
HAL Id: hal-00814814
https://hal.science/hal-00814814v1

Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistent Neighborhood Search for Combinatorial
Optimization.

Michel Vasquez, Nicolas Zufferey

To cite this version:
Michel Vasquez, Nicolas Zufferey. Consistent Neighborhood Search for Combinatorial Optimization..
ISRN Computational Mathematics, 2012, pp.12. �10.5402/2012/671423�. �hal-00814814�

https://hal.science/hal-00814814v1
https://hal.archives-ouvertes.fr

International Scholarly Research Network
ISRN Computational Mathematics
Volume 2012, Article ID 671423, 12 pages
doi:10.5402/2012/671423

Research Article

Consistent Neighborhood Search for
Combinatorial Optimization

Michel Vasquez1 and Nicolas Zufferey2

1 École des Mines d’Alès, LGI2P Research Center, Parc Scientifique Georges Besse, 30035 Nimes Cedex 01, France
2 Faculty of Economics and Social Sciences, HEC-University of Geneva, Uni-Mail, 1211 Geneva 4, Switzerland

Correspondence should be addressed to Nicolas Zufferey, nicolas.zufferey-hec@unige.ch

Received 11 May 2012; Accepted 28 June 2012

Academic Editors: D. S. Corti, R. K. Upadhyay, and E. Weber

Copyright © 2012 M. Vasquez and N. Zufferey. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Many optimization problems (from academia or industry) require the use of a local search to find a satisfying solution in a
reasonable amount of time, even if the optimality is not guaranteed. Usually, local search algorithms operate in a search space
which contains complete solutions (feasible or not) to the problem. In contrast, in Consistent Neighborhood Search (CNS), after
each variable assignment, the conflicting variables are deleted to keep the partial solution feasible, and the search can stop when all
the variables have a value. In this paper, we formally propose a new heuristic solution method, CNS, which has a search behavior
between exhaustive tree search and local search working with complete solutions. We then discuss, with a unified view, the great
success of some existing heuristics, which can however be considered within the CNS framework, in various fields: graph coloring,
frequency assignment in telecommunication networks, vehicle fleet management with maintenance constraints, and satellite range
scheduling. Moreover, some lessons are given in order to have guidelines for the adaptation of CNS to other problems.

1. Introduction

An exact method (e.g., branch-and-bound, dynamic pro-
gramming, Lagrangian relaxation-based methods) guaran-
tees the optimality of the provided solution. However, for a
large number of applications and most real-life optimization
problems, such methods need a prohibitive amount of time
to find an optimal solution, because such problems are NP-
hard [1]. For these difficult problems, one should prefer
to quickly find a satisfying solution, which is the goal of
heuristic solution methods. There mainly exist three families
of heuristics: constructive heuristics (a solution is built step
by step from scratch, like the greedy algorithm), local search
heuristics (a solution is iteratively modified: this will be
discussed below), and evolutionary heuristics (a population
of solutions is managed, like genetic algorithms and ant
algorithms). In this paper, only the context of local search
methods will be considered.

A local search heuristic starts with an initial solution and
tries to improve it iteratively. At each iteration, a modifica-
tion, called move, of the current solution is performed in

order to generate a neighbor solution. The definition of a
move, that is, the definition of the neighborhood structure,
depends on the considered problem. The most popular local
search methods are simulated annealing [2], tabu search [3],
threshold algorithms [4], variable neighborhood search [5],
and guided local search [6].

Within a local search context, the usual approach consists
in working with complete solutions, that is, each variable
has a value and the solution might be feasible or not.
In the latter case, a penalty function is often used, which
depends on the number of violated constraints. In contrast,
in Consistent Neighborhood Search (CNS), partial feasible
solutions are used. Thus, not every variable has a value, but
there is no constraint violation. In such a case, the goal is
to minimize the number of nonassigned variables, and a
move is performed in at least two phases: (1) give a value
to an unassigned variable si, and (2) delete the value of
the created conflicting variables (i.e., the variables different
from si involved in a constraint violation). An intermediate
phase might occur between these two phases, which consists
in adjusting the value of conflicting variables under some

2 ISRN Computational Mathematics

specific conditions. In this paper, which is an extension of
[7] and [8], we formally introduce the CNS methodology
and the adaptation of tabu search within its framework, then
we discuss, with a unified terminology, the great success of
some existing heuristics, which can however be considered
as belonging to the CNS methodology, for various NP-hard
constrained combinatorial problems. For each problem, the
reader is referred to the associated paper to have references
on the NP-hard aspect, the literature review, and the detailed
experimental conditions (computer, language, etc.). For each
problem, comparisons have to be done carefully because the
conditions of experimentation were not always the same.
Remember however that a heuristic is generally performed
until the potential to improve the best encountered solution
becomes poor. In addition, for each considered problem, the
CNS approach will always be compared with state-of-the-art
methods, even if such methods are not very recent.

The paper is organized as follows. In Section 2, the
CNS methodology is proposed. Then, heuristics for various
problems are presented within a CNS framework: graph
coloring (Section 3), frequency assignment with polarization
(Section 4), car fleet management with maintenance con-
straint (Section 5), and satellite range scheduling (Section 6).
We end up the paper with a conclusion.

2. Consistent Neighborhood Search

In this section, we introduce the CNS methodology and
situate it within the optimization methods.

2.1. Presentation of the Method. Let (P) be the considered
problem with n variables s1, . . . , sn, let f be the objective
function to minimize, and let C be the set of constraints to
satisfy. Each variable si can only have a value in its value
domain Di. A solution of (P) is denoted s = (s1, . . . , sn),
where si ∈ Di. Solution s is feasible if it satisfies all the
constraints in C. In most local search methods, the search
space contains complete solutions; that is, each variable si has
a value in Di, and the solutions can be feasible or not. If
the search space only contains feasible solutions, the goal is
generally to directly minimize the given objective function
f associated with (P); otherwise, the aim often consists
in minimizing f (s) + α · p(s), where p(s) penalizes the
constraint violations associated with s and α is a parameter
which gives more or less importance to the constraint
violations. In contrast, a specificity of CNS consists in
working with partial and feasible solutions, that is, where
some si’s do not have a value but all the constraints are
satisfied. In such a case, the goal is to minimize the number

f̂ (s) of nonassigned variables in s, and the process stops of

course if f̂ (s) = 0.
Therefore, three search spaces are possible: (1) the com-

plete and feasible search space S(feasible), (2) the complete and
unecessarily feasible search space S(penalty), where unfeasible
solutions are penalized, and (3) the partial and feasible search
space S(partial). When working in S(feasible), it can be very
difficult to define a move which maintains the feasibility
of the solution. When working in S(penalty), it is challenging

to: define a move which does not augment too much p(s),
tune the above-mentioned parameter α, and find a feasible
solution because S(penalty) is much larger than S(feasible). We
will see that such drawbacks are avoided when working in
S(partial).

An important feature of CNS is the definition of the
neighborhood structure in S(partial). In most local search
methods, in order to generate a neighbor solution s′ from the
current solution s, a move m consists in changing the value of
one (or more) variable(s) of s. The set of neighbor solutions
of s is denoted N(s). Let d(s, s′) be the distance between s and
s′ ∈ N(s). Usually, d(s, s′) is proportional to the number of
modified variables when moving from s to s′; thus d(s, s′) is
a constant for all s′ ∈ N(s).

In contrast, any move m is performed in at least two
phases in CNS.

(1) Assignment phase: a value of Di is assigned to a non
assigned variable si. Let C(m) be the set of conflicting
variables (excluding si) created by move m (a variable
is in conflict if it is involved in at least a constraint
violation).

(2) Reassignment phase (optional): reduce the set C(m) as
follows: for each variable of C(m), if it is possible to
assign a new admissible value to it without creating
new conflicts, do it.

(3) Repairing phase: in order to keep the partial solution
feasible, remove the value of all the variables of C(m).

Therefore, the distance between s and a neighbor solution
in N(s) is usually not a constant.

In most local search algorithms, the selected neighbor
solution s′ of the current solution s is usually (one of) the
best (according to f or f + α · p) solution chosen among
a sample of N(s). Sampling is usually unavoidable because
it is too much time consuming to evaluate all the neighbor
solutions of s, either because N(s) is too large or because it
is cumbersome to evaluate a single move m. An important
issue is thus to determine the sample (random or not) as well
as the size of the sample.

In contrast, in CNS, all the neighbor solutions can be
considered at each iteration. This is possible in a reasonable
amount of time because of two reasons: (1) it is quick to
evaluate a neighbor solution by incremental computation: it
is simply |C(m)|; (2) the number of nonassigned variables in
the current solution s is in general small when compared for
example, with the size |N(s)| of the neighbor solutions of s
in a standard local search approach (working in S(feasible) or
in S(penalty)).

We have now all the ingredients to formulate a pseudo-
code of CNS in Algorithm 1.

In summary, CNS is an approach dealing with partial
feasible solutions, which can explore the whole neighbor-
hood of the current solution at each iteration because a
straightforward incremental computation can be designed.
Many local search methods (e.g., tabu search, simulated
annealing, random walk, threshold algorithms, etc.) can be
adapted within the framework of CNS.

ISRN Computational Mathematics 3

Initialization: generate an initial solution s, set s∗ = s and f̂ ∗ = f̂ (s);

While a stopping time condition is not met and f̂ ∗ > 0, do
1. initialize the value of the best move: set g = +∞;
2. generate the best move: for each non assigned variable si and each value d j ∈ Di, test move m = (si,d j) on s as follows:

(a) assignment phase: give value d j to variable si and compute the associated set C(m) of conflicting variables;
(b) reassignment phase (optional): for each variable sr of C(m), if it is possible to assign another admissible value to sr
without augmenting the number of violations, do it and remove sr from C(m);
(c) let scand be the so obtained candidate neighbor solution (which might be non feasible at this stage);
(d) update the best candidate move: if |C(m)| < g, set s′ = scand and g = |C(m)|;

3. repairing phase on the best move: remove the value of the g conflicting variables of s′ and let s be the
resulting new current solution;

4. update the record: if f̂ (s) < f̂ ∗, set s∗ = s and f̂ ∗ = f̂ (s)

Output: solution s∗ (which is a complete feasible solution if f̂ ∗ = 0);

Algorithm 1: CNS.

The adaptation of tabu search within the framework
of CNS is now discussed. A generic and standard version
of tabu search can be described as follows, assuming that
f has to be minimized. First, tabu search needs an initial
solution as input. Then, the algorithm generates a sequence
of neighbor solutions. When a move is performed from
s to s′, the inverse of that move is forbidden during the
following t (parameter) iterations (with some exceptions).
The solution s′ is computed as s′ = arg mins′′∈N ′(s) f (s′′),
where N ′(s) is a subset of N(s) containing all solutions s′

which can be obtained from s either by performing a move
that is not tabu or such that f (s′) < f (s∗), where s∗ is the
best solution encountered along the search so far. Usually,
N ′(s) is too large, and only a sample of neighbor solutions are
selected from N ′(s) to be evaluated. The choice of the sample
often has a strong impact on the final results. The process
is stopped, for example, when an optimal solution is found
(when it is known), or when a fixed number of iterations have
been performed. Many variants and extensions of this basic
algorithm can be found, for example, in [9].

Tabu search adapted within the framework of CNS has
the following specificities: working in S(feasible), minimizing

f̂ instead of f , exploring the whole neighborhood of the
current solution, using an efficient and straightforward
incremental computation after each move when a value is
given to a variable si and other values might be adjusted or
deleted, and it is then tabu to remove the value of si for a
certain number of iterations.

2.2. Search Characteristics of CNS. We now compare the
general strategy of three kinds of optimization methods: tree
search, standard local search, and CNS. These methods have
a very different way to visit the search tree, where the root
(the top node in Figures 1 to 4) is the empty solution (no
variable is assigned), and the leaves (the bottom nodes in
Figures 1 to 4) are complete solutions (all the variables have
a value), which can be feasible or not. In such four figures, an
empty node is not visited by the considered method; on the
contrary a black node is visited, and a black arrow indicates
a performed move from one node to another. Let S be the set

Root

Leaves

X ⊂ S

Figure 1: X for depth-first search.

Root

Leaves

X ⊂ S

Figure 2: X for breadth-first search.

of all the possible nodes in the search tree, and let X be subset
of S which is mainly visited by a specific algorithm. We will
see that X differs drastically from one method to the other.

Tree search algorithms visit neighbor nodes in the search
tree. The visited subtree X is likely to be vertical for Depth-
First Search as illustrated in Figure 1, where only a few leaves
might be visited. In contrast, Breadth-First Search usually
focuses on the top of the search tree because it often needs
a prohibitive amount of time to go down, as illustrated in
Figure 2 where no leaves are visited.

A very different strategy characterizes standard local
search methods: as illustrated in Figure 3, only leaves are

4 ISRN Computational Mathematics

Root

Leaves

X ⊂ S

Figure 3: X for a standard local search.

Root

Leaves

X ⊂ S

Figure 4: X for CNS.

visited, which is a major advantage when compared to tree
search methods. However, standard local search algorithms
usually have the following drawbacks. On the one hand, if
constraint violation is forbidden, the search space X is not
necessarily connected; that is, it is not always possible to
join two leaves with a sequence of moves. In such a case,
the search might be trapped in a connected component of
S which does not contain good solutions. On the other hand,
if constraint violation is allowed but penalized during the
search, the number of leaves is drastically augmented, and
the search might mainly focus on nonfeasible leaves, as it can
be challenging to define the penalty function p and to tune
its associated parameter α.

Even if CNS can be considered as a local search method,
it mainly explores nodes which are close to the leaves, as
illustrated in Figure 4. Because all the leaves correspond to
complete and feasible solutions, CNS stops as soon as a leaf
is reached.

CNS can start its search from the root, that is, no
variable has a value. In such a case, its first iterations would
basically consist in greedily assigning a value to a variable
until the current solution becomes saturated, that is, when
the repairing phase becomes unavoidable. CNS can also start
its search from a node located below the root if an external
procedure is used to generate the initial solution of CNS. The
more efficient is such external procedure, the closer will be
the first explored node to the bottom of S. Last but not least,
CNS can perform jumps in S. Thus, the search space X is
likely to be connected.

Therefore, CNS does not encounter the above-described
drawbacks associated with tree search and standard local
search methods. Notice however that there exists an implicit

enumeration method able to perform jumps over S, called
Resolution Search and proposed in [10].

3. Graph Coloring

The main reference associated with this section is [11].
The authors proposed a tabu search heuristic for the graph
coloring problem, which we denote CNS-GCP for the sake
of simplicity.

3.1. Description of the Problem. Given a graph G = (V ,E)
with vertex set V and edge set E, the k-coloring problem
(k-GCP) consists in assigning an integer (called color) in
{1, . . . , k} to every vertex such that two adjacent vertices
have different colors. The Graph Coloring Problem (GCP)
consists in finding a k-coloring with the smallest possible
value of k (called the chromatic number and denoted χ).
Both problems are NP-hard [1], and many heuristics were
proposed to solve them. For a recent survey, the reader is
referred to [12]. Starting at most with k = |V |, an upper
bound on the chromatic number of G can be determined
by solving a series of k-GCPs with decreasing values of k
until no feasible k-coloring can be obtained. Only such a
strategy, which leads to the best results, will be considered
below.

3.2. Description of the Method within a CNS Framework.
The best k-coloring heuristics are based on two approaches.
In S(penalty), the constraint that the endpoints of an edge
should have different colors is relaxed. Thus, the strategy
consists in allowing conflicts (a conflict occurs if two adjacent
vertices have the same color) while minimizing the number
of conflicts. In a local search context, a straightforward move
is thus to change the color of a conflicting vertex, as proposed
in [13].

In contrast, in S(partial), the constraint imposing that
all vertices should be colored is relaxed, but conflicts are
forbidden. We have Di = {1, . . . , k} for each si. In such a case,
the value si of a solution s = (s1, . . . , sn) in S(partial) indicates
the color of vertex i, which is in the set {1, . . . , k}, and there
is no value (or an artificial value 0) if vertex i is not colored.
The goal is to minimize the number of uncolored vertices.
A move m = (si; c) consists in first assigning a color c to a
uncolored vertex i (assignment phase), and then (repairing
phase) to remove the color of the created conflicting vertices
(i.e., all the vertices adjacent to i which have color c). Then,
all the moves which will remove the color c of vertex i are
tabu for a certain number of iterations. This number is
dynamically managed and is proportional to the variation

of the objective function f̂ (s) = |s| = |{si|si > 0}|. At
each iteration, the best nontabu move is performed (ties are
randomly broken).

3.3. Numerical Comparison with Other Methods. It is
shown in [14] and in [11] that the most difficult
benchmark instances from the DIMACS Challenge (see
ftp://dimacs.rutgers.edu/pub/challenge/graph/) are the ones
presented in Table 1. Below, CNS-GCP is compared with

ISRN Computational Mathematics 5

Table 1: Comparisons between CNS-GCP and state-of-the-art coloring algorithms.

Graph n χ, k∗ CNS-GCP Tabucol MMT GH MOR

DSJC1000.1 1000 ?, 20 21 20 20 20 21

DSJC1000.5 1000 ?, 83 89 89 83 83 88

DSJC1000.9 1000 ?, 224 226 227 226 224 226

DSJC500.1 500 ?, 12 12 12 12 12 12

DSJC500.5 500 ?, 48 49 49 48 48 49

DSJC500.9 500 ?, 126 127 127 127 126 128

DSJR500.1c 500 ?, 85 85 85 85 — 85

DSJR500.5 500 ?, 122 126 126 122 — 123

flat1000 50 0 1000 50, 50 50 50 50 50 50

flat1000 60 0 1000 60, 60 60 60 60 60 60

flat1000 76 0 1000 76, 82 88 88 82 83 89

flat300 28 0 300 28, 28 28 31 31 31 31

le450 15c 450 15, 15 15 16 15 15 15

le450 15d 450 15, 15 15 15 15 15 15

le450 25c 450 25, 25 27 26 25 26 25

le450 25d 450 25, 25 27 26 25 26 25

other state-of-the-art coloring heuristics, which are Tabucol
[13], GH [15], MOR [16], and MMT [17]. Tabucol is a
standard tabu search working in S(penalty). GH, MOR, and
MMT are all population-based methods which use local
search procedures. GH uses Tabucol to improve offspring
solutions, whereas MMT uses a procedure close to CNS-GCP.
MOR works in the same search space as CNS-GCP but uses
simulated annealing instead of tabu search, and much more
sophisticated moves.

A CPU time limit of 60 minutes on a Pentium 4 (2 GHZ,
512 MB of RAM) was considered for CNS-GCP. The first two
columns of Table 1, respectively, indicate the name and the
number n of vertices of the graph. The third column contains
two numbers, the first one being the chromatic number (a
“?” is put when it is not known), and the second one the best
upper bound k⋆ ever found by a heuristic. Then, for every
algorithm, the smallest k such that a feasible k-coloring was
found is reported. We can observe that CNS-GCP is rather
competitive with the best coloring methods. However, it is
much simpler!

4. Frequency Assignment with
Polarization

The main reference associated with this section is [18], where
the frequency assignment problem with polarization (FAPP)
was considered. The authors proposed that a tabu search
approach working in S(partial) denoted CNS-FAPP below.

4.1. Description of the Problem. The FAPP concerns a
Hertzian telecommunication network made up of antennae
located at a set of geographical sites. A Hertzian liaison
joins two sites by one or more paths. Hence, a path is
a unidirectional radioelectric bond, established between
antennae at distinct sites, which has a given frequency and
polarization. Let Fi and Pi, respectively, be the allowed

frequency set and polarization set for path i, where Pi ∈
{{−1},{1},{−1, 1}}. The FAPP consists in finding, for each
path, a frequency and a polarization satisfying the following
set of constraints.

Let IC be the set of the imperative constraints, which are
of four types: pi = p j , pi /= p j , | fi − f j| = εi j , and | fi −
f j| /= εi j , where εi j ≥ 0. In addition, some electromagnetic
compatibility constraints (ECCs) require a minimal distance
between frequencies of two paths: | fi − f j| ≥ γi j if pi =
p j and | fi − f j| ≥ δi j if pi /= p j . This constraint controls
the interference phenomenon, which is why the required
distance between frequencies depends on their polarizations;
it is smaller if the polarizations are different (i.e., δi j ≤ γi j).
Unfortunately, most problems do not have feasible solutions
because the domains are too restrictive or the requirements
too numerous. Consequently, some deterioration is allowed
by permitting some interference, which have to be mini-
mized. With this aim, for the ECC constraints, a progressive
relaxation is authorized and expressed by relaxation levels;
level 0 corresponds to no relaxation, and going from level k to
level k+1 involves the relaxation of some or all the frequency
gaps, the maximum relaxation level being 10. Formally, we
have:

∣∣∣ fi − f j
∣∣∣ ≥

{
γ0
i j ≥ · · · ≥ γki j ≥ · · · ≥ γ10

i j if pi = p j

δ0
i j ≥ · · · ≥ δki j ≥ · · · ≥ δ10

i j if pi /= p j

(1)

since in the 11th level, γ11
i j = δ11

i j = 0, so there is no ECC.
Let ECCk be the set of ECC constraints at level k (for 0 ≤

k ≤ 10). This means that each constraint belonging to ECCk

is affected to its γki j and δki j gaps. More precisely, | fi − f j| ≥

(|pi + p j|/2)γ
(k)
i j + (|pi − p j|/2)δ

(k)
i j . Accordingly, a feasible

solution at level k is an assignment of all the paths satisfying
all the strong constraints IC and all the ECCk constraints. If
such a solution exists, the problem is said to be k-feasible.
Every problem is assumed to be 11-feasible.

6 ISRN Computational Mathematics

Consequently, the objective function of the problem is, in
order of priority to (1) minimize the lowest relaxation level
k for which a k-feasible solution exists (2) minimize V (k−1):
the number of constraints of ECC(k−1) violated at level k− 1,
and (3) minimize

∑
0≤i<k−1 V

(i): the sum of the constraints of
ECCi violated at all levels i less than k − 1.

4.2. Description of the Method within a CNS Framework. The
strategy adopted for the resolution consists in transforming
the FAPP optimization problem into 11 decision problems
according to the relaxation level on the ECC; each FAPP(k)
contains both the IC and the ECCk constraints. This enables
us to introduce some filtering treatments to reduce the
frequency and the polarization domains. Starting from level
k = 11 where an initial solution is provided by a greedy
constructive method, the general algorithm works in a
downward fashion: each time a k-feasible solution is found,
a lower level is considered.

A solution s = (s1, . . . , sn) indicates for each path i its
associated resource (fi,pi), where fi ∈ Fi and pi ∈ Pi.
Thus, Di = Fi × Pi. In the assignment phase, a pair (fi, pi)
is given to the chosen nonassigned candidate path i. Then,
in the repairing phase, this affectation is propagated to its
neighbors in the constraint network, and, if necessary, the
conflicting neighboring values are deleted in order to satisfy
the IC and ECCk constraints. This was done efficiently using
incremental computing on specific data structures, allowing
variable domains to be dynamically reduced.

A tabu list is needed to prevent cycling, which occurs
when there is an attempt to instantiate the last deleted
variables in the current partial solution. Indeed, all the values
(f j , p j) likely to delete the variable si = (fi, p j) affected by
the move are classified tabu during some iterations; the tabu
tenure is proportional to the number of times this resource
was affected.

The considered problem was the subject of the Chal-
lenge ROADEF 2001 (organized by the French Society
of Operations Research and Decision Analysis), involv-
ing 27 research teams (see http://uma.ensta-paristech.
fr/conf/roadef-2001-challenge/). In Table 2 are presented
the results obtained by the five best teams. During the
competition, only one run was allowed, and the computing
time was limited to one hour on a Pentium 3 (500 MHZ,
128 MB of RAM). Table 2 details the hierarchical objective
function, by giving first the relaxation level k, then the sum
of all the unsatisfied ECCk−1, and finally the sum of all
the unsatisfied ECCi, where i varies from 0 to k − 2. The
first column indicates the instance names with the instance
number and the number n of considered paths. For example,
02-0250 is instance 2 with 250 paths.

The first approach, developed by Bisaillon’s team and
referred to as TS-VN, is a local search based on tabu
search with a variable neighborhood. The algorithm H+CP,
developed by Caseau, combines constraint propagation with
heuristics such as Large Neighborhood Search and Limited
Discrepancy Search. The third method, LS-CC, developed by
Gavranovic, is a typical local search guided by the constraint
cost; at each level, it builds frequency trees, ignoring the

polarization constraints, and then it tries to optimize the
polarization allocation. In a similar way, classical tabu search
procedures (simply denoted Tabu) working with complete
solutions were implemented by Schindl’s team. Finally, the
last column gives the results obtained by CNS-FAPP.

We can observe the efficiency of CNS-FAPP when
compared to the other methods. Care is needed because the
indicated values are the best among 10. CNS-FAPP finds the
optimal k level for 37 instances out of 40. And last but not
least, CNS-FAPP was the winner of the Challenge!

5. Fleet Management with Maintenance
Constraints

The main reference associated with this section is [19],
where a rather complex solution method was proposed for a
problem which can be formulated as a car fleet management
problem with maintenance constraints (but denoted CAR for
the sake of simplicity). The particularity of the problem is
that feasible solutions are very easy to find, but can cost a
lot. Thus, S(partial) was designed to avoid to assign the most
expensive value to each variable.

5.1. Description of the Problem. The problem retained for
the Challenge ROADEF 1999 was an inventory manage-
ment problem (see http://www.roadef.org/content/roadef/
challenge.htm for the details), where a cost function has to
be minimized. A car rental company manages a stock of
cars of different types. It receives requests from customers
asking for cars of specific types for a given time horizon.
Basically a request is characterized by its start and end times,
by a required car type, and by the number of required cars.
All requests are supposed to be known for the considered
time horizon. The satisfaction of all customer requests is
mandatory. If there are not enough cars available in stock,
the company can react in three different ways: (1) upgrading:
it can offer a better car type to the customer (but the
company encounters the additional associated cost); (2)
subcontracting: the company can decide to subcontract some
requests to other providers, which is generally the most
expensive alternative; (3) purchasing new cars, which then
belong to the stock of the company for the rest of the time
horizon.

Two types of maintenance constraints make the problem
difficult: (1) a maximum time of use without maintenance
is given for each car type (each maintenance has a duration,
a cost and a number of workers needed to perform it); (2)
the company has a fixed number of maintenance workers,
which means that the maintenances should be scheduled
so that the capacity of the workshop is never exceeded. In
addition, the following costs are also known: the costs (fixed
and time dependent) associated with the assignment of a car
to a request, and the inventory cost per day of a car in stock
(rented or not). The goal is to satisfy all the requests while
minimizing the total cost.

5.2. Description of the Method within a CNS Framework.
The general pseudocode of the method, denoted CNS-CAR,

ISRN Computational Mathematics 7

Table 2: Comparison of CNS-FAPP with others methods.

FAPP
TS-VN H+CP LS-CC Tabu CNS-FAPP

k V1 SV2 k V1 SV2 k V1 SV2 k V1 SV2 k V1 SV2

01-0200 4 4 56 4 6 279 4 14 165 5 1 281 4 14 233

02-0250 2 7 86 2 18 248 2 21 160 11 1 1274 2 20 195

03-0300 7 10 341 7 27 1076 7 16 420 7 13 589 7 32 892

04-0300 1 31 0 1 164 0 3 9 224 7 1 3678 1 184 0

05-0350 11 1 372 11 892 12364 11 1 1467 11 7 2284 11 364 5694

06-0500 5 12 246 5 53 1029 7 15 879 7 15 1210 5 31 811

07-0600 9 22 714 9 132 4419 10 28 3070 9 33 1585 9 106 3375

08-0700 5 16 266 5 53 1359 5 37 691 5 26 625 5 73 1225

09-0800 3 28 195 3 63 937 4 24 573 10 1 3678 3 104 846

10-0900 6 18 475 6 82 2365 6 39 1146 8 5 2871 6 103 2003

11-1000 8 8 1015 8 119 5206 9 30 3736 10 1 5108 8 119 4191

12-1500 3 83 1698 7 180 6538 11 17 2634 9 70 7682 2 62 1310

13-2000 3 49 2003 7 229 7503 11 59 6164 10 13 9651 5 132 3645

14-2500 4 35 3485 8 18 10661 11 3 5574 10 101 15718 5 217 5045

15-3000 5 15 1569 7 333 9988 11 46 9523 10 61 14010 5 192 4727

16-0260 11 5 56 11 572 5779 11 67 913 11 5 57 11 514 5189

17-0300 4 4 34 4 4 36 4 4 35 4 4 34 4 4 36

18-0350 8 4 55 8 4 55 8 4 57 8 4 55 8 4 59

19-0350 6 2 51 6 3 79 6 2 53 6 2 51 6 3 70

20-0420 10 5 97 10 6 145 10 5 99 10 5 97 10 7 142

21-0500 4 2 10 4 2 12 4 2 11 4 2 10 4 2 12

22-1750 7 15 187 7 16 356 7 16 194 7 15 187 7 25 503

23-1800 9 16 187 9 17 197 9 16 189 9 16 187 9 17 197

24-2000 7 6 71 7 7 90 7 7 79 7 6 71 7 9 91

25-2230 3 7 32 3 7 33 3 7 33 3 7 32 3 7 33

26-2300 7 9 74 7 10 81 7 9 74 7 9 74 7 10 86

27-2550 11 4 64 5 7 46 5 8 37 5 4 20 5 11 54

28-2800 3 13 32 3 32 129 3 25 58 3 13 32 3 42 142

29-2900 6 25 239 6 28 351 6 25 212 6 25 212 6 25 310

30-3000 11 1166 12029 7 17 602 7 16 190 7 13 148 7 48 1045

31-0400 5 4 1180 5 161 2131 5 34 1151 5 16 1400 5 117 1896

32-0550 10 52 1739 6 16 388 6 5 71 11 25 2166 6 10 235

33-0650 5 7 66 5 16 332 5 7 77 11 5 1310 5 10 235

34-0750 4 2 46 4 35 767 4 6 213 10 1 1701 4 22 565

35-1500 7 3 1280 6 74 1919 6 16 431 11 24 5870 6 62 1375

36-2000 7 99 2153 9 3 2478 8 25 970 11 16 4652 7 63 1643

37-2250 11 3 12229 5 56 1745 8 13 975 11 14 10353 5 51 1288

38-2500 11 79 14058 3 39 572 3 14 174 11 53 13355 9 125 6717

39-2750 3 356 2844 3 2567 10470 3 747 4603 11 36 13267 11 3947 40473

40-3000 11 39 16755 4 77 1562 8 20 1261 11 867 13684 4 64 1252

is summarized in Algorithm 2. First, an initial solution is
greedily generated. Step 1 of the main loop tries to improve
the current solution without changing the set of purchased
cars (with the use of two tabu search procedures working in
S(partial), denoted TS1-CAR and TS2-CAR below), while the

second step generates a new solution with a different set of
purchased cars. The stopping criterion is a time limit of one
hour, as imposed by the organizers of the Challenge.

In TS1-CAR, a solution s can be modeled as follows. Let
sr = t if request r is performed by a car of type t of the

8 ISRN Computational Mathematics

Initialization: generate an initial solution s;
While the time limit is not reached, do

1. try to improve s without changing the set of purchased cars, with the successive use of TS1-CAR and TS2-CAR;
2. update s by purchasing a car or by removing a previously purchased car (the requests associated with a removed car

are initially subcontracted).

Algorithm 2: Algorithm CNS-CAR.

fleet (purchased or not), and sr has no value (or an artificial
value, say 0) if request r is subcontracted to another provider.
Thus, S(partial) is defined in order to minimize the number
of subcontracted requests. A neighbor s′ of a solution s is
obtained by assigning a car c of type t to a subcontracted
request r (i.e., the corresponding sr equals t instead of 0). To
make such a change feasible, in the repairing phase, requests
covered by c that overlap with r are subcontracted (i.e., the
associated s j values are set to 0), and the maintenances of car
c are possibly rescheduled in a greedy fashion while satisfying
the maintenance constraints. If it is not possible, other s j ’s
such that s j = t might be set to 0 in order to create more
room to schedule the maintenances. If it is still not possible
to generate a feasible schedule for the maintenances (because
of the maintenances schedule of the other car types), such a
move is not considered further.

TS2-CAR is an extension of TS1-CAR in the following
sense: (1) it works on several car types during the same move;
(2) it tries to reduce the total cost not only by assigning cars
to subcontracted requests, but also by avoiding upgrades;
(3) a reassignment phase is performed; (4) the repairing
phase has more options to validate the move proposed in the
assignment phase. A neighbor s′ of a solution s is obtained
by assigning a car of type t to a request r, where r is
subcontracted or covered by a car of type t′ /= t in s, where
type t′ is an upgrade of type t. In other words, sr equals
t instead of 0 or t′. The reassignment and repairing phases
are performed simultaneously as follows: all the requests Ct

covered by the cars of type t might be reassigned within
car type t (while considering an exact method for a specific
case of the graph coloring problem), and it is allowed
to subcontract some requests of Ct. In such a phase, the
maintenance schedule of all the cars might change (in a
greedy fashion or by the use of an exact method). In the two
tabu procedures, when a request r is assigned to a car type t
(i.e., sr is set equal to t), it is then tabu to remove the value t
from sr for a certain number of iterations.

Diversification procedures were also used, based on the
following idea: the requests which were not subcontracted
from a large number of iterations are subcontracted, in order
to make room for other requests in the schedule.

5.3. Numerical Comparison with Other Methods. In Tables
3 and 4 the results for the 16 benchmark instances of the
Challenge are reported. CNS-CAR is compared with the
four best methods (among the thirteen proposed heuristics)
of the Challenge. The winners of the contest were Briant
and Bouzgarrou. Their algorithm mainly combines linear

programming ignoring the maintenance constraints and
then adjust the solution according to the maintenance
constraints. The name of an instance is coded with a vector
(x, y, z,w), where x is the number of requests, y is the
number of car types, z is the capacity of the workshop, and
w is equal to b if purchases are allowed, and to nb otherwise.
The time horizon of all instances is [0, 730] corresponding to
a period of 2 years.

The algorithm was run with the time limit equivalent to
one hour on a Pentium Pro (200 MHZ, 64 MB of RAM),
as imposed by the organizers of the challenge. The results
are shown in Table 3 (for instances where purchases are
forbidden) and Table 4 (associated with the same instances,
but where purchases are allowed). The column labeled Best
contains the best known solution for each instance. An
asterisk is put when CNS-CAR was able to equal or improve
the previous best known solution. Some of these best
results have been obtained when using different parameters
from those mentioned above (for tuning purposes) or by
running CNS-CAR for more than one hour. The next four
columns contain the percentage gap with respect to Best
obtained by the four best methods, labeled with the initials
of the members of each team, namely, BB (for Briant and
Bouzgarrou), AGHKU (for Asdemir, Karslioğlu, Gürbüz,
and Ünal), B (for Bayrak), and DD (for Dhaenens-Flipo and
Durand). The next column contains the percentage gap with
respect to Best obtained with CNS-CAR. For each instance,
ten runs of CNS-CAR were executed, and average results
are reported. The last line of each column indicates average
results. We can observe that CNS-CAR gives in average better
results than those obtained by the four best competitors of
the Challenge.

6. Satellite Range Scheduling

The main reference associated with this section is [20], in
which the problem is referred to as the daily photograph
scheduling of an earth observation satellite (but only denoted
SAT below). The authors proposed a tabu search approach
working in S(partial) denoted CNS-SAT below. Note that CNS
kind of approaches were also very successfully adapted to
other satellite range scheduling problems: the multi-resource
satellite range scheduling problem [21] where more than one
resource are available, and a satellite range scheduling with
partial acquisition and transition times [22].

6.1. Description of the Problem. The considered satellite
range scheduling problem can be described as follows [23].

ISRN Computational Mathematics 9

Table 3: Results for the instances without purchase.

Instance Best BB AGHKU B DD CNS-CAR

(80, 8, 2, nb) 1162285∗ 0.00% 0.05% 1.31% 8.47% 0.00%

(150, 7, 2, nb) 3280230∗ 0.87% 5.85% 5.03% 9.73% 0.00%

(160, 12, 2, nb) 3333599∗ 14.63% 19.68% 29.56% 20.51% 0.81%

(200, 12, 2, nb) 5450785∗ 7.77% 22.56% 25.52% 26.02% 2.59%

(200, 7, 2, nb) 5156915∗ 6.36% 12.61% 21.02% 31.93% 3.62%

(200, 7, 4, nb) 4558728∗ 0.00% 0.66% 3.26% 14.45% 0.00%

(210, 9, 2, nb) 5810288∗ 5.67% 10.76% 18.48% 27.11% 2.42%

(210, 9, 4, nb) 5135237∗ 1.82% 1.44% 3.46% 13.09% 0.12%

Average 4236008 4.64% 9.20% 13.46% 18.91% 1.20%

Table 4: Results for the instances with purchase.

Instance Best BB AGHKU B DD CNS-CAR

(80, 8, 2, b) 1145181∗ 0.00% 1.55% 2.82% 7.23% 0.04%

(150, 7, 2, b) 2811138 0.00% 9.40% 3.98% 13.23% 0.01%

(160, 12, 2, b) 3064397∗ 11.99% 29.40% 26.08% 21.98% 1.47%

(200, 12, 2, b) 4517706∗ 12.42% 34.97% 35.93% 38.13% 4.88%

(200, 7, 2, b) 4990499∗ 6.88% 15.36% 27.76% 31.38% 4.98%

(200, 7, 4, b) 4092002∗ 0.00% 3.00% 3.46% 12.76% 0.01%

(210, 9, 2, b) 5380588∗ 7.38% 18.91% 29.31% 34.15% 3.52%

(210, 9, 4, b) 4147087∗ 8.71% 10.92% 9.19% 14.91% 0.01%

Average 3787302 5.92% 15.44% 17.32% 21.72% 1.86%

Let P = {p1, . . . , pn} be the set of n candidate photographs
which can be scheduled to be taken on the next day. A
set of possibilities is associated with each photograph pi
corresponding to the different ways to take pi: (1) for a mono
pi, there are three possibilities because a monophotograph
can be taken by any of the three cameras (front, middle,
and rear) on the satellite; (2) for a stereo pi, there is
one single possibility because a stereo photograph requires
simultaneously the front and the rear camera. With each
monophotograph pi ∈ P are associated three pairs of
elements (pi, camera 1), (pi, camera 2), and (pi, camera 3).
Similarly, with each stereo photograph pi ∈ P is associated
one pair (pi, camera 13). Letting n1 and n2 be, respectively,
the number of mono- and stereophotographs in P (where
n = n1 + n2), there are in total m = 3 · n1 + n2 possible
pairs of elements for the given set P of candidates. Now,
associating a binary (decision) variable si with each such
pair, a photograph schedule corresponds to a binary vector:
s = (s1, s2, . . . , sm), where si = 1 if the corresponding pair
(photo, camera) is present in the schedule, and si = 0
otherwise. For example, if P = {p1, p2, p3} where p1 and p2

are monophotographs and p3 is a stereophotograph, then s =
(1, 0, 0, 0, 0, 0, 1) represents a schedule in which p1 is taken by
camera 1, p2 is rejected, and p3 is taken by cameras 1 and 3.

The SAT is to find a subset P′ of P which satisfies all
the imperative constraints and maximizes the sum of the
profits of the photographs in P′. The objective function can
be defined as follows. First, the profit of a pair (p, camera)
(or its 0-1 variable) is defined as the profit of the photograph
p. The total profit of all the pairs of the given set P is
then represented by a vector: g = (g1, g2, . . . , gm), where

gi = g j (i /= j) if gi and g j correspond to two different pairs
of elements involving the same photograph p, that is, (p,
camera x) and (p, camera y). Then the total profit value of
a schedule s = (s1, s2, . . . , sm) is the sum of the profits of the
photographs in s, that is, f (s) =

∑m
i=1 gi · si.

A capacity constraint is the following. A size is associated
with each photograph pi, which represents the amount of
memory required to record pi when it is taken. The size of
a pair (p, camera) (or its 0-1 variable) is defined as the size
of the photograph p. The total size of all the pairs of the
given set P is then represented by a vector: c = (c1, c2, . . . , cm),
where ci = c j (i /= j) if ci and c j correspond to two different
pairs of elements involving the same photograph p, that is,
(p, camera x) and (p, camera y). The capacity constraint
states that the sum of the sizes of the photographs in a
schedule s = (s1, s2, . . . , sm) cannot exceed the maximal
recording capacity on board, which is expressed as

∑m
i=1 ci ·

si ≤ Max capacity.
Binary constraints involving the nonoverlapping of two

trials and the minimal transition time between two successive
trials of a camera, and also some constraints involving limita-
tions on instantaneous data flow are conveniently expressed
by simple relations over two pairs (photo and camera). A
binary constraint forbids the simultaneous presence of a pair
(pi, ki) and another pair (p j , k j) in a schedule. If si and s j are
the corresponding decision variables of such two pairs, then
a binary constraint is defined as follows: si + s j ≤ 1. Let C2
denote the set of all such pairs (si, s j) which should verify the
above binary constraint.

Some constraints involving limitations on instantaneous
data flow cannot be expressed in the form of binary

1 0 ISRN Computational Mathematics

constraints as above. These remaining constraints may
however be expressed by relations over three pairs (photo
and camera). A ternary constraint forbids the simultaneous
presence of three pairs (pi, ki), (p j , k j), and (pl, kl). Letting
si, s j , and sl be the decision variables corresponding to these
pairs, then such a ternary constraint is written as follow
si + s j + sl ≤ 2. Let C3 1 denote the set of all such triplets
(si, s j , sl) which should verify this ternary constraint.

Finally, we need to be sure that a schedule contains no
more than one pair from {(p, ki), (p, k j), (p, kl)} for any
(mono) photograph p. Letting si, s j and sl be the decision
variables corresponding to these pairs, then this ternary
constraint is expressed as si + s j + sl ≤ 1. Clearly there are
exactly n1 ternary constraints of this type. Let C3 2 denote
the set of all such triplets (si, s j , sl) which verify this second
type of ternary constraints. C3 denotes the union of C3 1
and C3 2, that is, C3 = C3 1 ∪ C3 2.

6.2. Description of the Method. In contrast with the previous
problems where all the constraints are considered to define
the search space, a partially constrained search space C is
considered here, which is composed of all binary vectors
of m elements satisfying constraints C2 and C3 above. The
relaxation of the capacity constraint helps to obtain better
results and to accelerate the search. Let s = (s1, s2, . . . , sm) ∈
C and s′ = (s1′ , s2′ , . . . , sm′), and then s′ is a neighbor of s,
that is, s′ ∈ N(s), if and only if the following conditions are
verified:

(1) there is only one i such that si = 0 and si′ = 1, for
1 ≤ i ≤ m,

(2) for the above i, for all (si, s j) ∈ C2, s j′ = 0 for 1 ≤ j ≤
m, and

(3) for the above i, for all (si, s j , sk) ∈ C3 1, s j′ + sk′ ≤ 1
for 1 ≤ j, k ≤ m.

Thus, a neighbor of s can be obtained by adding a pair
(photo and camera) (i.e., flipping a variable si from 0 to 1) in
the current schedule and then dropping some pairs (photo
and camera) (i.e., flipping some s j ’s from 1 to 0) to repair
binary and ternary constraint violations.

During the search, the capacity constraint may be
violated by the current solution s = (s1, s2, . . . , sm); that is,
the total size of s may exceed the maximal allowed capacity.
To satisfy the capacity constraint, the following mechanism
is used. Each time the current solution is improved, the
capacity constraint is checked. If the constraint is violated,
the solution is immediately repaired by suppressing the
elements si which have the worst ratio gi/ci until the capacity
constraint is satisfied.

Each time a move is carried out, a single variable si flips
from 0 to 1, and several s j ’s flip from 1 to 0. It is then
tabu to flip again these s j values from 0 to 1 during tabu(j)
iterations, where tabu(j) = C(j) + α·freq(j), where C(j) is
the number of binary and ternary constraints involving the
element s j , freq(j) the number of times s j is flipped from 1
to 0 from the beginning of the search, and α is an instance-
dependent coefficient which defines a penalty factor for each
move. To explain this, a variable involved in a large number

of constraints has naturally more risk to be flipped during a
move than a variable having few constraints on it. It is thus
logic to give a longer tabu tenure for a move whose variable
has many constraints on it. The second part of the function
aims to penalize a move which repeats too often. Note that
intensification and diversification procedures were also used
to enhance the efficiency of the general method.

6.3. Numerical Comparison with Other Methods. Experi-
ments are carried out on a set of 20 realistic instances
provided by the CNES (French National Space Agency) and
described in details in [23]. These instances belong to two
different sets: without capacity constraint (13 instances)
and with capacity constraint (7 instances). The instances
without capacity constraints, as well as one instance with
capacity constraint, will not be commented; it is very easy
to solve them, either with an exact method or with the
above-described CNS-SAT algorithm. The other six instances
have from 488 to 1057 candidate photographs, giving up to
2355 binary variables and 35933 constraints. Existing exact
algorithms are unable to solve optimally these instances.

The best known nonexact algorithm was a tabu search
TS-SAT proposed by the CNES. The main differences with
CNS-SAT algorithm are the following. (1) TS-SAT uses
a different (integer) formulation of the problem; (2) it
manipulates only feasible solutions (the search space is thus
S(feasible)); (3) it uses a different neighborhood structure; (4)
it considers only a sample of neighbor solutions to make a
move; (5) the tabu tenure for each move is randomly taken
from predefined (very small) ranges.

To solve an instance, CNS-SAT is allowed to run 9 million
iterations on a PC (200 MHZ, 32 MB of RAM), which is
considered as reasonable by the CNES. CNS-SAT was run
100 times on each instance with different random seeds, and
the average value is returned for each instance. The first three
columns of Table 5 give the name of the instance, the number
of candidate photographs n, and the number of 0-1 variables
m. Columns 4 and 5, respectively, show the best profit f ∗TS and
the associated computing time timeTS (in seconds) obtained
with TS-SAT. Columns 6-7 give the average profit value f CNS

and the average time timeCNS needed by CNS-SAT to find
such a solution. It is easy to see that CNS-SAT is much more
efficient and quicker than TS-SAT (see also the line labeled
“Average”).

7. Conclusion

In this paper, we propose and discuss a generic method
for combinatorial optimization problems. Its consideration
within various fields shows that CNS is very efficient, robust,
quick, and relatively easy to implement. Note that other
heuristic solution methods which were not discussed here
could be considered within the CNS framework (e.g., [24,
25]). On the contrary to tree search, CNS mainly focuses on
the bottom part of the search tree (i.e., it evolves close to the
leaves). In contrast with standard local search methods, on
the one hand, it can perform jumps in the search tree, which
means that the search space is likely to be connected. On the

ISRN Computational Mathematics 11

Table 5: Comparison between TS-SAT and CNS-SAT.

Instance n m f ∗TS TimeTS f CNS TimeCNS

1401 488 914 174058 846 176055 120

1403 665 1317 174137 1324 176134 332

1405 855 1815 174174 1574 176175 1314

1021 1057 2355 174238 2197 176241 2422

1504 605 1253 124238 1011 124241 405

1506 940 2060 165244 1945 168224 1423

Average 164348.17 1272.86 166178.33 859.57

other hand, there is no need to extend the search space by
considering unfeasible solutions and penalizing them with a
function which can be difficult to design and to tune.

CNS is especially well adapted when the optimization
problem can be divided into a series of decision problems.
It was the case for three of the presented applications.

(i) Graph coloring can be tackled by the search of k-
colorings with decreasing values of k.

(ii) The frequency assignment problem can be approac-
hed at level k by only considering interference const-
raints at level k and imperative constraints. Then, if
a feasible solution is found at level k, level k − 1 is
considered.

(iii) The car fleet management problem can be considered
with a fixed number k of cars in stock (k being first
equal to the existing cars in stock), and the provided
solution will be the less costly solution among the
different considered k values (k can augment if cars
are purchased).

CNS is a very flexible method for at least four reasons.

(i) It can manage various ways of representing a solu-
tion; the component i of solution s, denoted si,
can involve only one information (e.g., the color
of a vertex, the car type of a client request, a
binary decision value associated with a selection of
a photograph or not), or several data of different
nature (e.g., a frequency and a polarization, a binary
decision value for the selection of a photograph, and
the associated camera). This allows to better manage
the repairing phase.

(ii) It can consider various types of constraints. It is well
adapted for constraints linking two or three variables
together, because the repairing phase is usually
straightforward in such situations. If a specific con-
straint involves several variables, such a constraint
can be relaxed (at least to save CPU time), as it was the
case for the satellite range scheduling problem when
the capacity constraint was only considered at specific
iterations.

(iii) It is also well adapted for some problems where
the unassigned variables actually correspond to an
expensive assignment for the considered problem
(e.g., a nonassigned variable corresponds to a sub-
contracted request for the car rental company).

(iv) Other significant ingredients can be easily added
within the framework of CNS to enhance its effi-
ciency, such as intensification or diversification pro-
cedures.

CNS can be easily combined with evolutionary heuristics,
like genetic or adaptive memory algorithms. We can consider
that it was already successfully performed for graph coloring
[17] and a satellite range scheduling problem [21]. In both
cases, the resulting methods are the best for the considered
problems. Therefore, a relevant avenue of research would
consist in hybridizing CNS with other techniques for other
optimization problems.

References

[1] M. Garey and D. S. Johnson, Computer and Intractability:
A Guide to the Theory of NP-Completeness, Freeman, San
Francisco, Calif, USA, 1979.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–
680, 1983.

[3] F. Glover, “Tabu search—part I,” Journal on Computing, vol. 1,
no. 3, pp. 190–250, 1989.

[4] I. Charon and O. Hudry, “The noising method: a new method
for combinatorial optimization,” Operations Research Letters,
vol. 14, no. 3, pp. 133–137, 1993.

[5] N. Mladenović and P. Hansen, “Variable neighborhood
search,” Computers and Operations Research, vol. 24, no. 11,
pp. 1097–1100, 1997.

[6] C. Voudouris and E. Tsang, “Guided local search and its
application to the traveling salesman problem,” European
Journal of Operational Research, vol. 113, no. 2, pp. 469–499,
1999.

[7] M. Vasquez and N. Zufferey, “Consistent neighborhood search
for constrained assignment problems,” in Proceedings of the
9th International Conference on Modeling, Optimization &
Simulation (MOSIM ’12), Bordeaux, France, June 2012.

[8] A. Dupont, M. Vasquez, and D. Habet, “Consistent neigh-
bourhood in a Tabu search,” in Metaheuristics: Progress as Real
Problem Solverschapter, no. 17, pp. 367–386, Springer, 2005.

[9] F. Glover and M. Laguna, Tabu Search, Kluwer Academic,
Boston, Mass, USA, 1997.

[10] V. Chvátal, “Resolution search,” Discrete Applied Mathematics,
vol. 73, no. 1, pp. 81–99, 1997.

[11] I. Blöchliger and N. Zufferey, “A graph coloring heuristic using
partial solutions and a reactive tabu scheme,” Computers and
Operations Research, vol. 35, no. 3, pp. 960–975, 2008.

12 ISRN Computational Mathematics

[12] P. Galinier and A. Hertz, “A survey of local search methods for
graph coloring,” Computers and Operations Research, vol. 33,
no. 9, pp. 2547–2562, 2006.

[13] A. Hertz and D. de Werra, “Using tabu search techniques for
graph coloring,” Computing, vol. 39, no. 4, pp. 345–351, 1987.

[14] P. Galinier, A. Hertz, and N. Zufferey, “An adaptive memory
algorithm for the k-coloring problem,” Discrete Applied Math-
ematics, vol. 156, no. 2, pp. 267–279, 2008.

[15] P. Galinier and J.-K. Hao, “Hybrid evolutionary algorithms for
graph coloring,” Journal of Combinatorial Optimization, vol. 3,
no. 4, pp. 379–397, 1999.

[16] C. Morgenstern, “Distributed coloration neighborhood
search,” Discrete Mathematics and Theoretical Computer
Science, vol. 26, pp. 335–3357, 1996.

[17] E. Malaguti, M. Monacci, and P. Toth, “A metaheuristic
approach for the vertex coloring problem,” INFORMS Journal
on Computing, vol. 20, no. 2, pp. 302–316, 2008.

[18] A. Dupont, E. Alvernhe, and M. Vasquez, “Efficient filtering
and Tabu search on a consistent neighbourhood for the
Frequency Assignment Problem with Polarisation,” Annals of
Operations Research, vol. 130, no. 1–4, pp. 179–198, 2004.

[19] A. Hertz, D. Schindl, and N. Zufferey, “A solution method for a
car fleet management problem with maintenance constraints,”
Journal of Heuristics, vol. 15, no. 5, pp. 425–450, 2009.

[20] M. Vasquez and J.-K. Hao, “A “logic-constrained” knapsack
formulation and a tabu algorithm for the daily photograph
scheduling of an earth observation satellite,” Computational
Optimization and Applications, vol. 20, no. 2, pp. 137–157,
2001.

[21] N. Zufferey, P. Amstutz, and P. Giaccari, “Graph colouring
approaches for a satellite range scheduling problem,” Journal
of Scheduling, vol. 11, no. 4, pp. 263–277, 2008.

[22] D. Habet, M. Vasquez, and Y. Vimont, “Bounding the
optimum for the problem of scheduling the photographs of an
Agile Earth Observing Satellite,” Computational Optimization
and Applications, vol. 47, no. 2, pp. 307–333, 2010.

[23] E. Bensana, M. Lemaı̂tre, and G. Verfaillie, “Earth observation
satellite management,” Constraints, vol. 4, no. 3, pp. 293–299,
1999.

[24] M. Vasquez and J.-K. Hao, “A heuristic approach for antenna
positioning in cellular networks,” Journal of Heuristics, vol. 7,
no. 5, pp. 443–472, 2001.

[25] A. Dupont, A. C. Linhares, C. Artigues, D. Feillet, P. Michelon,
and M. Vasquez, “The dynamic frequency assignment prob-
lem,” European Journal of Operational Research, vol. 195, no. 1,
pp. 75–88, 2009.

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Game Theory

Journal of
Applied Mathematics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Complex
Systems

Journal of

ISRN
Operations
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Abstract and
Applied Analysis

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Optimization
Journal of

ISRN
Computational
Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Complex Analysis
Journal of

ISRN
Combinatorics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Geometry

ISRN
Applied
Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

 Advances in

Decision

Sciences

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Mathematics
Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Algebra

ISRN
Mathematical
Physics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

DiscreteĮMathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

