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a b s  t r a  c  t

With  the  rise  of  sustainable  development,  rehabilitation  of  brownfield  sites  located  in  urban  areas  has

become  a major  concern.  Management  of contaminated  soils  in  relation  with  environmental  and  sanitary

risk  concerns  is  therefore  a strong  aim  needing  the  development  of  both  useful  tools  for  risk  assessment

and  sustainable  remediation  techniques.  For  soils  polluted  by  metals  and  metalloids  (MTE),  the  criteria  for

landfilling  are  currently  not  based  on  ecotoxicological  tests  but  on  total  MTE  concentrations  and  leaching

tests.  In  this  study, the ecotoxicity  of  leachates  from  MTE  polluted  soils sampled  from  an  industrial  site

recycling  leadacid  batteries  were  evaluated  by  using  both  modified  Escherichia  coli strains  with  lumines

cence  modulated  by  metals  and  normalized  Daphnia  magna  and  Alivibrio  fischeri  bioassays.  The  results

were  clearly  related  to the  type  of  microorganisms  (crustacean,  different  strains  of  bacteria) whose  sensi

tivity  varied.  Ecotoxicity  was  also  different  according  to sample  location  on  the  site,  total  concentrations

and  physicochemical  properties  of  each  soil. For  comparison,  standard  leaching  tests  were  also per

formed.  Potentially  phytoavailable  fraction  of  MTE in  soils  and  physicochemical  measures  were  finally

performed  in  order  to highlight  the  mechanisms.  The  results  demonstrated  that the  use  of  a  panel  of

microorganisms  is  suitable  for  hazard  classification  of  polluted  soils.  In  addition,  calculated  ecoscores

permit  to rank  the  polluted  soils according  to  their  potentially  of  dangerousness.  Influence  of  soil and

MTE  characteristics  on MTE  mobility  and  ecotoxicity  was  also  highlighted.
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1. Introduction

Originally located on the outskirts of cities, numerous industrial
sites, sometimes abandoned, are now in urban areas and are there
fore likely to have environmental and health risks to surrounding
populations [1,2]. Currently, rehabilitation of the sites frequently
entails excavation of polluted soils [3]. Excavated soils can thus
follow two different ways: landfilling, expensive and energy inten
sive, or reuse/recycling, integrated to sustainable development. The
choice of a specific track mainly depends on total and leachable
concentrations of the pollutant in the soil [2]. Among the numer
ous pollutants observed in urban and periurban areas, trace metals
are often present in soils [4]; atmosphere emissions by smelters
being one of the main anthropogenic source [5,6]. MTE specia
tion and compartmentalization in soils can modify their impact on
living organisms [5]. Now, numerous publications concluded that
these two parameters are strongly influenced by soil organic matter
(OM) content, pH and texture [7–9]. According to Matejczyk et al.
[10], chemical weathering of soil minerals favours MTE solubili
zation and leachates production. Then, these leachates can pollute
surrounding soils and waters. According to the council directive
n◦1999/31/CE, leaching tests with chemical analysis are therefore
currently used for the assessment of environmental hazards of pol
luted soils. But, landfilling is often inevitable for strongly polluted
soils, with high “hazard level” (assessed by leached and total MTE
concentrations). Moreover, according to Foucault et al. [1], profes
sionals consider the threshold set as too restrictive and they regret
that excavated soils are almost always managed as waste.

In  addition to the measure of total and leached MTE concentra
tions, it appears therefore that knowledge of MTE availability [11]
and ecotoxicity may carry useful information [12–14] to improve
environmental risk assessment [10]. Actually, the accurate estima
tion of metal phytoavailability in polluted soils and solid wastes,
using single chemical extraction [15] carry interesting data to per
form pertinent risk assessment and remediation efforts [16,17]. Soil
quality integrates both physicochemical and biological character
istics [18]. Moreover, according to Plaza et al. [14] microorganisms
play important roles in numerous soil functions. Soils are often
polluted with a large variety of  compounds leading to possible
interactions [19], thus as reviewed by Kim and Owens [20] study of
leachates ecotoxicity provides a direct functional characterization
of various pollutant mixtures. But, only few studies concern the use
of ecotoxicological tests to monitor contamination and bioremedi
ation efficiency of polluted soils [21] and new tests are required
by industrial sites managers to assess environmental risks. Among
them, microbial bioassays offer quick, cheap and easy ecotoxic
ity (toxicity and mutagenicity) and bioavailability measurements
on bacteria [22,23]. However, in many cases, microbial bioassays
cannot be directly used for the identification and quantification of
compounds due to the lack of specificity of the engineered microor
ganisms [24] and further studies are needed to improve these
biotests.

The aim of this study was therefore to assess the ecotoxicity
of leachates for landfilling of MTE contaminated soils by various
complementary biotests, in addition to usual physicochemical
measures. More precisely, the following two scientific objectives
were aimed: (1) what is the pertinence of ecotoxicity tests to assess
a more realistic human exposition to contaminated soil leachates?
(2) What is the influence of soil physicochemical parameters
on MTE mobility and leachates ecotoxicity? Several studies use
specific bacteria strain to sense the presence of metals in  soils
[25–28], nevertheless, the development of statistical model to
understand the link between chemical concentration of compound
and bacteria sensors is still ongoing work [23]. So, the originality
of this study was to combine the use of new bacterial strains never
tested in a context of the remediation of an industrial polluted site

and calculation of ecoscores which facilitates the comparisons
between different soils.

2.  Materials and methods

2.1.  Soil sampling and preparation

According to Wong et al. [29], the most relevant soil layer to
study the environmental and sanitary impacts of MTE in urban
areas is between 0  and 25 cm. Ten top soil samples (Fig. 1)
were therefore collected in the courtyard of the Chemical Metal
Treatments Society (STCM), a secondary lead smelter which cur
rently recycles batteries located in the urban area of  Toulouse
(43◦38′12′′N, 01◦25′34′′E). This plant was chosen because of its
activity and urban location, and many data are already available
[1,4–6,30]. These data allowed defining different areas in terms of
environmental and sanitary risks that can vary according to past
and present activities. Moreover, previous studies of the particles
released in the atmosphere by Uzu et al. [5] and Schreck et al.
[4] revealed the presence of  several MTE (Pb, As, Cu, Cd, Zn and
Sb) and gave information on the main lead speciation: PbS, PbSO4,
PbO PbSO4,  aPbO and Pb (by order of abundance). All soil samp
ling points are presented in Fig. 1; they were dried, sieved under
2 mm and treated in triplicate.

2.2. Physicochemical analysis

pH,  organic matter and limestone contents, cation exchange
capacity (CEC Metson) and texture, were determined for all soil
samples, respectively, according to the norms ISO 10390 [31], ISO
10694 [32], ISO 10693 [33], NF X31310 [34] and ISO 11277 [35].
Pb, As, Cu, Cd, Zn and Sb total concentrations were measured by
ICPOES (IRIS Intrepid II XXDL) after mineralization in aqua regia

according to ISO 11466 [36] (HNO3 65%, HCl 37%, ratio 1:3 (v/v)).
The detection limits of Pb, Cd, Sb, As, Cu and Zn were 0.3, 0.2, 0.2,
0.2, 1.3 and 2.2 mg L−1, respectively, whereas the limits of quan
tification were about 0.4, 0.3, 0.4, 0.3, 2 and 3 mg L−1, respectively.
The accuracy of measurements was checked using a certified refer
ence material 141R (BCR, Brussels). The concentrations found were
within 95–102% of the certified values for all measured elements.

2.3.  Leaching tests

Normalized leaching test [37] was applied to all soil samples.
This procedure consisted of a single extraction with deionised
water, using a solidtoliquid ratio of 1/10. 10 g of soil (granulome
try at least < 4 mm according to the norm) was mixed with 100 mL
deionised water during 24 h with endoverend agitation at 5 rpm.
After centrifugation at 3000 × g during 15 min, the leachates were
filtered with cellulose 0.45 mm (Millipore®) filters. 10 mL of each
leachates were then acidified with HNO3 65% prior to analysis by
ICPOES (IRIS Intrepid II XXDL, analytical errors <  5%). The other part
of leachates was not acidified so as not to disturb microorganisms
used for further ecotoxicological tests.

2.4. MTE phytoavailability estimate

Potentially phytoavailable MTE concentrations were estimated
by CaCl2 extractions according to Uzu et al. [5]. In 25 mL polypro
pylene centrifugation tubes, 10 mL of 10−2 M  CaCl2 were added to
1.0 g  of soil. The liquid to solid ratio of 10 is high enough to avoid
samples heterogeneities [38]. After agitation endoverend during
2 h at 5 rpm at 20 ◦C, samples were then centrifuged during 30 min
at 10,000 × g. Supernatant was sieved through a  0.22 mm mesh and
acidified at 2% with HNO3 (15 N, suprapur 99.9%). MTE concen
trations were finally measured by ICPOES (IRIS Intrepid II  XXDL,



Fig.  1. Situation of the industrial study site,  location and  characteristics of the  10 sampling points.

analytical errors < 5%). A house reference soil  was used to  quality
control of CaCl2 extraction: this soil described by Schreck et al. [4]
has the advantage of presenting the same type of contamination
that the soils studied in this work. Actually, it is a soil historically
polluted by battery recycling emissions ([Pb] = 1650 ± 20 mg;kg−1).
Using that reference soil, the detection limits of Pb, Cd,  Sb, As,
Cu and Zn were 0.3, 0.2, 0.2, 0.2, 1.3 and 2.2 mg L−1, respectively,
whereas the limits of quantification were about 0.4, 0.3, 0.4, 0.3, 2
and 3 mg L−1, respectively. The concentrations found were within
95–102% of the reference values for all measured elements.

2.5. Ecotoxicity assessment

2.5.1.  Daphnia magna

A  first acute toxicity of leachates was performed on the water
flea D. magna (Origin, less than 24 h old) according to  [39]. Four
replicates were tested for each soil solution and five neonates were
used in each replicate, with 10 mL of test solution. Organisms were
fed 2 h before but not during the experiment. A parafilm strip was
then put on the multiwall plate placed in  the incubator at 20 ◦C
in darkness. The mobility of D. magna was recorded after 24 h and
48 h, and inhibition rate was calculated.

2.5.2. Microtox®

First used to assess acute ecotoxicity of metals in aquatic media
[40] and normalized since 2007 [41], solidphase Microtox® test is
now currently used to evaluate the toxicity of contaminated soils
or sediments [4,42,43]. The Microtox test measures the decrease
in light emitted by the bioluminescent bacteria Vibrio fischeri after
5, 15 and 30 min of exposure [43]. In view of evaluating toxicity
of collected soils, the Microtox 81.9% Basic Test with the instru
ment MICROTOX M 500 purchased from RBiopharm (France) was
used. 100 mL of revitalized bacteria (Lot 10J1010A) were added to
each Microtox® tube, gently mixed with a pipette. 900 mL of each
leachate was transferred into the glass cuvette in the Microtox®

analyzer and allowed to equilibrate for 5 min before reading [44].

Light  emission was recorded and the output data analyzed using
Microtox® Omni software Version 1.18 [45]. All samples were
tested in triplicate. Bacteria validity and the setup of the measure
ment procedures were verified by reference toxin (ZnSO4, 7H2O)
according to the ISO 11348 regulation specifications [41].

2.5.3. Induction of  bioluminescent bacteria

Many bacterial sensors are dedicated to the specific detec
tion of pollutants or pollutant family. These used bioelements
are bacterial strains (Escherichia coli) genetically modified. In all
cases, reporter genes lux CDABE are cloned downstream of a pro
moter allowing to highlight the specific or semispecific presence
for certain compounds in a sample [46,47]. In the case of metal
detection, the promoters used are mostly involved in the mech
anisms of bacterial resistance to heavy metals [48–50]. A set of
five bioluminescent bacteria namely E. coli Taclux, E. coli Zntlux,
E. coli Arslux, E. coli Coplux and E. coli Merlux was used in  this
study (Table 1). Bacterial growth and lyophilization were realized
according to Jouanneau et al. [24]. At the beginning of the bioas
say, the lyophilized bacteria were reconstituted with 100 mL per
well of distilled water for 30 min at +30 ◦C. 25 mL of leachate was
added to each well, and afterward the microplate was incubated
for 60 min at +30 ◦C. Monitoring of bioluminescence was recorded
using a microplate luminometer (Microlumat Plus Lb96V). The
results were expressed by the logarithm of the induction ratio or the
inhibition rate for the inducible strains and the constitutive strain,
respectively. The induction ratio (IR) was calculated as  follows:

 IR = (RLU·s−1)iIR/(RLU·s−1)0IR.  (RLU·s−1)iIR is the biolumines
cence after induction with a  sample, and (RLU·s−1)0IR is  the
background luminescence.The inhibition rate (InR) was  calcu
lated as follows:

 InR =  1 − (RLU·s−1)iInR/(RLU·s−1)0InR. (RLU·s−1)iInR is the biolu
minescence after exposure with a  sample, and (RLU·s−1)0InR is
the  background luminescence.



Table  1

Observed MTE and detection limits for  the  different E. coli strains [24].

MTE Detection limit of bacterial strains (standard deviation) (mM)

Zntlux Arslux Merlux Coplux

Cd 0.0045 (0.0003) 5.9 (2.3) 0.011 (0.002) –

Hg  0.01 (0.005) – 1.2 × 10−7 (1  × 10−7) –

As(III) 28.52  (7.1) 0.256 (0.0014) 15.6 (4.3) –

Cu 16.92  (2.9) – – 90.5  (11.7)

Pb 2.2 (0.6) 4.16 (0.8) – –

Sn  12.95 (4.24) – – –

As(V) 9.32  (1.24) 0.3  (0.06) 12.65 (5.4)

Zn 1.7 (0.62) – 2.3 (0.14) –

Ni  4.4 (1.6) – – –

Co 0.22  (0.014) – – –

Cr (VI) 597.2  (121.3) – – –

Ag  –  – – 2.75  (0.11)

Fe 4.34 (0.48) – 16.1 (7.6) –

Mn  –  – – –

Decision trees were designed from the learning set of bacterial bio
luminescence data using the software “Metalsoft”. They are specific
to only one compound and organized in several binary branches.
Each branch splits data according to the values of only one vari
able: induction ration or inhibition rate obtained from one strain.
The process continues until the target value is obtained [24].

2.6.  Statistical analysis

All  tests were performed in triplicate and results are presented
as mean ± SD (standard deviation). The statistical significance of
values was checked using an analysis of variance (ANOVA) using the
Statistica 9.0 package software. Each MTEextracted concentration
(both by water and CaCl2 procedures) was compared to respective
total concentration. Significant differences (pvalue < 0.05) were
measured by the LSD Fisher test.

3. Results

3.1. Physicochemical characteristics

Soil  properties are reported in Table 2. These physicochemi
cal characteristics significantly differ in function of sample origin:
it means localization on the industrial site in relation with pro
cess. pH value varied between 6.9 and 9.2, CEC value varies
between 2.6 and 10.5 cmol(+) kg−1 and amounts of soil organic
matter and carbonates (CaCO3) were highly variable, respec
tively, from 0.9 to 46.7 g  kg−1 and from 0  to 15.0 g kg−1.  MTE
concentrations in polluted soil samples (Table 3) were also very
heterogeneous: maximum lead concentration is 42,400 mgPb kg−1

and other elements are also present at  high levels (up to
2095 mgSb kg−1, 288 mgAs kg−1,  286 mgCu kg−1, 294 mgZn kg−1

and 80.9 mgCd kg−1). All these concentrations were clearly above
the national geochemical background as  shown in Table 3.

3.2.  Chemical extractions

MTE  (Pb, As, Cu, Cd, Zn and Sb) concentrations were measured
for all the solutions obtained by performing the three extractions
(aqua regia, water and CaCl2) on the studied polluted soil samples
(Tables 3–5; Figs. 2  and 3). Leached MTE amounts in water and
corresponding ratios (in comparison with aqua regia extraction,
considered as “total”) were significantly depending on element
nature (Table 4a and Fig. 2). The highest extracted concentra
tions were recorded for lead, antimony and zinc (MTE with high
total concentrations), respectively, 152.5, 158 and 9 mg kg−1, i.e.
8.7%, 7.3% and 7.9%. In comparison, copper (at equivalent content)
was significantly less extracted than zinc. Although quantitatively

low  extracted (≤5.4 mgCd kg−1), Cd was proportionally one of the
most watersoluble element (up to 15.9% for S6). Arsenic was the
less extracted MTE with a maximum concentration reached of
2.2 mgAs kg−1 (7.5% of the total for S4).

CaCl2 extractions results (Table 4b and Fig. 3) showed several
contrasted behaviours depending both on chemical element and
soil properties. The highest lead quantities extracted by CaCl2 were
observed for S1, S3 and S7 (up to 178.5 mg kg−1). However, for S4

sample with high total lead concentration, the extracted fraction is
low (1.3 mg kg−1). Conversely, antimony extracted concentration
reached 306.6 mgSb kg−1. Other MTE showed a low extractabil
ity (in terms of quantity and ratio) whatever the sample, except

Fig.  2. Ratios (%)  between MTE leached according to  the  EN 124572 procedure

and  aqua regia  extraction, for  the 10 soil samples: (a): sum of  the ratios of  leached

concentrations  (in %) <  10% and (b)  sum of the ratios of leachedconcentrations (in

%) >  30%.



Table  2

Main  physicochemical characteristics of  the ten  soil  samples.

Sample pH water Organic  matter (g kg−1) CEC (cmol(+) kg−1)  Limestone CaCO3 (g kg−1)  Granulometry (%)

Clay Thin silt Rough silt Thin sand Rough sand

S1 7.0  31.4  8.9 8.0  13.3 18.3  14.2 15.7  38.5

S2 8.7  9.6 3.7 7.0  3.6 10.7  10.9 19.7  55.1

S3 6.7  14.0 6.0  0.0  9.2 13.7  12.6 19.7  44.8

S4 8.7  12.3  8.9 15.0 7.8 12.1  11.4 21.3  47.3

S5 9.2  0.9 2.6 7.0  2.7 4.3  4.8 2.9 85.3

S6 9.0  1.6 3.3 4.0  4.3 8.1  6.7 15.5  65.4

S7 6.9  46.7  10.5 0.0  6.7 9.4  8.7 21.6  53.5

S8 7.5  3.4 3.3 4.0  3.3 5.9  4.1 8.6 78.0

S9 8.5  6.0 6.9 4.0  10.4 17.3  11.2 19.5  41.6

S10 8.9  1.3 3.3 8.0  1.5 5.6  4.4 7.3 81.2

Table 3

Aqua regia MTE concentrations for the  10 soil  samples (mineralization according to [29]).

MTE concentrations (mg kg−1) NGBa S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Pb 9–50 39,800 1425 42,400 37,250 1020 297 35,700 1445 1750 1065

As  1–25 288 28.7  51.5 52.5 5.8 9.3 34.3 8.65 13.3 10.2

Cu  2–20 286 14.7  143.5 116 13.6 16.1 249 19.4  59.5 60.5

Cd  0.05–0.45 18.4 2.24  34.3 4.15 3.39  0.69  80.9 3.39 4.7 11.3

Zn  10–100 294 37.1  216 218 42.8 41.9 545 55 116 94

Sb  0.2–10 2095 53.5  1555 2175 23.5 13.1 1955 15.9  44.5 9.15

a NGB: Natural Geochemical Background in France.

Table  4

Leached and phytoavailable MTE concentrations (mg kg−1)  in the ten polluted soil samples.

Leached concentrations (mg kg−1) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

(a) Leached TE concentrations (mg kg−1)

Pb 127.8  63.0  126.2 85.6 53.4 51.8  51.7  11.1  152.5 14.9

As  0.29 2.17  0.28 0.33 nda 0.38 nd nd 0.54 nd

Cu  1.50 0.71 1.20 0.57 1.44 1.67 0.52  nd 5.04 0.87

Cd  0.52 0.21 1.06 nd 0.21 0.11 5.75  0.05 0.39 0.10

Zn  3.71 1.90 4.19 1.26 3.32 3.86 9.04  0.41 9.13  1.00

Sb 10.0  3.69  9.63 158.2 0.81 2.30 1.64  0.23 3.13  0.22

CaCl2extracted concentrations (mg kg−1)  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

(b) Phytoavailable MTE concentrations assessed  by the CaCl2 procedure

Pb  178.5 0.71 162.9 1.30 0.52 0.60 89.4 14.7 0.31 3.64

As  nd nd nd 0.17 nd nd nd nd 0.04 0.01

Cu  0.43 0.20 0.37 0.38 0.19 0.18 0.32 0.21 0.29 0.64

Cd  3.16 0.20 4.16 0.22 0.31 0.22 20.1 0.68 0.22 0.24

Zn 2.77 nd 3.51 0.06  0.20 nd 25.6 0.44 0.08 0.10

Sb  1.54 0.48 1.56 306.6 0.16 0.28 0.77 0.08 0.35 0.11

a nd: not detected.

for S7 which registered pronounced pools of Cd and Zn associated
with high total concentrations. Fig. 3a and b  shows the fraction of
the extracted element in relation to total concentration. Cadmium
appeared as the most potentially phytoavailable element. Sb and Zn
also represented high extracted fractions, respectively, for S4 and
S7.  Moreover, compared to the aqua regia fraction, the CaCl2 fraction
remained lower, except for the most potentially phytoavailable Cd
element (2–32%).

3.3. Ecotoxicity tests

Ecotoxicity of leachates measured by the inhibition of D. magna

mobility was highly variable (Table 5). Whatever the sample tested,
the inhibition of daphnia mobility increased between 24 h and 48 h,
except for S3 whose inhibition was near 100% after only 24 h.  Eco
toxicity was also maximal (i.e. 100%) for S1, S2, S7 and S8 after 48 h;
while the lower inhibition was observed for S5 (15%). Ecotoxicity

Table 5

Results of the Daphnia magna and  Microtox® tests for the 10 leachates.

Ecotoxicity test Sample

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

D. magnaa 24 h  90 35 100 40 10 25 80 65 45 5

48  h  100 100 100 65 15 80 100 100 65 70

Microtox®b 5 min 29 ntc nt  nt nt  nt 63 nt nt  nt

15  min  78.5  nt nt  12 nt  nt 92 nt nt  nt

30  min 93 nt 34 34 nt  nt 96 nt nt  nt

a Inhibition of mobility (%).
b Inhibition of bioluminescence (%).
c nt:  not toxic.



Fig. 3. Ratios (%) between MTE extracted by CaCl2 and aqua  regia,  for  the 10 soil

samples.  (a) Pb, Sb, As, Zn  and Cu  and (b) Cd.

was not simply dependant of MTE concentration: (i)  the most MTE
enriched leachates were not always the more toxicant; (ii) leachate
of S8 had low MTE concentrations while the inhibition of daphnia
mobility was 100%.

The  mean EC5030 min value obtained for zinc sulphate hep
tahydrate (expressed as Zn2+) was 2.38 mg L−1, allowing concluding
that the invertebrates lot fulfilled the validation specifications
according to [34]. Microtox® test results (Table 5) showed an
increase in the number of toxic samples with the contact time:
inhibition of bioluminescence was detected in two samples at the
beginning of the experiment and for four of them at the end (S1 and
S7 to 5 min; S1, S4 and S7 to 15 min; S1, S7, S4 and S3 at 30 min). The
measured ecotoxicity also increased over time and was above 90%
for S1 and S7 after 30 min of contact. The bacteria were most affected
by S7 with an inhibition of the luminescence of 63% (5 min). Unlike
the test on Daphnia, S2, S6, S8, S9 and S10 showed no toxicity, as S5 in
both bioassays. As described above, S1,  S3, S4 and S7 are among the
most contaminated leachates ([Pb] > 80 mg kg−1;  [Sb] > 10 mg kg−1

(except S7)) (Table 4a).
The sensitivity and specificity of inducible bacteria were mea

sured after 60 min in contact with leachates. None of the sample
induced the luminescence of Coplux strain. Only two samples, S1

and S7, showed a slight toxicity as  demonstrated by the inhibition
of luminescence of the constitutive strain pBtaclux (Table 6a).

These samples also induced the luminescence of Zntlux, Arslux
and Merlux strains. For S1 and S7 the maximum IR  was recorded
for Arslux (IR = 99.6) and Merlux (IR = 138.1), respectively. S3

increased moderately the luminescence of Merlux (IR = 12.9) and
Zntlux (IR = 4.0) while S2 induced only Arslux (IR = 324.9). The
analysis with decision trees was then used to determine the
elements potentially responsible for ecotoxicity of S1, S2, S3 and
S7.  Crosses between results suggested the presence of arsenic in
these four leachates (up to 10−5 M, i.e. more than by  chemical

analysis), cadmium for S1,  S3 and S7, biologically at levels lower
than those measured chemically (Table 6b). Analysis of S7 also
showed the presence of copper and mercury (from 10−4 to 10−5 M
and 10−9 to 10−5 M). According to the previous tests, these results
also concluded to the ecotoxicity of S1 and S7, and, to a minor
extent, the ecotoxicity of S3 and S4.

4. Discussion

4.1. Mobility and phytoavailability of MTE

In this study, soil pH were basic or close to neutral conditions
and leaching procedure slightly reduced the pH by water addition.
Conversely, CaCl2 is already known to not modify soil pH and give
results closer from field reality [15]. Thus, hazard proposed classi
fication of polluted soils differs between water leaching and CaCl2
procedures. Several studies already showed that MTE extractabil
ity is strongly influenced by the nature of the extracting agent,
which can control element mobility [15,16]. Moreover, according
to Dumat et al. [51] or Ferrari et al. [52], solidliquid MTE trans
fers during chemical extractions are complex reactions involving
numerous factors that can influence MTE speciation and release.
Contact times chosen for chemical extractions were 24 h for water
and only 2 h for CaCl2 in accordance with the commonly used pro
tocols: these two procedures carry complementary information but
the results are not directly comparable.

All MTE were extracted in substantially equal proportions with
water (from 0 to  18%); MTE concentrations in CaCl2 extracts and
corresponding ratios, varied in the range of those reported in the
literature [5,58,61], and Cd was the most available element (up to
32%). Extracted concentrations were strongly correlated to total
concentrations: R2 = 0.92 and 0.95 (p < 0.0001), respectively, for
water and CaCl2. At the reverse side, for all the other elements
no relevant correlation was found between total and extracted
fractions. In agreement with previous publications [5,15], these
results highlighted the influence of soil properties and MTE nature
on its behaviour. Differences observed in function of MTE nature
can be explained by different OM or CaCO3 soil contents, CEC
or soil pH. In soils, cadmium is generally easy to dissolve which
explain its relatively high extractability [53]. High correlation fac
tors were observed between exchangeable Cu and Zn fractions
and soil organic matter amount: R2 =  0.82 for Cu (p < 0.05) and
R2 =  0.91 for Zn (p <  000.1). These elements were thus less mobile
because of their affinity for this soil fraction [11,54]. Concerning
lead behaviour, no relationship was found between extracted and
total concentrations, and the influence of even one soil parame
ter was difficult to highlight. Nevertheless, low extraction ratios
compared to the most concentrated samples (S1, S3, S4 and S7) can
be explained by stronger bounds on soil phases as mineral frac
tion [29]. Finally, sorption of metalloids as As and Sb, is mainly
controlled by mineral phases [55]. The high Sb amount extracted
from S4 could be explained not only by a higher total concentration
but also by the highest CaCO3 content [56]. Sb could be solubilized
under the influence of soil biophysicochemical parameters con
trolling its sorption [57–59]. pH and CEC were already described as
influent parameters of element extractability [60], retention and
mobility in soils [11]. Thus, according to the origin of soil samp
ling, differences in soil parameters were observed (Fig. 1): in the
industrial site, areas not covered or infiltration zones were the most
impacted by MTE. Their organic matter content and CEC were also
the higher, thus confirming their role in sorption/desorption mech
anisms. The choice of the extractant is thereby an important step
to be relevant in risk assessment and to avoid an under or over
estimation of phytotoxicity. Finally, the data obtained by chemical
tests are difficult to interpret because of the many parameters inter
act. The realization of ecotoxicity tests to measure the impact of



Table  6

Ecotoxicity results of  bioluminescence emitted by the bacterial strains.

Sample Bacterial strain

ZntLuxa Arsluxa Merluxa pBtacluxb

(a) Induction factor and  inhibition rate calculated from the bioluminescence

S1 4.8 99.6 9.9 6.5

S2 0.9  324.9 0.8  –

S3 4.0  1.2 12.9 –

S4 1.4  0.8 0.9  –

S5 0.7  0.9 1.0 –

S6 0.6  0.8 0.9  –

S7 5.4  79.8 138.1  18.4

S8 1.2  0.9 0.9  –

S9 1.3  2.1 0.8  –

S10 1.2  1.2 0.8  –

Sample Chemical analysis Biological analysis (prediction with decision trees)

Cd As  Cu  Hg Cd As Cu  Hg

(b) Comparison between MTE leached watersoluble concentrations and range “biologically” detected  by the bacterial strains (unit: M)

S1 4.5 × 10−7 3.7 × 10−7 2.3 × 10−6 – 10−8 to  10−7 10−6 to 10−5 – –

S2 1.8 × 10−7 29.7 × 10−7 1.1 × 10−6 – – 10−6 to 10−5 – –

S3 9.1 × 10−7 3.6 × 10−7 1.8 × 10−6 – 10−8 to  10−7 <  10−6 – –

S7 48.9 × 10−7 3.3 × 10−7 0.8 × 10−6 – 10−8 to  10−7 10−6 to 10−5 10−4 to  10−5 10−9 to  10−5

a IF: induction factor.
b Inhibition rate (%).

pollution on ecosystems seems therefore particularly appropriate
in this type of study.

4.2.  Relevance of ecotoxicity tests for risk assessment posed by

landfilling

The  D. magna ecotoxicity test was more sensitive to MTE impact
than the Microtox® test. But, unlike tests on the different bacterial
strains, they do not both provide information on MTE quantifi
cation. Ecotoxicity differences were measured for some samples,
especially S2 and S8. These differences can be firstly explained by
water flea sensitivity. Detection capabilities of the ecotoxicity of
the leachate are actually dependent on the test used [62,63] and it
has been already shown that V. fischeri was generally less sensitive
than D. magna [10,64]. Instead of these tests, experiments by using

bacterial  strains allowed to determine and quantify the element
which was potentially bioavailable and/or toxic for bacteria [50].
Then, response in ecotoxicity tests was not always directly corre
lated with total or watersoluble concentrations [65]. These results
are in agreement with data previously obtained by Plaza et al. [14]
concerning the influence of pH and CEC on MTE behaviour in soils.

Results of this study have shown that this new bioassay enables
the screening of samples in terms of environmental risk during
remediation process [24]. However, the drawback of the lack of
specificity of one strain and the effect of a  mixture of MTE (syner
gistic or antagonistic effects) could be overcome by using a panel of
bacterial strains coupled with a predictive model [24]. Due to the
lack of specific bacteria for lead, the introduction of other strains
induced by lead like Rastonia Metallidurans AE 1433 [66] could
improve the interpretation of the data.

Table 7

Hazard classification, adapted from [10,60].

Sample Score Classa MCWb Wc PWd

D.  magna Microtox Zntlux Arslux Merlux pBtaclux

S1 4  3 1 3 2  2  V 4 2.5 62.5

S2 4  0 0  4 0 0  V 4 1.3 33.3

S3 4  1 1 1 2  0  V 4 1.5 37.5

S4 2  1 1 0 0 0  III 2 0.7  33.3

S5 0  0 0  0 1  0  II 1 0.2  16.7

S6 3  0 0  0 0 0  IV  3 0.5  16.7

S7 4  3 2 3 4  2  V 4 3.0 75.0

S8 4  0 1 0 0 0  V 4 0.8  20.8

S9 2  0 1 1 0 0  III 2 0.7  33.3

S10 2  0 1 1 0 0  III 2 0.7  33.3

a

Class MCW

I  No acute toxicity PE  < 20% IR/InR <  1  0

II Slight acute toxicity 20% ≤ PE  < 50% 1  ≤ IR/InR <  5  1

III Acute toxicity 50% ≤ PE  < 75% 5  ≤ IR/InR <  50 2

IV High acute toxicity 75% ≤ PE  < 100% 50 ≤  IR/InR < 100 3

V Very high acute toxicity PE  ≥ 100% IR/InR ≥ 100 4

b MCW: maximum class weight score.
c W: class weight score.
d PW: class weight score in percent.



!

!

!

!

1.1. Hazard classification according to ecotoxicity

!

According to Persoone et al. [67] and Matejczyk et al. [10], the

samples were ranked into one of five classes on the basis of the

percentage effect (PE) found in Daphnia and Microtox® tests. Rank-

ing was based on induction/inhibition rates for bacterial strains. A

weight score was calculated for each hazard class to indicate the

quantitative importance (weight) of the ecotoxicity in that class.

The weight score was expressed as percentage.
!

),
all test scores
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