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We consider the recursive estimation of a regression functional where the explanatory variables take values in some functional space. We prove the almost sure convergence of such estimates for dependent functional data. Also we derive the mean quadratic error of the considered class of estimators. Our results are established with rates and asymptotic appear bounds, under strong mixing condition.

Introduction

In this paper we study the regression model of a scalar response variable given a functional covariate. Functional data analysis is a problem of considerable interest in statistics and has been found to be useful in many practical fields, including climatology, economics, linguistics, medicine,... The statistical study of this kind of data is the subject of many papers in parametric and nonparametric statistics. For background material on this subject we highlight the works of Ramsay and Dalzell [START_REF] Ramsay | Some tools for functional data analysis (with discussion)[END_REF], Ramsay and Silverman [START_REF] Ramsay | Applied functional data analysis[END_REF][START_REF] Ramsay | Functional data analysis[END_REF]. Since these pioneer contributions, the literature on this topic is still growing. A survey of the nonparametric functional regression appears in Ferraty et al. [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF], while more recent results are collected in the book by Ferraty and Vieu [START_REF] Ferraty | Nonparametric modelling for functional data. methods, theory, applications and implementations[END_REF]. There are several ways to study the link between a response variable given an explanatory variable. For example, one of the most studied models is the regression model when the response variable Y is real and the explanatory variable X belongs to some functional space E. Then, the regression model writes Y = r(X ) + ε, where r : E → R is an operator and ε is an error random variable. Many works have been done around this model when the operator r is supposed to be linear, contributing to the popularity of the so-called functional linear model. We refer the reader for instance to the works of Cardot et al. [START_REF] Cardot | Splines estimators for the functional linear model[END_REF] or Crambes et al. [START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF] for different methods to estimate r in this linear context. Another way is to estimate r by a nonparametric approach. The first results on this context were obtained by Ferraty and Vieu [START_REF] Ferraty | Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés[END_REF]. They established the almost complete convergence of a kernel estimator of the regression function in the i.i.d case. The study on their Nadaraya-Watson type estimator is extended to several directions. Dabo-Niang and Rhomari [START_REF] Dabo-Niang | Estimation non paramétrique de la régression avec variable explicative dans un espace métrique[END_REF] stated the L p -convergence of the kernel estimator, while Delsol [START_REF] Delsol | Advances on asymptotic normality in nonparametric functional time series analysis[END_REF] gave the L p -convergence with asymptotic appear bound. The asymptotic normality of the same estimator has been obtained by Masry [START_REF] Masry | Nonparametric regression estimation for dependent functional data: asymptotic normality[END_REF] under strong mixing conditions and extended by Delsol [START_REF] Delsol | Advances on asymptotic normality in nonparametric functional time series analysis[END_REF]. Ling and Wu [START_REF] Ling | Consistency of modified kernel regression estimation for functional data[END_REF] stated the almost sure convergence of the kernel estimator under strong mixing conditions. Functional data appear in many practical situations, as soon as one is interested on a continuous phenomenon. To consider such data as objects belonging to some functional space brings more precisions on the studied phenomenon. However, the computation of the estimators can be time consuming in this context, the use of recursive methods remains a good alternative to the classical ones. By 'recursive', we mean that the estimator calculated from the first n observations, say f n , is only a function of f n-1 and the n th observation. In this way, the estimator can be updated with each new observation added to the database. The purpose of this paper is to apply recursive methods to functional data. Recursive estimation is achieved with the use of recursive estimators, typically kernel ones. For informations on nonparametric recursive methods, the reader is referred to the books by Gyorfi et al. [START_REF] Gyorfi | A distribution-free theory of nonparametric regression[END_REF], or the recent works of Vilar and Vilar [START_REF] Vilar | Recursive local polynomial regression under dependence conditions[END_REF], Wang and Liang [START_REF] Wang | Strong uniform convergence of the recursive regression estimator under ϕ-mixing conditions[END_REF], Quintela-Del-Rio [START_REF] Quintela-Del-Rio | Recursive kernel hazard estimation of strong mixing data[END_REF], Amiri [START_REF] Amiri | Recursive regression estimators with application to nonparametric prediction[END_REF] and the references there in. The first results concerning the recursive kernel estimator of the regression function with functional explanatory variable were obtained by Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF]. They established the mean square error, the almost sure convergence with rates and a central limit theorem for a class of recursive kernel estimates of the regression function when the explanatory variable is functional and the observations are i.i.d. The main goal of this paper is the extension of a few of the results obtained by Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] to dependent data. The rest of the paper proceeds as follows. We will present the regression model on section 2. On section 3, we give assumptions and results on the strong consistency and mean quadratic error for the recursive regression estimate. Section 4 is devoted to the proofs of our results.

Recursive regression estimate for curves

Let us consider a random process Z t = (X t , Y t ), t ∈ N, where Y t is a scalar random variable and X t takes values in some functional space E endowed with a semi-norm • . Assume the existence of an operator r satisfying r(χ) := E (Y t |X t = χ) , χ ∈ E, for all t ∈ N. To estimate r, one can consider the family of recursive estimators indexed by a parameter ℓ ∈ [0, 1] introduced in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] and defined by

r [ℓ] n (χ) := n i=1 Y i F (h i ) ℓ K χ-X i h i n i=1 1 F (h i ) ℓ K χ-X i h i ,
where K is a kernel, (h n ) a sequence of bandwidths and F is the cumulative distribution function of the random variable χ-X . This family of estimators is a recursive modification of the Nadaraya-Watson type estimator of Ferraty and Vieu [START_REF] Ferraty | Nonparametric modelling for functional data. methods, theory, applications and implementations[END_REF] and can be computed recursively by

r [ℓ] n+1 (χ) = n i=1 F (h i ) 1-ℓ ϕ [ℓ] n (χ) + n+1 i=1 F (h i ) 1-ℓ Y n+1 K [ℓ] n+1 ( χ -X n+1 ) n i=1 F (h i ) 1-ℓ f [ℓ] n (χ) + n+1 i=1 F (h i ) 1-ℓ K [ℓ] n+1 ( χ -X n+1 ) , with ϕ [ℓ] n (χ) = n i=1 Y i F (h i ) ℓ K χ-X i h i n i=1 F (h i ) 1-ℓ , f [ℓ] n (χ) = n i=1 1 
F (h i ) ℓ K χ-X i h i n i=1 F (h i ) 1-ℓ , (1) 
and

K [ℓ] i (•) := 1 F (h i ) ℓ i j=1 F (h j ) 1-ℓ K • h i .
The recursive property of this class of regression estimators offers many advantages and is clearly useful in sequential investigations and also for a large sample size. Indeed, this kind of estimators are of easy implementation and interpretation, fast to compute and they do not require extensive storage of data. The weak and strong consistency of this family of estimators was studied by Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] in the framework of the independent case.

3 Assumptions and main results

Assumptions

In the same spirit as Masry [START_REF] Masry | Nonparametric regression estimation for dependent functional data: asymptotic normality[END_REF], we suppose throughout the paper the existence of nonnegative functions f 1 and φ such that φ(0) = 0 and F (h

) = P [ χ -X ≤ h] = φ(h)f 1 (χ)
, for h on a neighborhood of zero. Then φ is an increasing function of h and φ(h) → 0 as h → 0. The function f 1 is referred to as a functional probability density (see Gasser et al. [START_REF] Gasser | Nonparametric estimation of the mode of a distribution of random curves[END_REF] for more details). We will assume that the following assumptions hold.

(H1) The operators r and σ 2 ε are continuous on a neighborhood of χ. Moreover, the function

ζ(t) := E [{r(X ) -r(χ)} / X -χ = t] is assumed to be derivable at t = 0. (H2) K is nonnegative bounded kernel with support on the compact [0, 1] such that inf t∈[0,1] K(t) > 0. (H3) For any s ∈ [0, 1], τ h (s) := φ(hs) φ(h) → τ 0 (s) < ∞ as h → 0. ( H4 
) (i) h n ↓ 0, nφ(h n ) → ∞, A n,ℓ := 1 n n i=1 h i h n φ(h i ) φ(h n ) 1-ℓ → α [ℓ] > 0 as n → ∞. (ii) ∀r ≤ 2, B n,r := 1 n n i=1 φ(h i ) φ(h n ) r → β [r] > 0, as n → ∞. (iii) For any µ > 0, lim n→∞ (ln n) 3+ 2 µ nφ(h n ) = 0. (H5) (i) (X t ) t∈N is a strong mixing process with α X (k) ≤ ck -ρ , k ≥ 1, for some c > 0 and ρ > 2.
(ii) There exist non negative functions ψ and f 2 such that ψ(h) → 0 as h → 0, the ratio

ψ(h) φ(h) 2 is bounded and sup i =j P [(X i , X j ) ∈ B(χ, h i ) × B(χ, h j )] ≤ ψ(h i )ψ(h j )f 2 (χ).
(H6) There exist λ > 0 and µ > 0 such that E [exp (λ|Y

| µ )] < ∞.
Since this paper is a generalization to dependent case of the results in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF], several of the assumptions are the same as those used in the earlier reference. The reader is then referred to this last for more comments on assumptions. Let us mention that the decrease of the sequence (h n ) n∈N is particular to the recursive estimators and for dependent data. The technical condition (H4)(iii) is unrestrictive and is easily satisfied by the popular choices of φ and h n given by φ(h n ) ∼ n -ξ , with 0 < ξ < 1. Assumption (H5)(i) is the classically strong mixing condition which, is well known to be satisfied by linear or stationary ARMA processes. In order to simplify the presentation, we assume the strong mixing coefficient to be arithmetic, but the main results can be obtained under several conditions on this coefficient. Assumption (H5)(ii) plays a crucial role in our calculus, when we show the negligibility of some covariance terms. It has been used by Masry [START_REF] Masry | Nonparametric regression estimation for dependent functional data: asymptotic normality[END_REF] in the non recursive case. Finally, as developped in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF], assumption (H6) implies that

E max 1≤i≤n |Y i | p = O[(ln n) p/µ ], ∀p ≥ 1, n ≥ 2.
(2)

Main results

For convenience, let us introduce the following notations:

M 0 = K(1) - 1 0 (sK(s)) ′ τ 0 (s)ds, M 1 = K(1) - 1 0 K ′ (s)τ 0 (s)ds M 2 = K 2 (1) - 1 0 (K 2 (s)) ′ τ 0 (s)ds.
In the following theorem, we establish the almost sure convergence of the proposed recursive kernel estimator of the regression function.

Theorem 1 Assume that (H1)-(H6) hold. If lim

n→+∞ nh 2 n = 0, then lim sup n→∞ nφ(h n ) ln n 1/2 r [ℓ] n (χ) -r(χ) ≤ 2 M 1 [1 + V ℓ (χ)] a.s.
where

V ℓ (χ) = β [1-2ℓ] β 2 [1-ℓ] σ 2 ε (χ) f 1 (χ) M 2 , (3) 
for all χ such that f 1 (χ) > 0.

Theorem 1 is an extension of Ferraty and Vieu's [START_REF] Ferraty | Nonparametric model for functional data with application in regression, time series prediction and cure discrimination[END_REF] result on functional kernel-type estimate to the general family of recursive estimators r n (χ). A similar result is also obtained by Ling and Wu [START_REF] Ling | Consistency of modified kernel regression estimation for functional data[END_REF] for a truncated version of the Nadaraya-Watson type estimator, under the condition E|Y | < ∞, which is weaker than assumption (H6). However, Theorem 1 establishes the rate of convergence with exact appear bound, while Ling and Wu's [START_REF] Ling | Consistency of modified kernel regression estimation for functional data[END_REF] result tells only the rate of convergence in function of the variances of the numerator and denominator of the estimator. As we will see in the proofs below, assumption (H6) will be necessary, for the study of the covariance terms and also when we shall prove the cancellation of the residual term between the estimator and its truncated version. Finally, let us mention that compared with the result in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF], as in the multivariate framework, it is difficult to obtain the optimal rate nφ(hn)

ln ln n 1/2
in the dependent case.

The mean square error of r

[ℓ] n (x) is given in Theorem 2 below.

Theorem 2 Under assumptions (H1)-(H6),

E r [ℓ] n (χ) -r(χ)

2 = ζ ′ (0)α [ℓ] M 0 h n β [1-ℓ] M 1 2 + β [1-2ℓ] M 2 σ 2 ε (χ) β 2 [1-ℓ] M 2 1 f 1 (χ)nφ(h n ) [1 + o(1)]
for all χ such that f 1 (χ) > 0.

Theorem 2 is an extension to functional data of the result of Amiri [START_REF] Amiri | Recursive regression estimators with application to nonparametric prediction[END_REF] in finite dimensional setting. Also, our result generalizes the works of Bosq and Cheze-Payaud [START_REF] Bosq | Optimal asymptotic quadratic error of nonparametric regression function estimates for a continuous-time process from sampled-data[END_REF] to functional and recursive setting. Finally, in counterpart of the almost sure convergence, Theorem 2 gives the same rate of convergence and asymptotic constants as those obtained for the iid case in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF].

Proofs

In the sequel, and through the paper, c will denote a constant whose value is unimportant and may vary from line to line. Also, we set

K i (χ) = K χ -X i h i .
Finally, for convenience we will use the following decomposition

r [ℓ] n (χ) -r(χ) = φ[ℓ] n (χ) -r(χ)f [ℓ] n (χ) f [ℓ] n (χ) + ϕ [ℓ] n (χ) - φ[ℓ] n (χ) f [ℓ] n (χ) , (4) 
where

φ[ℓ] n (χ) is a truncated version of ϕ [ℓ] n (χ) defined by φ[ℓ] n (χ) = 1 n i=1 F (h i ) 1-ℓ n i=1 Y i F (h i ) ℓ 1 {|Y i |≤bn} K χ -X i h i , (5) 
b n being a sequence of real numbers which goes to +∞ as n → ∞.

Preliminary lemmas

In order to prove the main results, we need the following lemmas.

Lemma 1 Under assumptions (H1)-(H4), we have

E ϕ [ℓ] n (χ) E f [ℓ] n (χ) -r(χ) = h n ζ ′ (0) α [ℓ] β [1-ℓ] M 0 M 1 [1 + o(1)] .
Proof. See Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF], since the bias term is not depending to the mixing structure.

Lemma 2 Under assumptions (H1)-(H6), we have

Var

f [ℓ] n (χ) = β [1-2ℓ] β 2 [1-ℓ] M 2 f 1 (χ) 1 nφ(h n ) [1 + o(1)] ; Var ϕ [ℓ] n (χ) = β [1-2ℓ] β 2 [1-ℓ] r 2 (χ) + σ 2 ǫ (χ) M 2 f 1 (χ) [1 + o(1)] nφ(h n ) ; Cov f [ℓ] n (χ), ϕ [ℓ] n (χ) = β [1-2ℓ] β 2 [1-ℓ] r(χ) M 2 f 1 (χ) [1 + o(1)] nφ(h n ) ,
for all χ such that f 1 (χ) > 0.

Proof. The variance term of f

[ℓ]
n (χ) can be decomposed in variance and covariance terms as

Var(f [ℓ] n (χ)) = n i=1 F (h i ) 1-ℓ -2   n i=1 A i,i + i =j A i,j   := F 1 + F 2 , (6) 
where for any integers i and j, A i,j = F (h i ) -ℓ F (h j ) -ℓ Cov (K i (χ), K j (χ)) . Noting that the principal term F 1 in the right-hand side of (6) corresponds to the variance term of f

[ℓ]
n in the independent case (see Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] fore more details), and is given by

nφ(h n )F 1 = β [1-2ℓ] β 2 [1-ℓ] M 2 f 1 (χ) [1 + o(1)] .
Now, let us establish that the covariance term F 2 is negligible. To this end, let c n be a sequence of real numbers tending to ∞ as n → ∞. We can write

F 2 ≤ 2 cn k=1 n p=1 |A k+p,p | + n-1 k=cn+1 n p=1 |A k+p,p | [ n i=1 F (h i ) 1-ℓ ] 2 := F 21 + F 22 . (7) 
From assumptions (H2) and (H5)(ii), we have for any i = j

E [K i (χ)K j (χ)] = [0,1]×[0,1] K(u)K(v)dP χ-X i h i , χ-X j h j (u, v) ≤ K 2 ∞ P [ χ -X i ≤ h i , χ -X j ≤ h j ] ≤ cψ(h i )ψ(h j ). ( 8 
)
Note that, from the proof of Lemma 2 in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] we can write

E [K i (χ)] = φ(h i )f 1 (χ) K(1) - 1 0 K ′ (s)τ h i (s)ds , so, we get |Cov(K i (χ), K j (χ))| ≤ c [ψ(h i )ψ(h j ) + φ(h i )φ(h j )] . (9) 
Hence, we deduce that

F 21 ≤ c cn k=1 n p=1 ψ(h k+p )ψ(hp) φ(h k+p ) ℓ φ(hp) ℓ + φ(h k+p ) 1-ℓ φ(h p ) 1-ℓ [ n i=1 φ(h i ) 1-ℓ ] 2 := F 211 + F 212 .
Now, Assumption (H5)(ii) ensures that the ratio ψ(h i )/φ(h i ) is bounded and since φ is increasing, we get

F 211 ≤ c n i=1 φ(h i ) 1-ℓ -2 cn k=1 n p=1 φ(h p ) 2-2ℓ ≤ c B n,2-2ℓ B 2 n,1-ℓ c n n .
Hence,

nφ(h n )F 211 = O (φ(h n )c n ) . ( 10 
)
Now for the second term F 212 , again, using the fact that φ is an increasing function, we get

F 212 ≤ c n i=1 φ(h i ) 1-ℓ -2 cn k=1 n p=1 φ(h p ) 2-2ℓ ≤ c B n,2-2ℓ B 2 n,1-ℓ c n n , so that nφ(h n )F 212 = O (φ(h n )c n ) . (11) 
From ( 10) and ( 11) we deduce

nφ(h n )F 21 = O (φ(h n )c n ) . (12) 
Next, for the second term F 22 in ( 7), we have from Billingsley's inequality,

F 22 ≤ c n i=1 φ(h i ) 1-ℓ -2 n-1 k=cn+1 n p=1 k -ρ φ(h k+p ) -ℓ φ(h p ) -ℓ ≤ c n i=1 φ(h i ) 1-ℓ -2 c 1-ρ n ρ -1 n p=1 φ(h n ) -ℓ φ(h p ) -ℓ ≤ c B n,-ℓ B 2 n,1-ℓ c 1-ρ n nφ(h n ) 2 .
Therefore

nφ(h n )F 22 = O c 1-ρ n φ(h n ) . ( 13 
) If we choose c n = ⌊φ(h n ) -2
ρ ⌋, we deduce from ( 12) and ( 13) that

nφ(h n )F 2 = O φ(h n ) ρ-2 ρ = o(1) as long as ρ > 2,
and the first part of Lemma 2 follows. Now, as in the proof of the first part of Lemma 2, the variance term of ϕ

[ℓ]
n is decomposed as follows

Var(ϕ [ℓ] n (χ)) = n i=1 F (h i ) 1-ℓ -2   n i=1 A i,i + i =j A i,j   := I 1 + I 2 ,
where here A i,j denotes for any integers i and j as follows

A i,j = F (h i ) -ℓ F (h j ) -ℓ Cov (Y i K i (χ), Y j K j (χ)) .
The study of the term I 1 is treated in the same manner as in the independent case (see Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] for more details) which gives

nφ(h n )I 1 = β [1-2ℓ] β 2 [1-ℓ] r(χ) f 1 (χ) M 2 [1 + o(1)] .
Now, for the second term I 2 , we always consider a sequence of real numbers c n which goes to ∞ as n → ∞ and we write

I 2 ≤ 2 cn k=1 n p=1 |A k+p,p | + n-1 k=cn+1 n p=1 |A k+p,p | [ n i=1 F (h i ) 1-ℓ ] 2 := I 21 + I 22 . (14) 
The term I 22 is treated exactly as F 22 in the proof of the first part of this Lemma previously, by substituting the Billingsley lemma with the Davydov lemma. Then, setting b n = (δ ln n) 1/µ , using [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] and with the help of (H5), we get

I 22 ≤ c(ln n) 2/µ n i=1 φ(h i ) 1-ℓ -2 c 1-ρ/2 n (ρ/2) -1 φ(h n ) -2ℓ n p=1 φ(h p ) φ(h n ) -ℓ ≤ c(ln n) 2/µ B n,-ℓ B 2 n,1-ℓ 1 nφ(h n ) 2 c 1-ρ/2 n . Therefore, nφ(h n )I 22 = O (ln n) 2/µ c 1-ρ/2 n (φ(h n )) -1 . (15) 
For the second term I 21 , observe that for any integers i and j,

|Cov(Y i K i (χ), Y j K j (χ))| ≤ |E [Y i Y j K i (χ)K j (χ)]| + |E [Y i K i (χ)]| |E [Y j K j (χ)]| .
Now, from assumptions (H1) and (H2) and conditioning on X , one have

E [Y i K i (χ)] = M 1 F (h i ) [r(χ) + γ i ] ≤ cφ(h i ),
where γ i goes to zero as i → ∞. Using Cauchy-Schwartz' inequality, choosing b n = (ln n) 1/µ and (2), we get

|Cov(Y i K i (χ), Y j K j (χ))| ≤ E 1/2 Y 2 i Y 2 j E 1/2 K 2 i (χ)K 2 j (χ) + |E [Y i K i (χ)]| |E [Y j K j (χ)]| ≤ c (ln n) 2/µ ψ(h i ) 1/2 ψ(h j ) 1/2 + φ(h i )φ(h j ) .
The rest of the proof for I 21 is the same as the one for F 21 which implies that

I 21 ≤ c cn n (ln n) 2/µ + 1 . Hence, nφ(h n )I 21 = O c n φ(h n )(ln n) 2/µ , (16) 
and the result of the second part of Lemma 2 follows from ( 15) and ( 16) with the choice c n = ⌊φ

-4 ρ n ⌋. Next, to treat the last part of Lemma 2, it suffices to decompose the term nφ(h n )Cov φ [ℓ] n (χ), f [ℓ]
n (χ) by the principal and covariance terms and use the same procedure as in the proof of the second part of Lemma 2.

Lemma 3 Set N = nφ(h n ) ln n 1/2 φ[ℓ] n (χ) -r(χ)f [ℓ] n (χ) -E φ[ℓ] n (χ) -r(χ)f [ℓ] n (χ) ,
where φ is defined in [START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF]. Under assumptions (H1)-(H6), we have

lim n→∞ N ≤ 2 [1 + V ℓ (χ)] a.s.,
where V ℓ is defined in [START_REF] Bosq | Optimal asymptotic quadratic error of nonparametric regression function estimates for a continuous-time process from sampled-data[END_REF].

Proof. Set W n,i = K i (χ) Y i 1 {|Y i |≤bn} -r(χ) f 1 (χ)B n,1-ℓ φ(h n ) 1-ℓ φ(h i ) ℓ , where Z n,i = W n,i -EW n,i .
To prove Lemma 3, we use the blocks decomposition technique. Let p n and q n be some sequences of real numbers defined by p n = ⌊p 0 ln n⌋ with p 0 > 0 and q n = ⌊ n 2pn ⌋. Set

S ′ n = qn j=1 V n (2j -1), S ′′ n = qn j=1 V n (2j) and S ′′′ n = 1 n n k=2pnqn+1 Z n,k , with V n (j) = 1 n jpn k=(j-1)pn+1
Z n,k , j = 1, . . . , 2q n . Then we have N = S ′ n + S ′′ n + S ′′′ n . Observe that the third term S ′′′ n is negligible so that, to prove the strong consistency of N , it suffices to check the almost sure convergence for S ′ n + S ′′ n . For any ε > 0,

P |S ′ n + S ′′ n | > ε ≤ P |S ′ n | ε 2 + P |S ′′ n | > ε 2 .
We just treat S ′ n , the term S ′′ n being similar. Since K is bounded and φ is non decreasing, we get for n large enough (hn) . Using Rio's [START_REF]Rio Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF] coupling lemma, the random variables V n (j) can be approximated by independent and identically distributed random variables V * n (j) such that

|V n (j)| ≤ 2 K ∞pnbn f 1 (χ)B n,1-ℓ nφ
E |V n (2j -1) -V * n (2j -1)| ≤ 4 K ∞ p n b n f 1 (χ)B n,1-ℓ nφ(h n ) α(p n ).
Since p n q n ≤ n, it follows that

qn j=1 E |V n (2j -1) -V * n (2j -1)| ≤ 4 K ∞ p n q n b n f 1 (χ)B n,1-ℓ nφ(h n ) α(p n ) ≤ 4 K ∞ b n f 1 (χ)B n,1-ℓ φ(h n ) α(p n ).
Therefore, for any ε, κ > 0, Markov's inequality leads to

P   qn j=1 [V n (2j -1) -V * n (2j -1)] > εκ 2(1 + κ)   ≤ 8(1 + κ) εκ K ∞ b n α(p n ) f 1 (χ)B n,1-ℓ φ(h n ) ≤ 8(1 + κ) εκ K ∞ b n γe -ρp 0 ln n f 1 (χ)B n,1-ℓ φ(h n ) . (17) 
Next setting

ε n = ε ln n nφ(h n ) with ε > 0 and λ n = nφ(h n ) ln n, we have from (H4)(iii), |λ n V * n (j)| ≤ 2 K ∞pnbn f 1 (χ)B n,1-ℓ ln n nφ(h n ) → 0, therefore for n large enough, |λ n V * n (j)| ≤ 1 2 . It follows that exp {±λ n V * n (j)} ≤ 1 ± λ n V * n (j) + [λ n V * n (j)] 2 .
From Markov's inequality, we get

P   qn j=1 V * n (2j -1) > ε n 2(1 + κ)   ≤ P   exp   qn j=1 λ n V * n (2j -1)   > exp λ n ε n 2(1 + κ)   +P   exp   - qn j=1 λ n V * n (2j -1)   > exp λ n ε n 2(1 + κ)   ≤ 2 exp   -λ n ε n 2(1 + κ) + λ 2 n qn j=1 EV * 2 n (2j -1)   . Since, qn j=1 EV * 2 n (2j -1) ≤ 1 n 2 n k=1 Var(Z n,k ) + k =k ′ Cov(Z n,k , Z n,k ′ ) , we will assume for the moment that φ(h n ) n n k=1 Var(Z n,k ) = V ℓ (χ) [1 + o(1)] (18) 
φ(h n ) n k =k ′ Cov(Z n,k , Z n,k ′ ) = o(1), (19) 
where V ℓ is defined in (3). It follows from ( 18) and ( 19) that, for n large enough,

λ 2 n qn j=1 EV * 2 n (2j -1) ≤ V ℓ (χ) ln n [1 + o(1)] . Therefore P   qn j=1 V * n (2j -1) > ε n 2(1 + κ)   ≤ 2e -ε 2(1+κ) +V ℓ (χ)(1+o(1)) ln n (20)
Now, combining ( 17) and ( 20), we get

P |S ′ n | > ε n 2 ≤ P   qn j=1 V n (2j -1) -V * n (2j -1) > ε n κ 2(1 + κ)   +P   qn j=1 V * n (2j -1) > ε n κ 2(1 + κ)   ≤ γ 8(1 + κ) εκ K ∞ b n n 1-p 0 ρ f 1 (χ)B n,1-ℓ √ ln n nφ(h n ) +2 exp - ε 2(1 + κ) + V ℓ (χ) ln n . (21) 
Next, with the choice of b n = (δ ln n) 1/µ , the conclusion follows from the application of the Borel-Cantelli's lemma whenever p 0 > 2 ρ and ε

> 2(1 + κ) [1 + V ℓ (χ)], which implies that lim n→∞ nφ(h n ) ln n 1/2 N ≤ 2(1 + κ) [1 + V ℓ (χ)] a.s.,
for all positive κ and Lemma 3 follows. To complete the proof, let us prove ( 18) and [START_REF] Ramsay | Functional data analysis[END_REF]. We can write

φ(h n ) n n k=1 Var(Z n,k ) = n k=1 φ(h k ) -2ℓ Var K i (χ) Y i 1 {|Y i |≤bn} -r(χ) f 2 1 (χ)B 2 n,1-ℓ nφ(h n ) 1-2ℓ
.

Following the same lines of the proof of Lemma 5 in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF], one can prove that

n k=1 φ(h k ) -2ℓ Var K k (χ) Y k 1 {|Y k |≤bn} -r(χ) ∼ nφ(h n ) 1-2ℓ β [1-2ℓ] σ 2 ε (χ)M 2 , therefore (18) 
follows. Next, about the covariance term in [START_REF] Ramsay | Functional data analysis[END_REF], for any integers i = j, let

A i,j = F (h i ) -ℓ F (h j ) -ℓ Cov K i (χ) Y i 1 {|Y i |≤bn} -r(χ) , K j (χ) Y j 1 {|Y j |≤bn} -r(χ)
.

Then, we have 4.2 Proofs of the main results

1 n 2 k =k ′ Cov(Z n,k , Z n,k ′ ) ≤

Proof of Theorem 1

Let us consider the decomposition (4). For the residual term

ϕ [ℓ] n (χ)- φ[ℓ] n (χ) f [ℓ] n (χ)
, following the same lines of proof in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF] by replacing ln ln n nF (hn) by ln n nφ(hn) , one can show that

nφ(h n ) ln n 1/2 ϕ [ℓ] n (χ) -φ[ℓ] n (χ) → 0 a.s, when n → ∞. (22) 
For the principal term in (4), we can write φ[ℓ] n (χ) -r(x)f [ℓ] n (χ) = φ[ℓ] n (χ) -r(χ)f [ℓ] n (χ) -E φ[ℓ] n (χ) -r(χ)f [ℓ] n (χ)

+ E φ[ℓ] n (χ) -r(χ)f [ℓ] n (χ) . (23) 
Noting that, from Lemma 3 in Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate, under review[END_REF], we have E f n (χ) = 0.

Proof of Theorem 2

The mean square error of r Theorem 2 follows from Lemmas 1 -2.

2 ρ

 2 ℓ n 2 φ(h n ) 2-2ℓ := J 1 + J 2 . Using Billingsley's inequality, one can prove that nφ(h n )J 2 = O b 2 n c 1-ρ n φ(h n ) -1 . Next, since |A k+p,p | ≤ (b n + |r(χ)|) 2 [E (K k+p (χ)K p (χ)) + E(K k+p (χ))E(K p (χ))] ≤ c (b n + |r(χ)|) 2 [ψ(h k+p )ψ(h p ) + φ(h k+p )φ(h p )] φ(h k+p ) -ℓ φ(h p ) -ℓ .Therefore, as in the proof of the first part of Lemma 2, we getnφ(h n )J 1 = O(b 2 n φ(h n )c n ),which together with the choice c n = ⌊φ(h n )-⌋ imply[START_REF] Ramsay | Functional data analysis[END_REF] as long as ρ > 2.

n

  (χ) = M 1 [1 + o[START_REF] Amiri | Recursive regression estimators with application to nonparametric prediction[END_REF]] and it can be shown as the same lines of the proof of Lemma 3 thatf [ℓ] n (χ) -E f [ℓ] n (χ) = O ln n nφ(h n ) .Therefore, Theorem 1 follows from the combination of Lemmas 1 and 3, since from Lemma 1

  Eϕ ℓ n (χ) -r(χ)Ef

  n (χ) +o(h 2 n ) + o (1/ (nφ(h n ))) .