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REGRESSION WITH IMPUTED COVARIATES:
A GENERALIZED MISSING-INDICATOR APPROACH ⋆

VALENTINO DARDANONI, SALVATORE MODICA, AND FRANCO PERACCHI

Abstract. A common problem in applied regression analysis is that covariate values
may be missing for some observations but imputed values may be available. This
situation generates a trade-off between bias and precision: the complete cases are
often disarmingly few, but replacing the missing observations with the imputed values
to gain precision may lead to bias. In this paper we formalize this trade-off by showing
that one can augment the regression model with a set of auxiliary variables so as to
obtain, under weak assumptions about the imputations, the same unbiased estimator
of the parameters of interest as complete-case analysis. Given this augmented model,
the bias-precision trade-off may then be tackled by either model reduction procedures
or model averaging methods. We illustrate our approach by considering the problem of
estimating the relation between income and the body mass index (BMI) using survey
data affected by item non-response, where the missing values on the main covariates
are filled in by imputations.

JEL Classification Numbers: C12, C13, C19.

Keywords Missing covariates; Imputations; Bias-precision trade-off; Model reduction;
Model averaging; BMI and income.

Introduction

A common problem in applied regression analysis is that covariate values may be miss-
ing for some observations but imputed values may be available, either values provided
by the data-producing agency or directly constructed by the researcher. This problem
has received little attention compared to the more general problem of missing covariate
values, but is of considerable practical relevance as all empirical researchers know well.
In many cases, it is safe to assume that the mechanism leading to missing covariate
values does not depend on the outcome of interest. In these cases, one can ignore the
missing data mechanism and focus on the problem of what use to make of the available
imputations.

There are two main approaches to this problem. One is to simply ignore the impu-
tations and only use the observations with complete data on all covariates–the so-called
complete-case analysis. Although this may entail a loss of precision, it has the strong
appeal of yielding an unbiased estimator of the parameters of interest when the miss-
ing data mechanism is ignorable. The other approach is more concerned with precision
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and replaces the missing covariate values with the imputations. A refined version of
this approach corrects for incorporating the imputed values by some variant of the so-
called missing-indicator method (Little [12], Horton and Kleinman [7], and Little and
Rubin [13]), which consists of augmenting the regression model with a set of binary indi-
cators for each covariate with missing values. Although frequently used in practice, this
approach is known to produce biased estimates (Jones [8], Horton and Kleinman [7]). It
also raises the problem of how to assess precision of the estimators, a problem that we
ignore in this paper because it can easily be handled by multiple imputation methods
(Rubin [21]).

Thus, when covariate values are missing we face a trade-off between bias and precision:
the complete cases are often disarmingly few, but replacing the missing observations with
the imputed values to gain precision may lead to bias. In this paper we formalize the
bias-precision trade-off by showing that one can augment the regression model with a set
of auxiliary variables so as to obtain, under weak assumptions about the imputations,
the same unbiased estimator of the parameters of interest as complete-case analysis.
Given this augmented model, the bias-precision trade-off may then be tackled either by
standard model reduction procedures or, more aptly in our view, by model averaging
methods.

We illustrate our approach by considering the problem of estimating the relationship
between income and the body mass index (BMI) using survey data affected by item non-
response, where the missing values on the main covariates are filled in by imputation.

The sequel of the paper is organized as follows. Section 1 presents the basic notation.
Section 2 discusses complete-case analysis. Sections 3 and 4 present the augmented
model with auxiliary variables and discuss its missing-indicator interpretation. Section 5
contains our main result. Section 6 discusses the trade-off between bias and precision.
Section 7 presents our application to modeling the relation between BMI and income.
Finally, Section 8 offers some concluding remarks.

1. Notation

Observations are indexed by n = 1, . . . , N , and covariates by k = 0, 1, . . . ,K − 1, with
k = 0 corresponding to the constant term and K > 1. We consider the classical linear
model

y = Xβ + u, (1)
where y is the N × 1 vector of observations on the outcome of interest, X is an N × K
matrix of observations on the covariates, β is the K × 1 vector of coefficients and u is
an N × 1 vector of homoskedastic and serially uncorrelated regression errors with zero
mean conditional on X.

A subsample with incomplete data is a group of observations where one or more
covariates are missing. Because the constant term is always observed, the number of
possible subsamples with incomplete data is equal to 2K−1 − 1. Not all such subsamples
need be present in a data set. In addition to the subsample with complete data (indexed
by j = 0), we assume to have J ≤ 2K−1 − 1 subsamples with incomplete data, indexed
by j = 1, . . . , J . This formulation covers both the case when some patterns of missing
covariates are not present in the data and the case when the investigator decides to drop
from the analysis some groups with incomplete data.
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Let Nj , Kj and K∗
j = K − Kj respectively denote the sample size, the number

of available covariates (the covariates with no missing values, including the constant
erm), and the number of missing covariates in the j-th subsample. By construction∑J

j=0 Nj = N , K0 = K, K∗
0 = 0 and 1 ≤ Kj ,K

∗
j < K for j = 1, . . . , J . Let yj , Xj

a and
Xj

m respectively denote the Nj × 1 outcome vector, the Nj × Kj submatrix containing
the values of the available covariates, and the Nj × K∗

j submatrix containing the values
of the missing covariates for the j-th subsample. Also let Xj = [Xj

a, Xj
m], an Nj × K

matrix. We assume that X0 = X0
a is of full column rank, which implies that N0 ≥ K.

2. Complete-Case Analysis

Our benchmark in dealing with missing values is the so called complete-case method,
which uses only the observations with complete data on all covariates.

Let M denote the N × K missing-data indicator matrix, whose (n, k)-th element
mnk takes value 1 if the n-th observation contains a missing value on the k-th covariate
and value 0 otherwise. The following assumption is common to most approaches to the
problem of missing covariate values and is maintained throughout this paper.

Assumption 1 (Ignorability). M and y are conditionally independent given X.

By symmetry of conditional independence, it is easily seen that Assumption 1 is
equivalent to the following two assumptions

P (y | X,M) = P (y | X) (2)

and
P (M | y, X) = P (M | X). (3)

Assumption 2 basically says that if we knew the true values of the missing covariates,
knowing the pattern of missing data would not help in predicting y. Assumption 3
implies that the missing data mechanism, seen as a function of y and X, depends on X
only. Assumption 1 may fail if, for example, observations with missing covariate values
have a different regression function than observations with no missing values. On the
other hand, it does not place restrictions on how M is generated from X. For example,
M may exhibit patterns such that cases with low or high levels of some covariates
systematically have a greater percentage of missing values.

Theorem 1 below provides a formal proof of the fact that, under Assumption 1, the
OLS estimator for the complete case is unbiased. This result has been known for long
time, but may be considered a “folk theorem”. Little [12] and Little and Rubin [13]
attribute it to an unpublished 1986 technical report by William Glynn and Nan Laird.
Private communication with Nan Laird however informs us that the report has never
been published and is no longer available. Jones [8] offers a proof for the case of two
covariates, one of which has missing values, whereas Wooldridge [24], p. 553, shows that
the two-stage least squares estimator for the complete case is consistent.

Theorem 1 (Complete-Case Estimation). If Assumption 1 holds, then the OLS esti-
mator of β obtained by using only the observations with complete data on all covariates
is unbiased for β.
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Proof. The OLS estimator for the complete data may be written

β̂ = (X ′DX)−1X ′Dy,

where D is an N × N diagonal matrix whose n-th diagonal element dn takes value 1 if no
covariate is missing for the n-th observation and value 0 otherwise. The elements of D
are related to the elements of the missing-indicator matrix M through dn =

∏K
k=1(1 −

mnk). The Ignorability Assumption implies that any function of M , in particular D, is
independent of y conditional on X. From (2),

E(β̂ | X, D) = (X ′DX)−1X ′DXβ = β,

and therefore E(β̂) = β. �

An implication of Theorem 1 is that the subsample with complete data satisfies

y0 = X0β + u0, (4)

where u0 is an N0 ×1 vector of homoskedastic and serially uncorrelated regression errors.
This result supports the common practice of complete-case analysis, namely estimating
β by regressing y0 on X0. However, severe loss of information, and hence of precision,
may result unless the fraction of deleted cases is small.

3. The Augmented Model with Auxiliary Variables

Suppose that, for each subsample j = 1, . . . , J with incomplete data, the values of
the K∗

j missing covariates are filled-in using some imputation procedure. A covariate
with imputed values is called an imputed covariate. The Nj × K∗

j matrix corresponding
to the set of imputed covariates is called the imputation matrix for the j-th subsample
and is denoted by Lj . The Nj × K matrix W j = [Xj

a, Lj ], whose columns correspond
to the Kj available covariates and the K∗

j imputed covariates, is called the completed
design matrix for the j-th subsample. Our treatment of imputation is very general and
covers a variety of imputation procedures, including regression and donor-based methods
such as nearest-neighbor and hot-deck imputations. It also allows for the possibility
that different imputation procedures are used for different covariates, or for different
subsamples with incomplete data.

Consider modelling the Nj × 1 outcome vector yj for the j-th subsample as a linear
function of the observed covariates in W j . The best (minimum mean-square error)
linear predictor of yj given W j = [Xj

a, Lj ] is

E∗(yj | Xj
a, L

j) = E∗(Xjβ | Xj
a, L

j)

= Xj
aβ

j
a + E∗(Xj

m | Xj
a, L

j) βj
m

= Xj
aβ

j
a + (Xj

a∆
j + LjΓj) βj

m

= Xj
aγ

j
a + Ljγj

m,

where βj
a and βj

m are the subvectors of β associated with Xj
a and Xj

m respectively,
E∗(Xj

m | Xj
a, L

j) = Xj
a∆

j + LjΓj is the best linear predictor of Xj
m given Xj

a and Lj ,
and

γj
a = βj

a + ∆jβj
m, γj

m = Γjβj
m.
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The resulting linear model for the j-th subsample may be written, more compactly,

yj = W jγj + vj , j = 1, . . . , J, (5)

where γj is the K × 1 vector consisting of the coefficients associated with the observed
and the imputed covariates in W j = [Xj

a, Lj ], and vj is an Nj × 1 vector of projection
errors that, by construction, has mean zero and is orthogonal to W j .

Two important features distinguish model (5) from the original model (1). First, the
vector of population coefficients γj is generally different from β unless ∆j = 0 and Γj is
equal to the identity matrix or, equivalently, E∗(Xj

m | Xj
a, L

j) = Lj , that is, given the
imputations, the available covariates contain no further information about the missing
covariates. Second, the elements of the error vector vj are not necessarily homoskedastic,
even when homoskedasticity holds for the corresponding subvector uj of u.

Letting δj = γj − β, j = 1, . . . , J , and stacking on top of each other the complete-case
model and the J linear models for the subsamples with incomplete data gives

[
y0

y∗

]
=

[
X0

W ∗

]
β +

[
0

Z∗

]
δ +

[
u0

v∗

]
,

where

y∗ =




y1

...
yJ


 , W ∗ =




W 1

...
W J


 , Z∗ =




W 1

. . .
W J


 , v∗ =




v1

...
vJ


 ,

and δ is the JK × 1 vector consisting of δ1, . . . , δJ . We can now write the model for the
available and the imputed data as the grand model

y = Wβ + Zδ + v, (6)

where β is the parameter of primary interest, δ is a vector of nuisance parameters, and

y =
[
y0

y∗

]
, W =

[
X0

W ∗

]
, Z =

[
0

Z∗

]
, v =

[
u0

v∗

]
,

respectively an N -vector, an N × K matrix, an N × JK matrix, and an N -vector of
errors that has mean zero and is orthogonal to both W and Z. Notice that the matrix
W is obtained by filling-in the missing covariate values with the available imputations.
Model (6) includes all observations re-ordered groupwise: first the complete cases, then
the first group with incomplete data, etc. Ordering of the groups is arbitrary and plays
no role in the analysis. In the terminology of Danilov and Magnus [4], the K columns of
W are the “focus” regressors, while the JK columns of Z are the “auxiliary” regressors.

4. A Missing-Indicator Interpretation

Before presenting our main result it is instructive to give a missing-indicator interpre-
tation of model (6). Indeed, the JK auxiliary variables in the matrix Z are obtained by
multiplying the covariates in each group by the various indicators of group membership.
To see this write Z = [Z1, . . . , Zj , . . . ,ZJ ], where Zj is the N × K matrix that contains
the auxiliary variables for the j-th group. Let 1K denote the 1×K vector whose elements
are all equal to one and let dj denote the N × 1 vector of group-membership indicators



REGRESSION WITH IMPUTED COVARIATES 6

for the j-th group (the elements of dj are equal to one for observations in group j and
zero otherwise). Then

Zj = [1K ⊗ dj ] · W , j = 1, . . . , J,

where ⊗ denotes the Kronecker product and · the Hadamard (elementwise) product.
As an illustration, consider the linear model

E(yn | xn1, xn2) = β0 + β1xn1 + β2xn2,

with a constant term and two covariates, x1 and x2. Suppose that, in addition to the
group with complete data, one has two groups with incomplete data: in group 1 [resp.
2] only the first [resp. second] covariate is missing. If dn0, dn1 and dn2 denote the group-
membership indicators, and L1

n1 and L2
n2 denote the imputed values in each group with

incomplete data, then we may write

yn = dn0(β0 + β1xn1 + β2xn2) + dn1(γ1
0 + γ1

1L1
n1 + γ1

2xn2)+

+ dn2(γ2
0 + γ2

1xn1 + γ2
2L2

n2) + vn.

Let wnk be equal to xnk if the k-th covariate is observed for the n-th observation and to
its imputed value otherwise. Then the last relation may be written

yn = β0 + β1 wn1 + β2 wn2 + δ1
0 dn1 + δ2

0 dn2+

+ δ1
1 dn1 wn1 + δ2

1 dn2 wn1 + δ1
2 dn1 wn2 + δ2

2 dn2 wn2 + vn,

where δj
k = γj

k − βk. This is exactly model (6) for this special case, where the auxiliary
variables added to the wk’s are the group-membership indicators and their interactions
with the constant term and the observed or imputed covariates.

5. Main Result

The following result shows that, no matter which imputation procedure is chosen,
the OLS estimate of β in the grand model (6) and in the complete-case model (4) are
numerically the same. Thus, the statistical properties of the two estimators are also the
same. In particular, if the latter is unbiased (for example, the conditions of Theorem 1
hold), so is the former.

Theorem 2. Suppose that the matrix W is of full column rank K. Then, for any
choice of imputation matrices L1, . . . ,LJ , the OLS estimate of β in the “grand’ model”
(6) coincides with the OLS estimate of β in the complete-case model (4).

Proof. Given any matrix A, let RA = I − A(A
′
A)−A

′
, where (A

′
A)− denotes a g-

inverse of A
′
A. Since Z

′
Z and Z have the same rank, the rank of Z(Z

′
Z)−Z

′
is equal

to the rank of Z (Rao and Mitra [20]). The fact that the rank of Z may be less than
JK, implies that the rank of RZ must be at least N − JK. Because N ≥ K(J + 1)
implies that K ≤ N − JK, it follows that the rank of W cannot exceed the rank of
RZ , so the matrix W

′
RZW must be nonsingular. Thus, by the Frisch-Waugh-Lovell

(Partitioned Regression) Theorem, the OLS estimate of β in model (6) is

β̂ = (W
′
RZW )−1W

′
RZ y = (X̃

′
X̃)−1X̃

′
y,
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where X̃ = RZW . Next notice that

X̃ =




IN0

RW 1

. . .
RW J







X0

W 1

...
W J


 =




X0

0
...
0


 ,

where we used the fact that W j(W j ′
W j)−W j ′

W j = W j for all j and any choice of
g-inverse (Rao and Mitra [20]). Therefore X̃

′
X̃ = X0′

X0 and X̃y = X0′
y0. Hence

β̂ = (X̃
′
X̃)−1X̃

′
y = (X0′

X0)−1X0′
y0 ,

which is the complete-case estimate. �

The matrix W is of full column rank if, as we already assumed, the K columns of X0

are linearly independent. The use of a g-inverse in the proof of the theorem is necessary
because some of the completed design matrices W j may be singular, which happens
if Nj < K or if Nj ≥ K but the columns of W j are linearly dependent. The latter
is for example the case when a missing covariate value is replaced by its average value
computed from the available cases (mean imputation) or by its predicted values based
on the observed covariates Xj

a and the coefficients from an OLS regression using the
subsample with complete data (deterministic regression imputation). One can replace
a g-inverse with the regular inverse when the J subsamples with incomplete data are
such that all W j ’s have full column rank. In practice, this may be achieved by dropping
groups that contain too few observations and avoiding mean imputation or deterministic
regression imputation. After all, these two imputation methods are known to produce
completed data sets with undesirable properties, for example they have less variability
than a set of truly observed values (see e.g. Lundström and Särndal [14]).

The complete-case model (4) and the grand model (6) may at first appear as two
polar approaches to the problem of handling missing data in model (1). At one extreme
is complete-case analysis. Under the assumption of Theorem 1, this gives an unbiased
estimate of β but may throw away too much information by retaining only the observa-
tions in the subsample with complete data. At the other extreme, all observations are
retained but some imputation procedure is adopted to fill-in the missing data. In fact,
Theorem 2 shows that if β and δ in (6) are left unconstrained then this second approach
is equivalent to complete-case analysis as far as estimation of β is concerned.

A referee offered the following heuristic. Our model places no restrictions (equiva-
lently, uses no information) on the imputation method. In the decomposition γj = β+δj ,
it is only the observations from the complete case that sort out the part that should be
β. Since the remaining cases provide absolutely no information, the estimates are the
same. “No information added, no change”.

The standard practice of regressing y only on the completed design matrix W omitting
the variable in Z corresponds to using a restricted version of the grand model (6) where
all elements of the vector δ are set equal to zero. This is the same as assuming that the
missing data mechanism satisfies Assumption 1 and the imputation procedure is such
that β = γj for each j = 1, . . . , J . The less frequent practice of regressing y on W and
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the set of group-membership indicators (which we shall refer to as the simple missing-
indicator method) corresponds to using another restricted version of the grand model,
where all interactions between the group membership indicators and the observed or
derived covariates are set equal to zero.

Both sets of restrictions are testable. Testing the first set of restrictions corresponds to
testing the hypothesis that all regression coefficients do not change across the J groups
containing missing covariates, while testing the second set of restrictions corresponds to
testing the hypothesis that, except for the intercepts, all other regression coefficients do
not change across the J groups containing missing covariates.

The precise nature of these tests, in particular the form of the test statistics, depends
on the properties of the error vector v in model (6). Given OLS estimates β̂ and δ̂ of
β and δ in the grand model, classical F -tests would be appropriate if it can safely be
assumed that v is a vector of homoskedastic and serially uncorrelated regression errors.
If this assumption cannot be justified, then one could use a “robustified” version of these
tests based on an estimator of the sampling variance of β̂ and δ̂ that is consistent under
heteroskedasticity or autocorrelation of unknown form in the elements of v.

In our view, however, the key issue is not what statistic to use for testing, but whether
it makes sense to ask questions such as: Is it true that δ = 0? Following Leamer [11] and
Magnus and Durbin [15], we think that asking such questions in this context is wrong.
The right question is: What is the best available estimator of β?

6. Bias Versus Precision

Theorem 2 says that unbiased estimates of β may be obtained in two equivalent ways,
either by using the N0 observations in the subsample with complete data, or by using
all N observations and the grand model (6) which includes the imputed values of the
missing covariates in the matrix W and the auxiliary variables in the matrix Z. We
also know from standard results that placing restrictions on the elements of δ may lead
to biased but more precise estimates of β.

Two approaches may be followed to handle this trade-off between bias and precision
in the estimation of β: model reduction and model averaging. Either approach can be
applied to model (6).

Model reduction involves first selecting an intermediate model between the grand
model and the fully restricted model where δ = 0, and then estimating the parameter
of interest β conditional on the selected model. Model reduction may be carried out
through variable selection methods, such as stepwise regression (see e.g. Kennedy [10]), or
more complex General-to-Specific procedures (see Campos, Ericsson and Hendry [1] for
a survey). The details of the model reduction procedure may also depend on whether one
allows dropping arbitrary subsets of auxiliary variables in Z, or only subsets of auxiliary
variables corresponding to specific subsamples with missing covariates. Dropping one of
the columns of Z amounts to selecting a group j and, in the corresponding equation (5),
restricting one element of δj to zero. This in turn corresponds to forcing the coefficient
of that particular covariate in the completed design matrix W j to be the same as in
the subsample with complete data. Dropping the columns of Z corresponding to the
j-th subsample amounts instead to restricting all element of δj to be zero, which in turn
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corresponds to forcing the relationship between yj and the completed design matrix W j

to be the same as that between y0 and X0 in the subsample with complete data.
One well known problem with this approach is pre-testing. Another is that model

selection and estimation are completely separated. As a result, the reported conditional
estimates tend to be interpreted as if they were unconditional.

Model averaging is different. Instead of selecting a model out of the available set of
models, one first estimates the parameter of interest β conditional on each model in
the model space, and then computes the estimator of β as a weighted average of these
conditional estimators. When the model space contains I models, a model averaging
estimator of β is of the form

β̄ =
∑I

i=1
λiβ̂i, (7)

where the λi are non-negative weights that add up to one, and β̂i is the estimator of β
obtained by conditioning on the ith model. In our case, the model space contains 2JK

models, a huge number unless both J and K are small.
In Bayesian model averaging (BMA), each β̂i is weighted by the posterior probability

of the corresponding model. If equal prior probabilities are assigned to each model
under consideration, then the λi are just proportional to the marginal likelihood of each
model. Bayesian averaging of both classical (least-squares) and Bayesian estimators
have been considered, with the posterior mean of β for the model under consideration
as the typical Bayesian estimator. Bayesian averaging of Bayesian estimators has been
popularized by Raftery, Madigan and Hoeting [19], while Bayesian averaging of classical
estimators has been popularized by Sala-i-Martin, Doppelhofer and Miller [22]. The
choice between the different approaches involves considering the computational burden
and the statistical properties of the resulting estimators and, in the case of BMA, the
nature of the assumed priors. The role of priors would also arise if a Bayesian model
reduction approach is taken.

Magnus, Powell and Prüfer [16] study the properties of model averaging estimators
of the same form as (7) with λi = λi(ṽ), where ṽ is the vector of OLS residuals from
the regression of y on W only. Their class of weighted-average least squares (WALS)
estimators generalizes to the case when I ≥ 2 the class of estimators introduced by
Magnus and Durbin [15], which contains the classical pre-test estimator as a special
case. Although WALS estimators are in fact BMA estimators, they differ from standard
BMA in three important respects: their computational burden, the choice of prior for
δ, and their statistical properties.

The main advantage of WALS is that, although we have 2JK models, the computa-
tional burden is only proportional to JK. With medium or large values of J or K, the
computation burden is minimal compared to standard BMA.

Like standard BMA, WALS assume a classical Gaussian linear model for (6) and
noninformative priors for β and the error variance σ2. The assumption that the regres-
sion errors are homoskedastic and serially uncorrelated is not crucial for WALS, and
the method can be generalized to non-spherical errors (Magnus, Wan and Zhang [17]).
The key step in WALS is to reparameterize the model replacing Zδ by Z∗δ∗, with
Z∗ = ZPΛ−1/2 and δ∗ = Λ1/2P ′δ, where P is an orthonormal matrix and Λ is a
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diagonal matrix such that P ′Z ′RWZP = Λ. The main difference with respect to stan-
dard BMA is that, instead of a multivariate Gaussian prior for δ, WALS use a Laplace
distribution with zero mean for the independently and identically distributed elements
of the transformed parameter vector η = δ∗/σ, whose ith element, ηi is the population
t-ratio on δi, the ith element of δ. In this formulation, ignorance is a situation where it
is equally likely for these population t-ratios to be larger or smaller than one in absolute
value.

Finally, unlike standard BMA, WALS have bounded risk and are near-optimal in
terms of a well-defined regret criterion (Magnus, Powell and Prüfer [16]).

7. An Application

In this section we apply our approach in the context of a concrete example with missing
data. The problem at hand is that of estimating the relation between body-mass and
income using survey data affected by item non-response. We first present the estimates
one obtains by the complete-case approach, by using raw data (no dummies), and by
the simple indicator method. We then compare them with the estimates one obtains
using different model-selection or model-averaging techniques on the basis of the grand
model (6).

The body-mass index (BMI), namely the ratio of weight (in kg) to squared height
(in meters), is one way of combining weight and height into a single measure. Due
to its ease of measurement and calculation, the BMI is the most common diagnostic
tool to identify obesity problems within a population. As such, it has received lots of
attention in the recent literature on the obesity epidemic and its economic and public
health consequences (Cutler, Glaeser and Shapiro [3], Philipson and Posner [18]).

The obesity epidemic is essentially an imbalance between food intake and energy
expenditure. It has been argued that this imbalance may be linked to income (see
e.g. Drewnowski and Specter [5]). The available empirical evidence (Cawley, Moran
and Simon [2]) for elderly people in the USA, Sanz-de-Galdeano [23] and Garćıa-Villar
and Quintana-Domeque [6] for Europe) is inconclusive for men, whereas for women there
appears to be a more clear indication of a negative correlation between BMI and income.

Our data are from Release 2 of the 1st wave of the Survey of Health, Ageing, and
Retirement in Europe (SHARE), a multidisciplinary and cross-national household panel
survey designed to investigate several aspects of the elderly population in Europe. The
target population of SHARE consists of people aged 50+ living in residential households,
plus their co-resident partners irrespective of age. The 1st wave, conducted in 2004,
covered 15,544 households and 22,431 individuals in 11 European countries. All national
samples are selected through probability sampling.

The key to ensure comparability is the adoption of a common survey instrument. The
Physical Health module of the questionnaire collects self-reported height and weight, the
Income module collects information on 25 income components which are then aggregated
into a measure of household income, and the Consumption module collects household
expenditure on four consumption categories (food at home, food outside the home,
telephone, all goods and services) in the last month.

Nonresponse to household income and food expenditure is substantial, and in this
case we use the imputations provided by SHARE. Complete or partial nonresponse
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to household income occurs for as much as 60 percent of the observations, such a high
fraction being due to the fact that this variable is obtained by aggregating a large number
of income components across household members. Nonresponse to food expenditure
occurs for about 15 percent of the observations.

To impute missing values, SHARE uses a complex two-stage multivariate procedure
(Kalwij and van Soest [9]). Imputations are first obtained recursively for a few core
variables. In the second stage, the imputed values from the first stage are used to im-
pute the other variables. This procedure essentially employs only univariate regression
imputation methods. It is important to notice that height and weight are never used
to impute missing variables. To allow multiple imputation methods, SHARE provides
5 imputations for each missing value. SHARE imputes total household income by sep-
arately imputing each income component and then aggregating them. Imputations are
provided for individual incomes of all eligible partners who did not agree to participate
to the survey.

We focus on the income-BMI relationship for males. We model the mean of log BMI
as a function of age and age squared, log household income per capita, log household
food expenditure per capita, and a dummy indicator for low educational attainment.
In addition to the subsample with complete data (4,067 obs., 35.5%), we have three
subsamples with incomplete data: one where only food expenditure is missing (287 obs.,
2.5%), one where only household income is missing (5,891 obs., 51.3%), and one where
both household income and food expenditure are missing (1,230 obs., 10.7%). For each
variable, we use the first of the 5 available imputations.

Table 1 shows the estimated coefficients for age and its square (agesq), log household
income per capita (lypc), log food expenditure per capita (lfpc), and a dummy for
not having a high-school degree (lowed). The first three columns contain estimates
for the complete-case/grand model, the naive estimator corresponding to δ = 0, and
the simple missing-indicator method. The other three are obtained by model-selection
or model-averaging on the basis of the grand model (6): Stata’s backward-stepwise
selection with p-value equal to .05, WALS and BMA. The standard errors in the table
have all been obtained using the “wild” bootstrap with 50 replications and are robust
to heteroskedasticity of the errors in the grand model.

The BMA and WALS estimates have been computed using the Matlab code down-
loaded from Jan Magnus’s web page at http://center.uvt.nl/staff/magnus/wals/.
This BMA implementation estimates all possible models, so it becomes very time con-
suming when J or K are large. In our case, with J = 3 subsamples with incomplete
data and K = 6 focus regressors (including the constant term), examining all possible
218 models required about one day on our desktop computer. Faster implementations
are available, but they estimate only a randomly chosen subset of all possible models
and have the important disadvantage of not using the distinction between focus and
auxiliary regressors, which is key to our analysis.

As for WALS, it is worth discussing briefly the concept and treatment of uncertainty
implicit in the choice of a Laplace prior for the elements of the transformed parameter
vector η. Assuming this particular prior means that we think that it is equally likely
that the observed value of the t-statistic on any element of δ is greater or smaller than
one. This is equivalent to say that we are agnostic about the quality of the imputation: it
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could be either good or bad. Since we are simply users, not producers, of the imputations,
this may not be a bad assumption.

There is agreement between the different methods on the qualitative effect of the
various variables: concave for age, negative for education and income, and positive
but not statistically significant for food expenditure. The magnitude of the estimated
coefficients, however, differs considerably across methods. At one extreme are the naive
estimator, the simple missing-indicator method and BMA, that produce nearly identical
results: they assign more importance to age and less importance to income. At the other
extreme are the complete-case estimator and WALS: they assign less importance to age
and more importance to income. It is noteworthy that, in this example, WALS is close
to complete-case (all dummies in the model), while BMA is close to naive estimates (no
dummy). Thus, starting with the the grand model, WALS seems to give more weight to
the auxiliary dummies than BMA. The stepwise procedure gives estimates of the relative
effects of age and income that are somewhat in between these two extremes.

8. Concluding remarks

In this paper we formalized the trade-off between bias and efficiency that arises when
there are missing covariate values in a regression relationship of interest and showed how
to tackle this trade-off by model reduction procedures or model averaging methods. In
future work we plan to extend our approach to generalized linear models (GLM), such as
logit, probit and Poisson regression, for which we conjecture that versions of Theorems 1
and 2 also hold. Our conjecture is motivated by the fact that maximum-likelihood
estimators of exponential family models may be obtained by iteratively reweighted least
squares.
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Table 1. Estimated coefficients (bootstrap standard errors in parentheses).

Complete Naive Simple Stata’s WALS BMA
case indicator stepwise

age 0.0008 0.0023 *** 0.0023 *** 0.0020 *** 0.0012 ** 0.0023 ***
(0.0006) (0.0005) (0.0005) (0.0007) (0.0005) (0.0005)

agesq -0.0082 *** -0.0107 *** -0.0107 *** -0.0108 *** -0.0087 *** -0.0107 ***
(0.0016) (0.0012) (0.0012) (0.0018) (0.0015) (0.0012)

lypc -0.0196 *** -0.0097 *** -0.0098 *** -0.0174 *** -0.0165 *** -0.0101 ***
(0.0028) (0.0015) (0.0015) (0.0034) (0.0023) (0.0015)

lfpc 0.0054 0.0042 0.0044 0.0049 0.0046 0.0042
(0.0049) (0.0028) (0.0028) (0.0034) (0.0043) (0.0028)

lowed 0.0144 *** 0.0201 *** 0.0201 *** 0.0197 *** 0.0160 *** 0.0201 ***
(0.0046) (0.0030) (0.0030) (0.0047) (0.0041) (0.0030)

No. obs. 4,067 11,475 11,475 11,475 11,475 11,475

Note: Observed p-values: * p < .10; ** p < .05; *** p < .01.


