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Numerous scheduling algorithms were and still are designed in order to handle multiprocessor architectures, raising new issues due to the complexity of such architectures. Moreover, evaluating them is difficult without a real and complex implementation. Thus, this paper presents a tool that intends to facilitate the study of schedulers by providing an easy way of prototyping. Compared to the other scheduling simulators, this tool takes into account the impact of the caches through statistical models and includes direct overheads such as context switches and scheduling decisions.

INTRODUCTION

The study of real-time scheduling had regained interest this last decade with the continuous introduction of multiprocessor architectures. Multiple approaches have been used to handle those architectures [START_REF] Davis | A survey of hard realtime scheduling for multiprocessor systems[END_REF]. A first approach, called partitioning, consists of splitting the task set into subsets. Each of these subsets is allocated to a unique processor on which a mono-processor scheduler is then run. In contrast, a second approach, called global scheduling, allows tasks to migrate from processor to processor. In that case, there is a single queue of ready tasks and a single scheduler for all the processors. Finally, as a compromise that aims to alleviate limitations of partitioned (limited achievable processor utilization) and global (non-negligible overheads) algorithms, hybrid policies such as semi-partitioned and clustered scheduling have been proposed more recently [START_REF] Bastoni | Is semi-partitioned scheduling practical?[END_REF].

By far the greatest focus on multiprocessor realtime scheduling has been put on algorithmic and theoretical issues. Indeed, for the various scheduling policies, a lot of attention has been paid to define analytical schedulability tests. However, those results rely on general and simple models of the considered software and hardware architectures quite far away from the practical ones. Such research must now address implementation concerns as well. Actually, multiprocessor architectures bring more complexity with shared caches and memory, new communication buses, interprocessor interrupts, etc. They also raise new implementation issues at the operating system level: which core should run the scheduler?, what data should be locked?, etc.

Thus, new scheduling policies that try to take benefits from the specificities of the hardware architecture (such as the caches) must be designed and tools for studying them must be made available. One way for this is to use a cycle-accurate simulator or even a real multiprocessor platform, and to execute real tasks. In that case, the results are very accurate, however it requires developing the scheduler in a lowlevel language and integrating it into an operating system. This work can potentially take a lot of time. Furthermore, the generation of various and realistic tasks for a massive evaluation is laborious.

In consequence, it is preferable to use an "intermediate-grained" simulator able to simulate with a certain level of accuracy the behavior of those (hardware and software) elements that act upon the performances of the system. Such a simulator allows fast prototyping and does not require a real implementation of the tasks nor the operating system. Moreover, extensive experiments can be easily conducted and various metrics are available for analysis. Its intrinsic drawback is that it will never reflect exactly how a scheduler behaves in details on a real system but it should be enough to give good insights on general tendencies.

Our contribution is a simulation tool, called SimSo ("SImulation of Multiprocessor Scheduling with Overheads"), that is designed to be easy to use and able to take into account the specificities of the system, starting with LRU caches, context-save/load overheads and scheduling overhead. SimSo1 is an open source tool, actively developed, designed to facilitate the study of the behavior of schedulers for a class of task systems and a given hardware architecture. For that, we propose to extend the Liu and Layland model [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] to bring enough information to characterize how the tasks access the memory. This allows us to use statistical models to calculate the cache miss rates and to deduce job execution times. Moreover, our simulator has been conceived as flexible as possible to be able to integrate other task and architecture models.

This paper is organized as follows. First, we explain our motivation in section 2. The main principles of real-time scheduling are explained in section 3. Then we explain how the simulator has been implemented in section 4. Section 5 presents the scheduler component and section 6 deals with the integration of the hardware models. We present the simulation software in section 7 and we compare it to the existing similar tools in section 8. To conclude, we summarize our contribution and present our future works in section 9.

MOTIVATION

Most of the multiprocessor real-time scheduling strategies have been designed without taking into account the presence of caches and their effects on the system behavior. Though, interferences on the cache of preempted and preempting tasks allocated to the same processor may cause additional delays [START_REF] Mogul | The effect of context switches on cache performance[END_REF]. In the same way, when a cache is shared by multiple processors, the execution of a task can have a significant impact on another task running on another processor. Furthermore, scheduling overheads and context switch overheads are often regarded as negligible. However, on a multiprocessor system, schedulers tend to generate more preemptions, more migrations and even more rescheduling points in order to achieve a high utilization of the processors [START_REF] Devi | Tardiness bounds under global edf scheduling on a multiprocessor[END_REF].

Significant research effort has been focused on the problem of real-time multiprocessor scheduling since the late 1990's, in particular in the area of global scheduling. It led to a number of optimal al-gorithms (PFair and its variants PD and PD 2 , ERFair, BF, SA, LLREF, LRE-TL, etc.) that are very attractive because theoretically able to correctly schedule all feasible task sets without processing capacity unused [START_REF] Davis | A survey of hard realtime scheduling for multiprocessor systems[END_REF]. However their practical use can be problematic due to the potentially excessive overheads they cause by frequent scheduling decisions, preemptions and migrations. Therefore, being able to take them into account helps in the predictability analysis of such real-time systems for which the first requirement is to meet time constraints. Moreover, reducing the overall execution time of the tasks can also bring significant benefits (for instance, better response times or less power consumption).

Following these observations, recent research has emerged and new scheduling algorithms appeared which aim to reduce the overheads by bounding the amount of preemptions [START_REF] Bastoni | Is semi-partitioned scheduling practical?[END_REF][START_REF] Nelissen | Reducing preemptions and migrations in ekg[END_REF]. Also, a few studies have shown that avoiding co-scheduling tasks that heavily use a shared cache can reduce the overall execution time [START_REF] Fedorova | Cachefair thread scheduling for multicore processors[END_REF][START_REF] Anderson | Realtime scheduling on multicore platforms[END_REF]. Finally, other researches focus on cache space isolation techniques to avoid cache contention on shared caches [START_REF] Guan | Cacheaware scheduling and analysis for multicores[END_REF][START_REF] Berna | Pdpa: period driven task and cache partitioning algorithm for multi-core systems[END_REF].

Our primary objective is the comparison of those numerous scheduling policies and their associated variants. Currently, the only way to compare them is by far to try to put in relation the properties exhibited by their authors: computational complexity, number of scheduling points, utilization bound, number of task preemptions, number of task migrations. Such a task is quite intractable since evaluations have been made under separate conditions. Instead our intention is to make available a framework allowing to study as precisely as possible the performance of a scheduler and to establish relevant comparisons between different scheduling policies based on the same benchmarks. For instance, given a system correctly schedulable with multiple scheduling policies, we would like to pick the one that should be the most efficient (less overhead). For that, we would aim to identify general trends for classes of tasks and hardware architectures. A typical result could be: scheduler A is better than B in most cases, except when the shared cache is too small given the characteristics of the tasks.

We expect from these results to help the realtime community to better understand the cache effects on scheduling, and bring new ideas that could help to conceive schedulers which take benefits from the caches.

In this part, we briefly present the context of real-time multiprocessor scheduling and its relevant models in order to facilitate the understanding of the following. This also precises a few assumptions made for the simulation.

A real-time application is composed of tasks, i.e. programs, to be run on a hardware architecture made of a limited number of processors. Real-time means that the computing of tasks has to meet time constraints (typically release times and deadlines). The scheduler is a software system component whose purpose is to decide at what time and on which processors tasks should execute. Therefore, a real-time scheduler takes its decisions according to the urgency of the tasks.

Tasks

The model most commonly used to describe the tasks is the Liu and Layland one [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. In this model, a great abstraction is made since a task is simply viewed as a computation time. This means that its functional behavior is ignored as it will be discussed in section 6. In our simulation, when the caches are taken into consideration, some extra parameters are necessary as explained in 6.2.1.

A task can be respectively periodic, sporadic, or aperiodic depending on its inter-activation delay, respectively constant, minimum, or unknown. A task activation gives rise to the release of a job (an instance of the task) that must complete before a given deadline date.

The tasks neither share memory nor communicate between each other but precedence relations between tasks may be specified so that the activation of an aperiodic task follows the end of another task.

Processors We consider symmetric multiprocessing hardware architectures (SMP) which are the most common multiprocessor design nowadays. In such architecture, the processors are identical and share a single main memory. Private and/or shared caches are associated to them in a hierarchical way. The modeling of the cache hierarchy as well as their time access costs are given in section 6.2.2. Note that we focus our work on architectures with less than a few dozen processors. Thus, Network On Chip (NoC) architectures, which present an interest for many-core systems, are not considered. Scheduler Among the various scheduling strategies, one distinguishes time-and event-triggered ones depending on the conditions in which the scheduler is invoked: a rescheduling has to be made either at specified instants, or when a job completes or a new one is released. In addition, the scheduler may be preemptive and decide to interrupt the execution of a job and to resume it later. In the same way, schedulers may allow tasks and their jobs to partly or freely migrate and execute on multiple processors.

IMPLEMENTATION

Discrete-event Simulation

The core of the simulator is implemented using SimPy (SimPy Developer Team, 2012), a processbased discrete-event simulation library for Python. The advantage of a discrete-event simulation over a fixed-step one is that it is possible to handle short durations (such as a context-switch overhead) as well as long durations (such as a job execution) with the same computational cost. We have chosen SimPy because it can be easily embedded as part of a software, it is well-documented and easy to use.

According to SimPy's vocabulary, a Process is an entity that can wait for a signal, a condition or a certain amount of time. When it is not waiting, a Process can execute code, send signals or wake up other processes. This Process state is called "active", opposed to "passive". A Process is activated by another Process or by the simulation main class itself.

The simulation unit is the processor cycle to allow a great precision. However, for user convenience, the attributes of the tasks, such as the period or the deadline, are defined in milliseconds (floating-point numbers) and converted in cycles using a parameter named cycles per ms.

Architecture

The main classes and their mutual interactions are represented in Figure 1 and described below:

• Model is the simulation entry point, it will instantiate and launch the processors and the tasks as active Processes. It will also call the init method of the scheduler so that it can initialize its data structures and launch timers if needed. • A Task handles the activations of its jobs. The activations are either periodic or triggered by an other task (aperiodic). Depending on a property of the task, the jobs that exceed their deadline can be aborted. • A Job simulates, from a time-related aspect only, the execution of the task code. Its progression is computed by the execution time model (see section 6). A signal is sent to its running processor when it is ready and when its execution is finished.

• A Processor is the central part and simulates the behavior of the operating system running on a physical processor. There is one Processor for each physical processor. It controls the state of the jobs (running or waiting) in accordance with the scheduler decisions. It also deals with the events: activation or end of a job, timer timeout, schedule request, etc. The attribute "running" of a processor points to the job that is running (if any).

Figure 2 provides a very simplified diagram representing what a processor does. Similarly, as a real system, some actions can induce overheads (e.g. context switch or scheduling decision) and only affect the concerned processor.

• A Timer allows the execution of a method after a delay, periodically or not. On a real system, this method would run on a physical processor, thereby inducing a context switch overhead if a job were running on the same processor. This behavior is reproduced by sending a "timer" event to the processor.

• The Scheduler is described in section 5. Unlike the previous elements, the scheduler is not a Process object, all its methods except the init method are called by the Processor objects.

SCHEDULER COMPONENT

Scheduler Interface

In order to implement a scheduler, the user has to develop a class that inherits from the abstract Scheduler class. The scheduler interface is partly inspired by When the simulation is started, the init method is called. It is then possible to initialize data structures and set timers if required. When the scheduler needs to make a scheduling decision, it sends a "schedule" event to the processor that will execute the schedule method. This event is sent as a consequence of a job activation, termination or through a timer. This lets the possibility to write schedulers that are either time-driven, event-driven or both. The processor is in charge of applying the scheduling decision (which includes an inter-processor interrupt if needed).

Handling Various Kinds of Scheduling

In order to deal with multiprocessor scheduling, various strategies are possible: a global scheduler for all the processors, a scheduler for each processor, or even intermediate solutions. The support of any kind of scheduler is done at a user level. Take a partitioned scheduling as an illustration of this, we define a "virtual" scheduler that will be instantiated by the simulation and called by the processors. This scheduler will then instantiate one monoprocessor scheduler for each processor and allocate each task to one scheduler. The links between the processors and the schedulers as well as the links between the tasks and the schedulers are saved. Thus, when a processor calls a method of the "virtual" scheduler, the latter retrieves the concerned scheduler and forwards the method call to it.

By generalizing this example by allocating one scheduler to any number of processors and by allowing a task to migrate from one scheduler to another, we see that any kind of scheduling is feasible. Thus, this approach has the advantage of being very flexible. Moreover, we provide a few examples to guide.

Lock

For global or hybrid strategies, some scheduler variables (such as the list of ready tasks) are shared between the processors. As a consequence, a protection mechanism can be required to avoid inconsistencies. Such protections form a bottleneck which induces extra overheads.

A mechanism of lock is provided by the simulator in order to reproduce these overheads. This lock is intended to prevent to run the scheduler at the same simulation time on two or more different processors. The developer of a scheduler can decide to deactivate the lock by overriding the get lock method.

Example

In this section, we present what a user could develop to simulate a global EDF. The source code is in Python.

A detailed explanation of this example is available in the documentation of the tool. Instead we would like to draw the reader's attention on the small number of lines required. An actual implementation of this policy in an operating system would require hundreds of lines. 

JOB COMPUTATION TIME 6.1 A Generic Approach

Generally, scheduling simulation tools consider only the worst-case execution time (WCET) for the execution time of the jobs. Depending on the tool, the user may also have the possibility to configure the simulator to use the average-case execution time (ACET) or a random duration between the best-case execution time (BCET) and the WCET.

One of our objectives is to take into consideration the impact of the memory accesses on the computation time in order to be as accurate as possible. A significant difference with the classical approach is that the total execution time of a job can only be known when it finishes. Indeed, the execution time depends on the scheduling decisions (which tasks were executing on the other processors, was it preempted, etc.).

The components needed to compute the execution time are purposely isolated from the rest of the simulator and implement a generic interface to interact with the simulator. As shown in Figure 3, the model receives an event when the state of a job is changed. The job uses the get ret method to get a lower bound of its remaining execution time. While this duration is strictly positive, the job is not finished.

For example, a computation time model based on the WCET is trivial. The get ret method simply returns the WCET minus the duration already spent to run the job. The remaining methods of the interface have nothing to do because that duration is given and kept up-to-date by the job itself.

This design is sufficiently generic to easily swap the models used to compute the execution time of the jobs. Hence, alternative models could be developed to 

Modeling Memory Behaviors

In this section, we briefly present how the impact of the caches is implemented as an execution time model as explained above.

Memory Behavior of a Task

In order to characterize the memory behavior of the tasks, we extended the model of Liu-Layland with additional information. For each task τ, the user must provide:

• Number of instructions: the average number of instructions executed by a job of τ.

• Base CPI: the average number of cycles required to execute an instruction without considering the memory access penalties (base cpi τ ).

• Memory access rate: mix τ is defined as the proportion of instructions that access the memory among all.

• Stack distance profile (SDP): the distribution of the stack distances for all the memory accesses of a task τ is the stack distance profile (sd p τ ), where a stack distance is by definition the number of unique cache lines accessed between two consecutive accesses to a same line [START_REF] Mattson | Evaluation techniques for storage hierarchies[END_REF]. An illustration of this distance is provided by Figure 4. Such metric can be captured for both fully-associative and N-way caches [START_REF] Chandra | Predicting inter-thread cache contention on a chip multiprocessor architecture[END_REF][START_REF] Babka | On the accuracy of cache sharing models[END_REF]. These information can be automatically generated or retrieved from a real application. The number of instructions, the memory access rate and the stack distance profile can be generated using tools such as an extension to CacheGrind [START_REF] Babka | On the accuracy of cache sharing models[END_REF], Stat-Stack [START_REF] Eklov | StatStack: efficient modeling of LRU caches[END_REF] or MICA2 [START_REF] Hoste | Microarchitectureindependent workload characterization[END_REF]. The base CPI requires a cycle accurate simulator. It is the computation time in cycles divided by the number of instructions.
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Cache Hierarchy

We consider hierarchical cache architectures. A list of caches (e.g. [L1, L2, L3]) can be associated to each processor. Caches can be shared between several processors while it respects the inclusive3 property.

A cache is defined by a name, its associativity, its size, and the time needed to reach it (in cycles).

For now, only data caches with Least Recently Used (LRU) as replacement policy is considered, the generalization to instruction caches is left for future work. Hence, a few modifications in the cache description are likely to occur in order to make the distinctions between instruction caches, data caches and unified caches.

Cache Models

Depending on which tasks are running in concurrency and the initial state of the caches, the execution speed of the jobs varies.

The goal of the cache models is to determine, on a given time interval, the average number of cycles per instructions (CPI) of a job, taking into consideration the impact of the various tasks on the caches. Using the CPI, it is then possible to determine the number of instructions executed by a job during that interval.

The duration returned by the get ret method (see Figure 3) is simply the time required to execute the remaining number of instructions if the job was running alone on the system without any interruption.

Cache sharing induces two kinds of extra cache misses:

• Following a preemption: a job may have lost its cache affinity when another job is running on the same processor. Some of the evicted lines should then be reloaded.

• Shared between multiple processors: two or more tasks that are simultaneously running on different processors with a shared cache, do not tend to share this cache equally.

For the first case, we have taken the simplifying assumption that the cache filling follows an exponen-tial distribution and we use the SDP of the task to determine the number of lines that should be reloaded. However, other models exist [START_REF] Liu | Characterizing and modeling the behavior of context switch misses[END_REF] and we are also currently working on better estimations of the cache loading using Markov chains.

For the second case, we used the FOA model [START_REF] Chandra | Predicting inter-thread cache contention on a chip multiprocessor architecture[END_REF] that has fast running times and gives reasonable results according to the authors. Obviously, other models [START_REF] Eklov | Fast modeling of shared caches in multicore systems[END_REF][START_REF] Chandra | Predicting inter-thread cache contention on a chip multiprocessor architecture[END_REF][START_REF] Babka | On the accuracy of cache sharing models[END_REF] could be implemented as well.

The state of the caches (the number of lines for each task) is kept up-to-date at each change in the system (start, interruption or end of a job).

SIMULATION TOOL

Features

Open source The source code, the documentation and the examples are freely available at http://homepages.laas.fr/mcheramy/simso/.

Configuration The user interface of the simulator (Figure 5) provides a straightforward graphical interface to load the scheduler class and to define the tasks, the processors, the caches and their hierarchy, and the various parameters for the simulation. The resulting configuration is saved into an XML file. However, such a file could also be generated automatically by an external tool without using the graphical user interface. This is important in order to run extensive simulations with auto-generated properties.

Output When the configuration is completed and checked, the user can launch the simulation and obtain a Gantt chart representing the result of the simulation or a textual equivalent representation. Some metrics are provided to the user such as the number of preemptions, migrations, the time spent in the scheduler, the computation time of each job, etc.

Speed and limitations

The simulation runs very fast, as an example, simulating a global EDF with 4 processors, 10 tasks, 2 levels of caches for a duration of 100ms (10 8 cycles) takes less than one second on an Intel Core i5. There are no technical limitations on the number of processors but the cache models implemented in the present version have not been validated by their authors for a large number of processors. 

Use as an Educational Tool

The user interface of the simulator has been designed keeping in mind it could also be used for an educational purpose. This is the main reason why all the inputs can be set through a graphical user interface and the results displayed in a Gantt chart.

As shown in the previous example, it allows a fast prototyping of schedulers in Python. This language is easy to learn and yet very powerful and effective [START_REF] Radenski | python first": a lab-based digital introduction to computer science[END_REF].

Regarding the simulation, it is also possible to consider WCETs as effective task computation times. Thus, the input is simpler and more usual.

This tool is already used by Master's students in a real-time systems course at INSA Toulouse. From an applicative real-time project, students have to model its various tasks and then use the simulator to understand how the processors are shared between the tasks using a fixed priority scheduler.

Application Example

As a reminder, our primary goal is the study of scheduling policies. In the following, we present through a simple case study, how our tool could be used to better understand the real behavior of a system.

Problem description

In this example, we would like to compare the scheduling of a system using the Earliest Deadline First algorithm with a global (G-EDF) and a partitioned (P-EDF) strategy. G-EDF is a generalization of EDF for multiprocessor that uses a single ready task queue whereas P-EDF starts with a definitive allocation of the tasks on the processors and then runs multiple mono-processor EDF schedulers for handling each processor.

Input The eight considered tasks are all periodic 4 and synchronous with the start of the simulation. Their SDP was taken from the MiBench benchmark [START_REF] Guthaus | Mibench: A free, commercially representative embedded benchmark suite[END_REF], the first five tasks are making more accesses to the memory than the last three (according to their value of mix).

For the task partitioning phase (P-EDF only), a WCET for each task is mandatory. WCET values were chosen by bounding with a safety gap the experimental times given by the simulation. Table 1 synthesizes the period and WCET values of the tasks. Task partitioning was done using the First Fit algorithm. The result of the partitioning is: {T1, T2}, {T3, T4, T5}, {T6, T7}, {T8}. The simulated hardware architecture, including four processors and a cache hierarchy, is summarized in Figure 6. Each L1-cache is an LRU fullyassociative cache of 2KiB (32 lines of 64 bytes). The L2 cache is an LRU fully-associative cache of 16KiB (256 lines of 64 bytes). The second level of cache is relatively small when compared to what can usually be found on modern architectures. This choice is justified by the small memory footprint of the selected benchmarks and the will to show the impact of cache contention through this example. The scheduling overhead is set to 0.1ms (100.000 cycles) and a context save or load overhead to 0.0001ms (100 cycles).

The duration of the simulation is ten seconds.

Observations Table 2 shows the load using both strategies. The payload corresponds to the time spent executing the tasks (including cache overheads) and the system load is the time wasted in the system 4 A periodic task releases a job every period time units.

(scheduler and context-switch overheads). Because of the order of magnitude of a scheduling overhead compared to the overhead of a context save or load, the system load is mostly the time spent waiting for a scheduler decision. The number of scheduling decisions remains similar in both cases, however, the global lock required for G-EDF adds an additional overhead. We can assume that this gap in system load between the two strategies will increase with more processors. This is in accordance with the results of Bastoni et al stating that G-EDF is not a viable choice for hard real-time systems with a large number of processors (24 in their study) [START_REF] Bastoni | An empirical comparison of global, partitioned, and clustered multiprocessor edf schedulers[END_REF]. The computation times of the jobs are shorter with P-EDF compared to G-EDF as shown in Figure 7. In proportion to G-EDF, the payload for P-EDF is 4.2% lower in this example. The first reason is that the tasks that use the more the memory are merged in the first two processors, partly avoiding co-scheduling. The second reason is the reduction of the number of preemptions (1501 for G-EDF against only 666 for P-EDF) and task migrations (3500 against 0) which led to less cache reloading. This result seems compatible with the work done by Fedorova et al that shows in their case study an improvement of the system throughput up to 32% for a non-real-time system [START_REF] Fedorova | Cachefair thread scheduling for multicore processors[END_REF]. Obviously, in order to confirm these results, we shall conduct larger studies. Because the duration of a simulation run is very short, it is then possible to run thousands of experiments with different configurations. Such complete studies are in progress but out of scope of this paper.

Most of the work on real-time multiprocessor scheduling addresses the theory only. Davis and Burns give a good insight of the current state of the researches in their survey [START_REF] Davis | A survey of hard realtime scheduling for multiprocessor systems[END_REF].

A first approach for considering real-world overheads in the study of such scheduling policies is to use a cycle-accurate simulator or a real system.

There are two major simulator available. The first one, Gem5 is the merger of the M5 and GEMS simulators [START_REF] Binkert | The gem5 simulator[END_REF]. It simulates a full system with various CPU models and a flexible memory system that includes caches. The second one, Simics, is a commercial product able to simulate full-systems but it is not cycle-accurate [START_REF] Magnusson | Simics: A full system simulation platform[END_REF].

LITMUS RT (Calandrino et al., 2006), developed at the University of North Carolina (UNC), offers a different approach. It is not a simulator but an extension of the Linux Kernel which provides an experimental platform for applied real-time research and that supports a large number of real-time multiprocessor schedulers.

With both kind of tools, a substantial investment in time is required to learn how to use them and to write some new scheduler components.

There are also several tools emerging from the academic community and dedicated to the simulation of real-time systems such as Cheddar [START_REF] Singhoff | Cheddar: a flexible real time scheduling framework[END_REF], MAST [START_REF] Harbour | Mast: Modeling and analysis suite for real time applications[END_REF], Storm [START_REF] Urunuela | Storm a simulation tool for real-time multiprocessor scheduling evaluation[END_REF] and others [START_REF] Rodríguez-Cayetano | Design and development of a cpu scheduler simulator for educational purposes using sdl[END_REF][START_REF] Chandarli | Yartiss: A tool to visualize, test, compare and evaluate real-time scheduling algorithms[END_REF]. Most of these tools are designed to validate, test and analyze systems. Storm is probably the most advanced tool focusing on the study of the scheduler itself. However it does not handle direct overheads such as contextswitches or scheduling overheads. Nor does it handle the impact of caches.

CONCLUSIONS

This paper presents a simulator dedicated to the study of real-time scheduling. It was designed to be easy to use, fast and flexible. Our main contribution, when compared to the existing scheduling simulators, is the integration of overheads linked to the system (context-switching, scheduling decision) and the impact of the caches.

We have shown in this paper that it is possible to take the impact of the caches into consideration. However, the models we currently use could probably be replaced by better ones. This replacement can easily be done as explained in section 6. We are al-ready thinking about new models but they have to be validated using cycle accurate simulators.

Once our cache models will be validated and integrated into the simulator, we will launch a large campaign of simulations. As a reminder, our long term goal is the classification of the numerous scheduling policies with practical considerations. We hope that it will also help the researchers to spot the weaknesses and the strengths of the various strategies. We would be pleased if our simulation tool could be the source of innovative ideas.

Figure 1 :

 1 Figure 1: Interactions between main class instances. Processor, Task, Job and Timer are Process objects and can have multiple instances.

Figure 2 :

 2 Figure 2: Simplified execution workflow of a Processor.The "terminated" event is a particular event that will not cause a context save overhead.
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 3 Figure 3: Interface of any execution time model.

Figure 4 :

 4 Figure 4: Memory accesses sequence. A, B, C and D are cache lines and numbers indicate the stack distances.

Figure 5 :

 5 Figure 5: User interface of the tool showing the simulation of a global EDF.

Figure 6 :

 6 Figure 6: Simulated hardware architecture. Numbers represent the access time in cycles (10 -9 s).

Figure 7 :

 7 Figure 7: Effective task Computation times.

Table 1 :

 1 List of tasks (total utilization is 82.5%).

		T1	T2	T3	T4	T5	T6	T7	T8
	Period (ms)	20	20	15	15	10	10	10	10
	WCET (ms)	11	9	7	5	2	6	4	3

Table 2 :

 2 Load for both schedulers.

		Total load Payload System load
	G-EDF	72.2 %	68.0 %	4.2 %
	P-EDF	68.3 %	65.1 %	3.2 %

Available at http://homepages.laas.fr/mcheramy/simso/.

MICA does not generate complete SDP so we had to patch it.

Caches are inclusives if any data contained in a level of cache is contained on the upper level.

ACKNOWLEDGEMENTS

The work presented in this paper was conducted under the research project RESPECTED (http://anrrespected.laas.fr/) which is supported by the French National Agency for Research (ANR), program ARPEGE.