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Energy-momentum’s local conservation laws

and generalized isometric embeddings of

vector bundles

Nabil Kahouadji

Abstract

Using exterior differential systems, we provide a positive answer
to the generalized isometric embedding problem of vector bun-
dles, and show how conservation laws for a class of PDE can be
constructed, for instance, for covariant divergence-free energy-
momentum tensors.

1 Introduction

Exterior differential systems play an important role in mathematics
in general as well as in differential geometry since they are a way of
studying PDE from a geometric viewpoint. After the emergence of ab-
stract notion of manifolds [4] and [12], which are defined, roughly speak-
ing, as Hausdorff topological spaces that possess local embeddings in
Euclidean spaces (local charts), the question of the existence of an
isometric embedding of Riemannian manifolds into Euclidean spaces
emerged naturally. Another way to express this question is to find
whether any abstract Riemannian manifold is in fact a submanifold of a
Euclidean space. In 1871, Schlaefli [13] discussed the local form of this
embedding and conjectured that a neighborhood in an m-dimensional
Riemannian manifold would generally require an embedding space of
m(m + 1)/2 dimensions. Janet [6] and Cartan [2] gave a positive an-
swer in the local and analytic case. A global existence of the isometric
embedding of Riemannian manifolds in the smooth case was established
by Nash [10, 11] and Kuiper [9] in the smooth case. A new problem
is considered in [8] where the author addresses the question of the ex-
istence of isometric embedding of vector bundles, in a sense that will
be later explained, as a natural generalization of the classical isometric
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embedding problem and used to construct conservation laws for a class
of PDE. For that purpose, the following paper is organized as follows:
in section 2 we recall the basic definitions and results (proofs and details
may be found in [7]) concerning connections on vector bundles that allow
us to state in section 3 the problem of constructing conservation laws by
generalized isometric embeddings of vector bundles, originally stated by
F. Hélein (see [5]). We also give some examples and motivations of the
problem. In section 4 we give a brief introduction to exterior differential
systems and Cartan-Kähler theory. In section 5 we state the author’s
main theorem in [8] and explain the principal steps of the proof. Finally,
in section 6 we present an application for energy-momentum tensors.

2 On Cartan’s Structure Equations

Let ξ = (V, π,M) be a vector bundle over a smooth m-dimensional
manifold M with an r-dimensional vector space V as a standard fiber.
Denote by (Γ(TM), [, ]) the Lie algebra of vector fields on M and Γ(V)
the moduli space of cross-sections of the vector bundle V.

2.1 Connection on a vector bundles

A connection on a vector bundle is a way of “differentiating” cross-
sections along vector fields, and it is usually defined as a bilinear oper-
ator ∇ on Γ(TM)× Γ(V) with values on Γ(V) which satisfy ∇(fX)S =
f∇XS and a Leibniz identity type ∇X(fS) = X(f)S + f∇XS for all
X ∈ Γ(TM) and for all S ∈ Γ(V).

Given a connection ∇, we define its curvature as a trilinear operator
R∇ on Γ(TM) × Γ(TM) × Γ(V) with values on Γ(V) which associates
any cross-section S and any two vector fields X and Y with the cross
section

R∇(X,Y )S =
(

[∇X ,∇Y ]−∇[X,Y ]

)

S

From the definition, one can easily check the following property:

Theorem 1. For any f, g and h smooth functions on M, S ∈ Γ(E) a
section of ξ and X,Y ∈ Γ(TM) two tangent vector fields of M, we have

R∇(fX, gY )(hS) = f.g.h.R∇(X,Y )S (1)
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Depending on the situation, expressing the connection and its cur-
vature following Cartan’s formalism seems to be more convenient: let
us denote by O an open set of M. A set of r local sections S =
(S1, S2, . . . , Sr) of ξ is called a moving frame (or a frame field) if for

all p in O, S(p) =
(

S1(p), S2(p), . . . , Sr(p)
)

form a basis of the fiber Vp

over the point p.
If we consider X ∈ Γ(TM) a tangent vector field on M, then since

∇XSj is another section of ξ, it can be expressed in the moving frame
S as follows:

∇XSj =
r∑

i=1

ωi
j(X)Si (2)

where ωi
j ∈ Γ(T∗M) are differential 1-forms on M.

Definition 1. The r × r matrix ω = (ωi
j) whose entries are differential

1-forms is called the connection 1-form of ∇.

The connection ∇ is completely determined by the matrix ω = (ωi
j).

Conversely, a matrix of differential 1-forms on M determines a con-
nection (in a non-invariant way depending on the choice of the moving
frame).

Let X,Y ∈ Γ(TM) be two tangent vector fields. As previously, since
R∇(X,Y )Sj is a section of ξ, it can be expressed on the moving frame
S as follows:

R∇(X,Y )Sj =
r∑

i=1

Ωi
j(X,Y )Si (3)

where Ωi
j ∈ Γ(∧2T∗M) are differential 2-forms on M.

Definition 2. The r× r matrix Ω = (Ωi
j) whose entries are differential

2-forms, is called the curvature 2-form of the connection ∇.

With this viewpoint, we can state the following theorem that gives
the relation between the connection 1-form ω and the curvature 2-form
Ω.

Theorem 2.

dω + ω ∧ ω = Ω (matrix form) (4)

or

dωi
j +

r∑

k=1

ωi
k ∧ ω

k
j = Ωi

j (on components) (5)
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This viewpoint is convenient for endowing connection on a vector
bundle when we have a connection on another vector bundle. Actu-
ally, since connections and their curvatures are expressed by differential
forms, one can use the usual operations on differential forms, for in-
stance, the pull-back, to induce these objects on another vector bundle.
Let us consider ξ = (V, π,M) and ξ′ = (V′, π′,M) to be two vector
bundles on M of the same rank. Consider a map f : M −→ M and
denote f̃ : V −→ V

′ the associated bundle map i.e. (f, f̃) satisfies the
following commutative diagram:

V
f̃

//

π

��

V
′

π′

��

M
f

// M

If ∇′ is a connection on V
′, the vector bundle morphism induces a

pull-back connection on V by ∇ = f̃∗∇′ such that for any S′ ∈ Γ(V′)

and X ∈ Γ(TM), ∇X(f̃∗S′) = (f̃∗∇′)X(f̃∗S′) = f̃∗
(

∇f∗XS
′
)

where

f∗,p : TpM −→ Tf(p)M is the linear tangent map.
We can also induce a connection on ξ in another way. The connec-

tion ∇′ is completely determined by the matrix of differential 1-forms
ω′ = (ω′i

j). Consequently, the connection ∇ can be defined by the ma-

trix ω whose entries ωi
j are the pull-back of ω′i

j by f̃ , i.e., ω = f̃∗ω′.
Since the pull-back commutes with the exterior differentiation and with
the wedge product1, the curvature 2-form Ω of the connection ∇ is the
pull-back of the curvature 2-form of ∇′, i.e. Ω = f̃∗Ω′.

An interesting property of a connection when the vector bundle is
endowed with a Riemannian metric is to be “compatible” with that
metric. Let us recall that a Riemannian metric g on ξ is a positively-
defined scalar product on each fiber. Then a connection ∇ is said to be
compatible with the metric g, or a metric connection, if ∇ satisfies the

Leibniz identity: ∇X

(

g(S1, S2)
)

= g(∇XS1, S2) + g(S1,∇XS2) for all

S1, S2 ∈ Γ(V) and for all X ∈ Γ(TM).

The following result shows an interesting property of metric connec-
tions and will be useful in answering one case of the generalized isometric
embedding problem (stated in the next section).

1d(f∗α) = f∗(dα) and f∗(α ∧ β) = f∗(α) ∧ f∗(β) for all α, β ∈ Γ(∧T∗
M).
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Proposition 1. Let S = (S1, S2, . . . , Sn) be an orthonormal moving
frame with respect to g, i.e. gp(Si, Sj) = δij for all p ∈ O, i, j = 1, . . . , r,
then the matrix of 1-forms ω associated to S and the curvature matrix of
2-forms Ω are both skew-symmetric, i.e., ωi

j + ωj
i = 0 and Ωi

j +Ωj
i = 0.

This means that metric connections and their curvatures are o(n)-
valued differential forms rather than just being gl(n)-valued differential
forms.

2.2 Tangent Bundle Case

We consider in this subsection a fundamental class of vector bundles
which is the tangent bundle of a manifold, i.e., V = TM. All of the re-
sults stated above obviously remain true. However, this class of vector
bundles provides more notions. For instance, let us consider, as pre-
vious, a local moving frame S = (S1, . . . , Sm) over O ⊂ M. One can
naturally associates S with a moving coframe η = (η1, . . . , ηm) defined
as a local frame field of 1-forms, such that for all p ∈ U , ηi(p)(Sj) = δij .

We define the torsion 2-form of ∇ to be the TM-valued differential
2-form Θ = (Θi) such that Θi = dηi + ωi

j ∧ η
j . This can be written in

a more condensed manner and is said to be the first Cartan structure
equation

dη + ω ∧ η = Θ (6)

The torsion of a connection measures the default for a connection to
have the parallelogram property. When Θ vanishes, the connection is
said to be torsion-free. Moreover, a torsion-free connection which is also
compatible with a Riemannian metric is said to be a Levi-Civita con-
nection. Note that a Levi-Civita connection on a Riemannian manifold
is unique.

The moving coframe η, the connection 1-form ω, the curvature 2-
form Ω and the torsion 2-form are connected as follows:

Proposition 2. On a tangent bundle, the four forms η, ω,Θ and Ω are
connected by the following systems of equations:

dΘ+ ω ∧Θ = Ω ∧ η (7)

and
dΩ = Ω ∧ ω − ω ∧ Ω (8)
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The equation (8) is the expression of the Bianchi identities via the
connection 1-form and the curvature 2-form. Let us notice that equation
(8) is also valid on an arbitrary vector bundle.

2.3 Cartan’s Structure Equations

Let (M, g) be an m-dimensional Riemannian manifold. Let η = (η1, η2,
. . . , ηm) be an orthonormal moving coframe on M. According to equa-
tions (6), (5) and the proposition 1, we establish the Cartan structure
equations:







dηi +
m∑

j=1

ωi
j ∧ η

j = 0 (torsion-free)

dωi
j +

m∑

k=1

ωi
k ∧ ω

k
j = Ωi

j

(9)

where the matrix (ωi
j) is the Levi-Civita connection 1-form (torsion-free

connection which is compatible with the Riemannian metric g). Because
η is an orthonormal coframe field, (ωi

j) and (Ωi
j) are skew-symmetric.

2.4 The Cartan Lemma

We end this section with a technical lemma, which is easy to establish
and very useful for computations.

Lemma 1. Let M be an m-dimensional manifold. ω1, ω2, . . . , ωr a set
of linearly independent differential 1−forms (r ≤ n) and θ1, θ2, . . . , θr

differential 1-forms such that

r∑

i=1

θi ∧ ωi = 0 (10)

then there exist r2 functions hij in C1(M) such that

θi =

r∑

j=1

hijω
j with hij = hji . (11)



3 A new problem: generalized isometric embeddings 51

3 A new problem: generalized isometric

embeddings

Many fundamental quantities in physics (mass, energy, movement quan-
tity, momentum, electric charge, . . . ), when some conditions are sat-
isfied, do not change as the physical system evolves. One can then
consider that there are conservation laws that govern the evolution of
a given physical system. From a mathematical viewpoint, a conserva-
tion law can be seen as a map defined on a space F (which can be, for
instance, a function space, a fiber bundle section space, . . . ) that asso-
ciates each element f of F with a vector field X on an m-dimensional
Riemannian manifold M, such that if f is a solution of a given PDE
on F , the vector field X has a vanishing divergence. If we denote by g
the Riemannian metric on the manifold M, we can canonically associate
each vector field X ∈ Γ(TM) with a differential 1-form αX := g(X, ·).
Since div(X) = ∗d ∗ αX (or div(X)volM = d(Xy volM)), where ∗ is
the Hodge operator, volM is the volume form on M, and Xy volM is
the interior product of volM by the vector field X, the requirement
div(X) = 0 may be replaced by the requirement d(Xy volM) = 0 and
hence, conservation laws may also be seen as maps on F with values on
differential (m − 1)-forms such that solutions of PDEs are mapped to
closed differential (m−1)-forms on M. More generally, we could extend
the notion of conservation laws as mapping to differential p-forms (for
instance, Maxwell equations in the vacuum can be expressed, as it is
well-known, by requiring a system of differential 2-forms to be closed).
As in [8], we address the question of finding conservation laws for a class
of PDE described as follows:

Question 1. Let V be an n-dimensional vector bundle over M. Let
g be a metric bundle and ∇ a connection that is compatible with that
metric. We then have a covariant derivative d∇ acting on vector valued
differential forms. Assume that φ is a given covariantly closed V-valued
differential p-form on M, i.e.,

d∇φ = 0. (12)

Does there exist N ∈ N and an embedding Ψ of V into M × R
N given

by Ψ(x,X) = (x,ΨxX), where Ψx is a linear map from Vx to R
N such

that:

• Ψ is isometric, i.e, for every x ∈ M, the map Ψx is an isometry,
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• If Ψ(φ) is the image of φ by Ψ, i.e., Ψ(φ)x = Ψx◦φx for all x ∈ M,
then

dΨ(φ) = 0. (13)

In this problem, the equation (12) represents the given PDE (or a
system of PDEs) and the map Ψ plays the role of a conservation law.
Note that the problem is trivial when the vector bundle is a line bundle.
Indeed, the only connection on a real line bundle which is compatible
with the metric is th flat one.

3.1 Motivations:

There are basically two main motivations to the statement of the above
problem(see [5]) coming from geometry and physics:

3.1.1 The isometric embedding problem:

A fundamental example is the isometric embedding of Riemannian man-
ifolds in Euclidean spaces. A map u between two Riemannian manifolds
(M, g) and (N , h) is said to be isometric if u∗(h) = g. After the emer-
gence of the abstract notion of manifolds, due to the works of Gauss
[4] and Riemann[12], a natural question arose: does there exist an ab-
stract manifold? Another way to express this question is to know if any
given abstract manifold is in fact a submanifold of a certain Euclidean
space or equivalently, does any arbitrary Riemannian manifold admit an
isometric embedding in a Euclidean space. This problem is known as
the isometric embedding problem which has been considered in various
specializations and with assorted conditions. It is related to Question 1
as follows: M is an m-dimensional Riemannian manifold, V is the tan-
gent bundle TM, the connection ∇ is the Levi-Civita connection, p = 1
and the TM-valued differential 1-form φ is the identity map on TM.
Then (12) expresses the torsion-free condition for the connection ∇ and
any solution Ψ of (13) provides us with an isometric embedding u of the
Riemannian manifoldM into a Euclidean space RN through du = dΨ(φ)
and conversely. An answer to the local analytic isometric embeddings
of Riemannian manifolds is given by the Cartan-Janet theorem:

Theorem 3. Every m-dimensional real analytic Riemannian manifold

can be locally embedded isometrically in an
m(m+ 1)

2
-dimensional

Euclidean space.
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Janet [6] solved the local problem for an analytic Riemannian sur-
face, and Cartan [2] immediately extended the result to any m-manifold,
treating it as an application to his theory of Pfaffian systems. In [11],
Nash solved the problem in the smooth and global case. Despite the
fact that the Cartan–Janet result is local and the analycity hypotheses
on the data may seem to be too restrictive, the Cartan–Janet theorem is
important because it actualizes the embedding in an optimal dimension,
unlike the Nash isometric embedding.

Consequently, if the above problem has a positive answer for p = 1,
the notion of isometric embeddings of Riemannian manifolds is extended
to the notion of generalized isometric embeddings of vector bundles. The
general problem, when p is arbitrary, can also be viewed as an embedding
of covariantly closed vector valued differential p-forms.

3.1.2 Harmonic maps between Riemannian manifolds:

A harmonic map u between two Riemannian manifolds (M, g) and
(N , h) is a critical point of the Dirichlet functional

E[u] =
1

2

∫

M
|du|2. (14)

Locally, the Euler-Lagrange systems is expressed2 by

∆gu
i + gαβΓi

jk(u(x))
∂uj

∂xα
∂uj

∂xα
= 0 (15)

where Γi
jk denote the Christoffel symbols of the connection on N . Har-

monic maps are in fact common to mathematicians and physicists. For
instance, when the target Riemannian manifold (N , h) is replaced by
(R, 〈, 〉R), harmonic maps are harmonic functions on (M, g). If the tar-
get manifold is (Rn, 〈, 〉Rn ), a map u is harmonic if and only if each
component of u is a harmonic function on M. Other examples of har-
monic maps are isometries, geodesics and isometric immersions.

Harmonic maps are related to Question 1 since they produce covari-
antly closed vector valued forms as expounded in [5]. Indeed, harmonic
maps can be characterized as follows: let us consider a map u defined
on an m-dimensional Riemannian manifold M which takes values in an
n-dimensional Riemannian manifold N . On the induced bundle by u
over M, the u∗TN -valued differential (m − 1)-form ∗du is covariantly

2We use here the usual convention on repeated indices.
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closed if and only if the map u is harmonic, where the connection on
the induced bundle is the pull-back by u of the Levi-Civita connection
on N . A positive answer to Question 1 in this case will make it possi-
ble to construct conservation laws on M from covariantly closed vector
valued differential (m − 1)-forms, provided, for example, by harmonic
maps. In his book [5], motivated by the question of the compactness of
weakly harmonic maps in Sobolev spaces in the weak topology (which
is still an open question), Hélein considers harmonic maps between
Riemannian manifolds and explains how conservation laws may be ob-
tained explicitly by Noether’s theorem if the target manifold is symmet-
ric and formulates the problem for non-symmetric target manifolds.

4 A short review of exterior differential systems

In [8], the author gives a positive answer to the generalized isometric
embedding of an arbitrary vector bundle relative to a covariantly closed
vector valued differential (m − 1)-form in the local and analytic case,
by reformulating the problem in terms of an exterior differential system.
Since the Cartan–Kähler theory plays an important role in the proof
of Theorem 8 and since the reader may not be familiar with exterior
differential systems (EDS) and the Cartan–Kähler theorem, generalities
are expounded concerning theses notions and results in this section. For
details and proofs, the reader may consult Élie Cartan’s book [3] and
the third chapter of [1].

4.1 EDS and exterior ideals

Let us denote3 by Γ(∧T∗M) the space of smooth differential forms on
M. An exterior differential system is a finite set of differential forms I=
{ω1, ω2, . . . , ωk} ⊂ Γ(∧T∗M) for which we associate the set of equations
{ωi = 0 |ωi ∈ I}.

Example 1. I = {adx+ bdy+ cdz} is an EDS on R
3, where a, b and c

are functions on R
3. The EDS I is said to be a Pfaffian system because

it contains only differential 1-form.

A subset of differential forms I ⊂ Γ(∧T∗M) is an exterior ideal if
the exterior product of any differential form of I by a differential form

3This is a graded algebra under the wedge product. We do not use the standard
notation Ω(M) so as to not confuse it with the curvature 2-form of the connection.
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of Γ(∧T∗M) belongs to I and if the sum of any two differential forms
of the same degree belonging to I, belongs also to I. The exterior ideal
generated by I is the smallest exterior ideal containing I.

Example 2. (continued) Let us denote ω = adx + bdy + cdz. The
exterior ideal generated by I is:

I = {α ∧ ω|α ∈ Γ(∧T∗
R
3)} (16)

An exterior ideal is said to be an exterior differential ideal if it is
closed under the exterior differentiation and hence, the exterior differen-
tial ideal generated by an EDS is the smallest exterior differential ideal
containing the EDS.

Example 3. (continued) The exterior differential ideal generated by I
is:

I1 = {α ∧ ω + β ∧ dω|α, β ∈ Γ(∧T∗
R
3)} (17)

Let us notice that an EDS is closed if and only if the exterior differ-
ential ideal and the exterior ideal generated by that EDS are equal. In
particular, if I is an EDS, I ∪ dI is closed.

Let I ⊂ Γ(∧T∗M) be an EDS on M and let N be a submanifold of
M. The submanifold N is an integral manifold of I if ι∗ϕ = 0,∀ϕ ∈ I,
where ι is an embedding ι : N −→ M. The purpose of this theory is
to establish when a given EDS, which represents a PDE in a jet space,
has or has not integral manifolds. We consider in this subsection, an m-
dimensional real manifold M and I ⊂ Γ(∧T∗M) an exterior differential
ideal on M.

An EDS which contains only differential 1-forms is called a Pfaffian
system. A necessary and sufficient condition to the existence of integral
manifold for Pfaffian systems is given by the following theorem:

Theorem 4. (Frobenius)4

Let I = {ω1, . . . , ωr} be a Pfaffian system on an m-dimensional manifold
M. Then a necessary and sufficient condition for the Pfaffian system
to be completely integrable is:

dωi ∧ ω1 ∧ · · · ∧ ωr = 0 for all i = 1, . . . , r. (18)

4Note that the Frobenius theorem may be stated using distribution of vector fields.
Classical details may be found in [7].
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Example 4. (continued) The necessary and sufficient condition for the
existence of integral surfaces for I is:

c
( ∂b

∂x
−
∂a

∂y

)

+ b
( ∂c

∂x
−
∂a

∂z

)

+ a
( ∂c

∂y
−
∂b

∂z

)

= 0. (19)

For instance,

1. I1 = {dz − xdy} is not completely integrable in R
3.

2. I2 = {xdx+ ydy + zdz} is completely integrable in R
3
r {0}.

3. I3 = {zdx+ xdy + ydz} is not completely integrable in R
3
r {0}.

If an EDS contains differential 1-forms and functions, we can still
apply the Frobenius theorem on the submanifold defined on the vanish-
ing of these functions (outside the possible singularities). However, if
the EDS contains differential forms of degree greater than 1, the Frobe-
nius theorem is not helpful. For instance, let Ω be a closed differen-
tial 2-form on an 2m-dimensional manifold M such that Ωm 6= 0 and
Ωm+1 = 0. The couple (M,Ω) is called a symplectic manifold. The inte-
gralm-dimensional manifolds of {Ω}, if they exist, are called Lagrangian
manifolds. Finding then Lagrangian manifolds for a giving symplectic
manifold is the same as searching the existence of integral manifolds of
a differential 2-form. The following theory represents a powerful tool to
answer this question.

4.2 Introduction to Cartan–Kähler theory

Definition 3. Let M ∈ M. A linear subspace E of TMM is an integral
element of I if ϕE = 0 for all ϕ ∈ I, where ϕE means the evaluation
of ϕ on any basis of E. We denote by Vp(I) the set of p-dimensional
integral elements of I.

N is an integral manifold of I if and only if each tangent space of N
is an integral element of I. It is not hard to notice from the definition
that a subspace of a given integral element is also an integral element.
We denote by Ip = I ∩ Γ(∧pT∗M) the set of differential p-forms of I.
Thus, Vp(I) = {E ∈ Gp(TM) |ϕE = 0 for all ϕ ∈ Ip}.

Definition 4. Let E be an integral element of I. Let {e1, e2, . . . , ep} be
a basis of E ⊂ TMM. The polar space of E, denoted by H(E), is the
vector space defined as follows:

H(E) = {v ∈ TMM|ϕ(v, e1, e2, . . . , ep) = 0 for all ϕ ∈ Ip+1}. (20)
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Notice that E ⊂ H(E). The polar space plays an important role in
exterior differential system theory as we can notice from the following
proposition.

Proposition 3. Let E ∈ Vp(I) be a p-dimensional integral element of
I. A (p+1)-dimensional vector space E+ ⊂ TMM which contains E is
an integral element of I if and only if E+ ⊂ H(E).

In order to check if a given p-dimensional integral element of an EDS
I is contained in a (p+ 1)-dimensional integral element of I , we intro-
duce the following function called the extension rank r : Vp(I) −→ Z

that associates each integral element E with an integer r(E) =
dimH(E) − (p + 1). The extension rank r(E) is in fact the dimension
of P(H(E)/E) and is always greater or equal than −1. If r(E) = −1,
then dimH(E) = dimE so that H(E) = E and consequently, there is no
hope of extending the integral element. An integral element E is said to
be regular if r(E) is constant on a neighborhood of M .

Definition 5. An integral flag of I in M ∈ M of length n is a sequence
(0)M ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ TMM of integral elements Ek of I.

An integral element E is said to be ordinary if its base point M ∈
M is an ordinary zero of I0 = I ∩ Γ(∧0T∗M) and if there exists an
integral flag (0)M ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E ⊂ TzM where the Ek,
k = 1, . . . , (n − 1) are regular. Moreover, if En is itself regular, then E
is said to be regular. We can now state the following important results
of the Cartan–Kähler theory.

Theorem 5. (Cartan’s test) Let I ⊂ Γ(∧∗T∗M) be an exterior ideal
which does not contain 0-forms (functions on M). Let (0)M ⊂ E1 ⊂
E2 ⊂ · · · ⊂ En ⊂ TMM be an integral flag of I. For any k < n, we
denote by Ck the codimension of the polar space H(Ek) in TMM. Then
Vn(I) ⊂ Gn(TM) is at least of codimension C0 + C1 + · · · + Cn−1 at
En. Moreover, En is an ordinary integral flag if and only if En has
a neighborhood O in Gn(TM) such that Vn(I) ∩ O is a manifold of
codimension C0 + C1 + · · ·+ Cn−1 in O.

The numbers Ck are called Cartan characters of the k-integral ele-
ment. The following proposition is useful in the applications. It allows
us to compute the Cartan characters of the constructed flag in the proof
of the Theorem 8.
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Proposition 4. At a point M ∈ M, let E be an n-dimensional inte-
gral element of an exterior ideal I ∩ Γ(∧∗T∗M) which does not con-
tain differential 0-forms. Let ω1, ω2, . . . , ωn, π1, π2, . . . , πs (where s =
dimM− n) be a coframe in an open neighborhood of M ∈M such that
E = {v ∈ TMM|πa(v) = 0 for all a = 1, . . . , s}. For all p 6 n, we
define Ep = {v ∈ E |ωk(v) = 0 for all k > p}. Let {ϕ1, ϕ2, . . . , ϕr} be
the set of differential forms which generate the exterior ideal I, where
ϕρ is of degree (dρ + 1). For all ρ, there exists an expansion

ϕρ =
∑

|J |=dρ

πJρ ∧ ωJ + ϕ̃ρ (21)

where the 1-forms πJρ are linear combinations of the forms π and the
terms ϕ̃ρ are, either of degree 2 or more on π, or vanish at z. Moreover,
we have

H(Ep) = {v ∈ TMM|πJρ (v) = 0 for all ρ and supJ 6 p} (22)

In particular, for the integral flag (0)z ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ∩ TzM
of I, the Cartan characters Cp correspond to the number of linear inde-
pendent forms {πJρ |z such that supJ 6 p}.

The following theorem is a generalization in higher dimension of the
well-known Cauchy problem.

Theorem 6 (Cauchy-Kowalevskaya). Let y be a coordinate on R, let
x = (xi) = be a coordinate on R

n, let z = (za) be coordinate on R
s, and

let pai be coordinate on Rns. Let D ⊂ R
n × R × R

s × R
ns be an open

domain, and let G : D −→ R
s be a real analytic mapping. Let D0 ⊂ R

n

be an open domain and let f : D0 −→ R
s be a real analytic mapping so

that the ”1-graph”

Γf = {(x, y, f(x),Df(x))|x ∈ D0} (23)

lies in D for some constanta y0, where Df(x) ∈ R
ns is the Jacobian

of f described by the condition that pai (Df(x)) = ∂fa/∂xi. Then, there
exists an open neighborhood D1 ⊂ D0×R of D0×{y0} and a real analytic
mapping F : D1 −→ R

s which satsifies the PDE with initial condition

∂F/∂y = G(x, y, F, ∂F/∂x)

F (x, y0) = f(x) for all x ∈ D0
(24)

Moreover, F is unique in the sense that any other real-analytic solution
of (24) agrees with F in some neighborhood of D0 × {y0}.
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The following theorem is of great importance not only because it is a
generalization of the well-known Frobenius theorem but also represents
a generalization of the Cauchy–Kovalevskaya theorem.

Theorem 7. (Cartan–Kähler)
Let I ⊂ Γ(∧∗T∗M) be a real analytic exterior differential ideal which
does not contain functions. Let X ⊂ M be a p-dimensional connected
real analytic Kähler-regular integral manifold of I. Suppose that r =
r(X ) > 0. Let Z ⊂ M be a real analytic submanifold of M of codi-
mension r which contains X and such that TMZ and H(TMX ) are
transversal in TMM for all M ∈ X ⊂ M. There exists then a (p + 1)-
dimensional connected real analytic integral manifold Y of I, such that
X ⊂ Y ⊂ Z. Moreover, Y is unique in the sense that another integral
manifold of I having the stated properties coincides with Y on an open
neighborhood of X .

The analycity condition of the exterior differential ideal is crucial
because of the requirements in the Cauchy–Kovalevskaya theorem used
in the Cartan–Kähler theorem’s proof. It has an important corollary.
Actually, in the application, this corollary is often more used than the
theorem and is sometimes called the Cartan–Kähler theorem in litera-
ture.

Corollary 1. (Cartan–Kähler)
Let I be an analytic exterior differential ideal on a manifold M. If E
is an ordinary integral element of I, there exists an integral manifold of
I passing through z and having E as a tangent space at point M .

The following example, even “trivial”, illustrate how one can apply
the Cartan-Kähler theory to non-Pfaffian systems.

Example 5. Let (R4,dx1 ∧ dx3 + dx2 ∧ dx4) be a symplectic space.
Let us look for Lagrangian surfaces, i.e., integral surfaces for Ω. Since
Ω = dx1 ∧ dx3 +dx2 ∧ dx4 is closed, the exterior ideal I generated by Ω
is closed.

I contains neither function nor differential 1-forms. Any point M
of R4 is an integral point and any tangent vector on TMR

4 ≃ R
4 is an

integral 1-element. Let us notice that r0 = 3. Consequently, there exist

integral 2-elements of I. Let us consider E1 = span{
∂

∂x1
} as an integral

1-element of I.
Note that H(E1) = {X ∈ TMR

4|Ω(X,E1) = 0}. Hence H(E1) is
defined by the equation X1 = 0, where Xi are the components of the
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tangent vector X. Therefore, C1 = 1 and the extension rank r1 = 2, and

there exist 2-integral elements of I. Consider E2 = span{
∂

∂x1
,
∂

∂x2
} is

an integral 2-element of I. Since the extension ranks r0, r1 and r2 are
constant on a neighborhood of M , the flag M ⊂ E1 ⊂ E2 is regular. The
Cartan-Kähler theorem assures then the existence of integral surfaces of
I.

5 The main result: construction of conservation

laws

In this section, we state Theorem 8 concerning the existence of some
generalized isometric embedding problem. We explain the main steps
of the proof by setting a strategy for solving the problem in the general
case (i.e., m,n and 1 6 p 6 m− 1 are arbitrary).

Theorem 8 (See [8]). Let V be a real analytic n-dimensional vec-
tor bundle over a real analytic m-dimensional manifold M endowed
with a metric g and a connection ∇ compatible with g. Given a non-
vanishing covariantly closed V-valued differential (m− 1)-form φ, there
exists a local isometric embedding of V in M× R

n+κn
m,m−1 over M where

κnm,m−1 > (m− 1)(n − 1) such that the image of φ is a conservation law.

The existence Theorem 8 can be applied for instance to harmonic
maps. The last section of this paper is dedicated to presenting an ap-
plication to energy-momentum tensors which occur e.g. in general rela-
tivity.

Our approach and strategy for solving Question 1 in the general
case and for proving Theorem 8 is the following: first, we reformulate
the problem by means of an exterior differential system on a manifold
that have to be defined, and since all the data involved are real analytic,
we use the Cartan–Kähler theory to prove the existence of integral man-
ifolds, and hence to conclude the desired result. The problem can be
represented by the following diagram which summarizes the notations

V
n

d∇φ=0
��

�

� Ψ
/ Mm × R

N

dΨ(φ)=0
��

Mm Mm
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where N is an integer that have to be defined in terms of the problem’s
data: n, m and p. Let us then set up a general strategy as an attempt
to solve the general problem. We denote by κnm,p the embedding codi-
mension, i.e., the dimension of the fiber extension in order to achieve
the desired embedding.

Let us first recast our problem by using moving frames and coframes.
For convenience, we adopt the following conventions for the indices:
i, j, k = 1, . . . , n are the fiber indices, λ, µ, ν = 1, . . . ,m are the manifold
indices and a, b, c = n + 1, . . . , n + κnm,p are the extension indices. We
also adopt the Einstein summation convention, i.e., there is a summation
when the same index is repeated in high and low positions. However,
we will write the sign

∑
and make explicit the values of the summation

indices when it is necessary. Let η = (η1, . . . , ηm) be a moving coframe
on M. Let E = (E1, . . . , En) be an g-orthonormal moving frame of V.
The covariantly closed V-valued differential p-form φ ∈ Γ(∧pT∗M⊗Vn)
can be expressed as follows:

φ = Eiφ
i = Eiψ

i
λ1,...,λp

ηλ1,...,λp (25)

where ψi
λ1,...,λp

are functions on M, we assume that 1 6 λ1 < · · · < λp 6

m in the summation and ηλ1,...,λp means ηλ1 ∧ · · · ∧ ηλp .

Definition 6. Let φ ∈ Γ(∧pT∗M⊗V) be a V-valued differential p-form
on M. The generalized torsion of a connection relative to φ (or for
short, a φ-torsion) on a vector bundle over M is a V-valued differential
(p + 1)-form Θ = (Θi) := d∇φ, i.e., in a local frame

Θ = EiΘ
i := Ei(dφ

i + ηij ∧ φ
j) (26)

where (ηij) is the connection 1-form of ∇ which is an o(n)-valued differ-
ential 1-form (since ∇ is compatible with the metric bundle).

Hence, the condition of being covariantly closed d∇φ = 0 is equiv-
alent to the fact that, dφi + ηij ∧ φj = 0 for all i = 1, . . . , n. From
the above definition, the connection ∇ is then said to be φ-torsion free.
We also notice that the generalized torsion defined above reduces to the
standard torsion in the tangent bundle case when φ = Eiψ

i
λη

λ = Eiη
i

(since φ = IdTM, the functions ψi
λ = δiλ are the Kronecker tensors), and

the connection is Levi-Civita.
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Let us assume that the problem has a solution. We consider the flat
connection 1-form ω on the Stiefel space SO(n + κnm,p)/SO(κnm,p), the

n-adapted frames of R(n+κn
m,p), i.e., the set of orthonormal families of n

vectors (e1, . . . , en) of R
(n+κn

m,p) which can be completed by orthonormal
κnm,p vectors (en+1, . . . , en+κn

m,p
) to obtain an orthonormal set of (n +

κnm,p) vectors. Since we work locally, we will assume without loss of
generality that we are given a cross-section (en+1, . . . , en+κn

m,p
) of the

bundle fibration SO(n + κnm,p) −→ SO(n + κnm,p/SO(κnm,p). The flat
standard 1-form of the connection ω is defined as follows: ωi

j = 〈ei,dej〉

and ωa
i = 〈ea,dei〉, where 〈, 〉 is the standard inner product on R

n+κn
m,p .

Notice that ω satisfies the Cartan structure equations. Suppose now that
such an isometric embedding exists, then, if ei = Ψ(Ei), the condition
dΨ(φ) = 0 yields to

ei(dφ
i + ωi

j ∧ φ
j) + ea(ω

a
i ∧ φ

i) = 0, (27)

a condition which is satisfied iff

ηij = Ψ∗(ωi
j) and Ψ∗(ωa

i ) ∧ φ
i = 0. (28)

The problem then turns to finding moving frames (e1, . . . , en,
en+1, . . . , en+κn

m,p
) such that there exist m-dimensional integral mani-

folds of the exterior ideal generated by the naive exterior differential
system {ωi

j − ηij, ω
a
i ∧ φ

i} on the product manifold

Σn
m,p = M×

SO(n+ κnm,p)

SO(κnm,p)
. (29)

Strictly speaking, the differential forms live in different spaces. In-
deed, one should consider the projections πM and πSt of Σ

n
m,p on M and

the Stiefel space and consider the ideal on Σn
m,p generated by π∗M(ηij)−

π∗St(ω
i
j) and π∗St(ω

a
i ) ∧ π

∗
M(φi). It seems reasonable however to simply

write {ωi
j − ηij, ω

a
i ∧ φ

i}.

To find integral manifolds of the naive EDS, we would need to check
that the exterior ideal is closed under the differentiation. However, this
turns out not to be the case. The idea is then to add to the naive EDS
the exterior differential of the forms that generate it and therefore, we
obtain a closed one.
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Let us notice that some objects which we are dealing with in the
following, have a geometric meaning in the tangent bundle case with a
standard 1-form (φ = IdTM) but not in an arbitrary vector bundle case
as we noticed earlier with the notion of torsion of a connection. That
leads us to notions in a generalized sense in such a way that we recover
the standard notions in the tangent bundle case. First of all, the Cartan
lemma, which in the isometric embedding problem implies the symmetry
of the second fundamental form, does not hold. Consequently, we can
not assure nor assume that the coefficients of the second fundamental
form are symmetric as in the isometric embedding problem. In fact, we
will show that these conditions should be replaced by generalized Car-
tan identities that express how coefficients of the second fundamental
form are related to each other, and of course, we recover the usual sym-
metry in the tangent bundle case. Another difficulty is the analogue
of the Bianchi identity of the curvature tensor. We will define general-
ized Bianchi identities relative to the covariantly closed vector valued
differential p-form and a generalized curvature tensor space which cor-
respond, in the tangent bundle case, to the usual Bianchi identities and
the Riemann curvature tensor space respectively. Finally, besides the
generalized Cartan identities and generalized curvature tensor space, we
will make use of a generalized Gauss map.

The key to the proof of Theorem 8 is Lemma 2 for two main rea-
sons: on one hand, it assures the existence of suitable coefficients of the
second fundamental form that satisfy the generalized Cartan identities
and the generalized Gauss equation, properties that simplify the com-
putation of the Cartan characters. On the other hand, the lemma gives
the minimal required embedding codimension κnm,m−1 that ensures the
desired embedding. Using Lemma 2, we give another proof of Theorem
8 by an explicit construction of an ordinary integral flag. When the
existence of integral manifold is established, we just need to project it
on M× R

n+κn
m,p .

This naive EDS is not closed. Indeed, the generalized torsion-free of
the connection implies that d(ωa

i ∧φ
i) ≡ 0 modulo the naive EDS, but the

second Cartan structure equation yields to d(ωi
j − ηij) ≡ ωi

a ∧ ω
a
j +Ωi

j

modulo the naive EDS, where Ω = (Ωi
j) is the curvature 2-form of the

connection. Consequently, the exterior ideal that we now consider on
Σn

m,p is

In
m,p = {ωi

j − ηij , ω
i
a ∧ ω

a
j +Ωi

j, ω
a
i ∧ φ

i}alg (30)
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The curvature 2-form of the connection is an o(n)-valued two form and is
related to the connection 1-form (ηij) by the Cartan structure equation:

Ωi
j = dηij + ηik ∧ η

k
j (31)

A first covariant derivative of φ has led to the generalized torsion. A sec-
ond covariant derivative of φ gives rise to generalized Bianchi identities5

as follows:

d2∇(φ) = 0 ⇐⇒ Ωi
j ∧ φ

j = 0 for all i = 1, . . . , n. (32)

The conditions Ωi
j ∧ φj = 0 for all i = 1, . . . , n are called generalized

Bianchi identities. We then define a generalized curvature tensor space
Kn

m,p as the space of curvature tensor satisfying the generalized Bianchi
identities:

Kn
m,p = {(Ri

j;λµ) ∈ ∧2(Rn)⊗ ∧2(Rm)|Ωi
j ∧ φ

j = 0,∀i = 1, . . . , n} (33)

where Ωi
j =

1
2R

i
j;λµη

λ ∧ ηµ.

In the tangent bundle case, Kn
n,1 is the Riemann curvature tensor

space which is of dimension m2(m2 − 1)/12.

All the data are analytic, we can then apply the Cartan–Kähler the-
ory if we are able to check the involution of the exterior differential
system by constructing an m-integral flag: If the exterior ideal In

m,p sat-
isfies the Cartan test, the flag is then ordinary and by the Cartan–Kähler
theorem, there exist integral manifolds of In

m,p. To be able to project
the product manifold Σn

m,p on M, we also need to show the existence of
m-dimensional integral manifolds on which the volume form on η1,...,m

on M does not vanish.

Let us express the 1-forms ωa
i in the coframe (η1, . . . , ηm) in order

to later make the computation of Cartan characters easier. Let Wn
m,p be

an κnm,p-dimensional Euclidean space. One can think of it as a normal

space. We then write ωa
i = Ha

iλη
λ where Ha

iλ ∈ Wn
m,m−1 ⊗R

n ⊗R
m and

define the forms πai = ωa
i −Ha

iλη
λ. We can also consider Hiλ = (Ha

iλ) as

5In the tangent bundle case and φ = Eiη
i, we recover the standard Bianchi iden-

tities of the Riemann curvature tensor, i.e, Ri
jkl = R

k
lij and R

i
jkl +R

i
ljk +R

i
klj = 0.
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a vector of Wn
m,p. The forms that generate algebraically In

m,p are then
expressed as follows:

∑

a

ωa
i ∧ ω

a
j − Ωi

j =
∑

a

πai ∧ π
a
i +

∑

a

(Ha
jλπ

a
i −Ha

iλπ
a
j ) ∧ η

λ

+
1

2
(Hiλ.Hjµ −Hiµ.Hjλ −Ri

j;λµ)
︸ ︷︷ ︸

∗

ηλ ∧ ηµ
(34)

and

ωa
i ∧ φ

i = ψi
λ1...λp

πai ∧ η
λ1...λp +

∑

λ = 1, . . . ,m

1 6 µ1 < · · · < µp 6 m

∗∗
︷ ︸︸ ︷

Ha
iλψ

i
µ1,...,µp

ηλµ1...µp (35)

These new expressions of the forms in terms of vectors H and the
differential 1-form π will help us to compute the Cartan characters of
an m-integral flag. To simplify these calculations, we will choose Ha

iλ,
which are the coefficients of the second fundamental form, so that the
quantities marked with (∗) and (∗∗) in the equation (34) and (35) vanish
and hence:

Hiλ.Hjµ −Hiµ.Hjλ = Ri
j;λµ generalized Gauss equation (36)

∑

λ = 1, . . . ,m

1 6 µ1 < · · · < µp 6 m

Ha
iλψ

i
µ1,...,µp

ηλµ1...µp = 0 generalized Cartan identities (37)

As mentioned previously in the introduction, the system of equa-
tions (37) is said to be generalized Cartan identities because it gives us
relations between the coefficients of the second fundamental form which
are not necessarily the usual symmetry given by the Cartan lemma.
These properties of the coefficients and the fact that the curvature ten-
sor (Ri

j;λµ) satisfies generalized Bianchi identities lead us to name the
equation (36) as the generalized Gauss equation.

We now define a generalized Gauss map Gn
m,p : W

n
m,p⊗R

n ⊗R
m −→

Kn
m,p defined for Ha

iλ ∈ Wn
m,p ⊗ R

n ⊗ R
m by

(

Gn
m,p(H)

)i

j;λµ
=

∑

a

(Ha
iλH

a
jµ −Ha

iµH
a
jλ) (38)

Let us specialize in the conservation laws case, i.e., when p = m− 1.
We adopt the following notations: Λ = (1, 2, . . . ,m) and Λ r k =
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(1, . . . , k − 1, k + 1, . . . ,m). We have thus ηΛ = η1 ∧ · · · ∧ ηm and
ηΛrk = η1 ∧ · · · ∧ ηk−1 ∧ ηk+1 · · · ∧ ηm. Let us construct an ordi-
nary m-dimensional integral element of the exterior ideal In

m,m−1 on
Σn

m,m−1. Generalized Bianchi identities are trivial in this case and so

dimKn
m,m−1 =

n(n− 1)

2

m(m− 1)

2
.

The generalized Gauss equation is Hiλ.Hjµ−Hiµ.Hjλ = Ri
j;λµ, where

Hiλ is viewed as a vector of the κnm,m−1-Euclidean space Wn
m,m−1. Gen-

eralized Cartan identities are

∑

λ=1,...,m

(−1)λ+1Ha
iλψ

i
Λrλ = 0 for all a (39)

The following lemma was proved in [8] and is the key to the proof of
Theorem 8 .

Lemma 2. Let κnm,m−1 > (m−1)(n−1). Let Hn
m,m−1 ⊂ Wn

m,m−1⊗R
n⊗

R
m be the open set consisting of those elements H = (Ha

iλ) so that the
vectors {Hiλ|i = 1, . . . , n−1 and λ = 1, . . . ,m−1} are linearly indepen-
dents as elements of Wn

m,m−1 and satisfy generalized Cartan identities.
Then Gn

m,m−1 : Hn
m,m−1 −→ Kn

m,m−1 is a surjective submersion.

Let Zn
m,m−1 = {(x,Υ,H) ∈ Σn

m,m−1×Hn
m,m−1 | G

n
m,m−1(H) = R(x)}.

We conclude from Lemma 2 that Zn
m,m−1 is a submanifold6 and hence,

dim Zn
m,m−1 = dim Σn

m,m−1 + dim Hn
m,m−1 (40)

where

dim Σn
m,m−1 = m+

n(n− 1)

2
+ nκnm,m−1 (41)

dim Hn
m,m−1 = (nm− 1)κnm,m−1 −

n(n− 1)m(m− 1)

4
(42)

We define the map Φn
m,m−1 : Zn

m,m−1 −→ Vm(In
m,m−1, η

Λ) which as-
sociates (x,Υ,H) ∈ Zn

m,m−1 with the m-plan on which the differential
forms that generate algebraically In

m,m−1 vanish and the volume form

ηΛ on M does not vanish. Φn
m,m−1 is then an embedding and hence

dim Φ(Zn
m,m−1) = dim Zn

m,m−1. In what follows, we prove that in fact
Φ(Zn

m,m−1) contains only ordinary m-integral elements of In
m,m−1. Since

6
Z

n
m,m−1 is the fiber of R by a submersion. The surjectivity of Gn

m,m−1 assures
the non-emptiness.
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the coefficients Ha
iλ satisfy the generalized Gauss equation and general-

ized Cartan identities, the differential forms that generate the exterior
ideal In

m,m−1 are as follows:

ωi
a ∧ ω

a
j +Ωi

j =
∑

a

πai ∧ π
a
i +

∑

a

(Ha
jλπ

a
i −Ha

iλπ
a
j )η

λ (43)

ωa
i ∧ φ

i = ψi
λ1...λp

πai ∧ η
λ1...λp (44)

The final step is then computing the Cartan characters and checking
by the Cartan’s test that Φ(Zn

m,m−1) contains only ordinary m-integral
flags. The Cartan–Kähler theorem then assures the existence of an m-
integral manifold on which ηΛ does not vanish since the exterior ideal
is in involution. We finally project the integral manifold on M×R

n+κ.
Let us notice that the requirement of the non-vanishing of the volume
form ηΛ on the integral manifold yields to project the integral manifold
on M and also to view it as a graph of a function f defined on M with
values in the space of n-adapted orthonormal frames of Rn+κ. In the
isometric embedding problem, the composition of f with the projection
of the frames on the Euclidean space is by construction the isometric
embedding map.

6 Conservation laws for covariant divergence-

free energy-momentum tensors

We present here an application for Theorem 8 to covariant divergence
free energy-momentum tensors.

Proposition 5. Let (Mm, g) be a real analytic m-dimensional Rieman-
nian manifold, ∇ be the Levi-Civita connection and T be a contravariant
2-tensor with a vanishing covariant divergence. Then there exists a con-
servation law of T on M× R

m+(m−1)2 .

Proof. Let us consider a contravariant 2-tensor T ∈ Γ(TM⊗TM) which
is expressed in a chart by T = T ijξi ⊗ ξj, where (ξ1, . . . , ξm) is the dual
basis of an orthonormal moving coframe (η1, . . . , ηm). The volume form
is denoted by ηI = η1 ∧ · · · ∧ ηm. Using the interior product, we can
associate any contravariant 2-tensor T with a TM-valued m-differential
form τ defined as follows:

Γ(TM⊗ TM) −→ Γ(TM⊗∧(m−1)T∗M).

T = T ijξi ⊗ ξj 7−→ τ = ξi ⊗ τ i
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where τ i = T ij(ξjyη
I)

The tangent space TM is endowed with the Levi-Civita connection
∇. Let us compute the covariant derivative of τ .

d∇τ = ξi ⊗ (dτ i + ηij ∧ τ
j) (45)

On one hand, using the first Cartan equation that expresses the vanish-
ing of the torsion of the Levi-Civita connection and the expression of
the Christoffel symbols7 in term of the connection 1-form, we obtain

dτ i = d
(

T ij(ξjyη
I)
)

= d(T ij) ∧ (ξjyη
I) + T ijd(ξjyη

I)

=
(

ξj(T
ij) + T ijΓk

kj

)

ηI
(46)

and
ηij ∧ τ

j = ηij ∧ Tjk(ξkyη
I) =

(

T jkΓi
kj

)

ηI (47)

consequently

d∇τ = ξi ⊗
[(

ξj(T
ij) + T ijΓk

kj + T jkΓi
kj

)

ηI
]

(48)

On the other hand, a straightforward computation of the divergence of
the contravariant 2-tensor leads us to

∇jT
ij = ξj(T

ij) + T ijΓk
kj + T jkΓi

kj (49)

We conclude then that

d∇τ = 0 ⇔ ∇jT
ij = 0 (50)

Hence, for an m-dimensional Riemannian manifold M, the main
result of this article assures the existence of an isometric embedding
Ψ : TM −→ M× R

m+(m−1)2 such that d(Ψ(τ)) = 0 is a conservation
law for a covariant divergence-free energy-momentum tensor.

For instance, if dimM = 4, then Ψ(τ) is a closed differential 3-form
on M with values in R

13.

7The Christoffel symbols are the functions Γ defined by: ηi
j = Γi

kjη
k.
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