T = 25, 50,100, or 1000

i.i.d. observations. The estimation techniques used were ML, PML2, PML4 and

GMM. Let us describe the way in which we implemented these estimations.
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For ML, we maximized for each sample, the log-likelihood obtained from (7.1):

LML =
T∑
i=1

Log f(zi; b0, b1).

For PML2, we considered the objective function:

LPML2 = −T Log σ(b0, b1)− 1

2

T∑
i=1

(
zi −m1(b0, b1)

σ(b0, b1)

)2

.

For PML4, we formed the objective function:

LPML4 =
T∑
i=1

λ0 + λ1yi + λ2y
2
i + λ3y

3
i + λ4y

4
i ,

where the parameters λ0, · · · , λ4 were computed as described in section 6.3 for

(m1(b0, b1), σ(b0, b1)2, s(b0, b1), k(b0, b1)).

For GMM, we defined, (see Hansen (1982)), the 4× 1 vector,

Xi(b0, b1) =


zi −m1(b0, b1)

z2
i −m2

1(b0, b1)− σ2(b0, b1)(
zi−m1(b0,b1)
σ(b0,b1)

)3

− s(b0, b1)(
zi−m1(b0,b1)
σ(b0,b1)

)4

− k(b0, b1)

 ,

and considered the distance:

J = gT (b0, b1)′S−1gT (b0, b1), where gT (b0, b1) =
1

T

T∑
i=1

Xi(b0, b1).

The GMM estimates were obtained as those parameters minimizing the distance

J. The matrix S that appears in the distance was obtained by using, as a first step,

the identity matrix, and as a second step, the asymptotic variance-covariance ma-

trix. Thus, the GMM estimates are asymptotically optimal in the sense that they

reach the semiparametric bound. However, it is well know that the preliminary

estimation of the optimal matrix S may induce some biases in finite samples.

We performed the simulation using (b0, b1) = (2.41, 1.30).9 This point corre-

sponds to the moments (m1,m2, s, k) = (1.30, 0.35, 1.15, 6.91). All estimations

were performed using the MATLAB fminsearch optimizer and John d’Errico’s

fminsearchbnd’s extension. The bounds that we impose for the ML and GMM

9We also used other points, but the results are very similar to the ones reported here.
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estimations are wide and only serve to stabilize the optimization, they do not

affect the final results.10

Table 1 displays several statistics for 10,000 simulations and for various sam-

ple sizes. The main result that this Table conveys is that, for all sample sizes

considered, the MSE of the ML estimation dominates, as expected, over all other

methods. However, we find that the PML4 technique yields estimates with an

MSE up to less than half of the one for PML2. As far as the GMM are concerned,

the total MSE is always the largest, especially when the number of observations

is small, confirming the bad behavior of GMM in this setting. This suggests that

for situations where the econometrician has no prior information on the skewed

distribution to use for the estimation, the PML4 technique may be a most useful

one.

7.3. A Second Experiment.

Many dynamic models are specified in the following way:

yt = m(yt−1, θ) + σ(yt−1, θ)εt,

where m(yt−1, θ) and σ(yt−1, θ) are functions of the past values yt−1 = {yt−1, · · ·
, y1} of yt, and of a parameter θ, {εt} being a zero mean, unit variance white noise

process. In this kind of setting, the conditional skewness and kurtosis of yt given

yt−1 are the same as those of εt, and, therefore, do not depend on yt−1. This is

a strong information that the PML4 method is able to take into account while

not assuming any specific distribution of εt. For this reason, we can expect that

the PML4 methods will perform better than, for instance, PML2 methods, and

misspecified ML methods. We consider as setting

yt = σtεt,

σ2
t = ω + α(yt−1)2 + βσ2

t−1,

εt ∼ MixN(µ1, µ2, σ1, σ2, p),

where MixN(µ1, µ2, σ1, σ2, p) corresponds to the mixture of normals distribution

where a first normal distribution with parameters µ1 as mean, and σ2
1 as variance,

gets drawn with a probability of p and where a second normal distribution with

corresponding parameters µ2 and σ2
2 gets drawn with a probability of 1− p. The

10The constraints are 0.001 ≤ b0 ≤ 10 and 0.00001 ≤ b1 ≤ 5. In general, in nonlinear
estimations, it may occur that the optimizer proposes values of skewness and over-kurtosis that
are such that the Q(λ) density may not be computed. In such cases, one may issue a warning
and force the function to be optimized to return a penalty value telling the optimizer to seek
parameters in other regions.
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family of two normals can reach any set of mean, variance, skewness, kurtosis,

and this, moreover, in a non-unique way. We choose the parameters of MixN

such that its expected value, µ, is nil and its variance, σ2, equal to one. We select

several values of skewness and kurtosis for MixN.

Furthermore, to investigate the robustness with respect to the choice of εt we

consider two data generating processes. In the first case, we chose the MixN in

such a way that it maximizes the entropy under the moment constraints. Formally,

we select that density for MixN, say p, which maximizes − ∫ +∞
−∞ p(x) Log p(x) dx.

In the second case, we impose the same standard deviation for both distributions

of the mixture, that is σ1 = σ2.
11

The parameters of the variance dynamic σ2
t are set to typical values (ω = 0.1,

α = 0.05, and β = 0.9). For each simulation, we compute misspecified ML esti-

mates as well as the PML2 and PML4 estimates of ω, α, and β. As misspecified

ML we consider the estimations where εt is distributed as a (symmetric) Student-t

or as an (asymmetric) skewed Student-t.12 The skewed Student-t has two param-

eters: first λ characterizing the asymmetry of the density and η characterizing

the tail-fatness.13

The Student-t is misspecified since it is a symmetric distribution whereas the

simulated innovations are skewed. The skewed Student-t density is also misspeci-

fied since its density does not belong to the exponential family. From the work of

Newey and Steigerwald (1997) it is know that if one performs likelihood estima-

tions involving asymmetric distributions, it is desirable to include an additional

parameter, say ζ, for the location of the innovation density. Formally, we estimate

11More details on the construction of these processes are available upon request. The formulae
on how to obtain these mixtures may be found in Titterington et al. (1985).

12The Student-t only has one parameter, ν, describing the fatness of the tails.
13Hansen’s Student-t distribution is defined by

g(z|η, λ) =


bc

(
1 + 1

η−2

(
bz+a
1−λ

)2
)− η+1

2

if z < −a/b,

bc

(
1 + 1

η−2

(
bz+a
1+λ

)2
)− η+1

2

if z ≥ −a/b
(7.6)

where

a ≡ 4λc
η − 2
η − 1

, b2 ≡ 1 + 3λ2 − a2, c ≡ Γ
(
η+1
2

)√
π(η − 2)Γ

(
η
2

) .
The use of a Student-t is a very popular assumption to model in a parcimonious manner large
outliers, see Bollerslev and Wooldridge (1992). The choice of a skewed Student-t has been
developed by Hansen (1994) and independently by Fernandez and Steel (1998). It has been
successfully used by Jondeau and Rockinger (2003), in the context of finance.
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a model where

yt
σt
− ζ ∼ εt, and σ2

t = ω + α(yt−1)2 + βσ2
t−1.

In the simulations, we use M = 10, 000 replications of samples containing

T = 2000 observations. Such sample sizes are typical for finance applications.

A general remark is that the estimation involving the PML2 or the two esti-

mations involving the Student-t take between 0.07 and 0.7 seconds. The PML4

estimation takes between 1.7 seconds (for kurtic and moderately skewed data) up

to 5.7 seconds (for very lightly or very heavily skewed distributions).14

Table 2 displays the results from the various simulations. The upper part of

that table contains the parameters used for MixN, whereas the lower part contains

the Root-Mean-Squared errors, defined as

RMS =

√√√√ 1

M

M∑
i=1

(ω̂i − ω)2 +

√√√√ 1

M

M∑
i=1

(α̂i − α)2 +

√√√√ 1

M

M∑
i=1

(β̂i − β)2,

where the symbol i denotes the number of a simulation.

Columns numbered 1 and 4 consider the cases where the distributions are kurtic,

yet nearly symmetric. Columns 2 and 5 correspond to cases where the DGP

density is moderately skewed. The skewed Student-t can reach the given skewness.

Columns 3 and 6 correspond to cases where the density is heavily skewed. The

skewed Student-t can not reach the given theoretical values. Columns 7 and

8 correspond to cases where the mixture of normals assumes a same standard

deviation.

Inspection of the last line (corresponding to the RMS) of the GARCH-PML4

model shows that for all the cases under consideration, the PML4 model out-

performs all other estimation techniques. We also notice that for very skewed

distributions, the GARCH-Skt model does well, whereas those GARCH models

based on a symmetric distribution generate much larger RMS.

Last, we wish to check the robustness of the simulation results if the innovation

distribution is changed. To do so we replace the entropy-maximizing mixture of

normals with one where standard deviations are the same for each distribution.

The comparison of the results obtained for the last two columns with columns 5

14All estimations were performed using identical lower and upper bounds on the parameters.
We used as starting values for PML2 (ω = 10−3, α = 0.15, and β = 0.8). We used the
PML2 parameter estimates as starting values for all subsequent estimations. We also used the
estimated values of skewness and overkurtosis of PML2 as starting values for PML4. In all
cases, the degree of freedom of the Student-t is imposed to be larger than 4, which is equivalent
to imposing existence of kurtosis for the Student-t.
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and 6 reveals nearly identical figures (at least for the first two decimals). Again,

PML4 results as the distributional assumption yielding the lowest RMS.

We also checked the RMS at the level of the individual parameters and found

that if an overall RMS was better for one model than for the other, the RMS

improvements came from all parameters.

As this experiment suggests, in the case of skewed and kurtic data, great care

needs to be exercised if one uses ML estimation with a risk of misspecification.

The PML4 method appears to be much more robust.

7.4. A Third Experiment. In the previous examples, we demonstrated the

usefulness of the PML4 technique, first in an IID case, second in a dynamic case.

In both cases the skewness and kurtosis (conditional in the second example) were

constant. Here, we consider a case where they depend on an exogenous variable.

There are many situations where the modeling of the variation in higher moments

may be of importance per se. For instance, Hansen (1994) considered a GARCH

model with time varying skewness and kurtosis.

A generic model that captures variation in the higher moments is given by:

yi = µ+ σεi,

where εi ∼ D(0, 1, s(xi), k
∗(xi)),

s(xi) = 0.5 + axi, (7.7)

k∗(xi) = 2 + bxi, b > 0,

xi ∼ U [1/2, 3/2], i.i.d.

In the second line, D stands for some distribution where skewness and over-

kurtosis depends on some exogenous variable, xi. The next two lines specify how

skewness and over-kurtosis are parametrized. We recall that the kurtosis, k, is

related to the over-kurtosis, k∗, by k = 1 + s2 + k∗. For the simulations, we take

the lower moments to be µ = 0 and σ = 1. Furthermore, we take a = 1 and

b = 2. As long as the condition b > 0 is imposed in the numerical computation,

the model will be well defined. The intercepts 0.5 and 2 in the specification of

s(xi) and k∗(xi) guarantee that the distribution will be skewed (here s > 1) and

fat-tailed (here k > 4).

The D distribution that we choose is the mixture of two normal distributions

with identical variances MixN(µ1, µ2, σ, σ, p) already discussed in the previous

section. In the Monte-Carlo exercise, we simulate 1,500 samples, each with T =
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100 observations. The estimations require between about 60 and 340 sec., with

an average time of about 130 sec.15

Table 3 contains the statistics associated with the various estimations. As

this Table demonstrates, even though the numerical complexity behind the PML4

computation is significant, this method may be actually implemented even in a

Monte Carlo framework with many replications (here 1,500). With the feasibility

of the method already demonstrated, we may now turn to the interpretation of

the statistics. We first note that the parameters tend to be estimated rather well

if one uses the average of the estimates. The MSE of the mean µ is 0.05. The

MSE of the parameter b that describes the kurtosis of the distribution takes a

higher value. We find that the parameter estimates are skewed and kurtic, and

we note that the MSE of the parameter estimates increases with the order of the

moment that a given parameter describes.

We conclude this section by noticing that our method may obviously be used

in real applications, for models which may have more parameters, since it then

has to be estimated only once.

7.5. A Fourth Experiment: QGPML2.

To validate the QGPML2 approach, we consider as DGP the observation (yi, xi)

generated by:

yi = axi + exp(bxi)εi,

ui ∼ U(0, 1), i.i.d.

xi = (1 + 29ui)/10,

θi = (1 + 29ui)
π

180
,

εi ∼ sLD

(
1

sin θi
,

1

cos θi
, sin θi − cos θi

)
.

(7.8)

The first line specifies the mean and the variance of the model as depending on

some exogenous variable xi. The second line defines the ui as uniform draws.

From this basic source of exogenous randomness, we construct xi as uniform

random numbers U(1/10, 3). The fourth line specifies θi as an angle that varies

between 1 and 30 degrees. The ratio π/180 converts this angle into radians.

The last equation specifies that εi is distributed according to the skewed Laplace

distribution with mean 0, variance 1, and known skewness and kurtosis. A similar

15We also performed several estimations involving samples of size T = 1000. The time re-
quired for each estimation ranged between about 2100 seconds and 2800 seconds.
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parametrization was chosen in Subsection 7.3. We select as parameters a = 1 and

b = 1.

A preliminary simulation revealed that, for this parametrization, the skewness

(kurtosis) of the εi ranges between 0 and 2 (respectively, 6 and 9).

The QGPML2 estimation is based on the following steps:

(1) Estimate a and b via PML2. This is tantamount to obtaining a, b by

maximizing the function:

T∑
i=1

−bxi − 1

2

(
yi − axi
exp(bxi)

)2

.

(2) Compute the first step estimators λ̃j,i for j = 1, · · · , 4 by using the in-

formation contained in s(xi) and k(xi). This computation is described in

section 5.2. Notice that only λ̃3i and λ̃4i are used in the next step.

(3) Maximize, with respect to a and b, the objective function:

T∑
i=1

λ∗0,i + λ∗1,iyi + λ∗2,iy
2
i ,

where, λ∗j,i = λ(axi, exp(bxi), λ̃3i, λ̃4i). The computation of the λ∗i,j may be

found in section 6.4. The resulting a and b estimates are the QGPML2

estimates.

Table 4 reports some statistics for the simulations. Each time we use N =

30, 000, a rather large number of simulations to ascertain that the findings are

not spurious. We consider samples of size T = 25 and T = 100.16

Inspecting the table reveals that, as expected, the dispersion of the estimates

obtained in the larger sample tends to be better. Comparing the dispersion of the

parameters between the PML2 estimates and the QGPML2 estimates reveals an

improvement when using QGPML2.17 For instance, for T = 25, the improvement

of the RMSE of the parameter intervening in the mean, a, is 2.6%.

16Here, we focus on a large number of simulations each involving a relatively small sample.
The time required for this simulation could alternatively be devoted to the estimation of a model
with either a larger sample or a more complex model structure involving several parameters. We
performed some exploratory analysis with samples of size T = 1000 which requested between
500 and 1300 seconds.

17We did not pursue a search for settings where the efficiency gain may be more important,
as we simply wished to demonstrate the feasibility of the method here. We leave this pursuit
for future research.
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8. Conclusion

In this paper, we generalize the PML2 and QGPML1 methods proposed in

Gourieroux, Monfort, and Trognon (1984). The main objective of these methods

was to propose consistent and asymptotically normal estimators of the parameters

which appear in the specification of the first two conditional moments, based on

the optimization of possibly misspecified likelihood functions.

Here, we extend this approach by considering the first four conditional mo-

ments. A key tool is the quartic exponential family. This family allows us to

introduce PML4 and QGPML2 estimators, respectively, generalizing PML2 and

QGPML1. A complete asymptotic theory is proposed.

Another key issue is the numerical computation of the exponential quartic den-

sity parameters for given values of the first four moments. The solution adopted in

this paper, which is based on an approach proposed by G. Freud (1986), appears

to be very quick and stable, and it solves technical problems, which had been

stressed in different strands of the literature, e.g. Maasoumi (1993), Ormoneit

and White (1999).

In numerical studies, we not only demonstrate the feasibility of the proposed

estimation methods, but also show that PML4 may provide more efficient esti-

mates, in particular for small samples where GMM based estimates may have

encountered difficulties. We also consider an example where an econometrician

uses either a misspecified ML model or the PML4 model. In that case, the

PML4 model demonstrates superior results. Lastly, we show the feasibility of the

QGPML2 estimation, and in that context, we again prove gains in efficiency.

Our estimation method may prove useful in many econometric applications that

involve non-Gaussianity of some random variable. For instance, Holly (2009) has

recently studied risk adjustment schemes for health care expenditures. A key

feature of this problem is the large skewness and kurtosis of the conditional dis-

tributions of these expenditures given demographic characteristics and the prior

health status of policy holders. The PML4 method is obviously well suited to

tackle this kind of problem since it incorporates the additional information on

third and fourth order conditional moments and does not necessitate parametric

assumptions on the conditional distribution. Moreover, the results in Holly (2009)

show that the estimations only based on PML2 methods introduce a substantial

amount of bias in the risk adjustment
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Beyond this, the proposed numerical techniques may be of relevance in Bayesian

analysis, independent component analysis, and possibly physics, i.e. in situations

where non-Gaussian distributions occur.
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Appendix A. Computation of J(θ0) and I(θ0)

J(θ0) = −∂
2ϕ∞(θ, P0)

∂θ∂θ′

= −EX
[
∂2λ0(X, θ0)

∂θ∂θ′
+

4∑
j=1

∂2λj(X, θ0)

∂θ∂θ′
mj0

]
,

We have (omitting the variables X and θ0):

∂λj
∂θ

=
∂m′

∂θ

∂λj
∂m

, j = 0, . . . , 4,

∂2λj
∂θ∂θ′

=
∂m′

∂θ

∂2λj
∂m∂m′

∂m

∂θ′
+

4∑
k=1

∂λj
∂mk

∂2mk

∂θ∂θ′
,

J(θ0) = −EX
{
∂m′

∂θ

[
∂2λ0

∂m∂m′
+

4∑
j=1

∂2λj
∂m∂m′

mj0

]
∂m

∂θ′

}

−
{

4∑
k=1

[
∂λ0

∂mk

+
∂λ1

∂mk

m10 + · · ·+ ∂λ4

∂mk

m40

]
∂2mk

∂θ∂θ′

}
,

and using Proposition 1, Corollary 1, and Proposition 2:

J(θ0) = EX

[
∂m′

∂θ

∂λ′

∂m

∂m

∂θ′

]
= EX

[
∂m′

∂θ
Σ−1∂m

∂θ′

]
.

Similarly,

I(θ0) = EXE0

[
∂ϕ(Y,X, θ0)

∂θ

∂ϕ(Y,X, θ0)

∂θ′

]
= EXE0

[(
∂λ0

∂θ
+
∂λ′

∂θ
T

)(
∂λ0

∂θ′
+ T ′

∂λ

∂θ′

)]
,

where ϕ(Y,X, θ) =
∑4

j=0 λj(X, θ)Y
j, and T ′ = (Y, Y 2, Y 3, Y 4).

Using Proposition 1, we have (omitting the variables X and θ0):

I(θ0) = EXE0

[
∂λ′

∂θ
(T −m) (T −m)′

∂λ

∂θ′

]
= EX

(
∂λ′

∂θ
Ω
∂λ

∂θ′

)
= EX

(
∂m′

∂θ

∂λ′

∂m
Ω
∂λ

∂m′
∂m

∂θ′

)
= EX

(
∂m′

∂θ
Σ−1ΩΣ−1∂m

∂θ′

)
.
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Appendix B. Asymptotic Behavior of the QGPML2

We focus on the proof of the asymptotic normality since the proof of the con-

sistency is similar to that of the PML4.

B.1. Preliminaries.

Let us consider the quartic family parametrized by ξ′ = (m1, σ
2, λ3, λ4). If we

fix λ3, λ4 to a given value of λ∗3, λ
∗
4, then we obtain a family, indexed by (m1, σ

2),

with log-density:

2∑
j=0

λ∗j(ξ12)yj + λ∗3y
3 + λ∗4y

4,

where ξ12 = (m1, σ
2)′ and λ∗j(ξ12) is a notation which stands for λ∗j(m1, σ

2, λ∗3, λ
∗
4).

It is the log-density of a quadratic exponential family (see GMT (1984)).

Differentiating with respect to ξ12, we get

2∑
j=0

∂λ∗j
∂ξ12

mj = 0, (with m0 = 1) (B.1)

and

2∑
j=0

∂2λ∗j
∂ξ12∂ξ′12

mj +
∂λ∗

′

∂ξ12

∂m12

∂ξ′12

= 0, (B.2)

with λ∗ = (λ∗1, λ
∗
2)′ and m12 = (m1,m2)′.

Moreover,

∂m12

∂ξ′12

=

(
1 0

2m1 1

)
. (B.3)

The variance-covariance matrix Σ1 of (Y, Y 2)′ in this family is easily found.

For instance, we note that the pdf with respect to the measure µ∗ defined by

dµ∗(y) = exp(λ∗3y
3 + λ∗4y

4)dy is exp [λ∗0(ξ12) + λ∗1(ξ12)y + λ∗2(ξ12)y2]. Using the

parametrization (λ∗1, λ
∗
2) and the general property of the exponential family given

in 2.1 (2):

Σ1 =
∂m12

∂λ∗′
,

which, written as a function of ξ12, leads to:

Σ1 =
∂m12

∂ξ
′
12

∂ξ12

∂λ∗′
.

We therefore have:

∂ξ12

∂λ∗′
=

(
∂m12

∂ξ
′
12

)−1

Σ1,
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hence:

∂λ∗

∂ξ
′
12

= Σ−1
1

∂m12

∂ξ
′
12

. (B.4)

B.2. Computation of J̃(θ0).

In the estimation based on the unfeasible equivalent estimator of the QGPML2,

we have, noting θ12 = (θ1, θ2) :

J̃(θ0) = −EX
{

2∑
j=0

∂2λ∗j
∂θ12∂θ′12

[
m1(X, θ10), σ2(X, θ20),

λ3(X, θ0), λ4(X, θ0)]mj(X, θ0)} .

But we have also (omitting X and the θ’s):

∂λ∗j
∂θ12

=
∂ξ′12

∂θ12

∂λ∗j
∂ξ12

,

∂2λ∗j
∂θ12∂θ′12

=
∂ξ′12

∂θ12

∂2λ∗j
∂ξ12∂ξ′12

∂ξ12

∂θ′12

+
2∑

k=1

∂λ∗j
∂ξk

∂2ξk
∂θ12∂θ′12

.

Therefore,

J̃(θ0) = −EX
[
∂ξ′12

∂θ12

2∑
j=0

∂2λ∗j
∂ξ12∂ξ′12

mj
∂ξ12

∂θ′12

]

− EX
2∑

k=1

[
2∑
j=0

∂λ∗j
∂ξk

mj

]
∂2ξk

∂θ12∂θ′12

,

or, using (B.1) and (B.2),

J̃(θ0) = EX

[
∂ξ′12

∂θ12

∂λ∗
′

∂ξ12

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
,

or, using (B.4),

J̃(θ0) = EX

[
∂ξ′12

∂θ12

∂m′12

∂ξ12

Σ−1
1

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
. (B.5)

B.3. Computation of Ĩ(θ0).

Letting T1 = (Y, Y 2)′, we have,

Ĩ(θ0) = EXE0

[(
∂λ∗0
∂θ12

+
∂λ∗′

∂θ12

T1

)(
∂λ∗0
∂θ′12

+ T ′1
∂λ∗

∂θ′12

)]
,
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or, using (B.1),

Ĩ(θ0) = EXE0

[
∂λ∗′

∂θ12

(T1 −m12) (T1 −m12)′
∂λ∗

∂θ′12

]
= EX

[
∂λ∗′

∂θ12

Ω1
∂λ∗

∂θ′12

]
.

We also have

∂λ∗
′

∂θ12

=
∂ξ′12

∂θ12

∂λ∗′

∂ξ12

=
∂ξ′12

∂θ12

∂m′12

∂ξ12

Σ−1
1 ,

which allows us to write

Ĩ(θ0) = EX

[
∂ξ′12

∂θ12

∂m′12

∂ξ12

Σ−1
1 Ω1Σ−1

1

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
.

However, since the moments of order one to four are well specified in the pseudo

family, the true conditional variance Ω1(X, θ0) of T1 is that corresponding to the

model. Namely, they correspond to Σ1(X, θ0), and we get:

Ĩ(θ0) = EX

[
∂ξ′12

∂θ12

∂m′12

∂ξ12

Ω−1
1

∂m12

∂ξ′12

∂ξ12

∂θ′12

]
,

and hence, from (B.5):

Ĩ(θ0) = J̃(θ0).

Moreover, using (B.3),

∂m12

∂ξ′12

∂ξ12

∂θ′12

=

(
1 0

2m1 1

)(
∂m1(X,θ1)

∂θ1
0

0 ∂σ2(X,θ2)
∂θ2

)
,

and Ĩ(θ0)−1 = J̃(θ0)−1 = B(θ0), as given in (5.2).

For the sake of simplicity, we have assumed that m1(X, θ1) is only a function

of θ1 and that σ2(X, θ2) is only a function of θ2. The result, however, is easily

generalized to the case m1(X, θ12), σ2(X, θ12), with the only difference being that

∂ξ12/∂θ
′
12 is no longer diagonal.
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µ σ a b

True parameters 0 1 1 2

Average 0.006 1.015 1.109 2.510

Std 0.071 0.136 0.641 2.058

Median 0.000 1.011 1.057 1.794

Min -0.277 0.695 0.000 0.000

Max 0.304 1.950 4.000 7.000

Sk 0.666 0.980 1.886 1.290

σSk 0.063 0.063 0.063 0.063

Ku 5.607 6.869 9.500 3.398

σKu 0.126 0.126 0.126 0.126

MSE 0.005 0.019 0.422 4.490

Table 3: This Table presents the statistics of 1’500 PML4 estimates of µ,

σ, a and b as described in the model (7.7). Each sample contained T = 100

observations. Sk, Ku represent the skewness and kurtosis of the parameters. By

σSk and σKu we represent the standard deviation of the skewness and kurtosis

estimates.
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PML2

T = 25 T = 100

True parameters a = 1 b = 1 a = 1 b = 1

Mean 0.996 0.915 0.994 0.956

STD 0.567 0.249 0.401 0.177

min 0.001 0.001 0.001 0.331

max 4.464 2.206 2.848 1.619

RMSE 0.567 0.263 0.401 0.182

QGPML2

T = 25 T = 100

True parameters a = 1 b = 1 a = 1 b = 1

Mean 0.997 0.917 0.998 0.957

STD 0.552 0.247 0.393 0.176

min 0.001 0.001 0.001 0.330

max 3.880 2.200 2.543 1.641

∆RMSE (%) 2.606 0.937 2.193 0.728

Table 4: This Table reports the results of the QGPML2 simulation described

in model (7.8). The true parameters are a = 1, and b = 1. The RMSE is defined

as
(

1
M

∑M
j=1(θ̂(j) − θ)2

)1/2

, where θ = a or b. Here, the superscript j = 1, · · · ,M
denotes a simulation. We took M = 30′000. By ∆RMSE (%) we denote the

percentage gain in the MSE if one uses QGPML2 instead of PML2.
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Figure 1. This figure represents the skewness-kurtosis domain for

which a density exists (the domain is symmetric with respect to the

horizontal axis). The circles represent those points for which we

computed the parameters α and β. The symbol + represents those

points for which the distance between the original skewness and

kurtosis and the recomputed skewness and kurtosis (after evaluation

of the α and β) is larger than 10−5.


