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Abstract This paper presents new approaches for the estimation of the ex-
treme value index in the framework of randomly censored (from the right)
samples, based on the ideas of Kaplan-Meier integration and the synthetic
data approach of S.Leurgans (1987). These ideas are developed here in the
heavy tail case and for the adaptation of the Hill estimator, for which the
consistency is proved under first order conditions. Simulations show good per-
formance of the two approaches, with respect to the only existing adaptation
of the Hill estimator in this context.
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1 Introduction

Estimating the extreme value index is an important problem in extreme value
statistics. A distribution function (d.f.) F is said to be in the maximum domain
of attraction of Hγ (noted F ∈ D(Hγ)) with

Hγ(x) :=

{
exp

(
−(1 + γx)−1/γ

)
for γ 6= 0 and 1 + γx > 0

exp(− exp(−x)) for γ = 0 and x ∈ R ,
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if there exist two normalizing sequences (an) ⊂ R+ and (bn) ⊂ R such that
(for every x ∈ R)

Fn(anx+ bn)
n→∞−→ Hγ(x).

If we observe a sample (Xi)i≤n with common distribution function F ∈
D(HγX ), with γX > 0, a classical estimator of the extreme value index γX is
the so-called Hill estimator

γ̂X,Hill :=
1

kn

kn∑
i=1

log

(
Xn−i+1,n

Xn−kn,n

)
where X1,n ≤ · · · ≤ Xn,n are the ascending order statistics associated to the
X-sample and kn the sample fraction to keep from this sample.

However, in a certain number of applications, such as survival analysis,
reliability theory, insurance . . ., the variable of interest X is not necessarily
completely available. This is the case in the presence of random right cen-
soring. Examples of censored data with apparent heavy tails can be found in
[Gomes and Neves (2011)] and [Einmahl et. al. (2008)].

The usual way to model this situation is to introduce a random variable
C, independent of X, such that only

Z = X ∧ C and δ = IX≤C

are observed. The observed variable δ determines whether X has been cen-
sored or not. It is common sense that any classical estimator of the extreme
value index (such as the Hill or the Moment estimator) is not consistent for
estimating γX if it is naively computed from the Z-sample (indeed, it esti-
mates the extreme value index associated to the Z-sample, denoted by γ in
the sequel).

Recently, [Beirlant et. al. (2007)] and [Einmahl et. al. (2008)] proposed an
adaptation of classical extreme value index estimators in the case of right ran-
dom censoring, therefore providing (to the best of our knowledge) the first
methodological papers on this subject; their method will be presented in sub-
section 2.1.

In this paper, we propose two different approaches to deal with the estima-
tion of γX , relying on more natural heuristics in this randomly censored sample
framework : one of these amounts to consider Kaplan-Meier integrals, and the
other on ideas coming from censored regression. Given the combination of dif-
ficulties coming from extreme values and censoring, we will restrict ourselves
to the application of these approaches to the adaptation of the Hill estimator,
in the heavy tailed case, and to the consistency of these adapted estimators.
It is however more than likely that our ideas adapt to other, more efficient,
estimators of the extreme value index, and to other domains of attraction.

In Subsection 2.1, we define the framework more precisely and recall the
existing methodology cited above. In Subsections 2.2 and 2.3, we present our
methodology and state the consistency results for the adaptation of the Hill
estimator. Section 3 is devoted to a small simulation study, and Section 5 to
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the proofs. A conclusion is provided in Section 4.

Notations : in the whole paper, the sign := denotes an equality defining the
quantity on the left side, f(t−) denotes lims↑t f(s), and f← the general inverse
of the function f . IA(x) is equal to 1 if x ∈ A and 0 if x 6∈ A. The definition
of a regularly varying function f of order α (noted f ∈ RVα) is recalled in the
Appendix.

2 Methodology

2.1 The framework and a general existing methodology

We consider in this paper two independent i.i.d. non-negative samples (Xi)i≤n
and (Ci)i≤n with respective continuous distribution functions F and G (with
end-points τF and τG, where τF := sup{x, F (x) < 1}). In the context of
randomly right-censored observations, one actually only observes, for i ≤ n,

Zi = Xi ∧ Ci and δi = IXi≤Ci .

We denote by H the distribution function of the Z-sample, satisfying

1−H = (1− F )(1−G)

and by Z1,n ≤ · · · ≤ Zn,n the associated order statistics. In the whole pa-
per, δ1,n, . . . , δn,n denote the δ’s corresponding to Z1,n, . . . , Zn,n, respectively
([Stute (1995)] call them “concomitant” to the order statistics).

If F and G are assumed to be in the maximum domains of attraction
D(HγX ) and D(HγC ) respectively, where γX and γC are real numbers, then
this implies that H ∈ D(Hγ), for some γ ∈ R. [Einmahl et. al. (2008)] consid-
ered the following three most interesting cases :

case 1: γX > 0 , γC > 0 in this case γ =
γXγC
γX + γC

case 2: γX < 0 , γC < 0 , τF = τG in this case γ =
γXγC
γX + γC

case 3: γX = γC = 0 , τF = τG = +∞ in this case γ = 0.

The general existing method, appeared first in [Beirlant et. al. (2007)] and
developed in [Einmahl et. al. (2008)], is to consider any consistent estimator
γ̂Z of the extremal index γ applied to the Z-sample and divide it by the
proportion p̂ of non-censored observations in the tail (i.e. in the kn largest
observations of the Z-sample). That is, an adaptation of an extreme value
index estimator in the presence of random right censoring is :

γ̂cX :=
γ̂Z
p̂
, where p̂ :=

1

kn

kn∑
j=1

δn−j+1,n. (1)
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It is proved in [Einmahl et. al. (2008)] that p̂ consistently estimates p :=
γC

γX+γC
and therefore γ̂cX consistently estimates γ/p = γX (obtaining as well

the asymptotic normality, if it holds for the sequence γ̂Z). This method pro-
vides flexibility as to the choice of the estimator of γZ . Up to now, the only
alternative to it, in this context, is the adaptation of the ML estimator based
on the excesses over a threshold, developed in [Beirlant et. al. (2010)], which
we shall however not detail here.

We now present an alternative path for estimating the extreme value index
γX , based on ideas which are well-known in the survival analysis literature.

2.2 First approach

The starting point of the first new approach is the following well known re-
sult, which is the basis of censored regression methods (for instance, an early
reference is [Koul et. al. (1981)]) : if φ is some nonnegative real function,

E
[

δ

1−G(Z)
φ(Z)

]
= E[φ(X)]. (2)

It is readily proved : since Z = X when δ = 1,

E
[

δ

1−G(Z)
φ(Z)

]
=

∫∫
Ix≤c

φ(x)

1−G(x)
dF (x) dG(c)

=

∫
φ(x)(1−G(x))−1

(∫ +∞

x

dG(c)

)
dF (x)

=

∫
φ(x) dF (x) = E[φ(X)].

In the context of extreme value statistics, the idea is to take advantage
of this property and of the fact that some tail parameters of the distribution
of X can be approached by the expectation of some function of X, therefore
opening the way to their estimation. In this paper we will illustrate it in the
context of heavy-tailed distributions, and for the estimation of the extreme
value index, assuming that we are in the first of the three situations presented
in paragraph 2.1 :

F ∈ D(HγX ) , G ∈ D(HγC ) with γX > 0 and γC > 0 (3)

which, as noted earlier, implies that H ∈ D(Hγ) with

γ =
γXγC
γX + γC

.

In this case, it is well known that (see Remark 1.2.3 in [Haan and Ferreira (2006)]
for instance)

lim
t→+∞

E [log(X/t) |X > t] = γX . (4)
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If (kn) is a sequence of integers satisfying, as n tends to +∞,

kn → +∞ and kn = o(n) (5)

then we can define a random version of φ(x) = (1−F (t))−1 log(x/t)Ix>t, with
random threshold t = Zn−kn,n

φ̂n(x) :=
1

1− F̂n(Zn−kn,n)
log

(
x

Zn−kn,n

)
Ix>Zn−kn,n . (6)

Consequently, by combining (2) and (4) with this function φ̂n, our first adap-
tation of the Hill estimator comes, valid in situation (3),

γ̂KMX,Hill :=
1

n(1− F̂n(Zn−kn,n))

kn∑
i=1

δn−i+1,n

1− Ĝn(Z−n−i+1,n)
log

(
Zn−i+1,n

Zn−kn,n

)
, (7)

where F̂n and Ĝn (the Kaplan-Meier estimators of F and G, respectively) are
defined as follows : for t < Zn,n,

1−F̂n(t) =
∏

Zi,n≤t

(
n− i

n− i+ 1

)δi,n
and 1−Ĝn(t) =

∏
Zi,n≤t

(
n− i

n− i+ 1

)1−δi,n
.

Note that we take Ĝn(Z−n−i+1,n) instead of Ĝn(Zn−i+1,n), in the definition of

γ̂KMX,Hill, because 1− Ĝn(Zn,n) can be zero or undefined.

The following theorem provides the consistency of this estimator. For this
purpose, we need two additional assumptions on the behavior of the function
p ◦H← : if p(z) := P(δ = 1|Z = z),

1

kn

kn∑
i=1

∣∣∣∣p(H←(1− i

n

))
− p
∣∣∣∣ P−→ c ∈ R (8)

sup
(s,t)∈Cn

|p(H←(t))− p(H←(s))| → 0, for all C > 0 (9)

where Cn = {(s, t) such that s < 1 , 1− kn/n ≤ t < 1 , |t− s| ≤ C
√
kn/n }.

Theorem 1 Under assumptions (3), (5), (8), (9), if we additionally assume
that

− log(kn/n)
/
kn = O(n−δ), (10)

for some δ > 0 if γX < γC and for some δ ≥ γX − γC
γX + γC

if γX ≥ γC , then, as n

tends to +∞,

γ̂KMX,Hill
P−→ γX .
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Remark 1 Inspection of the proof (see the treatment of Pn at the end of
subsection 5.1.2) reveals that any sequence (kn) such that kn ≥ cna (for some
a ∈]0, 1[, some constant c > 0, and n large) is suitable for the theorem to hold
(whether γX < γC or not, and without assuming (10)).

Remark 2 Assumptions (8) and (9) have similarities with (but are weaker
than) those used in [Einmahl et. al. (2008)]. The latter have been proved, in
[Brahimi et. al. (2013)], to be unnecessary for obtaining the asymptotic nor-
mality of the adapted Hill estimator γ̂cX,Hill := γ̂Z,Hill/p̂ (see (1)). The em-
pirical process techniques used in [Brahimi et. al. (2013)] do not seem to be
applicable in our setting, since our estimator is a nonconstantly-weighted ver-
sion of the Hill estimator

γ̂KMZ,Hill =
1

kn

kn∑
i=1

1− Ĝn(Zn−kn,n)

1− Ĝn(Zn−i+1,n)
δn−i+1,n log

(
Zn−i+1,n

Zn−kn,n

)
whereas

γ̂cZ,Hill =
1

kn

kn∑
i=1

1

p̂
log

(
Zn−i+1,n

Zn−kn,n

)
Remark 3 We have made the choice of a random threshold and fixed number
of relative excesses, because it seemed closer to what is done in practice and,
secondly, the other path went with its own difficulties. This other choice was
to consider a deterministic threshold tn, and then (up to the estimation of F
at tn, which causes no problem) write γ̂KMX as a proper Kaplan-Meier integral∫
φn(x) dF̂n(x), with deterministic φn(x) = (1−F (tn))−1 log(x/tn)Ix>tn (with

our choice, the function φ̂n is random). However, this function φn is intrin-
sically unbounded, has a “sliding towards infinity” support, and is dependent
on n : we found no way to deal with this, using the Kaplan-Meier integration
tools known in the literature.

2.3 Second approach

Our second approach, alternative to the Kaplan-Meier integral approach pre-
sented in the previous paragraph, is based on ideas of [Leurgans (1987)], who
developed a “synthetic data” strategy in censored regression problems (see
[Delecroix et. al. (2008)] for a more recent reference to this method). The start-
ing point of this second approach is the following result :

if φ and ψ are two nonnegative R+ → R
functions such that

∫ x
0
ψ(t) dt = φ(x), then

E

[∫ Z

0

ψ(t)

1−G(t)
dt

]
= E[φ(X)]. (11)
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Indeed,

E

[∫ Z

0

ψ(t)

1−G(t)
dt

]
=

∫ +∞

0

(∫ +∞

t

dH(z)

)
ψ(t)

1−G(t)
dt

=

∫ +∞

0

(1− F (t))ψ(t) dt =

∫ +∞

0

(∫ +∞

t

dF (x)

)
ψ(t) dt

=

∫ +∞

0

(∫ x

0

ψ(t) dt

)
dF (x) = E[φ(X)].

Consequently, if φ(x) =
∫ x
0
ψ(z) dz, then

1

n

n∑
i=1

∫ Zi

0

ψ(z)

1− Ĝn(z−)
dz

should correctly estimate E[φ(x)]. This estimator can be rewritten using the
special form of function ψ and the piecewise constant form of the Kaplan-
Meier estimator Ĝn : noting Z0,n = 0, and rk(Zi) the (ascending order) rank
of the observation Zi in the Z-sample, we have indeed∫ Zi

0

ψ(z)

1− Ĝn(z−)
dz =

rk(Zi)∑
j=1

∫
]Zj−1,n,Zj,n]

ψ(z)

1− Ĝn(z−)
dz

=

rk(Zi)∑
j=1

1

1− Ĝn(Zj−1,n)

∫ Zj,n

Zj−1,n

ψ(z) dz

=

rk(Zi)∑
j=1

φ(Zj,n)− φ(Zj−1,n)

1− Ĝn(Zj−1,n)
.

Considering, once again, the function φ̂n introduced in (6), we can now define
our second new adaptation of the Hill estimator, valid in situation (3)

γ̂LeurgX,Hill :=
1

n

n∑
i=1

i∑
j=1

φ̂n(Zj,n)− φ̂n(Zj−1,n)

1− Ĝn(Zj−1,n)

which turns out to be, after some simplifications,

γ̂LeurgX,Hill =
1

n(1− F̂n(Zn−kn,n))

kn∑
i=1

1

1− Ĝn(Z−n−i+1,n)
i log

(
Zn−i+1,n

Zn−i,n

)
.

(12)
We note that, while γ̂KMX,Hill appeared as a weighted version of the classical

form of the Hill estimator (mean of the log relative excesses log(Zn−i+1,n/Zn−kn,n)),

our second candidate γ̂LeurgX,Hill is a weighted version (but with weights which are
always non null) of the mean of the so-called log spacings i log(Zn−i+1,n/Zn−i,n),
i.e. the other form of the Hill estimator.

The following theorem provides the consistency of this estimator, under
less restrictive conditions than Theorem 1.
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Theorem 2 Under assumptions (3), (5) and (10), then, as n tends to +∞,

γ̂LeurgX,Hill
P−→ γX .

3 Finite sample behaviour

In this section, we present some graphs (issued from an extensive study in
the heavy tail framework) corresponding to the comparison, in terms of ob-
served bias and mean squared error (MSE) of our new estimators γ̂KMX,Hill and

γ̂LeurgX,Hill (defined by (7) and (12)) with other adapted estimators for γX (see
(1)) : the adapted Hill estimator γ̂cX,Hill and the adapted version of the bias-
corrected Hill estimator (introduced and studied in [Caeiro et. al. (2005)] and
[Gomes et. al. (2008)]) γ̂cX,MVRB , where MVRB stands for minimum-variance
reduced-bias.

We consider two classes of heavy-tailed distributions :

– Burr(β, τ, λ) with d.f. 1− ( β
β+xτ )λ, which extreme value index is 1

λτ .

– Frechet(γ) with d.f. exp(−x−1/γ), which extreme value index is γ.

For each considered distribution, 2000 random samples of length n = 500
were generated ; median bias and MSE of the four above-mentioned estimators
are plotted against different values of kn, the number of excesses used.

We considered three cases : a Burr distribution censored by another Burr
distribution (Fig.1), a Fréchet distribution censored by another Fréchet dis-
tribution (Fig.2) and a Fréchet distribution censored by a Burr distribution
(Fig.3). In each case, we considered a situation with γX < γC (subfigure (a)),
which corresponds to a weak censoring in the tail, and the reverse situation
with γX > γC (subfigure (b)), which corresponds to a strong censoring.

It seemed more natural to present separately, below, the comparison of our
estimators γ̂KMX,Hill and γ̂LeurgX,Hill with γ̂cX,Hill on one hand, and with γ̂cX,MVRB

on the other hand.

From the three situations presented above, it seems that our new estimators
perform better than the former adapted Hill estimator, in the weak censoring
case, both in term of bias and MSE. It is not surprising that, in the strong
censoring case, results become worse for all estimators but (clearly) to a lesser

extent for ours. Moreover, in the strong censoring situation, γ̂LeurgX,Hill seems to
have systematically the best behavior. Other simulations not presented here
confirm this phenomenon.

Turning now to the comparison of our estimators with the adaptation of
the MVRB estimator, first note that intuitively this should end with a better
performance for the latter, since in the uncensored situation it possesses bet-
ter theoretical and empirical properties than the Hill estimator, on which our
estimators are based. It is indeed the case when the bias-reduction is success-
ful (as in Figure 2(a)), but surprisingly, our adaptations of the Hill estimator
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(a) Burr(10, 1, 2) censored by Burr(10, 1, 1)

(b) Burr(10, 1, 1) censored by Burr(10, 1, 2)

Fig. 1 Comparison of bias and MSE for γ̂KM
X,Hill (solid), γ̂Leurg

X,Hill (thick), γ̂cX,Hill (dotted)

and γ̂cX,MVRB (dashed) for a Burr distribution censored by another Burr distribution : (a)

γX = 1/2 and γC = 1 (weak censoring), (b) γX = 1 and γC = 1/2 (strong censoring)

compete quite well (especially the ”Leurgans” one) or sometimes even outper-
form the MVRB usual adaptation (in term of MSE), particularly in the strong
censoring framework. Even if these comments are only based on a rather small
simulation study, they are nonetheless quite encouraging, and motivate the
extension of our methodology to other estimators.
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(a) Fréchet(1/2) censored by Fréchet(1)

(b) Fréchet(1) censored by Fréchet(1/2)

Fig. 2 Comparison of bias and MSE for γ̂KM
X,Hill (solid), γ̂Leurg

X,Hill (thick) γ̂cX,Hill (dotted)

and γ̂cX,MVRB (dashed) for a Fréchet distribution censored by another Fréchet distribution

: (a) γX = 1/2 and γC = 1 (weak censoring), (b) γX = 1 and γC = 1/2 (strong censoring)
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(a) Fréchet(1) censored by Burr(10, 1, 1/2)

(b) Fréchet(1) censored by Burr(10, 1, 3/2)

Fig. 3 Comparison of bias and MSE for γ̂KM
X,Hill (solid), γ̂Leurg

X,Hill (thick) γ̂cX,Hill (dotted)

and γ̂cX,MVRB (dashed) for a Fréchet distribution censored by a Burr distribution : (a)

γX = 1 and γC = 2 (weak censoring), (b) γX = 1 and γC = 2/3 (strong censoring)
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4 Conclusion

In this paper, we have introduced two new approaches for the estimation of the
extreme value index in the case of randomly censored observations, based on
ideas coming from the censored regression literature. The estimation problem
of the e.v.i. in the censoring framework had been addressed in very few papers
before, and our methodology, though we have applied it to the adaptation of
the Hill estimator in the heavy tail case only, has some potential for more
applications, either for other estimators (moment based estimators on first
place) and other maximum domains of attraction, or maybe for the estimation
of other tail parameters. This work thus forms a basis for future research in
this recently studied area of censored extremes, which can prove much useful
in applications, as was showed in the review paper [Gomes and Neves (2011)].
For the moment, technical problems prevent us from obtaining asymptotic
normality results and rigorous evaluation of the variance, but simulations show
that our two versions of the Hill estimator perform quite well with respect to
the existing version, in terms of MSE, even in the apparently less favorable
case of heavy censoring in the tail (γX > γC).

5 Proofs

First, note that in several occasions in the next pages, reference will be made
to Proposition 1 : it is stated in the Appendix.

5.1 Proof of Theorem 1

Since (1− F̂n(t))(1− Ĝn(t)) = kn/n for t = Zn−kn,n, by introducing

An :=
1− Ĝn(Zn−kn,n)

1−G(Zn−kn,n)
and Cin :=

1−G(Zn−i+1,n)

1− Ĝn(Z−n−i+1,n)

we can write

γ̂KMX,Hill = An
1

kn

kn∑
i=1

CinWin,

where

Win := δn−i+1,n log

(
Zn−i+1,n

Zn−kn,n

)
1−G(Zn−kn,n)

1−G(Zn−i+1,n)
.

Therefore, we have the decomposition γKMX,Hill = An(Wn +Rn) where

Wn :=
1

kn

kn∑
i=1

Win and Rn :=
1

kn

kn∑
i=1

(Cin − 1)Win.

First of all, relying on Theorem 2 in [Csörgő (1996)], continuity of G entails

that An
P−→ 1, as n → +∞ (please note that, unfortunately, this theorem
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will not be sufficient for controlling the quantities Cin, because they involve
really extreme observations ; in section 5.1.2 we show how this difficulty is
circumvented).

Consequently, it remains to prove that Wn
P−→ γX and Rn

P−→ 0 : this is
the purpose of the next two subsections.

5.1.1 Proof of Wn
P−→ γX

Let us first introduce the following notation, used throughout the rest of the
proof,

Z̃i,n :=
Zn−i+1,n

Zn−kn,n
.

Under assumption (3) (which implies that 1 − G ∈ RV−1/γC and 1 − H ∈
RV−1/γ), setting ε > 0, we can apply Potter bounds (29) stated in Proposition

1, to the function 1/(1 − G) ∈ RVγ−1
C

, and to t = Zn−kn,n
P−→ +∞ and

x = Z̃i,n ≥ 1. We thus obtain for n sufficiently large, the following bounds for
Win :

(1−ε)δn−i+1,n log(Z̃i,n)(Z̃i,n)γ
−1
C −ε ≤Win ≤ (1+ε)δn−i+1,n log(Z̃i,n)(Z̃i,n)γ

−1
C +ε.

(13)
Therefore, it remains to prove that both the mean of the lower bound, and
that of the upper bound, converges in probability to a quantity arbitrary close
to γX when ε is taken close to 0. We consider the case of the upper bound
only, the lower bound being similar.

Recall that
p :=

γC
γX + γC

which is (see [Einmahl et. al. (2008)]) the limit of p(z) = P(δ = 1|Z = z) when
z →∞. We intend to rely on the closeness of the δn−i+1,n to i.i.d. Bernoulli(p)

random variables, independent of the log-spacings Z̃i,n.

Mimicking what was proposed in [Einmahl et. al. (2008)], we use the fact
that the original (Zi, δi)i≤n are identically distributed as (Z ′i, δ

′
i)i≤n, where

δ′i = IUi≤p(Z′i) and (Ui)i≤n denotes an i.i.d. sequence of standard uniform
variables, independent of a given sequence (Z ′i)i≤n of i.i.d. variables having H
as their c.d.f. We thus carry on the proof by considering now that δi is related
to Zi by

δi = IUi≤p(Zi).

We then define (where the Ui below is the same as the one in the above
definition of δi)

δ̃i = IUi≤p
which are Bernoulli(p) distributed and independent of the sequences (Zi) and
(Z̃i,n). Note that we define (δ̃1,n, . . . , δ̃n,n) as the rearrangements of the δ̃i
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corresponding to the order induced by the order statistics (Z1,n, . . . , Zn,n) :

these are however still independent of the sequences (Zi) or (Z̃i,n).

According to (13), it comes

(1 + ε)−1Wn ≤
1

kn

kn∑
i=1

δ̃n−i+1,n log(Z̃i,n)(Z̃i,n)γ
−1
C +ε

+
1

kn

kn∑
i=1

(δn−i+1,n − δ̃n−i+1,n) log(Z̃i,n)(Z̃i,n)γ
−1
C +ε

=: J1
n + J2

n (14)

(i) Let us first prove that J1
n

P−→ g(ε), with limε↓0 g(ε) = γX .

Let Y1,n, . . . , Yn,n be the ascending order statistics of n i.i.d standard Pareto
random variables Y1, . . . , Yn with distribution function 1− 1/x, for x > 1. By
independence of the δ̃j,n and the Z̃i,n, if U is the quantile function associated
to H (i.e. U(t) = H←(1− 1/t)) then

Z̃i,n log(Z̃i,n)
d
=

U(Yn−i+1,n)

U(Yn−kn,n)
log

(
U(Yn−i+1,n)

U(Yn−kn,n)

)
. (15)

Under assumption (3), U is regularly varying with index γ and Proposition
1 can be applied to U . Taking for each 1 ≤ i ≤ kn, t = Yn−kn,n and x =
Yn−i+1,n/Yn−kn,n, bounds (29) and their logarithm yield, for some given ε′ > 0
and n sufficiently large,

(1−ε′)γ
−1
C +εHε

in ≤
(
U(Yn−i+1,n)

U(Yn−kn,n)

)γ−1
C +ε

log

(
U(Yn−i+1,n)

U(Yn−kn,n)

)
≤ (1+ε′)γ

−1
C +εKε

in

(16)
where , setting α− := (γ − ε′)(γ−1C + ε) and α+ := (γ + ε′)(γ−1C + ε),

Hε
in =

(
Yn−i+1,n

Yn−kn,n

)α− (
log(1− ε′) + (γ − ε′) log

(
Yn−i+1,n

Yn−kn,n

))
Kε
in =

(
Yn−i+1,n

Yn−kn,n

)α+ (
log(1 + ε′) + (γ + ε′) log

(
Yn−i+1,n

Yn−kn,n

))
However, it is known that

(Yn−i+1,n/Yn−kn,n)1≤i≤kn
d
= (Ỹi,kn)1≤i≤kn , (17)

where Ỹ1,kn , . . . , Ỹkn,kn are the ascending order statistics of kn i.i.d random

variables Ỹ1, . . . , Ỹkn with standard Pareto distribution. Thanks to the inde-
pendence of the δ̃j,n and the Yi, it follows that J1

n is bounded above by some
variable which equals in distribution

1

kn

kn∑
i=1

IUi≤pỸ α
+

i (log(1 + ε′) + (γ + ε′) log(Ỹi)). (18)
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Independence of the (Ui) and (Ỹi) and the law of large numbers then yields
that (since 0 < α+ < 1) lim sup J1

n is bounded above, in probability, by

p×
(

log(1 + ε′)
1

1− α+
+ (γ + ε′)

1

(1− α+)2

)
.

Dealing now with the lower bound of (16), one can handle Hε
in similarly and

obtain a lower bound in probability for lim inf J1
n : straightforward computa-

tions show that both bounds converge to γX as ε and ε′ tend to 0. This thus
concludes part (i).

(ii) It remains to prove that J2
n

P−→ 0.

Let us put Tn−i+1,n := log(Z̃i,n)(Z̃i,n)γ
−1
C +ε and recall that

J2
n =

1

kn

kn∑
i=1

(δn−i+1,n − δ̃n−i+1,n)Tn−i+1,n.

Let p > 1 and q > 1 such that 1
p + 1

q = 1. Hölder’s Inequality gives :

|J2
n| ≤

(
1

kn

kn∑
i=1

∣∣∣δn−i+1,n − δ̃n−i+1,n

∣∣∣q)1/q (
1

kn

kn∑
i=1

(Tn−i+1,n)p

)1/p

=

(
1

kn

kn∑
i=1

∣∣∣δn−i+1,n − δ̃n−i+1,n

∣∣∣)1/q (
1

kn

kn∑
i=1

(Tn−i+1,n)p

)1/p

So it remains to prove that 1
kn

∑kn
i=1 |δn−i+1,n − δ̃n−i+1,n| = oP(1) and that

1
kn

∑kn
i=1(Tn−i+1,n)p = OP(1), for an appropriate p > 1.

On one hand, according to (15), (16) and (17) (as in part (i)), we have to
prove that

1

kn

kn∑
i=1

(
Ỹ α

+

i (log(1 + ε′) + (γ + ε′) log(Ỹi))
)p

= OP(1)

This is the case, using the law of large numbers, as soon as we take p < 1+ γC
γX

(in this case α+p < 1, so E((Ỹ α
+

1 log(Ỹ1))p) is finite).

On the other hand, recall that δi,n = IUi≤p(Zi) and δ̃i,n = IUi≤p. Then,

1

kn

kn∑
i=1

∣∣∣δn−i+1,n − δ̃n−i+1,n

∣∣∣ ≤ 1

kn

kn∑
i=1

∣∣∣IUi≤p(Zn−i+1,n) − IUi≤p(H←(1− i
n ))

∣∣∣
+

1

kn

kn∑
i=1

∣∣∣IUi≤p(H←(1− i
n )) − IUi≤p

∣∣∣
=: T1,k + T2,k.
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Following the same lines as in [Einmahl et. al. (2008)] (p218) for the treatment
of their terms T1,k and T2,k (which are different from ours in the rates but nev-
ertheless quite similar), we show using a result of [Chow and Teicher (1997)]
(p356), that both T1,k and T2,k tend to 0 in probability, thanks to assumptions

(8) and (9). This concludes the proof of (ii) and therefore of W̄n
P−→ γX .

5.1.2 Proof of Rn
P−→ 0

As mentioned at the beginning of the proof, difficulties arise as to the control
of the Kaplan-Meier estimate of G in the tail (here it takes the form of the
variables Ci,n, not to be mistaken with the censoring variables Ci) : we will
circumvent them via a device known in the survival analysis literature. Let us
define, for some ε′ > 0,

C̃(t) :=

∫ t

0

dG(x)

(1−G(x))2(1− F (x))
and hin := (C̃(Zn−i+1,n))−

1
2−ε

′
.

We readily have |Rn| ≤ T 1
nT

2
n , where

T 1
n := sup

1≤i≤kn

√
n|hin(Cin − 1)| and T 2

n :=
1

kn

kn∑
i=1

Winh
−1
in n

− 1
2

and we are going to prove that T 1
n = OP(1) and T 2

n = oP(1).

First remind that Ci,n is the value of the function t 7→ (1 − G(t))/(1 −
Ĝn(t−)) at t = Zn−i+1,n, and consequently, by continuity of G and C̃

T 1
n ≤ sup

t≤Zn,n

∣∣∣∣∣√n(C̃(t))−
1
2−ε

′ Ĝn(t−)−G(t)

1− Ĝn(t−)

∣∣∣∣∣
≤ sup

t<Zn,n

∣∣∣∣∣√n(C̃(t))−
1
2−ε

′ Ĝn(t)−G(t)

1− Ĝn(t)

∣∣∣∣∣ .
Since

∫ +∞
0

h2(t)dC̃(t) <∞ for the function h(t) = (C̃(t))−
1
2−ε

′
, Theorem 2.1

of [Gill (1983)] applies and therefore the process(
√
n(C̃(t))−

1
2−ε

′ Ĝ(t)−G(t)

1− Ĝ(t)

)
t<Zn,n

converges in distribution. As a consequence, T 1
n = OP(1).

It remains to prove that T 2
n = oP(1). First, from the definition of hin and

C̃, since (1−H) = (1− F )(1−G) we clearly have

h−1in <

(
− log(1−G(Zn−i+1,n))

1−H(Zn−i+1,n)

) 1
2+ε

′

.
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Moreover, according to (13), for some given ε > 0, we have T 2
n ≤ (1 + ε)PnQn

(n large) where

Pn := n−
1
2

(
− log(1−G(Zn−kn,n))

1−H(Zn−kn,n)

) 1
2+ε

′

Qn := 1
kn

∑kn
i=1

(
1−H(Zn−kn,n)
1−H(Zn−i+1,n)

) 1
2+ε

′ (
log(1−G(Zn−i+1,n))
log(1−G(Zn−kn,n))

) 1
2+ε

′

log(Z̃i,n)
(
Z̃i,n

)γ−1
C +ε

Under assumption (3), 1/(1 − H) is regularly varying with index 1/γ and
− log(1 − G) is slowly varying : therefore, for some given ε′′ > 0 and n suf-
ficiently large, the application of Proposition 1 to these functions yields the
following upper bounds

1−H(Zn−kn,n)

1−H(Zn−i+1,n)
≤ (1 + ε′′)Z̃γ

−1+ε′′

i,n

log(1−G(Zn−i+1,n))

log(1−G(Zn−kn,n))
≤ (1 + ε′′)Z̃ε

′′

i,n

and consequently

Qn ≤ (1 + ε′′)1+2ε′ 1

kn

kn∑
i=1

Z̃βi,n log(Z̃i,n), (19)

where β = (2γ)−1 + γ−1C + ε′′′, for some ε′′′ > 0 (arbitrarily small when ε and
ε′ are closer to 0).

Concerning Pn, we have (n/kn)(1−H(Zn−kn,n))
P−→ 1 and therefore

1−H(Zn−kn,n) =
kn
n
Un, and − log(1−H(Zn−kn,n)) = − log

(
kn
n

)
Vn

for some sequences Un and Vn tending to 1, in probability, as n→ +∞. Using

the inequality 1−H ≤ 1−G, it follows that, for some Wn
P−→ 1,

Pn ≤ n−
1
2 {− log(kn/n)/(kn/n)}

1
2+ε

′
Wn = nε

′
{− log(kn/n)/kn}

1
2+ε

′
Wn.
(20)

In order to prove that PnQn = oP(1), we have to distinguish the case γX < γC
from the case γX ≥ γC (respectively weak and strong censoring in the tail).

(i) Case γX < γC

Proceeding as in subsection 5.1.1 by using (15), (16) and (17), we obtain
that the upper bound of Qn in (19) is OP(1) via the law of large numbers

as soon as E(Ỹ1
β(γ+ε′)

log(Ỹ1)) is finite, i.e. β(γ+ ε′) < 1 (which is the case
since γX < γC). This proves Qn = OP(1).

Finally, under assumption (10) on kn, (20) implies that Pn
P−→ 0 as soon

as ε′ < δ/(4− 2δ). This concludes the proof of PnQn = oP(1) in this case.
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(ii) Case γX ≥ γC
We use, as in (i), equations (15), (16) and (17) to treat Qn . But, since
β(γ + ε′) is not < 1 but ≥ 1, the upper bound of Qn in (19) is no longer
OP(1). In this case, we rely on the Marcinkiewicz-Zygmund law of large
numbers to obtain

1

kqn

kn∑
i=1

Ỹi
β(γ+ε′)

log(Ỹi) = oP(1),

where q := β(γ + ε′) + δ̃, for some δ̃ > 0. This proves that Qn = oP(kq−1n ).
It remains to prove that kq−1n Pn = OP(1). From (20) and condition (10)
on kn, we have

kq−1n Pn ≤
(
kn
n

)q−1
nε
′+q−1− δ2−δε

′
.

So, ε′ and δ̃ being arbitrary close to 0, kq−1n Pn = oP(1) as soon as δ ≥
γX−γC
γX+γC

, thanks to assumption (5).

Note that if kn is of the order of na, for some a ∈]0, 1[, the control of Pn
does not require condition (10). ut

5.2 Proof of Theorem 2

Similarly to γ̂KMX,Hill, the estimator γ̂LeurgX,Hill can be written as follows :

γ̂LeurgX,Hill = An(Wn +Rn),

where An,Cin and Rn are defined as before (see Subsection 5.1) but now

Win := ξin
1−G(Zn−kn,n)

1−G(Zn−i+1,n)
and ξin := i log

(
Zn−i+1,n

Zn−i,n

)
.

Recall that An
P−→ 1 (see beginning of the proof of Theorem 1). In Section

5.2.2, we prove that Rn
P−→ 0. Let us first deal with Wn.

5.2.1 Proof of Wn
P−→ γX

Recall first the notation used in Subsection 5.1

Z̃i,n :=
Zn−i+1,n

Zn−kn,n
.
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Let η > 0 and ε > 0. Using Potter bounds (29) for 1/(1−G), which is regularly
varying of order γ−1C , from the definition of the Win we first obtain for ε small
enough

P(Wn − γX > η) ≤ P(k−1n
∑kn
i=1 Z̃

γ−1
C +ε
i,n ξin − γX > η

2 ),

P(γX −Wn > η) ≤ P(γX − k−1n
∑kn
i=1 Z̃

γ−1
C −ε
i,n ξin >

η
2 ).

Let us now consider constants c > 1 and c′ < 1, both close to 1, and α > 0
and α′ > 0 both close to γ/γC , which values will be specified in the proof of
Lemma 1 below. Using positivity of ξin, it comes

P(Wn − γX > η) ≤ P

max
i≤kn

Z̃
γ−1
C +ε
i,n

cu−αi
> 1


+P

(
c k−1n

kn∑
i=1

u−αi ξin − γX >
η

2

)
(21)

P(γX −Wn > η) ≤ P

min
i≤kn

Z̃
γ−1
C −ε
i,n

c′u−α
′

i

< 1


+P

(
γX − c′ k−1n

kn∑
i=1

u−α
′

i ξin >
η

2

)
(22)

where ui = uin := i/(kn + 1), for 1 ≤ i ≤ kn.

Convergence in probability of Wn to γX thus comes from the combination of
(21), (22) and the following two Lemmas, by letting ε go to 0 in the end :
Lemma 1 is applied with θ = γ−1C + ε and θ′ = γ−1C − ε, whereas Lemma 2
is applied twice with a = α and a = α′ (both close to γ/γC which is < 1),
noticing that γ/(1− γ/γC) equals γX . ut

Lemma 1 Let θ and θ′ > 0. There exist constants c > 1, c′ < 1 both arbitrar-
ily close to 1, and α > 0, α′ > 0, arbitrarily close to γθ and to γθ′ respectively,
such that

lim
n→∞

P

(
max
i≤kn

Z̃θi,n

cu−αi
> 1

)
= lim
n→∞

P

(
min
i≤kn

Z̃θ
′

i,n

c′u−α
′

i

< 1

)
= 0.

Lemma 2 If 0 < a < 1, then

1

kn

kn∑
i=1

u−ai ξin
P−→ γ

1− a
.

If a > 1 , then for any δ′ > 0,

1

ka+δ
′

n

kn∑
i=1

u−ai ξin
P−→ 0.
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Lemmas 1 and 2 are proved one after the other below. Note that Lemma 2 is
proved by using what could be called a first order version of the techniques
used in [Beirlant et. al. (2007)] (where a second order approximation of the
log-spacings ξi,n is obtained).

Proof of Lemma 1

Once again (as in Subsection 5.1.1), we introduce Y1,n, . . . , Yn,n the ascending
order statistics of n i.i.d standard Pareto random variables, in order to have

Z̃i,n
d
=
U(Yn−i+1,n)

U(Yn−kn,n)
.

Applying Potter bounds (29) to U ∈ RVγ , it comes, for some given ε′ > 0, and
n large enough,

(U(Yn−i+1,n)/U(Yn−kn,n))θ ≤ (1 + ε′)θ
(
Yn−i+1,n

Yn−kn,n

)α
(U(Yn−i+1,n)/U(Yn−kn,n))θ

′
≥ (1− ε′)θ

′
(
Yn−i+1,n

Yn−kn,n

)α′
where

α = (γ + ε′)θ and α′ = (γ − ε′)θ′.

Using (17) and introducing V1,kn ≤ · · · ≤ Vkn,kn the order statistics of kn i.i.d
Uniform [0, 1] random variables (which have the same distribution as 1/Y1),
it comes

P

(
max
i≤kn

Z̃θi,n

cu−αi
> 1

)
≤ P

(
(1 + ε′)θ max

i≤kn
(Vi,kn/ui)

−α > c

)
,

P

(
min
i≤kn

Z̃θ
′

i,n

c′u−α
′

i

< 1

)
≤ P

(
(1− ε′)θ

′
min
i≤kn

(Vi,kn/ui)
−α′ < c′

)
.

Relying on max1≤i≤kn |Vi,kn − ui|
P−→ 0 (uniform consistency of the uniform

empirical quantile process), we readily have, for any given β > 1,

lim
n→∞

P(En) = 1 where En := { ∀ 1 ≤ i ≤ kn , β−1ui ≤ Vi,kn ≤ βui } (23)

Therefore, for given constants ε′ > 0 and β > 1, if we set

c = βα(1 + ε′)θ and c′ = β−α(1− ε′)θ
′
,

then both probabilities appearing in Lemma 1 are bounded above by 1−P(En),
which achieves the proof in view of (23). As announced, by choosing appro-
priate values of ε′ and β, the constants c, c′, α, α′, are respectively arbitrarily
close to 1, 1, γθ and γθ′. ut

Proof of Lemma 2
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We proceed very similarly as in [Beirlant et. al. (2002)], therefore some
details will be ommited. Let E1, . . . , En be i.i.d. Exp(1) random variables.

Then Z̃i,n
d
= U(exp(En−i+1,n))/U(exp(En−i,n)). The first order Potter-type

bounds for U ∈ RVγ stated in Proposition 1 thus yield : for some given ε > 0,
n large enough and 1 ≤ i ≤ kn,

ξi,n = i log
Zn−i+1,n

Zn−i,n

d
= γ i(En−i+1,n − En−i,n) + i(Bk,n(i)−Bk,n(i+ 1))

d
=: γ ξi + βi,n (24)

where

log(1−ε)−ε(En−i+1,n−En−kn,n) ≤ Bk,n(i) ≤ log(1+ε)+ε(En−i+1,n−En−kn,n)

and the Rényi representation was used to derive (24), with ξ1, . . . , ξkn denoting
independent Exp(1) variables.

Using the fact that (En−i+1,n − En−kn,n)1≤i≤kn
d
= (− log Vi,kn)1≤i≤kn ,

where V1,. . . ,Vkn are independent standard uniform variables, and using rela-
tion (23), we obtain (this is in fact the first order version of Theorem 2.1 in
[Beirlant et. al. (2002)]), uniformly in i ∈ {1, ..., kn},∣∣∣∑kn

j=i
βj,n
j

∣∣∣ = |Bk,n(i)| = oP(log+(1/ui)) (25)

(with log+(x) = max(1, log x) and recalling that ui stands for i/(k + 1)).

Regular application of the law of large numbers for triangular arrays of in-
dependent random variables yields (cf [Chow and Teicher (1997)] ; details are
ommited), when 0 < a < 1

1

kn

kn∑
i=1

u−ai ξi
P−→ 1

1− a

and, when a > 1 and δ′ > 0 is arbitrary small,

1

ka+δ
′

n

kn∑
i=1

u−ai ξi
P−→ 0.

Therefore, according to (24), Lemma 2 is proved as soon as we have

1

kn

kn∑
i=1

u−ai βi,n
P−→ 0 when 0 < a < 1, (26)

1

ka+δ
′

n

kn∑
i=1

u−ai βi,n
P−→ 0 when a > 1. (27)



22 Julien Worms, Rym Worms

Suppose first that 0 < a < 1. The trick to show the negligibility (26) is to
write (where u0 = 0)∣∣∣ 1

kn+1

∑kn
i=1 u

−a
i βi,n

∣∣∣ =
∣∣∣∑kn

i=1
βi,n
i u1−ai ds

∣∣∣
= (1− a)

∣∣∣∑kn
i=1

βi,n
i

∫ ui
0
s−a ds

∣∣∣
≤ (1− a)

∑kn
j=1

∣∣∣∑kn
i=j

βi,n
i

∣∣∣ ∫ ujuj−1
s−a ds

= oP(1)
∑kn
j=1 log+(1/uj)(u

1−a
j − u1−aj−1)

≤ oP(1) 1
kn

∑kn
j=1 log+(1/uj)u

−a
j

= oP(1).

Suppose now that a > 1 and let us prove similarly (27) : we need to be more
cautious since

∫ u
0
s−ads is no longer defined. We have∣∣∣ 1

kn+1

∑kn
i=1 u

−a
i βi,n

∣∣∣
= |1− a|

∣∣∣∑kn
i=1

βi,n
i

(∫ ui
u1
s−a ds + u1−a1

)∣∣∣
≤ |1− a|

∣∣∣∑kn
i=2

(
βi,n
i

∑i
j=2

∫ uj
uj−1

s−a ds
)∣∣∣ + |1− a|(kn + 1)a−1

∣∣∣∑kn
i=1

βi,n
i

∣∣∣
≤ oP(1)

(
1
kn

∑kn
j=2 log+(1/uj)u

−a
j + ka−1n log(kn + 1)

)
hence∣∣∣ 1

ka+δ
′

n

∑kn
i=1 u

−a
i βi,n

∣∣∣ ≤ oP(1)
(

1

ka+δ
′

n

∑kn
j=1 u

−a−δ′
j + k−δ

′

n log(kn + 1)
)

= oP(1).

ut

5.2.2 Proof of Rn
P−→ 0

Most of the proof is identical to the case of the first theorem. As in Subsection
5.1.2, we have |Rn| ≤ T 1

nT
2
n where T 1

n is left unchanged and is OP(1). The
factor T 2

n is bounded by (1 + ε)PnQn, for some ε > 0, where Pn is defined as
in 5.1.2 but, in the definition of Qn, the factor log Z̃i,n needs to be replaced by
ξin. The same arguments as before allow us to write, for some given ε, ε′ > 0
and n sufficiently large,

Qn ≤ (1 + ε′′)(1+2ε′) 1

kn

kn∑
i=1

Z̃βi,nξin,

where, as in Subsection 5.1.2, β = (2γ)−1+γ−1C +ε′′′, for some ε′′′ > 0 (as small
as needed when ε and ε′ are set close to 0). We now proceed as in Subsection
5.2.1 to control T 2

n and end the proof of Rn = oP(1).
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Let η > 0 and consider constants c > 1 close to 1 and α > 0 close to 1
2 + γ

γC
.

P(T 2
n > η) ≤ P

(
max
i≤kn

Z̃βi,n

cu−αi
> 1

)
+ P

(
Pn k

−1
n

kn∑
i=1

u−αi ξin >
η

c

)
(28)

The fact that T 2
n = oP(1) , then, comes from the combination of (28) and

Lemmas 1 and 2, with delails given below.

First, Lemma 1 is applied with θ = β, which implies that α = (γ + ε′)β
and thus the first term of the right hand-side of (28) tends to 0.

Next, Lemma 2 is applied with a = α and needs to be combined with some
rate for the factor Pn : as in subsection 5.1.2, we need here to distinguish the
case γX < γC from the case γX ≥ γC .

(i) case γX < γC

In this case, α < 1 and therefore Lemma 2 implies that 1
kn

∑kn
i=1 u

−α
i ξin =

OP(1). Moreover, we have already proved in subsection 5.1.2 that Pn =
oP(1), and consequently the second term of the right hand-side of (28)
tends to 0.

(ii) case γX ≥ γC
In this case, α > 1 and therefore Lemma 2 implies that, for any given
δ′ > 0, 1

kα+δ′
n

∑kn
i=1 u

−α
i ξin = oP(1). Therefore, it remains to prove that

kα+δ
′−1

n Pn = OP(1) : this has already been done in subsection 5.1.2 (where,
there, 1/p denoted β(γ + ε′) + δ̃ where δ̃ was arbitrary close to 0, as is δ′

here). ut

6 Appendix

Definition 1 An ultimately positive function f : R+ → R is regularly varying
(at infinity) of order α ∈ R, if

lim
t→+∞

f(tx)

f(t)
= xα, x > 0.

This is noted f ∈ RVα. If α = 0, f is said to be slowly varying.

Proposition 1 (See [Haan and Ferreira (2006)] Proposition B.1.9)
Suppose f ∈ RVα. If x > 0 and δ1, δ2 > 0 are given, then there exists t0 =
t0(δ1, δ2) such that for t ≥ t0 and tx ≥ t0,

(1− δ1)xα min(xδ2 , x−δ2) <
f(tx)

f(t)
< (1 + δ1)xα max(xδ2 , x−δ2).

If x ≥ 1 and ε > 0, then there exists t0 = t0(ε) such that for every t ≥ t0,

(1− ε)xα−ε < f(tx)

f(t)
< (1 + ε)xα+ε. (29)
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