N
N

N

HAL

open science

Entropy Power for Thresholding Technique in Image
Processing

Franck Luthon, Marc Liévin

» To cite this version:

Franck Luthon, Marc Liévin. Entropy Power for Thresholding Technique in Image Processing. XI

European Signal Processing Conf. (EUSIPCO’02), Sep 2002, Toulouse, France. pp.605-608.

00814896

HAL Id: hal-00814896
https://hal.science/hal-00814896
Submitted on 17 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00814896
https://hal.archives-ouvertes.fr

ENTROPY POWER FOR THRESHOLDING
TECHNIQUE IN IMAGE PROCESSING

Franck Luthon, Marc Liévin
Computer Science Dept., University of Pau & Adour Province,
IUT, Chateau Neuf, Place Paul Bert
64100 Bayonne, France
Tel: +33 5 59463211; fax: +33 5 59463229

e-mail:

ABSTRACT

This paper deals with an entropic approach as unsu-
pervised thresholding technique for image processing,
in order to extract a relevant binary information from
noisy data. The method is based on the computation of
the entropy power of the information source, as defined
by Shannon. The threshold used for binarization is pro-
portional to the entropic deviation of the observation
source. The performance of the approach is illustrated
by two classical image preprocessing tasks, namely mo-
tion detection and edge detection. The evaluation set
contains both synthetic data and real-world image se-
quences.

1 INTRODUCTION

The thresholding technique is of common use in image
processing and video analysis, in order to binarize noisy
observations that are coded with n bits (typ. n = 8),
either in the spatial or temporal domain. The key point
is then the choice of the threshold, in order to get rid of
the noise that corrupts the data, without cutting signif-
icant information.

We propose here an unsupervised method in order
to automatically and adaptively estimate the threshold
based on the computation of the entropy power of the
observations, under the assumption of an additive Gaus-
sian noise that is spread all-over the grid, whereas the
signal is localized. The optimal threshold (in the sense
of information theory) is proportional to the square root
of the entropy power.

The method is tested with real-world images both for
the detection of significant temporal changes, which is a
classical preprocessing step before estimation, segmen-
tation or compression of motion, and for the detection of
the maxima, of spatial gradients, which is the first step
towards edge detection.

2 ENTROPY POWER

As defined by Shannon [1], the entropy of an information
source is a measure of its mean information. In the case
of a discrete source X of observations taking values in
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the set {i =0---M — 1} (typ. M = 256), the entropy
H is given by:

M-1
H=-> plogp; (1)
i=0

where p; is the probablitity that the observation at any
site s = (z,y) € S takes the value: o(s) = i (S being
the grid supporting the observations, typically an image
of size L x C).

Note that the choice of the logarithmic base is arbi-
trary and corresponds to the choice of the unit of mea-
sure: natural unit (naet) with base e, binary unit (bit)
with base 2 ; and we have: H,,: = Hy;; - log 2.

Shannon proved that the entropy of a Gaussian source
G(0,0) with zero mean and standard deviation o is
given by:

H(G) =log(o - vV2me) (2)

It is well known that this corresponds to the maximum
value of the entropy for a distribution subject to the
condition that the standard deviation is fixed at o.

For an arbitrary source with a given entropy H, Shan-
non also defines the entropy power N, which repre-
sents the power of the white noise equivalent to source
X, in the sense it has the same entropy and is limited
to the same band:

N = 2i7re exp(2H) (3)

The important properties of the entropy power are:

1. the entropy power of any source is always less than
or equal to its actual power,

2. the entropy power of a Gaussian source G(0,0)
2

equals its power: N(G) = o°.

3. the entropy power of the sum of two signals is lower-
bounded by the sum of their respective entropy
powers, and upper-bounded by the sum of their ac-
tual average powers.

4. white Gaussian noise has the peculiar property that
it can absorb any other signal which may be added



to it, provided the signal power is small, in a certain
sense, compared to noise. In that case, the resultant
entropy power is approximately equal to the sum of
the white noise power and the signal power [1].

3 THRESHOLD SETTING

Consider an observation source O = {o(s),s € S} con-
sisting of a useful signal X corrupted by an additive
Gaussian noise: O = X + G. Assuming that the noise
level is low but present all-over the grid, whereas the
signal is of high amplitude but remains localized on the
grid, property 4 holds and one can estimate the equiva-
lent entropic deviation g, by computing the entropy
H of the observation source:

oo =VN = e%) (4)

The threshold value § may then be fixed as a quantity
proportional to o,:

0=k-0. (5)

The choice of the multiplicative parameter & is based
on the table of probability of the normal distribution
which gives the correspondance between k values and
the percentage of thresholded distribution (Tab. 1). For
Kk =~ 4, 100% of the Gaussian distribution is taken into
account. Therefore, in order to properly cancel the noise
contribution, and also for simplicity, we take k = 4 for
all video sequences shown here.

Table 1: Percentage of standard distribution vs. .
Kk || 43| .67 | 97 | 1.28 | 1.65 | 1.96 | 2.57 | 3.9
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% | 33 | 50 | 66 | 80 90 95 99 | 100

Note the connection with a bit-plane slicing technique
if we take the bit as entropy unit (cf. v/2me = 4.13):

9 Hyis

V2me

To illustrate the principle of the method, let con-
sider the sample image of Fig. 1 made of 7 grey lev-
els {i = 0---6} with respective probabilities: {p; =
3116 330 8+ 33,0} This image simulates a noisy map
with a rectangular pattern. Tab. 2 gives the parameters
computed from this image. The estimated threshold 8
is well positionned on the histogram. Note that o, is
significantly different from the usual computation of the
standard deviation o.

kmd=>0=k ns 2Hbit (6)

Table 2: Estimated parameters
parameter || Hye | 2t | 0, |[0=40. | ©
value 194 | 3.83 | 0.93 3.70 1.52

Fig. 2 shows the result of the proposed entropic bina-
rization with k = 4 for change detection on a synthetic
sequence.

Figure 1: Sample image of size 8 x 8 with corresponding
histogram and estimated threshold for x = 4.

Figure 2: From top to bottom: Synthetic sequence
with two mobiles; Automatic binarization (k =4 = 0 =
7.8); Binarization with # = 7 for comparison purpose.

4 APLICATION TO MOTION DETECTION

Motion detection consists in labelling each pixel or site
s of image at time t to get a binary map of tempo-
ral changes. Assuming a static camera and a constant
ligthning of the scene, the basic observation is the abso-
lute value of the temporal intensity difference between
two consecutive images (frame difference):

o(s) = [Is(s) = L1 (s)]- (7)

This observation is noisy since the frame difference
is sensitive not only to actual motion in the scene, but
also to lighting variation (slight illumination changes)
and to acquisition noise (due to camera and quantiza-
tion). Therefore, an adequate thresholding technique is
required to detect significant temporal changes.

The hypothesis of an additive Gaussian noise is com-
monly assumed. Various techniques based on maximum
likelihood tests have been proposed for the estimation of
the noise level and the automatic setting of the threshold
value [2, 3]. Here, we show that the entropic approach
described in section 3 is a proper solution in order to
automatically estimate the motion threshold.

Since the frame difference O is classically modeled as
the sum of the relevant motion signal X plus an additive




Gaussian noise G(0, o), property 3 yields:
N(X)+N(G) < N(0) < Px + o2 (8)

where Py is the average power of the motion signal.

Considering that the useful signal remains localized in
the image (relevant temporal changes arise for a limited
amount of pixels) whereas the random noise is present
everywhere in the frame, the entropic contribution due
to the useful signal is actually small in the sense un-
derstood by Shannon. Indeed Px is small compared
to the noise power o2 (i.e., the average SNR over the
entire frame difference is low, although the local SNR
may be high). Therefore, property 4 holds and we have:
02 = N(O) = Px + 0%. Whereas the noise power o? is
almost constant over time, the signal power Px varies
over time, since it depends on the actual motion present
in the scene. Hence, N(O) is sensitive both to the noise
level o and to the amplitude of actual motion in the
scene. Its measure provides a means to set the motion
threshold as given by Eq. 5.

One can see (Fig. 3) that the threshold adapts over
time, depending on the amount of motion present in the
scene. For sequence Street 1, the entropic deviation
grows when a car enters the camera field of view, since
more pixels undergo a temporal variation in intensity.
On the opposite, when there is little motion in the scene,
o, falls since there are very few temporal changes.
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Figure 3: Evolution with time of the threshold 8 = k.o,
on four sequences for k = 4.

Fig. 4 shows the influence of & for the detection of
mobile pixels in the case of a static camera.

The sequence Street 1 (Fig. 5) corresponds to a scene
acquired also with a static camera, but with low-pass
filtering. Therefore the noise power is filtered, yielding a
lower value for o, and hence a lower threshold compared
to the other sequences (Fig. 3).

Fig. 6 corresponds to the case of a mobile camera

Figure 4: From top to bottom : four frames of sequence
Street 2; binary maps obtained by entropic threshold-
ing for kK = 2; 3; 4 respectively.

Figure 5: Sequence Street 1 that was low-pass filtered;
change detection with & = 4.

translating from right to left. The mobile contours are
detected properly.

Figure 6: Sequence Mobile cam: car approaching to-
wards a mobile camera, ; change detection with & = 4.

The efficiency and robustness of this threshold esti-
mation has also been tested for face analysis application



(Fig. 7). The white points correspond to pixels detected
as mobile, informative of facial feature motion.

Figure 7: Lip sequence: change detection with k = 4.

5 APPLICATION TO EDGE DETECTION

Edge detection is classicaly based on thresholding the
modulus of the spatial gradients in the image. The ob-
servation is computed as:

ar\* rar\?

o) G o
The choice of the threshold is the key-point to extract
the pixels that are good candidates for edges. Hysteresis
thresholding for example requires the use of two thresh-

olds (high and low) that are usually set manually.
Our approach allows an automatic determination of
the threshold to be applied. Typical results of entropic

thresholding are shown in Fig. 8 and 9 (outdoor and
indoor images). Shown in the upper row are the real-

Figure 8: Contour detection on outdoor image for £ = 2
and 4 respectively (Hy;; = 5.61, 0. = 11.88).

world image, the vertical and horizontal gradients com-
puted with an exponential derivation filter. The middle
or lower rows show the modulus of gradient (which is the
observation on which the entropic thresholding is ap-
plied), the histogram of observations with the position
of the estimated threshold, and the binary map obtained
after thresholding showing the contour-candidates.

Figure 9: Contour detection on indoor image (Hy;: =
5.88, 0, = 14.34, k = 2).

6 DISCUSSION

The entropic thresholding technique described here is
both simple and efficient. It may be applied in many sit-
uations encountered in image preprocessing, where the
data is corrupted by an additive noise spread all-over the
observation grid. The binarization technique was used
successfully for face analysis. Another potential appli-
cation for 2-D spectral analysis is described in [4]. In
actual applications, a post-processing is often applied af-
ter binarization (regularization by MRF, mathematical
morphology like erosion or dilation...). In such cases,
one should lower the threshold by taking & = 2 typi-
cally. It should be pointed out that this technique is
costless when used in the context of image compression
based on an entropic coding scheme (Huffman-like cod-
ing), since the entropy of the source is computed anyway
for compression purpose. Further developments we are
currently working on are the computation of a local en-
tropic deviation, instead of the global computation over
the whole frame, and the use for video indexing (auto-
matic scene cutting).
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