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We consider the bidimensional Stokes problem for incompressible fluids in stream function-vorticity form. The classical finite element method of degree one usually used does not allow the vorticity on the boundary of the domain to be computed satisfactorily when the meshes are unstructured and does not converge optimally. To better approach the vorticity along the boundary, we propose that harmonic functions obtained by integral representation be used. Numerical results are very satisfactory, and we prove that this new numerical scheme leads to an optimal convergence rate of order 1 for the natural norm of the vorticity and, under higher regularity assumptions, from 3/2 to 2 for the quadratic norm of the vorticity.

I. INTRODUCTION A. Motivations

Let ⍀ be a bounded connected open set in ޒ 2 . In order that error estimates may be obtained for our numerical schemes, we assume that ⍀ is polygonal. We denote by ⌫ ϭ Ѩ⍀ the boundary of ⍀. Modeling of the equilibrium of an incompressible and viscous fluid leads to the Navier-Stokes problem [START_REF] Landau | Me ´canique des fluides, volume VI of Physique the ´orique[END_REF]. If we neglect convection terms, when the viscosity is sufficiently dominant or the velocity of the fluid sufficiently small, we obtain the stationary Stokes problem which is (in primitive variables i.e., velocity u and pressure p):

Ϫ⌬u ϩ ٌp ϭ f in ⍀, div u ϭ 0 in ⍀, u ϭ 0 on ⌫,
where is the kinematic viscosity and f a field of given external forces.

If ⍀ is supposed to be simply connected and the velocity is divergence free, this twodimensional problem is often rewritten in terms of stream function and vorticity variables. Velocity is the curl of some stream function and vorticity is the curl of the velocity. A usual way of discretizing this new problem is to choose a finite element method and to use polynomial approximations of degree one for each variable. The stream function and the vorticity are though assumed to be in H 1 (⍀), but it is well known that first this problem is not mathematically well-posed (see for example, Girault-Raviart [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF]), and that second the vorticity is not satisfactorily approximated on the boundary of the domain when the meshes are unstructured (see e.g., Salmon [START_REF] Salmon | De ´veloppement nume ´rique de la formulation tourbillon-vitesse-pression pour le proble `me de Stokes[END_REF]). Nevertheless, it can be shown that, if ⍀ is convex, the scheme is convergent (Scholz [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF][START_REF] Scholz | A mixed method for 4th order problems using linear finite elements[END_REF]). The convergence for the quadratic norm of the vorticity is of order ͌ h , where h is the maximum diameter of the triangles in the mesh, and of order h 1Ϫ for the H 1 -norm of the stream function ( is an arbitrary strictly positive real). Notice that in the case of structured meshes, the usual scheme gives optimal numerical results (see e.g., [START_REF] Salmon | De ´veloppement nume ´rique de la formulation tourbillon-vitesse-pression pour le proble `me de Stokes[END_REF][START_REF] Dubois | First vorticity-velocity-pressure numerical scheme for the Stokes problem, Report IAT/CNAM 356/02[END_REF]) and moreover, superconvergence can be observed [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF].

However, as has been said, a major problem of the stream function-vorticity formulation arises in trying to obtain correct boundary values for the vorticity. Many articles deal with this aspect and propose new formulas for inclusion in the numerical scheme (see e.g., Napolitano et al. [START_REF] Napolitano | A review of vorticity conditions in the numerical solution of the Ϫ equations[END_REF] and references therein). Another idea due to Amara and Bernardi [START_REF] Amara | Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation[END_REF] is to stabilize the usual formulation by adding jumps at interfaces of the triangles and thus improve the convergence.

However, from our point of view, the mathematically well-posed formulation of the problem should lead to a good numerical scheme. So, we work with the well-posed stream function-vorticity variational formulation which was introduced by Ruas [START_REF] Ruas | Variational approaches to the two-dimensional Stokes system in terms of the vorticity[END_REF] and Bernardi-Girault-Maday [START_REF] Bernardi | Mixed spectral element approximation of the Navier-Stokes equations in stream function and vorticity formulation[END_REF]. This formulation consists of looking for the vorticity in the space M(⍀) ϭ { ʦ L 2 (⍀), ⌬ ʦ H Ϫ1 (⍀)}, containing less regular functions than H 1 (⍀). We propose in the sequel to study a natural discretization of this space, which leads to a numerical scheme using harmonic functions to compute the vorticity on the boundary. Let us observe that the idea of using harmonic functions was first introduced by Glowinski-Pironneau [START_REF] Glowinski | Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem[END_REF] and also used by Quartapelle and Valz-Gris [START_REF] Quartapelle | Projection conditions on the vorticity in viscous incompressible flows[END_REF]. But these authors do not present any theoretical convergence results.

In the sequel, we prove that, in a polygonal domain, our numerical scheme is convergent of order at least ᏻ(h ) for the natural norm of the vorticity. Some of the authors have previously proposed a method based on discrete harmonic functions computed on refined meshes (Dubois et al. [START_REF] Dubois | Discrete harmonics for stream function-vorticity Stokes problem[END_REF]), which is quite time-consuming. Here, the novelty is to use integral representation for computing the real harmonic functions. Then, we prove both theoretically and numerically that, when ⍀ is moreover assumed to be convex, if the vorticity is assumed to belong to H 2 (⍀) [respectively to H 5/ 2 (⍀)] and if the stream function belongs to H 2 (⍀), their quadratic norms converge in fact as ᏻ(h 3/ 2 ) [respectively ᏻ(h 2 )]. The last part of the article is devoted to numerical experiments on different geometries and unstructured meshes, which are in agreement with theoretical results. In the whole article, ⍀ will be assumed to be at least connected and simply connected.

B. Notation

We shall consider the following spaces (see for example, Adams [START_REF] Adams | Sobolev spaces[END_REF]). Ᏸ(⍀) denotes the space of all indefinitely differentiable functions from ⍀ to ޒ with compact support and L 2 (⍀) the space of all classes of square integrable functions. For any integer m Ն 0 and any real p such that 1 Յ p Յ ϱ, W m,p (⍀) denotes the space of all functions v ʦ L p (⍀), whose partial derivatives in the sense of distributions, Ѩ ␣ v/Ѩ x i , ͉␣͉ Յ m, belong to L p (⍀). We define as usually H 1 (⍀) ϭ W 1,2 (⍀) and H 2 (⍀) ϭ W 2,2 (⍀). We denote by ʈ⅐ʈ m,p,⍀ (respectively, ͉⅐͉ m,p,⍀ ) the norms (respectively, the semi-norms) in the Sobolev spaces W m,p (⍀). We make the usual modification for p ϭ ϱ, and we drop the index 2 when p ϭ 2. The space H 0 1 (⍀) [respectively, H 0 2 (⍀)] is the closure of Ᏸ(⍀) with respect to the norm ʈ⅐ʈ 1,⍀ (respectively, ʈ⅐ʈ 2,⍀ ). Then, (⅐, ⅐) denotes the standard inner product in L 2 (⍀) and ͗⅐, ⅐͘ Ϫ1,1 the duality product between H 0 1 (⍀) and its topological dual space H Ϫ1 (⍀). Finally, ␥ denotes the trace operator from H 1 (⍀) onto H 1/ 2 (⌫), or from H 2 (⍀) onto H 3/ 2 (⌫) (see Lions-Magenes [START_REF] Lions | Proble `mes aux limites non homoge `nes et applications[END_REF]).

II. THE STREAM FUNCTION-VORTICITY FORM OF THE STOKES PROBLEM

Let f in (L 2 (⍀)) 2 be a field of given forces, we define curl f as (Ѩf 1 /Ѩ x 2 ) Ϫ (Ѩf 2 /Ѩ x 1 ). The steady-state Stokes problem consists of finding a stream function and a vorticity field solutions of

ϩ ⌬ ϭ 0 in ⍀ (2.1) Ϫ⌬ ϭ curl f in ⍀ (2.2) ϭ 0 on ⌫ (2.3) Ѩ Ѩn ϭ 0 on ⌫. (2.4)
Indeed, it consists of finding a velocity field u that is divergence free and can be written with the help of a stream function . We have

u ϭ curl ϭ ͩ Ϫ Ѩ Ѩx 2 , Ѩ Ѩx 1 ͪ T in ⍀.
Equation (2.1) means that the vorticity is the curl of the velocity. Equation (2.2) is the equilibrium equation for a viscous fluid, with kinematic viscosity equal to 1, and where convection terms are neglected. Boundary conditions (2.3) and (2.4) are consequences of u ϭ 0 on ⌫. For more details about this problem, we refer to [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF].

It is natural to discretize the problem (2.1)-(2.4) with a piecewise linear and continuous finite element method. As ⍀ is assumed to be polygonal, we can exactly cover it with a meshcomposed of triangular finite elements. The meshis assumed to be regular (in the sense defined in Ciarlet [START_REF] Ciarlet | The finite element methods for elliptic problems[END_REF]). The set H 1 denotes the space of continuous functions defined on ⍀ , which are polynomials of degree 1 in each triangle ofand H 0, 1 ϭ H 1 പ H 0 1 (⍀):

H 1 ϭ ͕ ʦ Ꮿ 0 ͑⍀ ͒, @K ʦ Ᏹ , ͉K ʦ ސ 1 ͑K͖͒, (2.5) 
where Ᏹ is the set of triangles inand ސ 1 the space of all polynomials of total degree less or equal to 1. The discretization of the problem (2.1)-(2.4) consists of finding and such that:

ʦ H 0, 1 ͑boundary condition ͑2.3͒ is then satisfied͒ (2.6) ʦ H 1 (2.7)
in the following way. We first multiply (2.1) by a scalar function ʦ H 1 and integrate by parts (⌬ , ), we obtain, taking the boundary condition (2.4) into account:

͑ , ͒ Ϫ ٌ͑ , ٌ ͒ ϭ 0 @ ʦ H 1 .
(2.8)

Then we multiply (2.2) by a test function in H 0, 1 , integrate by parts Ϫ(⌬ , ) and (curl f, ) and, as vanishes on the boundary, we obtain:

ٌ͑ , ٌ͒ ϭ ͑f, curl ͒ @ ʦ H 0, 1 . (2.9) 
This formulation (2.6)-(2.9) has been studied extensively (see Ciarlet-Raviart [START_REF] Ciarlet | A mixed finite element method for the biharmonic equation, Math Aspects Finite Elements Partial Differential Eq[END_REF], Glowinski-Pironneau [START_REF] Glowinski | Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem[END_REF] and [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF] among others) and presents some difficulties. First, the continuous formulation associated to it is not well-posed for any f in (L 2 (⍀)) 2 . Indeed, the Stokes problem can be seen as a biharmonic problem for the stream function:

ʦ H 0 2 (⍀) and ⌬ 2 ϭ curl f. In a variational form, this problem can be rewritten as follows:

͑⌬, ⌬͒ ϭ ͑f, curl ͒ @ ʦ H 0 2 ͑⍀͒.

(2.10) Problem (2.10) is well posed in H 0 2 (⍀) (see [START_REF] Ciarlet | The finite element methods for elliptic problems[END_REF]) and as ϭ Ϫ⌬, the vorticity cannot be more regular than square integrable. Second, error estimates derived for the scheme (2.6 -2.9) are not optimal. When ⍀ is assumed to be convex, the bound is in h 1/ 2 for the quadratic norm of the vorticity, where h is the maximum diameter of the elements of the triangulation [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF][START_REF] Scholz | A mixed method for 4th order problems using linear finite elements[END_REF] (it is numerically illustrated in Figure 3 at the end of this article).

So, a different weak formulation was proposed by Ruas [START_REF] Ruas | Variational approaches to the two-dimensional Stokes system in terms of the vorticity[END_REF] and Bernardi et al. [START_REF] Bernardi | Mixed spectral element approximation of the Navier-Stokes equations in stream function and vorticity formulation[END_REF] who introduced the space

M(⍀) ϭ { ʦ L 2 (⍀), ⌬ ʦ H Ϫ1 (⍀)}, which is a Hilbert space for the norm ʈʈ M ϭ ͌ ʈʈ 0,⍀ 2 ϩ ʈ⌬ʈ Ϫ1,⍀ 2 . It consists of finding (, ) in M(⍀) ϫ H 0 1 (⍀)
with the following method. We test the first equation (2.1) with a function ʦ M(⍀) and the second one (2.2) with a function ʦ H 0 1 (⍀). It is then necessary to integrate twice by parts the term ͗⌬, ͘ Ϫ1,1 in order to include boundary conditions (2.3) and (2.4). We get

ͭ ͑, ͒ ϩ ͗⌬, ͘ Ϫ1,1 ϭ 0 @ ʦ M͑⍀͒ ͗Ϫ⌬, ͘ Ϫ1,1 ϭ ͑f, curl ͒ @ ʦ H 0 1 ͑⍀͒. (2.11)
This formulation (2.11) leads to a well-posed problem [START_REF] Bernardi | Mixed spectral element approximation of the Navier-Stokes equations in stream function and vorticity formulation[END_REF].

Proposition 2.1. The Sobolev space H 1 (⍀) is contained in M(⍀) with continuous imbedding. We have, ʈʈ M Յ ʈʈ 1,⍀ for all function in H 1 (⍀). Moreover if ʦ M(⍀) പ H 0 1 (⍀), its M-norm is equal to its H 0 1 -norm. Proof. First we notice that the laplacian of a function in H 1 (⍀) belongs to H Ϫ1 (⍀) and H 1 (⍀) is a subspace of M(⍀). Then to prove the continuity of the imbedding, we need the definition of the H Ϫ1 -norm. For all ʦ H 1 (⍀), we have

ʈ⌬ʈ Ϫ1,⍀ ϭ sup ʦH 0 1 ͑⍀͒ ͗⌬, ͘ Ϫ1,1 ͉͉ 1,⍀ ϭ sup ʦH 0 1 ͑⍀͒ Ϫٌ͑, ٌ͒ ʈٌʈ 0,⍀ because is in H 1 ͑⍀͒ and ͉⌫ ϭ 0, Յ ʈٌʈ 0,⍀ ͑using the Cauchy-Schwarz inequality͒. (2.12) An immediate consequence of this inequality is @ ʦ H 1 (⍀), ʈʈ M Յ ʈʈ 1,⍀ . Second, if ʦ M(⍀) പ H 0 1 (⍀)
, it suffices to take ϭ Ϫ in the inequality (2.12) to obtain ʈ⌬ʈ Ϫ1,⍀ ϭ ʈٌʈ 0,⍀ and then ʈʈ M ϭ ʈʈ 1,⍀ . y

Let us now introduce the kernel Ᏼ(⍀) of the bilinear form ͗⌬⅐, ⅐͘ Ϫ1,1 :

Ᏼ͑⍀͒ ϭ ͕ ʦ M͑⍀͒, ͗⌬, ͘ Ϫ1,1 ϭ 0, @ ʦ H 0 1 ͑⍀͖͒. Proposition 2.2. Characterization of the space Ᏼ(⍀): Ᏼ(⍀) ϭ { ʦ L 2 (⍀), ⌬ ϭ 0 in ᏰЈ(⍀)}.
There also exists a trace operator (still denoted by ␥) from Ᏼ(⍀) on H Ϫ1/ 2 (⌫).

The proof is quite classical and completely developed in [START_REF] Dubois | Discrete harmonics for stream function-vorticity Stokes problem[END_REF]. So, when we restrict the first equation of (2.11) to functions in Ᏼ(⍀), this new problem is well-posed according to Lax-Milgram's lemma [START_REF] Lax | Parabolic equations, in contributions to the theory of partial differential equations[END_REF]. Indeed Proposition 2.3. The L 2 -scalar product:

Ᏼ(⍀) ϫ Ᏼ(⍀) ʯ (, ) ۋ ͐ ⍀ ⅐ dx ʦ ޒ is elliptic on Ᏼ(⍀).
Proof. It is obvious that for in Ᏼ(⍀), ʈʈ M 2 ϭ ʈʈ 0,⍀ 2 . y Proposition 2.4. The space M(⍀) can be decomposed as follows: M(⍀) ϭ H 0 1 (⍀) ᮍ Ᏼ(⍀). Proof. The proof can also be found in [START_REF] Ruas | On the velocity-vorticity formulation of the Stokes system in two-and three-dimension spaces[END_REF]. We split ʦ M(⍀) into two parts: ϭ 0 ϩ ⌬ . On the one hand, since ⌬ ʦ H Ϫ1 (⍀), the component 0 is uniquely defined in H 0 1 (⍀) by the Dirichlet problem:

ͭ ⌬ 0 ϭ ⌬ in ⍀ ␥ 0 ϭ 0 on ⌫.
On the other hand, we define ⌬ by ⌬ ϭ Ϫ 0 . Then, it verifies ⌬ ⌬ ϭ 0 in ⍀, so ⌬ belongs to Ᏼ(⍀). y Moreover, we can observe that ␥ ⌬ ϭ ␥ on ⌫, with ␥ well defined in H Ϫ1/ 2 (⌫) (see Proposition 2.2).

We now rewrite the well-posed formulation of the Stokes problem (2.11) taking into account the decomposition given in Proposition 2.4.

Find

ϭ 0 ϩ ⌬ ʦ H 0 1 (⍀) ᮍ Ᏼ(⍀) and ʦ H 0 1 (⍀) such that Ά ͑a͒ ͑ 0 ϩ ⌬ , ͒ ϩ ͗⌬, ͘ Ϫ1,1 ϭ 0 @ ʦ H 0 1 ͑⍀͒. ͑b͒ ͑ 0 ϩ ⌬ , ͒ ϩ ͗⌬, ͘ Ϫ1,1 ϭ0 ϭ 0 @ ʦ Ᏼ͑⍀͒. ͑c͒ ͗Ϫ⌬ 0 , ͘ Ϫ1,1 Ϫ ͗⌬ ⌬ , ͘ Ϫ1,1 ϭ0 ϭ ͑f, curl ͒ @ ʦ H 0 1 ͑⍀͒.
Then it is obvious that the previous problem can be solved in the following way:

Ά ͑c͒ find 0 ʦ H 0 1 ͑⍀͒ such that ͗Ϫ⌬ 0 , ͘ Ϫ1,1 ϭ ٌ͑ 0 , ٌ͒ ϭ ͑f, curl ͒ @ ʦ H 0 1 ͑⍀͒. ͑b͒ find ⌬ ʦ Ᏼ͑⍀͒ such that ͑ ⌬ , ͒ ϭ Ϫ͑ 0 , ͒ @ ʦ Ᏼ͑⍀͒. ͑a͒ find ʦ H 0 1 ͑⍀͒ such that ͗Ϫ⌬, ͘ Ϫ1,1 ϭ ٌ͑, ٌ͒ ϭ ͑ 0 ϩ ⌬ , ͒ @ ʦ H 0 1 ͑⍀͒.
(2.13)

A previous work of the authors used with success homothetic mesh refinements to solve the second step of the above problem (Dubois et al. [START_REF] Salmon | De ´veloppement nume ´rique de la formulation tourbillon-vitesse-pression pour le proble `me de Stokes[END_REF][START_REF] Dubois | Discrete harmonics for stream function-vorticity Stokes problem[END_REF]). The following section gives an alternative way to solve this step by a direct use of harmonic functions, based on an integral representation.

III. DISCRETIZATION OF THE STOKES PROBLEM USING HARMONIC FUNCTIONS A. Discretization of the Space Ᏼ(⍀)

We recall that ⍀ being polygonal allows to entirely cover it with a mesh -. We denote by Ᏹ the set of triangles in -.

Definition. Family ᐁ of regular meshes [START_REF] Ciarlet | The finite element methods for elliptic problems[END_REF]. We assume thatbelongs to the set ᐁ of triangulations satisfying:

? Ͼ 0, @K ʦ Ᏹ , h K K Յ ,
where h K ϭ diam K and K is the diameter of the circle inscribed in K.

We introduce the trace of meshon the boundary ⌫. It is a set Ꮽ(-, ⌫) of edges of triangles of the mesh which are contained in ⌫. If N a (-, ⌫) is the number of these edges, we denote them by ,⌫) is also equal to the number of vertices of the meshon the boundary ⌫. Then we define the vector space Ꮿ generated by the characteristic functions of the edges ⌫ i ʦ Ꮽ(-, ⌫) of ⌫:

⌫ i , 1 Յ i Յ N a (-, ⌫). As ⌫ is closed, N a (-
Ꮿ ϭ Span͕q i ϭ މ ⌫i , ⌫ i ʦ Ꮽ͑-, ⌫͖͒, (3.1) 
where މ ⌫ i is the characteristic function defined from ⌫ to ޒ by

މ ⌫i ͑x͒ ϭ ͭ 1 if x ʦ ⌫ i 0 if x ԫ ⌫ i .
The dimension of Ꮿ is exactly equal to the number N a (-, ⌫).

Remark 3.1. We can define the vector space ᏸ of continuous polynomial functions of degree one on the edges

⌫ i ʦ Ꮽ(-, ⌫) of ⌫. ᏸ ϭ ͕q ʦ Ꮿ 0 ͑⌫͒, q ͉⌫i ʦ ސ 1 ͑⌫ i ͒, ⌫ i ʦ Ꮽ͑-, ⌫͖͒. (3.2) 
Then we denote by the simple layer operator applied to functions of Ꮿ .

Definition. Simple layer potential.

: Ꮿ ʯ q i ۋ i ʦ Ᏼ ,I
where i (x) ϭ q i ( x) ϭ ͐ ⌫ G( x, y)q i ( y) d␥ y @x ʦ ⍀ , and G(x, y) ϭ (1/2)log͉x Ϫ y͉ is the Green kernel.

We denote by Ᏼ ,I the discrete space spanned by functions i ϭ q i , for all q i ʦ Ꮿ . The space Ᏼ ,I is finite dimensional and, clearly, its dimension is equal to the dimension of Ꮿ . By construction, functions of Ᏼ ,I are harmonic. We shall denote by S ϭ ␥ the operator on the boundary. We introduce ␥ i (x) ϭ Sq i (x) ϭ ͐ ⌫ i G(x, y) d␥ y for all x on the boundary ⌫ and q i ϭ މ ⌫ i in Ꮿ . Remark 3.2. Our discretization will be conforming as Ᏼ ,I is contained in Ᏼ(⍀) ʚ M(⍀) and that functions in Ᏼ ,I have a trace on the boundary in H Ϫ1/ 2 (⌫) (see Proposition 2.2).

Theorem 3.3. The operator S is an isomorphism from the Sobolev space H s (⌫) onto H sϩ1 (⌫) for all real numbers (see e.g., Ne ´de ´lec [START_REF] Ne ´de ´lec | Approximation des e ´quations inte ´grales en me ´canique et en physique[END_REF], Dautray-Lions [START_REF] Dautray | Analyse mathe ´matique et calcul nume ´rique pour les sciences et les techniques[END_REF]).

Definition. We define the following subspace of H Ϫ3/ 2 (⌫):

Њ H Ϫ3/2 ͑⌫͒ ϭ ͕ ʦ H Ϫ3/2 ͑⌫͒, ͗, 1͘ Ϫ3/2,3/2 ϭ 0͖.
Proposition 3.4. For all q ʦ Њ H Ϫ3/ 2 (⌫), we can define the harmonic function q of L 2 (⍀):

q͑x͒ ϭ ͵ ⌫ G͑x, y͒q͑y͒ d␥ y @x ʦ ⍀ .
Then, there exists a constant C Ͼ 0 such that, for all q ʦ Њ H Ϫ3/ 2 (⌫):

ʈqʈ 0,⍀ Յ Cʈqʈ Ϫ3/2,⌫ . (3.3)
Proof. Let q be in Њ H Ϫ3/ 2 (⌫) and ⍀Ј be the interior of the complementary of ⍀. Notice that q is, by definition, the solution of the following problem [19 -21]:

Ά ⌬u ϭ 0 in ⍀ ഫ ⍀Ј ͓u͔ ϭ 0 on ⌫ ͫ Ѩu Ѩn ͬ ϭ q on ⌫,
where [] ϭ ͉⍀ Ϫ ͉⍀Ј is the jump of across ⌫. Vector n is the outer normal on ⌫. Notice that the condition ͗q, 1͘ Ϫ3/ 2,3/ 2 ϭ 0 is necessary to obtain the existence of a solution to the previous problem.

Following Ne ´de ´lec [START_REF] Ne ´de ´lec | Approximation des e ´quations inte ´grales en me ´canique et en physique[END_REF], we know that for all q ʦ H Ϫ1/ 2 (⌫), whose mean value is zero, q belongs to H 1 (⍀) and then to L 2 (⍀). So, we can consider the L 2 -norm of q when q is sufficiently regular. Then, if (3.3) is proven for regular functions, a classical density argument leads to the expected result.

Let us now prove this proposition for regular functions. We shall use methods similar to those used in the Aubin-Nitsche argument (see Aubin [START_REF] Aubin | Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods[END_REF] and Nitsche [START_REF] Nitsche | Ein Kriterium fu ¨r die quasi-optimalitat des Ritzchen Verfahrens[END_REF]). Indeed,

ʈqʈ 0,⍀ ϭ sup gʦL 2 ͑⍀͒ ͑q, g͒ 0,⍀ ʈgʈ 0,⍀ .
We extend a function g ʦ L 2 (⍀) by zero outside ⍀ and we define g ˜:

g ˜ϭ ͭ g in ⍀ 0 in ⍀Ј.
Notice that, as g belongs to L 2 (⍀), g ˜belongs to L 2 ޒ( 2 ). We consider a function such that

Ϫ⌬ ϭ g ˜in ޒ 2 .
͑x͒ ϭ ᏻ͑log͉x͉͒ when ͉x͉ becomes large.

By local regularity of the Laplacian operator, the solution ͉⍀ belongs to H 2 (⍀) if ⍀ is bounded (Ne ´de ´lec [START_REF] Ne ´de ´lec | Re ´solution des e ´quations acoustiques et electromagne ´tiques[END_REF]) and verifies

ʈ ͉⍀ ʈ 2,⍀ Յ Cʈgʈ 0,⍀ . (3.4)
Because ⍀ is bounded, let B R be a ball, of radius R sufficiently large to contain ⍀ (we denote by S R the boundary of B R ). We have

͑q, g͒ 0,⍀ ϭ ͑q, g ޒ,0͒˜ 2 ϭ lim R3ϱ ͵ BR Ϫ⌬ ⅐ q dx.
Then, as ⌬q ϭ 0:

͵ BR Ϫ⌬ ⅐ q dx ϭ ͵ BR ͑⌬q ⅐ Ϫ ⌬ ⅐ q͒ dx ϭ ͵ ⍀ ͑⌬q ⅐ Ϫ ⌬ ⅐ q͒ dx ϩ ͵ BRگ⍀ ͑⌬q ⅐ Ϫ ⌬ ⅐ q͒ dx.
Notice that, on the one hand, ͉B R belongs to

H 2 (B R ) [respectively, ͉⍀ to H 2 (⍀)] as B R is bounded and so, ␥ ʦ H 3/ 2 ( R ) [respectively H 3/ 2 (⌫)] and Ѩ/Ѩn ʦ H 1/ 2 (S R ) [respectively H 1/ 2 (⌫)].
On the other hand, functions in L 2 (⍀) whose Laplacian is also in L 2 (⍀) have their normal trace in H Ϫ3/ 2 (⌫) (see [START_REF] Dautray | Analyse mathe ´matique et calcul nume ´rique pour les sciences et les techniques[END_REF]). So, we obtain by definition:

͵ ⍀ ͑⌬q ⅐ Ϫ ⌬ ⅐ q͒ dx ϩ ͵ BRگ⍀ ͑⌬q ⅐ Ϫ ⌬ ⅐ q͒ dx ϭ ͳ ͫ ѨSq Ѩn ͬ , ͓␥͔ʹ Ϫ3/2,3/2 ϩ ͳϪ ͫ Ѩ Ѩn ͬ , ͓Sq͔ʹ Ϫ1/2,1/2 ϩ ͵ SR ͩ ѨSq Ѩn ⅐ Ϫ Ѩ Ѩn ⅐ Sq ͪ d␥.
First, [␥] and [Ѩ/Ѩn] are continuous across ⌫ and S R since belongs to H 2 (B R ). Second, by construction: [ѨSq/Ѩn] ϭ q, [Sq] ϭ 0. Then, we obtain

͵ BR Ϫ⌬ ⅐ q dx ϭ ͗q, ␥͘ Ϫ3/2,3/2 ϩ ͵ SR ͩ ѨSq Ѩn ⅐ Ϫ Ѩ Ѩn ⅐ Sq ͪ d␥.
As acts as log R and Sq as 1/R (because the mean value of q is null) when R becomes large (see [START_REF] Ne ´de ´lec | Approximation des e ´quations inte ´grales en me ´canique et en physique[END_REF]) we obtain

ͯ͵ SR ѨSq Ѩn ⅐ d␥ ͯ Յ ͵ 0 2 1 R 2 ⅐ log R ⅐ R d ϳ log R R O ¡ R 3 ϩ ϱ 0,
and

ͯ͵ SR Ѩ Ѩn ⅐ Sq d␥ ͯ Յ ͵ 0 2 1 R ⅐ 1 R ⅐ R d ϳ 1 R O ¡ R 3 ϩ ϱ 0.
Finally, we deduce ͑q, g͒ 0,⍀ ϭ ͑q, g ޒ,0͒˜ 

H 1,I ϭ H 0, 1 ᮍ Ᏼ ,I . (3.5) 
The dimension of H 1,I is the same as H 1 [see (2.5)] but near the boundary, we use harmonic functions instead of piecewise linear continuous functions.

B. Discrete Formulation

We propose the following discrete variational formulation of the Stokes problem based on problem (2.13):

ʦ H 0, 1 , ϭ 0 ϩ ⌬ ʦ H 1,I ϭ H 0, 1 ᮍ Ᏼ ,I (3.6) 
ٌ͑ 0 , ٌ͒ ϭ ͑f, curl ͒ @ ʦ H 0, 1 (3.7) 
͑ ⌬ , ͒ ϭ Ϫ͑ 0 , ͒ @ ʦ Ᏼ ,I (3.8) 
ٌ͑ , ٌ͒ ϭ ͑ 0 ϩ ⌬ , ͒ @ ʦ H 0, 1 .

(3.9)

The above method is a conforming discretization of problem (2.13) since, as it was said in remark 3.2, H 1,I is a subset of M(⍀). Our approach for studying problem (3.6)-(3.9) follows ideas of [START_REF] Glowinski | Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem[END_REF] and Ruas [START_REF] Ruas | Approximating harmonic bases for a decoupled solution of viscous flow problems in Ϫ formulation[END_REF]. Proposition 3.5. Existence and uniqueness of a solution to problem (3.6)-(3.9). If f ʦ (L 2 (⍀)) 2 , problem (3.6)-(3.9) has a unique solution ( , ) ʦ H 0, 1 ϫ H 1,I , which depends continuously on the datum f. There exists a strictly positive constant C independent of the mesh such that ʈ ʈ M ϩ ʈٌ ʈ 0,⍀ Յ Cʈfʈ 0,⍀ .

(3.10)

Proof. As ⍀ is bounded, if C p denotes the Poincare ´constant, we have

@ ʦ H 0 1 ͑⍀͒, ʈʈ 0,⍀ Յ C p ͉͉ 1,⍀ .
Problem (3.7) is well posed according to Lax-Milgram's lemma, and Poincare ´'s inequality. There exists a unique 0 ʦ H 0, 1 satisfying [take ϭ 0 in (3.7)]

ʈٌ 0 ʈ 0,⍀ 2 ϭ ʈcurl 0 ʈ 0,⍀ 2 Յ ʈfʈ 0,⍀ ʈcurl 0 ʈ 0,⍀ .
As 0 ʦ H 0 1 (⍀), its M-norm is equal to its H 1 -norm (see Proposition 2.1) and

ʈ 0 ʈ M Յ ͱ1 ϩ C p 2 ʈfʈ 0,⍀ . (3.11) 
We now study Equation (3.8). Function 0 is given and problem (3.8) has a unique solution ⌬ , as the L 2 -scalar product is M-elliptic on Ᏼ ,I (Proposition 2.3):

͑ ⌬ , ͒ ϭ Ϫ͑ 0 , ͒ @ ʦ Ᏼ ,I .
Taking ϭ ⌬ and thanks to (3.11), function

⌬ verifies ʈ ⌬ ʈ M ϭ ʈ ⌬ ʈ 0,⍀ Յ ʈ 0 ʈ 0,⍀ Յ ͱ1 ϩ C p 2 ʈfʈ 0,⍀ .
(3.12)

Finally, Equation (3.9) is formally identical to (3.7), so there exists (Lax-Milgram's lemma and Poincare ´'s inequality) a unique ʦ H 0, 1 such that

ٌ͑ , ٌ͒ ϭ ͑ 0 , ͒ ϩ ͑ ⌬ , ͒ @ ʦ H 0, 1 ,
and then 

ʈٌ ʈ 0,⍀ Յ C p ͑ʈ 0 ʈ 0,⍀ ϩ ʈ ⌬ ʈ 0,⍀ ͒.

C. Interpolation Error

We recall the following result [START_REF] Lions | Proble `mes aux limites non homoge `nes et applications[END_REF]. Theorem 3.6. Interpolation between Sobolev spaces. Let s i and t i be two couples of positive reals for i ϭ 0 or i ϭ 1 and p ʦ ޒ such that 1 Յ p Յ ϱ. Let ⌸ be an operator of ᏸ(W s 0 ,p (⍀); W t 0 ,p (⍀)) പ ᏸ(W s 1 ,p (⍀); W t 1 ,p (⍀)) (ᏸ is the space of all linear and continuous functions). Then, for all ʦ ޒ പ [0; 1], operator ⌸ belongs to the interpolate space ᏸ ϭ ᏸ(W (1Ϫ )s 0 ϩs 1 ,p (⍀); W (1Ϫ )t 0 ϩt 1 ,p (⍀)) and we have ʈ⌸ʈ ᏸ Յ ʈ⌸ʈ ᏸ0 1Ϫ ʈ⌸ʈ ᏸ1 .

Proposition 3.7. Regularity of components of functions in M(⍀). Let be in M(⍀), we know

(see Proposition 2.4) that can be split: ϭ 0 ϩ ⌬ with 0 ʦ H 0 1 (⍀) and ⌬ ʦ Ᏼ(⍀) (i.e., harmonic). Then, if ⍀ is convex and if belongs to H 2 (⍀) പ M(⍀) ϭ H 2 (⍀), 0 and ⌬ belong also to H 2 (⍀). Moreover, there exists a constant C Ͼ 0 such that

ʈ 0 ʈ 2,⍀ Յ Cʈʈ 2,⍀ . (3.14) ʈ ⌬ ʈ 2,⍀ Յ Cʈʈ 2,⍀ .
(3.15)

Proof. Let us recall that 0 ʦ H 0 1 (⍀) is solution of

ͭ ⌬ 0 ϭ ⌬ in ⍀ ␥ 0 ϭ 0 on ⌫.
If belongs to H 2 (⍀), its Laplacian belongs to L 2 (⍀) and by the regularity of the Laplacian operator on a convex domain, 0 belongs to H 2 (⍀) (Agmon et al. [START_REF] Agmon | Estimates near the boundary for solutions in elliptic partial differential equations satisfying general boundary conditions I[END_REF]). Then, ⌬ ϭ Ϫ 0 belongs also to H 2 (⍀). Moreover, we have

ʈ 0 ʈ 2,⍀ Յ Cʈ⌬ʈ 0,⍀ Յ Cʈʈ 2,⍀ .
The inequality for ⌬ ϭ Ϫ 0 is deduced from the previous one by the triangular inequality.y Definition. Projection operator: Let p c be the L 2 -projection on the space of piecewise constants Ꮿ defined in (3.1).

p c : L 2 ͑⌫͒ 3 Ꮿ ۋ p c
such that ͵ ⌫ ͑p c Ϫ ͒ ⅐ q d␥ ϭ 0 @q ʦ Ꮿ .

Remark 3.8. It is also possible to define the L 2 -projection on the space of piecewise linear functions ᏸ defined in (3.2), p ᏸ : L 2 (⌫) 3 ᏸ , which is such that, for all ʦ L 2 (⌫), ͐ ⌫ ( p ᏸ Ϫ ) ⅐ q d␥ ϭ 0 @q ʦ ᏸ . Let h be the maximum diameter of triangles in -. The standard interpolation error for one-dimensional problems [START_REF] Ciarlet | The finite element methods for elliptic problems[END_REF] gives, for all in H 1 (⌫):

ʈ Ϫ p c ʈ 0,⌫ Յ Ch ͉͉ 1,⌫ .
(3.16) Lemma 3.9. For all ʦ H 1/ 2 (⌫), we have

ʈ Ϫ p c ʈ 0,⌫ Յ Ch 1/2 ʈʈ 1/2,⌫ .
(3.17)

Proof. Let I be the identity operator. As I Ϫ p c is a continuous operator from L 2 (⌫) into L 2 (⌫) with its norm bounded by a constant C 1 and is also continuous from L 2 (⌫) into H 1 (⌫) with its norm bounded by C 2 h [see (3.16)], we deduce that I Ϫ p c is continuous from L 2 (⌫) into H 1/ 2 (⌫) ( ϭ 1/ 2 in Theorem 3.6) with its norm bounded by a constant times h 1/ 2 which is inequality (3.17). y Proposition 3.10. For all ʦ H 1/ 2 (⌫), we have

ʈ Ϫ p c ʈ Ϫ3/2,⌫ Յ Ch 3/2 ʈʈ 1/2,⌫ . (3.18)
For all ʦ H 1 (⌫), we have

ʈ Ϫ p c ʈ Ϫ3/2,⌫ Յ Ch 2 ʈʈ 1,⌫ . (3.19)
Proof. By definition of the norm in H Ϫ3/ 2 (⌫), we have

ʈ Ϫ p c ʈ Ϫ3/2,⌫ ϭ sup ʦH 3/2 ͑⌫͒ ͗ Ϫ p c , ͘ Ϫ3/2,3/2 ʈʈ 3/2,⌫ .
As H 1/ 2 (⌫) and H 3/ 2 (⌫) are contained in L 2 (⌫), the duality product ͗ Ϫ p c , ͘ Ϫ3/ 2,3/ 2 can be rewritten as

͐ ⌫ ( Ϫ p c ) ⅐ d␥. By definition ͐ ⌫ ( Ϫ p c ) ⅐ d␥ ϭ 0 @ ʦ Ꮿ , so ͗ Ϫ p c , ͘ Ϫ3/2,3/2 ϭ ͵ ⌫ ͑ Ϫ p c ͒ ⅐ ͑ Ϫ ͒ d␥ @ ʦ Ꮿ Յ ʈ Ϫ p c ʈ 0,⌫ ʈ Ϫ ʈ 0,⌫ ᭙ ʦ Ꮿ ͑Cauchy-Schwarz inequality͒ Յ ʈ Ϫ p c ʈ 0,⌫ ʈ Ϫ p c ʈ 0,⌫ with ϭ p c ʦ Ꮿ Յ C 1 h 1/2 ʈʈ 1/2,⌫ C 2 h ʈʈ 1,⌫ using ͑3.17͒ and ͑3.16͒ Յ Ch 3/2 ʈʈ 1/2,⌫ ʈʈ 3/2,⌫ ,
which ends the proof of (3.18). Notice that if belongs to H 1 (⌫), using a classical interpolation estimate [see (3.16)], we have ʈ Ϫ p c ʈ 0,⌫ Յ Ch ʈʈ 1,⌫ , so we obtain

͗ Ϫ p c , ͘ Ϫ3/2,3/2 Յ ʈ Ϫ p c ʈ 0,⌫ ʈ Ϫ p c ʈ 0,⌫ with ϭ p c ʦ Ꮿ Յ C 1 h ʈʈ 1,⌫ C 2 h ʈʈ 1,⌫ Յ Ch 2 ʈʈ 1,⌫ ʈʈ 3/2,⌫ ,
which leads to formula (3.19). y Let ⌸ : H 2 (⍀) 3 H 1 be the classical Lagrange interpolation operator associated with mesh -.

Definition. The interpolation operator

: Ᏼ(⍀) പ H 2 (⍀) 3 Ᏼ ,I is defined by ⌬ ϭ
where is such that

͑x͒ ϭ p c ͑S Ϫ1 ⌬ ͒͑x) ϭ ⌫ G(x, y)⅐p c (S Ϫ1 ⌬ )(y) d␥ y @x ʦ ⍀ .
We define the interpolation operator ᏼ from M(⍀) പ H 2 (⍀) to H - 1,I ϭ H 0, 1 ᮍ Ᏼ ,I by the relations:

ᏼ : M͑⍀͒ പ H 2 ͑⍀͒ ʯ ϭ 0 ϩ ⌬ ۋ ᏼ ϭ ⌸ 0 ϩ ⌬ ʦ H 1,I .
Remark 3.11. We can also define the interpolation operator Ј :

Ᏼ(⍀) പ H 2 (⍀) 3 Ᏼ ,I by Ј ⌬ ϭ
, where is such that

͑x͒ ϭ p ᏸ ͑S Ϫ1 ⌬ ͒͑x) ϭ ͵ ⌫ G(x, y)⅐p ᏸ (S Ϫ1 ⌬ )(y) d␥ y @x ʦ ⍀ ,
and ᏼЈ from M(⍀) പ H 2 (⍀) to H - 1,I ϭ H 0, 1 ᮍ Ᏼ ,I by the relations:

ᏼЈ : M͑⍀͒ പ H 2 ͑⍀͒ ʯ ϭ 0 ϩ ⌬ ۋ ᏼЈ ϭ ⌸ 0 ϩ Ј ⌬ ʦ H 1,I .
Proposition 3.12. Error estimates: Forin a regular family of triangulations ᐁ ( Ͼ 0 fixed), for h small enough, and for given in M(⍀) decomposed into 0 and ⌬ , if we assume 0 ʦ H 2 (⍀) പ H 0 1 (⍀) and ʦ H 2 (⍀), then there exists some strictly positive constants, say C, only dependent on , such that

ʈ 0 Ϫ ⌸ 0 ʈ M Յ Ch ͉ 0 ͉ 2,⍀ .
(3.20)

ʈ ⌬ Ϫ ⌬ ʈ M Յ Ch 3/2 ʈʈ 2,⍀ . (3.21)
Moreover, if belongs to H 5/ 2 (⍀), we have

ʈ ⌬ Ϫ ⌬ ʈ M Յ Ch 2 ʈʈ 5/2,⍀ . (3.22)
Proof. As H 2 (⍀) ʚ Ꮿ 0 (⍀) when ⍀ is two-dimensional, we can use the classical interpolation operator, and we have the following interpolation error estimate (Ciarlet-Raviart [START_REF] Ciarlet | General Lagrange and Hermite interpolation in ޒ n with applications to finite element methods[END_REF]):

ʈ 0 Ϫ ⌸ 0 ʈ 1,⍀ Յ Ch ͉ 0 ͉ 2,⍀ . But ʈ 0 Ϫ ⌸ 0 ʈ M ϭ ʈ 0 Ϫ ⌸ 0 ʈ 1,⍀ because 0 Ϫ ⌸ 0 ʦ H 0 1 (⍀) (see Proposition 2.1), so relation (3.20) is established, if h is small enough.
We now interpolate the harmonic part ⌬ of ʦ M(⍀). By definition ⌬ verifies

ͭ ⌬ ⌬ ϭ 0 in ⍀ ␥ ⌬ ϭ ␥ on ⌫.
As is assumed to be in H 2 (⍀), its trace on ⌫, ␥, belongs to H 3/ 2 (⌫). As S is an isomorphism from H s (⌫) onto H sϩ1 (⌫) (see Theorem 3.3), there exists a unique q ʦ H 1/ 2 (⌫) such that Sq ϭ ␥q ϭ ␥ on ⌫. And because of uniqueness, q ϭ ⌬ on ⍀. Let now q ϭ p c q ʦ Ꮿ , we recall that ⌬ is

⌬ ͑x͒ ϭ q ͑x) ϭ ͵ ⌫ G(x, y)⅐q (y) d␥ y @x ʦ ⍀ . So, ʈ ⌬ Ϫ ⌬ ʈ M ϭ ʈ ⌬ Ϫ ⌬ ʈ 0,⍀ ϭ ʈq Ϫ q ʈ 0,⍀ .
As constants belong to Ꮿ , ͐ ⌫ (q Ϫ q ) d␥ ϭ 0, i.e. q Ϫ q ʦ Њ H Ϫ3/ 2 (⌫). Then proposition 3.4 gives

ʈq Ϫ q ʈ 0,⍀ Յ Cʈq Ϫ q ʈ Ϫ3/2,⌫ .
Then, from inequality (3.18), we obtain

ʈq Ϫ q ʈ Ϫ3/2,⌫ ϭ ʈq Ϫ p c qʈ Ϫ3/2,⌫ Յ Ch 3/2 ʈqʈ 1/2,⌫ .
And finally

ʈ ⌬ Ϫ ⌬ ʈ M Յ Ch 3/2 ʈqʈ 1/2,⌫ ϭ Ch 3/2 ʈS Ϫ1 ͑ ͒ʈ 1/2,⌫ Յ Ch 3/2 ʈ␥ʈ 3/2,⌫ because S is an isomorphism Յ Ch 3/2 ʈʈ 2,⍀
by continuity of the trace operator.

Notice that if is assumed to be in H 5/ 2 (⍀), its trace on ⌫, ␥, belongs to H 2 (⌫). So, there exists a unique q ʦ H 1 (⌫) such that Sq ϭ ␥q ϭ ␥ on ⌫. The same arguments as above lead to the inequality:

ʈq Ϫ q ʈ 0,⍀ Յ Cʈq Ϫ q ʈ Ϫ3/2,⌫ .
Then, from formula (3.19), we have

ʈq Ϫ q ʈ Ϫ3/2,⌫ ϭ ʈq Ϫ p c qʈ Ϫ3/2,⌫ Յ Ch 2 ʈqʈ 1,⌫ .
And finally

ʈ ⌬ Ϫ ⌬ ʈ M Յ Ch 2 ʈqʈ 1,⌫ ϭ Ch 2 ʈS Ϫ1 ͑ ͒ʈ 1,⌫ Յ Ch 2 ʈ␥ʈ 2,⌫ because S is an isomorphism Յ Ch 2 ʈʈ 5/2,⍀
by continuity of the trace operator. y Remark 3.13. Using linear interpolation on the boundary, we obtain

ʈ ⌬ Ϫ Ј ⌬ ʈ M Յ Ch 2 ʈʈ 2,⍀ . (3.23) 
To prove the inequality with Ј , we use the same arguments as above. Projection is done on ᏸ : q ϭ p ᏸ q ʦ ᏸ , we define Ј ⌬ as the simple layer potential associated to q , i.e., Ј ⌬ ͑x͒ ϭ q ͑x) ϭ ͵ ⌫ G(x, y)⅐q (y) d␥ y @x ʦ ⍀ .

As we have proved for projection p c , using classical interpolation and interpolation between Sobolev spaces results, we have

ʈq Ϫ q ʈ Ϫ3/2,⌫ ϭ ʈq Ϫ p ᏸ qʈ Ϫ3/2,⌫ Յ Ch 2 ʈqʈ 1/2,⌫ .
The end of the proof, which leads to inequality (3.23), is the same as above.

D. Error Estimates

We define an auxiliary problem:

Find ʦ H 0, 1 , ϭ 0 ϩ ⌬ ʦ H 1,I such that ͭ ٌ͑ 0 , ٌ͒ ϭ ٌ͑g, ٌ͒ @ ʦ H 0, 1 . ͑ ⌬ , ͒ ϭ ͑m, ͒ @ ʦ Ᏼ ,I . ٌ͑ , ٌ͒ ϭ ٌ͑l, ٌ͒ ϩ ͑n, ͒ @ ʦ H 0, 1 . (3.24) 
Proposition 3.14. Stability of discrete formulation (3.24).

Let g ʦ H 0 1 (⍀), m ʦ L 2 (⍀), l ʦ H 0 1 (⍀), n ʦ L 2 (⍀). Then problem (3.24) has a unique solution ( , ) ʦ H 0, 1 ϫ H 1,I
, which is stable in the following sense: there exists a constant C only dependent on the mesh family such that the following stability inequality holds: ʈ ʈ M ϩ ʈٌ ʈ 0,⍀ Յ C͕ʈٌgʈ 0,⍀ ϩ ʈmʈ 0,⍀ ϩ ʈٌlʈ 0,⍀ ϩ ʈnʈ 0,⍀ ͖.

Proof. In the following, C will denote various constants. In the first equation of problem (3.24) we take ϭ 0 , and using Poincare ´'s inequality, we obtain

ʈ 0 ʈ M Յ Cʈٌ 0 ʈ 0,⍀ Յ Cʈٌgʈ 0,⍀ ,
as 0 belongs to H 0 1 (⍀), its H 1 -norm is equal to its M-norm. In the second equation of problem (3.24), we take ϭ ⌬ , as ⌬ ⌬ ϭ 0, we obtain

ʈ ⌬ ʈ M ϭ ʈ ⌬ ʈ 0,⍀ Յ ʈmʈ 0,⍀ .
Finally, in the last equation of problem (3.24), we take ϭ . As belongs to H 0 1 (⍀), using Poincare ´'s inequality, we have ʈٌ ʈ 0,⍀ Յ C͑ʈٌlʈ 0,⍀ ϩ ʈnʈ 0,⍀ ͒.

By combining these three inequalities, Proposition 3.14 is proven. y Proposition 3.15. The error is bounded by the interpolation error. Let (, ) be the solution of the continuous stream function-vorticity formulation (2.13) and ( , ) solution of the associated discrete problem (3.6)-(3.9). There exists a constant C Ͼ 0 independent ofsuch that

ʈ Ϫ ʈ M ϩ ʈ Ϫ ʈ 1,⍀ Յ C͑ʈ 0 Ϫ ⌸ 0 ʈ M ϩ ʈ ⌬ Ϫ ⌬ ʈ M ϩ ʈ Ϫ ⌸ ʈ 1,⍀ ͒.
Proof. The continuous problem (2.13) is written with a discrete test function ϭ 0 ϩ ⌬ ʦ H 1,I since H 1,I ʚ M(⍀) and with ʦ H 0, 1 ʚ H 0 1 (⍀):

ͭ ٌ͑ 0 , ٌ͒ ϭ ͑f, curl ͒ @ ʦ H 0, 1 . ͑ ⌬ , ͒ ϭ Ϫ͑ 0 , ͒ @ ʦ Ᏼ ,I . ٌ͑, ٌ͒ ϭ ͑ 0 ϩ ⌬ , ͒ @ ʦ H 0, 1 .
(3.25)

The discrete problem is

ͭ ٌ͑ 0 , ٌ͒ ϭ ͑f, curl ͒ @ ʦ H 0, 1 ͑ ⌬ , ͒ ϭ Ϫ͑ 0 , ͒ @ ʦ Ᏼ ,I . ٌ͑ , ٌ͒ ϭ ͑ 0 ϩ ⌬ , ͒ @ ʦ H 0, 1 . (3.26) 
Subtracting (3.25) from (3.26), we obtain

ͭ ٌ͑͑ 0 Ϫ 0 ͒, ٌ͒ ϭ 0 @ ʦ H 0, 1 . ͑ ⌬ Ϫ ⌬ , ͒ ϭ Ϫ͑ 0 Ϫ 0 , ͒ @ ʦ Ᏼ ,I . ٌ͑͑ Ϫ ͒, ٌ͒ ϭ ͑͑ 0 Ϫ 0 ͒ ϩ ͑ ⌬ Ϫ ⌬ ͒, ͒ @ ʦ H 0, 1 .
(3.27)

We now introduce the interpolants of and ϭ 0 ϩ ⌬ on the mesh -. In the first equation of problem (3.27), we add and subtract ⌸ 0 and obtain

ٌ͑͑ 0 Ϫ ⌸ 0 ͒, ٌ͒ ϭ ٌ͑͑ 0 Ϫ ⌸ 0 ͒, ٌ͒ @ ʦ H 0, 1 . (3.28) 
Adding and subtracting ⌬ in the second equation, we obtain

͑ ⌬ Ϫ ⌬ , ͒ ϭ ͑ ⌬ Ϫ ⌬ , ͒ ϩ ͑ 0 Ϫ 0 , ͒ @ ʦ Ᏼ ,I . (3.29) 
And finally using same techniques for the last equation, we have

ٌ͑͑ Ϫ ⌸ ͒, ٌ͒ ϭ ٌ͑͑ Ϫ ⌸ ͒, ٌ͒ Ϫ ͑ 0 Ϫ 0 , ͒ Ϫ ͑ ⌬ Ϫ ⌬ , ͒ @ ʦ H 0, 1 .
(3.30) Equations (3.28), (3.29), and (3.30) lead to the following problem:

Ά ٌ͑͑ 0 Ϫ ⌸ 0 ͒, ٌ͒ ϭ ٌ͑g, ٌ͒ @ ʦ H 0, 1 . ͑ ⌬ Ϫ ⌬ , ͒ ϭ ͑m, ͒ @ ʦ Ᏼ ,I ٌ͑͑ Ϫ ⌸ ͒, ٌ͒ ϭ ٌ͑l, ٌ͒ ϩ ͑n, ͒ @ ʦ H 0, 1 ,
which is the auxiliary problem (3.24) previously defined with g

ϭ 0 Ϫ ⌸ 0 in H 0 1 (⍀), m ϭ ( ⌬ Ϫ ⌬ ) ϩ ( 0 Ϫ 0 ) in L 2 (⍀), l ϭ Ϫ ⌸ in H 0 1 (⍀), n ϭ Ϫ( 0 Ϫ 0 ) Ϫ ( ⌬ Ϫ ⌬ ) in L 2 (⍀)
. By applying the triangular inequality and Proposition 3.14, we have

ʈ Ϫ ʈ M ϩ ʈ Ϫ ʈ 1,⍀ Յ ʈ Ϫ ᏼ ʈ M ϩ ʈ Ϫ ⌸ ʈ 1,⍀ interpolation error ϩ ʈᏼ Ϫ ʈ M ϩ ʈ⌸ Ϫ ʈ 1,⍀ Յ ʈ Ϫ ᏼ ʈ M ϩ ʈ Ϫ ⌸ ʈ 1,⍀ ϩ C͑ʈٌ͑ 0 Ϫ ⌸ 0 ͒ʈ 0,⍀ ϩ ʈ ⌬ Ϫ ⌬ ϩ 0 Ϫ 0 ʈ 0,⍀ ϩ ʈٌ͑ Ϫ ⌸ ͒ʈ 0,⍀ ϩ ʈ 0 Ϫ 0 ϩ ⌬ Ϫ ⌬ ʈ 0,⍀ ) Յ ʈ Ϫ ᏼ ʈ M ϩ ʈ Ϫ ⌸ ʈ 1,⍀ ϩ C͑ʈ 0 Ϫ ⌸ 0 ʈ M ϩ ʈ ⌬ Ϫ ⌬ ʈ M ϩ ʈ 0 Ϫ 0 ʈ 0,⍀ ϩ ʈٌ͑ Ϫ ⌸ ͒ʈ 0,⍀ ϩ ʈ 0 Ϫ 0 ʈ 0,⍀ ϩ ʈ ⌬ Ϫ ⌬ ʈ M ),
which leads to the announced result. y The inequality obtained in Proposition 3.15 and the interpolation error lead to the following. Theorem 3.16. First convergence result. Ifbelongs to a regular family of triangulation ᐁ ( Ͼ 0) and h is small enough, the discrete problem (3.6)-(3.9) has a unique solution ( , ) 

ʦ H 0, 1 ϫ H 1,I
, associated with a stable discretization of the Stokes problem (2.1)-(2.4). If ʦ H 2 (⍀) പ H 0 1 (⍀) and ϭ 0 ϩ ⌬ such that ʦ H 2 (⍀) and 0 ʦ H 2 (⍀), then

? C͑ ͒ Ͼ 0, @-ʦ ᐁ , ʈ Ϫ ʈ M ϩ ʈ Ϫ ʈ 1,⍀ Յ C͑͒h ͉͑ 0 ͉ 2,⍀ ϩ ʈʈ 2,⍀ ϩ ͉͉ 2,⍀ ͒.
Proof. With the help of the inequality in Proposition 3.15 (C denotes various constants),

ʈ Ϫ ʈ M ϩ ʈ Ϫ ʈ 1,⍀ Յ C͑ʈ 0 Ϫ ⌸ 0 ʈ M ϩ ʈ ⌬ Ϫ ⌬ ʈ M ϩ ʈ Ϫ ⌸ ʈ 1,⍀ ͒ Յ C͑h ͉ 0 ͉ 2,⍀ ϩ h 3/2 ʈʈ 2,⍀ ϩ h ͉͉ 2,⍀ ͒ by Proposition 3.12 Յ Ch ͉͑ 0 ͉ 2,⍀ ϩ ʈʈ 2,⍀ ϩ ͉͉ 2,⍀ ͒
as h can be assumed to be less or equal to 1. y Remark 3.17. If ⍀ is assumed to be convex, proposition 3.7 leads to

? C͑ ͒ Ͼ 0, @-ʦ ᐁ , ʈ Ϫ ʈ M ϩ ʈ Ϫ ʈ 1,⍀ Յ C͑͒h ͑ʈʈ 2,⍀ ϩ ͉͉ 2,⍀ ͒.
Theorem 3.16 is important because it shows that using a space of harmonic functions along the boundary gives an error of order ᏻ(h ) when ʦ H 2 (⍀), which improves previous known results and is equivalent to those proved in [START_REF] Dubois | Discrete harmonics for stream function-vorticity Stokes problem[END_REF]. Theorem 3.18. Second convergence result. If ⍀ is assumed to be convex and under the same assumptions as in Theorem 3.16, we have

? C͑͒ Ͼ 0, @-ʦ ᐁ , ʈ Ϫ ʈ 0,⍀ ϩ ʈ Ϫ ʈ 0,⍀ Յ C͑ ͒h 3/2 ͑ʈʈ 2,⍀ ϩ ʈʈ 2,⍀ ͒.
Under the same assumptions, if moreover ʦ H 5/ 2 (⍀), we have

? C͑͒ Ͼ 0, @-ʦ ᐁ , ʈ Ϫ ʈ 0,⍀ ϩ ʈ Ϫ ʈ 0,⍀ Յ C͑ ͒h 2 ͑ʈʈ 5/2,⍀ ϩ ʈʈ 2,⍀ ͒.
Proof. If belongs to H 2 (⍀), from Proposition 3.12, formula (3.21), we know that

ʈ ⌬ Ϫ ⌬ ʈ 0,⍀ Յ C͑ ͒h 3/2 ʈʈ 2,⍀ .
If belongs to H 5/ 2 (⍀), from Proposition 3.12, formula (3.22), we know that

ʈ ⌬ Ϫ ⌬ ʈ 0,⍀ Յ C͑ ͒h 2 ʈʈ 5/2,⍀ .
We just have to use

ʈ 0 Ϫ 0 ʈ 0,⍀ Յ C͑ ͒h 2 ʈʈ 2,⍀ Յ C͑ ͒h 2 ʈʈ 5/2,⍀ , and 
ʈ Ϫ ʈ 0,⍀ Յ C͑ ͒h 2 ͑ʈʈ 2,⍀ ϩ ʈʈ 5/2,⍀ ͒.
These inequalities are proven using the classical Aubin-Nitsche argument when the domain ⍀ is convex so that regularity on the adjoint problem is obtained ( [START_REF] Aubin | Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods[END_REF][START_REF] Nitsche | Ein Kriterium fu ¨r die quasi-optimalitat des Ritzchen Verfahrens[END_REF]). y The last part of the previous theorem says that if the solution is more regular than usual, the convergence is of order 2. This is illustrated in the numerical examples in the next section where the solutions are very regular. 

ʈ ⌬ Ϫ ⌬ ʈ 0,⍀ Յ C͑ ͒h 2 ʈʈ 2,⍀ ,
from which we deduce the following theorem.

Theorem 3.20. We assume that ⍀ is convex, thatbelongs to a regular family of triangulations, that ʦ H 2 (⍀) പ H 0 1 (⍀) and that ʦ H 2 (⍀). If we use space ᏸ , we have

? C͑͒ Ͼ 0, @-ʦ ᐁ , ʈ Ϫ ʈ 0,⍀ ϩ ʈ Ϫ ʈ 0,⍀ Յ C͑ ͒h 2 ͑ʈʈ 2,⍀ ϩ ʈʈ 2,⍀ ͒.

IV. NUMERICAL APPLICATIONS

The first numerical experiments have been performed on a unit square with an analytical solution (Bercovier-Engelman test [START_REF] Bercovier | A finite element for the numerical solution of viscous incompressible flows[END_REF]):

f 1 ͑x, y͒ ϭ 256͑x 2 ͑x Ϫ 1͒ 2 ͑12y Ϫ 6͒ ϩ y͑y Ϫ 1͒͑2y Ϫ 1͒͑12x 2 Ϫ 12x ϩ 2͒͒ f 2 ͑x, y͒ ϭ Ϫf 1 ͑y, x͒,
for which we obtain (x, y) ϭ Ϫ128( y 2 ( y Ϫ 1) 2 x 2 ( x Ϫ 1) 2 ) and (x, y) ϭ 256( y 2 ( y Ϫ 1) 2 (6x 2 Ϫ 6x ϩ 1) ϩ x 2 ( x Ϫ 1) 2 (6y 2 Ϫ 6y ϩ 1)). For the second numerical experiments, we have extended the tests to circles. They have been performed on a circle of radius 2 with an analytical solution (test suggested by Ruas [START_REF] Ruas | Me ´thodes vitesse-tourbillon pour les e ´quations de Navier-Stokes[END_REF]):

f 1 ͑x, y͒ ϭ Ϫ32y, f 2 ͑x, y͒ ϭ 32x, which gives (x, y) ϭ (4 Ϫ x 2 Ϫ y 2 ) 2 and (x, y) ϭ 32 Ϫ 16x 2 Ϫ 16y 2 .
Remark 4.1. Notice that for error estimates on the circle, we have to add a boundary approximation error. The boundary is approximated by polynomials of degree 1 and it seems that this error is of the same order than the approximation error with polynomials of degree zero.

We have worked with unstructured meshes obtained with EMC2, mesh generator of Modulef (Bernadou et al. [START_REF] Bernadou | MODULEF: Une bibliothe `que modulaire d'e ´le ´ments finis[END_REF]), see Fig. 1. Notice that structured meshes give good results without any stabilization, see [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF] and for numerical results see [START_REF] Salmon | De ´veloppement nume ´rique de la formulation tourbillon-vitesse-pression pour le proble `me de Stokes[END_REF] and [START_REF] Dubois | First vorticity-velocity-pressure numerical scheme for the Stokes problem, Report IAT/CNAM 356/02[END_REF]. For the sake of simplicity, we use the space Ꮿ of functions which are constant on each edge for the integral representation. It would be interesting to test the linear integral representation but the results were so satisfying with the constant one that we did not even try. Remark 4.2. All the integrals for assembling the mass matrix in Equation (3.8) were computed with the help of a Gauss formula using 7 quadrature points and we obtain results in accordance with the theory. The cost of such an integration could be reduced by using less points far from the boundary. Although errors due to numerical integration were not studied here, they seem to be dominated by other errors and do not pollute results. For the first test, the analytical vorticity attains its extremum on the middle of each edge of the square and its value is then ϩ16.00. And for the second one the extremum (Ϫ32) is attained on the whole boundary. We recall that the number of discrete harmonic functions is equal to the number of vertices on the boundary and that the classical method uses piecewise linear functions for approximating the vorticity and the stream function. Figure 2 gives the values of the vorticity on the boundary obtained by the classical and the integral method on the same mesh. In fact with the classical method, extrema of the vorticity blow up on the boundary (see Fig. 2).

We recall that problem (2.6)-(2.9) is not stable and error bounds are in h 1/ 2 for the L 2 -norm of the vorticity-as numerically illustrated on Figs. 3 and4-andh 1Ϫ for the H 1 -norm of the stream function [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF]. Using only constants on edges with regular solutions, we have obtained, as expected by Theorem 3.18, convergence of order 2 for the L 2 -norm of the vorticity and for the L 2 -norm of the stream function (see Figs. 3 and4).

V. CONCLUSION

We have studied the well-posed Stokes problem in stream function and vorticity form. We have shown that using a space of real harmonic functions is sufficient to obtain on the one hand a better solution and on the other hand better estimations on the convergence than those obtained previously. We have proposed a way of approaching numerically the space of real harmonic functions with the help of an integral representation which yields a large gain of time compared to previous results obtained in [START_REF] Dubois | Discrete harmonics for stream function-vorticity Stokes problem[END_REF]. We have shown theoretically and numerically that by this way we obtain convergence with optimal rate in some cases on the quadratic norm of the vorticity.

We use the same method for a vorticity-velocity-pressure formulation of the Stokes problem that allows more general boundary conditions [START_REF] Salmon | De ´veloppement nume ´rique de la formulation tourbillon-vitesse-pression pour le proble `me de Stokes[END_REF][START_REF] Dubois | First vorticity-velocity-pressure numerical scheme for the Stokes problem, Report IAT/CNAM 356/02[END_REF]. The results are not published yet but they are really satisfying as, once again, the solution and the convergence of the method are improved. We insist on the fact that the additional work of the method (the computation of the matrix) needs to be done only once. So, the additional cost of our scheme shall be less important for a more realistic problem like the time dependent Stokes or Navier-Stokes equations.

Using ( 3 .

 3 [START_REF] Quartapelle | Projection conditions on the vorticity in viscous incompressible flows[END_REF]) and (3.12), we obtain ʈٌ ʈ 0,⍀ Յ CЈʈfʈ 0,⍀ .(3.13)Combining (3.11), (3.12), and (3.13), we obtain the announced result (3.10). y To obtain error estimates and thus convergence, we need a stability result (Proposition 3.14) and an interpolation error (Proposition 3.12).

Remark 3 . 19 .

 319 If we use the linear interpolation for the boundary values of the vorticity instead of piecewise constant one, we know from formula (3.23) that

FIG. 1 .

 1 FIG. 1. Two unstructured meshes obtained by EMC2.

FIG. 2 .

 2 FIG. 2. Comparison: vorticity on the boundary-Bercovier-Engelman test.

  2 ϭ ͗q, ␥͘ Ϫ3/2,3/2 Յ ʈqʈ Ϫ3/2,⌫ ʈ␥ʈ 3/2,⌫

	Using relation (3.4), it leads to				
	ʈqʈ 0,⍀ ϭ sup gʦL 2 ͑⍀͒	͑q, g͒ ʈgʈ 0,⍀	Յ C sup gʦL 2 ͑⍀͒	ʈqʈ Ϫ3/2,⌫ ʈgʈ 0,⍀ ʈgʈ 0,⍀	Յ Cʈqʈ Ϫ3/2,⌫ .
					y
	Definition. For the discretization of M(⍀), we set		
			Յ Cʈqʈ Ϫ3/2,⌫ ʈʈ 2,⍀	by continuity of the trace.