
AGRASP-Based Approach for Technicians and Interventions

Scheduling for Telecommunications

Hideki Hashimoto1, Sylvain Boussier, Michel Vasquez and Christophe
Wilbaut2

1 Department of Applied Mathematics and Physics, Graduate School of
Informatics,
Kyoto University,
Kyoto 606-8501, Japan
hasimoto@amp.i.kyoto-u.ac.jp
2 Ecole des Mines d Ales, Site EERIE,
Parc Scientifque Georges Besse, 30035 Nimes cedex 1, France
{Sylvain.Boussier,Michel.Vasquez,Christophe.Wilbaut}@ema.fr

Abstract. The Technicians and Interventions Scheduling Problem for Telecom-
munications embeds the scheduling of interventions, the assignment of teams to
interventions and the assignment of technicians to teams. Every intervention is
characterized, among others attributes, by a priority. The objective of this problem
is to schedule interventions such that the interventions with the highest priority
are scheduled at the earliest time possible while satisfying a set of constraints like
the precedence between some interventions and the number of technicians with
the required skill level by domain. To solve this problem, we propose a GRASP
algorithm based on the dynamic update of the weights assigned to the interventions
combined with a local search procedure. We also compute lower bounds and present
experimental results that validate the effectiveness of this approach.

Keywords: Technicians and Intervention Scheduling; GRASP; Metaheuristics

1. Introduction

In this paper we describe a heuristic approach for solving a Technicians
and Interventions Scheduling Problem for Telecommunications which
we abbreviate as TIST.

The subject [3] was proposed by France Telecom1 for the 5th

challenge of the French Society of Operations Research and Decision
Analysis2. At France Telecom, supervisors have to decide for each day
which technicians will work together for the day and which interven-
tions they will have to perform. With the growth of interventions due
to the expansion of the new services associated with Internet such as
VoIP or television broadcasts –and to maintain their competitiveness
with restricting the numbers of technicians– the supervisors have to

1 French telecommunications company
2 http://www.g-scop.fr/ChallengeROADEF2007/ or http://www.roadef.org/

c© 2013 Kluwer Academic Publishers. Printed in the Netherlands.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.1

2 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

tackle more and more complicated schedules. The aim of the TIST is
to provide efficient schedules that can help the supervisors in their job.

The interventions are characterized by criteria such as priority and
length of time. Some interventions are linked to other interventions that
must be completed first. That constitutes a set of preceding constraints
to be satisfied by any scheduling. The interventions are also composed
of different types of tasks which require a given number of technicians
with a certain skill level in a given domain. The technicians are special-
ized in different domains with different skill levels and they have a list
of non-working days. Therefore it is necessary to assign interventions to
teams of technicians with the required skill levels and who are available
the scheduled day. In addition, any intervention has a given cost if an
external company is hired to do it. The total cost of the subcontracted
interventions cannot exceed a given budget. Note that interventions
can be subcontracted only if their successors, in the precedence con-
straint, are subcontracted too. The objective of the TIST is to schedule
interventions such that the interventions with the highest priority are
scheduled at the earliest time possible. This problem has two related
combinatorial aspects: the scheduling of the interventions (depending
on the precedence constraint) and the assignment of the technicians to
the teams (depending on the scheduled day).

The core of our approach to solve the TIST is constituted by a
GRASP-based algorithm. The selection criteria of intervention to be
scheduled by the greedy algorithm are updated during the search: new
solutions are generated using the information extracted from previous
ones. Then we attempt to improve these solutions with local search.
Globally, our approach is divided in three phases: first, a preprocessing
phase which selects the interventions to be subcontracted and delete
them from the problem; second, we identify initial coefficients for the
greedy algorithm in the insertion order phase that keeps the two best
orders to insert the interventions; third, the GRASP phase which is
composed of the greedy phase that generates initial solutions followed
by the local search phase that tries to improve them. The remainder of
the paper is organized as follows: in section 2, we describe the problem
and introduce the notations; section 3 is devoted to the presentation of
the different components of our approach; then, in section 4, we expose
a lower bound computation, implemented to evaluate the quality of
the obtained results. The whole computational experiments are given
in section 5, and finally we conclude and give some further prospects
to enhance the present work in section 6.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.2

A GRASP-Based Approach for TIST 3

2. Problem Description

In this section, we first describe the problem informally. Then we present
the different notations used in the paper to refer the data of the prob-
lem, and we conclude with a mathematic formulation of the TIST.

2.1. Global description

The problem deals with interventions that have to be assigned to teams
of technicians. Technicians are described by their available days and
skills, and interventions are characterized by their priority, execution
time, predecessors (interventions which have to be completed before)
and required number of technicians of each skill level in each domain.
The aim is to build teams of technicians for each day and assign in-
terventions to those teams while verifying all the constraints of the
schedule and minimizing the objective function

28t1 + 14t2 + 4t3 + t4

where tk is the ending time of the last intervention of priority k for
k = 1, 2, 3 and t4 is the ending time of the whole schedule.

A schedule has to satisfy a list of constraints for the assignment of
technicians and for the assignment of interventions. We consider that
each working day is in the interval [0, Hmax] and that it is not possible
to exceed this limit. Consequently, an intervention cannot be performed
before time 0 or after time Hmax and cannot be done in several days.
An intervention has to be done by only one team at one time, several
teams cannot share the same intervention. There are days off for the
technicians and obviously, no intervention can be assigned to a techni-
cian who is not working during the current day. A strong constraint is
that the teams cannot change during one day, so a technician belongs
to only one team each day. This constraint is due to the limited number
of available cars and to the time it would take to get several teams back
to a central point to mix the teams.

A team has to satisfy the requirements to perform an intervention.
Thus, for each intervention we have to assign enough qualified tech-
nicians to satisfy all the requirements. For example, an intervention
requiring one technician of level 2 in the domain d1 can be done by
one technician of level 2, 3 or 4 in domain d1, but cannot be done
by two technicians of level 1 in domain d1. The required number of
technicians at a given level for an intervention is cumulative since a
technician of a given level is also qualified for all the smaller levels of
the same competence domain. For example, if a technician has a skill
level of 3 in a given domain then he can work on interventions requiring
only a skill level of two in this domain.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.3

4 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

Finally, it is possible to subcontract interventions to an external
company. Each intervention has a specific cost to hire an external
company to do it and the total cost of the subcontracted interventions
cannot exceed a total budget. Let us note that the mathematical model
we expose in section 2.3 does not consider subcontracted interven-
tions. Indeed, this part of the problem is tackled with a preprocessing
heuristics which is described in section 3.1.

2.2. Notations

In this section we introduce a set of notations used throughout the
paper. First we define the constants for the problem:

− Hmax is the length of time of each day (Hmax = 120 in the subject).

− T (I) is the execution time of intervention I.

− cost(I) is the cost of intervention I.

− A is the total budget allowed for the subcontracted interventions.

− P (t, j) is equal to 1 if technician t is working on day j, 0 otherwise.

− C(t, i) is the skill level of technician t in domain i.

− R(I, i, n) is the required number of technicians of level n in domain
i to complete the intervention I.

− Pred(I) is the list of interventions which have to be completed
before starting intervention I.

We also use some variables listed below:

− s(I) is the starting time of intervention I.

− e(t, j) is the team number of technician t for the day j. Team num-
ber 0 is a special team composed of the non-working technicians.

− d(I) is the day when intervention I is scheduled.

From the previous description and the previous notations, an inter-
vention requiring for domain i at least one technician of level three and
one technician of level two will have its requirements noted: R(I, i, 1) =
2, R(I, i, 2) = 2, R(I, i, 3) = 1, R(I, i, 4) = 0.

Here are the constants used for the mathematical model:

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.4

A GRASP-Based Approach for TIST 5

− Pr(k, I) is equal to 1 if the priority of intervention I is k and 0
otherwise.

− P(I1, I2) is equal to 1 if intervention I1 is a predecessor of inter-
vention I2 and 0 otherwise.

Finally we also use the following variables in the mathematical
model:

− x(I, j, h, ε) is equal to 1 if team ε works on intervention I on day
j at the starting time h and 0 otherwise.

− y(j, ε, t) = 1 if technician t is in team ε on day j and 0 otherwise.

− tk, k = 1, 2, 3 is the ending time of the last scheduled intervention
of priority k.

− t4 is the ending time of the whole schedule.

2.3. mathematical model

As we explained in section 2.1, the following mathematical model does
not consider the subcontracted interventions. Let us call this problem

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.5

6 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

(P ′), then it can be stated as follows:

Minimize 28t1 + 14t2 + 4t3 + t4

subject to
∑
j,h,ε

x(I, j, h, ε) = 1 ∀I (1)

y(j, 0, t) = 1− P (t, j) ∀j, t (2)∑
ε

y(j, ε, t) = 1 ∀j, t (3)

x(I, j, h, 0) = 0 ∀I, j, h (4)

min(h2+T (I2)−1,Hmax)∑
h1=max(h2−T (I1)+1,0)

x(I1, j, h1, ε) + x(I2, j, h2, ε) ≤ 1 ∀I1, I2, h2, j, ε (5)

∑
j,h,ε

(jHmax + h) (x(I1, j, h, ε)− x(I2, j, h, ε)) + T (I1)x(I1, j, h, ε) ≤ 0

∀I1, I2 | P(I1, I2) = 1 (6)

x(I, j, h, ε) = 0 ∀I, j, h, ε | h+ T (I) > Hmax (7)∑
h

R(I, i, n)x(I, j, h, ε) ≤
∑

t|C(t,i)≥n

y(j, ε, t) ∀I, i, n, ε, j (8)

∑
j,h,ε

(jHmax + h+ T (I))Pr(k, I)x(I, j, h, ε) ≤ tk ∀I, k = 1, 2, 3 (9)

∑
j,h,ε

(jHmax + h+ T (I))x(I, j, h, ε) ≤ t4 ∀I (10)

Constraint (1) ensures that each intervention is made by one team
only on one day at one time. Constraint (2) says that if a technician
t is not working on day j, he is in team 0. Constraint (3) specifies
that a technician belongs to only one team each day. Constraint (4)
guarantees that no interventions are made by the non-working team.
Constraint (5) ensures that two interventions assigned on the same day
to the same team are done at different times. Constraint (6) says that
all the predecessors of a given intervention have to be completed before
starting this intervention. Constraint (7) ensures that the working days
are strictly limited to Hmax, maximum number of time slices per day.
Constraint (8) specifies that a team working on intervention I has to
meet the requirements concerning levels of competence for I. Finally,
constraint (9) specifies that tk is the ending time of the last scheduled
intervention of priority k, k = 1, 2, 3 and constraint (10) specifies that
t4 is the ending time of the whole schedule.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.6

A GRASP-Based Approach for TIST 7

3. General Approach

The proposed algorithm is centered on a GRASP method. In this sec-
tion, we explain the function and the principles of each part of the
approach.

A first part consists in dealing with the problem of selecting which
interventions will be subcontracted or not according to the available
budget. As this problem is not so trivial, it is tackled with a prepro-
cessing heuristics detailed in section 3.1. Once the interventions to be
subcontracted are selected, they are deleted once for all from the prob-
lem, and the GRASP method described in section 3.2 is then applied
on the problem (P ′). One of the main part of the GRASP method is
the greedy algorithm, which is used to generate feasible solutions of
the problem. As described in section 3.2.1, it is also used to update
dynamically the weights of the interventions during the search. The
initialization of the memory is described in section 3.2.2. The GRASP
method is also combined with a local search phase, which is described
in detail in section 3.2.3. We conclude this section with an overview of
our approach in section 3.3.

3.1. Choosing the interventions to be subcontracted

The subcontracted interventions problem is tackled by using a pre-
processing heuristics which selects interventions to be excluded. These
interventions are cleaned from the problem once for all: the heuristics
used is based on the minimum number of technicians required for each
intervention (mintec(I)) and the duration of the interventions (T (I)).
The first phase consists in computing a weight ωI for each intervention
I so that ωI = mintec(I) × T (I). Let Ωt be the set of indexes of
technicians and x ∈ {0, 1}|Ωt| a vector of decision variables. The value
mintec(I), which is a lower bound of the number of technicians for a
given intervention I, is given by solving the following linear problem
associated with I:

Minimize
∑

t∈Ωt
xt subject to,∑

t/C(t,I)≥n,t∈Ωt
xt ≥ R(I, i, n) ∀i, n,

xt ∈ {0, 1} t ∈ Ωt

Let ΩI be the set of indexes of interventions and x ∈ {0, 1}|ΩI | be the
decision variable vector such that xI = 1 if I is subcontracted and 0
otherwise. In the second phase, we have to find a subset of interventions
Γ to be subcontracted so that

∑
xI∈ΓwIxI is maximum and the total

cost does not exceed the total budget A. The problem of finding this

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.7

8 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

subset is a precedence constrained knapsack problem [7]. Let (PCKP)
be this problem and S(xI , xI′) = 1 if intervention I ′ must start after
the completion of intervention I and 0 otherwise. The (PCKP) can be
stated as follows:

PCKP

Maximize

∑
I∈ΩI

wIxI subject to,∑
I∈ΩI

cost(I) · xI ≤ A,
xI ≤ xI′ ∀I, I ′ ∈ ΩI | S(xI , xI′) = 1

xI ∈ {0, 1} I ∈ ΩI

This problem is solved with a greedy algorithm which consists in select-
ing the interventions of maximum ratio mintec(I)×T (I)/cost(I) with
no successors not subcontracted, while the total cost does not exceed
the maximal available budget A.

3.2. GRASP-based algorithm

When the subcontracted interventions have been deleted from the orig-
inal problem, the subproblem composed by the remaining interventions
is solved by a GRASP algorithm [4].

The terminology GRASP refers to a multi-start metaheuristics for
combinatorial optimization. To be more precise, it refers to a class
of procedures in which randomized greedy heuristics and local search
techniques are employed. GRASP has been applied to a wide range
of combinatorial optimization problems such as scheduling [12], rout-
ing [1], graph theory [9], assignment problems [6], etc. The reader can
refer for instance to [10] or [5] for complete annotated bibliographies.

A classical GRASP implementation generally repeats the following
scheme in three steps until a stopping condition is satisfied:

− Generate a feasible solution with a greedy randomized algorithm.

− Apply a local search to the previous solution.

− Update the best solution of the search.

The stopping condition can be a maximum number of iterations
or a limited CPU time for instance.

GRASP has already been used for solving a problem in a similar
context in [12]. In this paper, the authors developed a greedy algorithm,
a local search method and a GRASP algorithm for solving a field
technician scheduling problem. They showed that the GRASP method
led to the best results despite an important increase of the execution
time. However they implemented a parallel version of their algorithm
to offset this drawback.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.8

A GRASP-Based Approach for TIST 9

In the next section we first present the greedy algorithm used to
generate a feasible solution. We also explain how the memory is updated
dynamically during the search.

3.2.1. Using GRASP to find a feasible solution
The greedy algorithm is an important part of the GRASP implementa-
tion since it provides the method with many feasible solutions. In this
section we give a general description of the mechanism of our greedy
approach. Let us recall that the greedy algorithm only considers the
non-subcontracted interventions that are called the candidates.

Selecting a candidate
Initially, the weight of a candidate is fixed to the coefficient of its
priority in the objective function for interventions of priority 1, 2, 3
and we arbitrarily fix a coefficient of 1 for the interventions of priority
4. Thus, candidates of priority 1 (respectively 2, 3) have a weight of
28 (resp. 14, 4) and candidates of priority 4 have a weight of 1. The
criterion of the greedy algorithm consists in selecting the candidate with
the larger weight. The use of random allows the algorithm to decide
which candidate to choose when two or more candidates have the same
weight. Note that a given candidate cannot be scheduled if one of its
predecessors at least is not scheduled.

Then, for a given candidate, the greedy algorithm attempts to
assign it according to the following three criteria: (1) the earliest day
possible; (2a) the team which requires the less additional technicians
to perform the intervention; (2b) the minimum starting time possible.
The process is repeated until all the candidates are scheduled. We next
explain how the algorithm respects these three criteria.

Computing the earliest day possible
When trying to insert the current candidate I in the solution, the
condition (1) looks for adding it as soon as possible to limit the increase
of the last day in the schedule. The first step consists in computing the
minimum starting date (d(I), s(I)) of I. This is achieved by searching
for the maximum day (dmax) among all its predecessors, then taking
the maximum ending time s(Imax)+T (Imax) such that Imax ∈ Pred(I)
and Imax is scheduled on day dmax. If s(Imax)+T (Imax)+T (I) > Hmax

then d(I) = dmax + 1 otherwise d(I) = dmax.

Computing the minimum required number of technicians for inserting
a candidate
Criteria (2a) and (2b) have to take into account the available techni-
cians on d(I) and the existing teams of technicians on d(I). To respect

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.9

10 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

the criterion (2a), a first phase consists in computing the number of
technicians needed to construct a new team for I.

The second phase of the method consists in considering all the ex-
isting teams, and in computing for each of them the minimum starting
date for I. The algorithm checks if the skills required by the intervention
I are satisfied by a given team ε. If it is the case, there is no need to add
a technician to ε. On the contrary, the minimum number of technicians
to add to ε can be determined by scanning the list of the available
technicians for d(I) and by comparing their skills with the missing re-
quirements. Let techsε(I) be the required number of technicians needed
for assigning I to team ε (ε = 0 if a new team has to be created).

Computing the minimum starting time
The next step of the algorithm consists in computing the value of sε(I)
if I is affected to a given team ε. This is possible by scanning the list of
the current interventions of ε and checking when it is possible to insert
I without enjambment with the interventions already scheduled.

Defining the priority between (2a) and (2b)
The order of the criteria (2a) and (2b) depends of the value of d(I)
obtained previously. It also depends on the ending time of the last
scheduled intervention with the same priority as I for priorities 1, 2, 3
and to the ending time of the whole schedule for priority 4 (i.e. ti, where
i designate the priority of the candidate I). If d(I)×Hmax+s(I)+T (I) <
ti then the condition (2a) is considered before the condition (2b). Oth-
erwise the condition (2b) has the priority. That can be justified by the
fact that if the schedule of I leads to an increase of the ending time of
the same priority as I or an increase of the whole schedule, then it is
better to try to minimize the deterioration by looking for the minimum
starting time possible.

Hence to favor condition (2a) the algorithm chooses the team ε
with the minimum value of techsε(I). If several teams have the same
value, the chosen team is the one for which the value of sε(I) is mini-
mum. On the contrary, if it is the condition (2b) that is favored, then
the algorithm chooses the team ε with the minimum value of sεI , and
the one with the minimum value of techsε(I) if there are at least two
teams with the same value sεI .

Using a permutation of the weights in the greedy algorithm
Some preliminary experiments underlined that the choice of the weight
of an intervention is not so trivial. Let us note w(I) as the weight of
intervention I. In the previous description, we suppose that w(I) is
equal to the coefficient of the priority of I in the objective function.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.10

A GRASP-Based Approach for TIST 11

That corresponds to apply the highest priority first order. The Figure 1
presents a solution generated by the greedy algorithm where the weights
of the interventions are 28 for interventions of priority 1, 14 for priority
2, 4 for priority 3 and 1 for priority 4. This solution was obtained for
one of the instances used in our computational experiments. In this
figure, interventions of priority 1 are represented by red boxes, those
of priority 2 are represented by green boxes, those of priority 3 are
represented by yellow boxes and there is no intervention of priority 4.
Each line represents a technician, with the first technician represented
by the top line and the last technician represented by the bottom line.
Each black box corresponds to an unavailable day for a technician and
each vertical line corresponds to the end of a day. The objective value
of this solution is 17820.

priority 1 priotity 2 priority 3

Figure 1. Solution with objective 17820 for instance data8 of instances set A

However it is possible to affect the weights of the interventions in
a different way. Suppose that interventions of priority 4 have a weight
of 28, those of priority 3 have a weight of 14, those of priority 1 have a
weight of 4 and those of priority 2 have a weight of 1. That corresponds
to use the permutation (4,3,1,2) of the weights. The Figure 2 gives the
solution generated by the greedy algorithm with these weights. The
objective value of this solution is 17355. Note that the weights of the
interventions are obviously not used to evaluate a solution but only to
guide the greedy algorithm.

This example clearly shows that for this instance, it should be
better to fix a greater weight to the interventions of priority 3 and thus
to use the permutation or priority order (4,3,1,2).

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.11

12 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

priority 1 priotity 2 priority 3

Figure 2. Solution with objective 17355 for instance data8 of instances set A

Updating the weights
Let us note as wp(I) the weight associated with intervention I according
to the priority order p. For example, let us suppose that p = (3, 2, 1, 4),
then wp(I) = 28 if the priority of I is 3, wp(I) = 14 if the priority
of I is 2, etc. At the end of the greedy algorithm, the weights of the
interventions are updated from the pieces of knowledge [11] associated
with the solution generated. This update consists in adding the value
wp(I) to the last interventions of each priority and to all their prede-
cessors. Consequently, the greedy algorithm will attempt to schedule
those interventions earlier at the next iteration. The objective si to
decrease the ending time of each priority. The algorithm 1 illustrates
this update procedure.

Algorithm 1 update phase
Require: The list of interventions. A priority order p.
1: for each priority prio do
2: I := last scheduled intervention of priority prio;
3: w(I) = w(I) + wp(I);
4: for each intervention J ∈ Pred(I) do
5: w(J) = w(J) + wp(I);
6: end for
7: end for

Since it is difficult to determine a priori the best permutation of
the weights, we define a first phase described in the next section that
consists in initializing the memory by evaluating each of the 24 possible
permutations.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.12

A GRASP-Based Approach for TIST 13

3.2.2. Initializing the memory
The aim of this phase is to identify the best priority order that leads to
the best behavior of the greedy algorithm. This is achieved heuristically
by applying the greedy algorithm described above several times for each
possible permutation of the weights (28,14,4,1) as follows:

− apply several times the greedy algorithm for each of the 24 possible
permutations of the weights associated with the priorities.

− repeat the same process only for the 12 permutations that lead to
the best solutions.

− repeat the same process only for the 6 permutations that lead to
the best solutions.

When this phase is completed, we keep the best 2 permutations
that obtain the best solutions and the GRASP method uses these 2
permutations. Consequently, when applying the greedy algorithm in
GRASP, the weights of the interventions depend on the permutation
used and are dynamically adapted subsequently.

3.2.3. Improving Solutions by Local Search
In this section, we describe our local search for improving solutions. In
this problem, after fixing the assignment of interventions to the teams
and the process order of interventions of each team, we can determine
the feasibility of the schedule. Moreover, the optimal start times of
interventions can be determined easily since the graph which represents
the process order of interventions and the precedence constraints is a
weighted directed acyclic graph [2]. Hence we search the assignment of
interventions to teams and the process order of interventions by local
search and check the feasibility and determine the optimal start times.

We propose two local search algorithms, which we call critical path
and packing phases. In both, we use the swap neighborhood and the in-
sertion neighborhood. In both phases, we consider only feasible moves,
that is, if a neighborhood solution violates a constraint, the solution
does not accepted. With respect to the assignment of technicians to
each team, we maintain the minimal technicians for the assigned inter-
ventions. Hence available technicians of a day belong to either an empty
team where no intervention is assigned or the teams whose technicians
are minimal for the assigned interventions.

A swap operation exchanges the assignment and the order of two
interventions. In this operation, reassignment of technicians is not con-
sidered since it is not a trivial problem. On the other hand, if the
neighborhood solution is accepted in the move, technicians may be

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.13

14 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

rearranged to preserve the minimality of teams by moving technicians
to empty teams.

An insert operation removes an intervention and inserts it into
another position. In this operation, after removing the intervention, it
may remove technicians from the team where the intervention was as-
signed to maintain the minimality, and the team where the intervention
is being inserted is merged with the empty team in order to make it
easier to satisfy the constraints.

Critical path phase
The aim of the critical path phase is to decrease the ending times of
each priority and that of the whole schedule (i.e., t1, t2, t3 and t4)
simultaneously.

We define a critical path for a priority as a maximal sequence
(I1, I2, . . . , Il) of interventions such that intervention Il gives the ending
time of the priority and each consecutive interventions Ik and Ik+1

(k = 1, . . . , l − 1) satisfy

d(Ik) = d(Ik+1) and s(Ik) + T (Ik) = s(Ik+1)

or

d(Ik) + 1 = d(Ik+1), s(Ik+1) = 0 and s(Ik) + T (Ik) + T (Ik+1) > Hmax.

Intervention Ik+1 cannot be scheduled unless intervention Ik is sched-
uled at earlier period. From the definition of a critical path, intervention
I1 has to be scheduled at earlier period in order to decrease the ending
time of the priority. The local search finds a critical path for each pri-
ority and tries to schedule intervention I1 at earlier period by searching
the neighborhood.

Packing phase
In the packing phase, the algorithm schedules interventions more effi-
ciently without increasing the ending time of each priority.

We consider a measure of the efficiency for team ε of day j. Let
J = {I1, I2, . . . , Il} be the interventions which are assigned to team
ε. Let S(ε, i, n) be the available number of technicians for level n and

domain i for team ε (i.e., S(ε, i, n) =
∑

t|e(t,j)=ε

⌊
C(t,i)
n

⌋
). Let N(J, i, n)

be the required number of technicians for level n and domain i for a
team to execute the interventions J (i.e., N(J, i, n) = maxI∈J R(I, i, n)
). Let

Wskill(ε, J) =
∑
I∈J

∑
i,n

(N(J, i, n)−R(I, i, n))T (I)

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.14

A GRASP-Based Approach for TIST 15

and
Wtime(J) = Hmax −

∑
I∈J

T (I),

and we estimate the wasted skill (resp., the wasted time) for team ε
and interventions J by Wskill(ε, J) (resp., Wtime(J)). Then, we estimate
the efficiency for assigning interventions J to team ε by the function

f(ε, J) = Wskill(ε, J) + αWtime(ε),

where α is set to a very large value (i.e., the efficiency is estimated by
a lexicographic order of time and skill).

In this phase, the local search estimates a solution by the summa-
tion of f(ε, J) for all team of all day, and it accepts a neighborhood
solution in the move of the local search if the solution is feasible and it
does not increase the current ending time of priority.

3.3. Overview of the approach

We summarize our approach in the Algorithm 2. This algorithm de-
scribe the three phases we exposed in the previous sections. The pre-
processing heuristics that selects the interventions to be subcontracted
is represented by the function Greedy Hired on line 2. This function
returns a sub-problem in which a part of the variables have been fixed
(i.e. with several interventions deleted). Then, the second phase that
consists in determining the 2 best permutations of the weights associ-
ated with the priorities is represented by the function Initialize Memory
called on line 3. This procedure provides perm1 and perm2, which
correspond to the 2 permutations used in the GRASP, which is de-
scribed between the lines 5 and 10. The GRASP method consists in
repeating the application of the greedy algorithm with the 2 selected
permutations, then updating the memory and finally applying the local
search algorithm when the best solution is improved. The process stops
when the allowed CPU time is passed.

4. Lower Bound

In this section, in order to evaluate the performance of the proposed
algorithm, we consider a lower bound of the problem P ′ where subcon-
tracted interventions have already determined and have been excluded.
To compute a lower bound for P ′, we consider 8 relaxed problems with
restricted interventions and compute a lower bound on the ending time
of the schedule (which is often called a makespan) for each problem.
Finally, the lower bound for P ′ is computed by using them.

We consider the following problems

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.15

16 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

Algorithm 2 Solve TIST(PB,MAX CPU Allowed)

Require: An instance PB of TIST to solve; The total allowed CPU time.
1: Best Solution = �
2: SPB = Greedy Hired(PB);
3: (perm1, perm2) = Initialize Memory(SPB);
4: while MAX CPU Allowed is not reached do
5: Solution1 = Greedy Randomized Construction(SPB, perm1);
6: Solution2 = Greedy Randomized Construction(SPB, perm2);
7: Update the memory
8: Improve = Update Best Solution(Solution1,Solution2,Best Solution);
9: if Improve = True then

10: Best Solution = Local Search(SPB, Best Solution);
11: end if
12: end while
13: return Best Solution;

− MSP (1) which has only priority 1 interventions and their prede-
cessors for P ′

− MSP (2) which has only priority 2 interventions and their prede-
cessors for P ′

− MSP (3) which has only priority 3 interventions and their prede-
cessors for P ′

− MSP (1, 2) which has priority 1 and 2 interventions and their
predecessors for P ′

− MSP (2, 3) which has priority 2 and 3 interventions and their
predecessors for P ′

− MSP (3, 1) which has priority 3 and 1 interventions and their
predecessors for P ′

− MSP (1, 2, 3) which has priority 1, 2 and 3 interventions and their
predecessors for P ′

− MSP (1, 2, 3, 4) which has all interventions for P ′.

Let T1, T2, T3, T1,2, T2,3, T3,1, T1,2,3 and T1,2,3,4 be lower bounds of
their makespan respectively. Then the following problem gives a lower

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.16

A GRASP-Based Approach for TIST 17

bound for P ′:

minimize 28t1 + 14t2 + 4t3 + t4

subject to T1 ≤ t1, T2 ≤ t2, T3 ≤ t3
T1,2 ≤ max{t1, t2}, T2,3 ≤ max{t2, t3}, T3,1 ≤ max{t3, t1}
T1,2,3 ≤ max{t1, t2, t3}
T1,2,3,4 ≤ t4,

where t1, t2 and t3 are the ending time for priority 1,2 and 3, respec-
tively, and t4 is the ending time of whole schedule. It is easy to see that
any feasible solution (i.e., t1, t2, t3 and t4) must satisfy each constraint.

We propose three lower bounds for the makespan problem; The
box lower bound is computed in a combinatorial way. The assignment
lower bound is obtained by a linear programming problem which is
a relaxation of P ′. The trivial lower bound is derived from trivial
conditions. We take the best lower bound from them and strengthen it
by a post processing.

4.1. The Box Lower Bound

The box lower bound, which is a lower bound on the days (not time),
is computed for each domain i and level n, and the largest among
them is adopted. The same method was proposed by Lodi, Martello
and Vigo [8] for the two-dimensional level packing problem.

For each domain i and level n, we consider a rectangle whose height
is R(I, i, n) and width is T (I) for each intervention I. The area of a
rectangle is the multiplication of the needed amount of skill and time
for the intervention. In order to compute the box lower bound, the
area of a rectangle may be partitioned. Let Ad(j, i, n) be the number of
technicians who can work at day j and has a skill level n in domain i.
We arrange all rectangles by the height and split them by every Hmax

from the left and take the minimum rectangles which contain each
Hmax blocks. Figure 3 (a) shows such a situation and the dotted part is
the empty space of the minimum rectangles. Each minimum rectangle
means the work for the interventions which may be contained partially
is executed by a team whose number of technicians is the height of
the minimum rectangle. Next we build the minimum rectangles up and
compute µ∗ = min{µ ∈ Z | H ≤

∑µ
j=1Ad(j, i, n)} for the total height

H. The µ∗ is a lower bound on the days which are needed for the
schedule. Figure 3 (b) shows the situation where µ∗ = 2.

Since this is a lower bound of days and we do not know the time,
the gap can be at most Hmax (1 day) in the sense of time. Hence we
split a day into halves and apply the procedure assuming Hmax

2 is a

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.17

18 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

Figure 3. An example of the procedure for the box lower bound

day. We continue the process with Hmax
3 , Hmax

4 , . . . , 1, and take the
best lower bound among them.

4.2. The Assignment Lower Bound

In order to compute the assignment lower bound, we repeat guessing
the number of days µ where the assignment lower bound lies and solving
a linear programming problem corresponding to µ until the guess is a
hit. We can know whether the guess is a hit or not from the optimal
solution of the linear programming. In the case that the guess is not a
hit, we can also know whether the guess is large or small.

For the number of days µ which we guess (i.e., we guess the
makespan M is in [µHmax, (µ + 1)Hmax]), the available working time
Uµ(t,M) until time M for each technician t can be computed easily.
Note that Uµ(t,M) is represented as M − lHmax for some l ≤ µ or 0.
We consider the following linear programming ALP(µ):

minimize M (11)

subject to
∑

t|C(t,i)≥n

xI,t ≥ R(I, i, n), ∀I, ∀i,∀n (12)

∑
I

T (I)xI,t ≤ Uµ(t,M) ∀t (13)

0 ≤ xI,t ≤ 1 ∀I, ∀t, (14)

where xI,t represents the assignment of I to t. The feasible region of
ALP(µ) is included by that of ALP(µ + 1) and, hence, the optimal
objective value becomes smaller for larger µ. If the problem is infeasible
or the optimal value M∗ of ALP(µ) is larger than (µ+ 1)Hmax, we can
see the assignment lower bound is larger. If the optimal value M∗ of
ALP(µ) is smaller than µHmax, we can see the assignment lower bound
is smaller. The process is repeated until the guess hits and the last M∗

turns out to be the assignment lower bound.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.18

A GRASP-Based Approach for TIST 19

4.3. The Trivial Lower Bound

The trivial lower bound is derived from the following necessary condi-
tions. (1) The maximum execution time for all interventions is a lower
bound. (2) The sum of execution time for a sequence of the inter-
ventions where each successive interventions has precedence relation
is a lower bound. The maximum value of all such sequences can be
computed in linear time.

4.4. Postprocess

A lower bound can be strengthened, because a makespan must be a
values which consists of combination of T (I) and Hmax. We compute
all possible makespan by the dynamic programming, and take the least
value larger than or equal to the given lower bound as a strengthened
lower bound.

5. Experimental Results

Our algorithm was tested on data sets provided by France Telecom
for the 5th challenge of the French Society of Operations Research and
Decision Analysis. There are three data sets available, each data set
contains 10 instances with a different number of interventions, tech-
nicians, domains and levels. The first data set called data-setA does
not consider the problem of subcontracted interventions. It contains
instances from 5 to 100 interventions, from 5 to 20 technicians, from
3 to 5 domains and from 2 to 4 levels. The instances of the data-
setB are much harder to solve and they does consider the problem of
subcontracted interventions. This data-set contains instances from 120
to 800 interventions, from 30 to 150 technicians, from 4 to 40 domains
and from 3 to 5 levels. Finally, the data-setX is the data-set on which
the evaluation for the challenge ranking was based. It contains instances
from 100 to 800 interventions, from 20 to 100 technicians, from 6 to 20
domains and from 3 to 7 levels.

We provide in the Table I the official results which were published
on the website of the challenge. The computer used contains an AMD
Processor of 1.8 GHz and 1 GB of DDR-RAM. The execution time
was limited to 1200 seconds. The description of the data per column
is the following: inst.: The name of the instance. int.: The number of
interventions. tec.: The number of technicians. dom.: The number of
domains. lev.: The number of levels. The column GRASP has three
values: value: the objective value of the GRASP-based algorithm, LB :
the lower bound value without the subcontracted interventions and

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.19

20 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

Table I. Results obtained on the benchmarks provided by France Telecom

GRASP Best objective

inst. int. tec. dom. lev. value LB gap. value gap

1-setA 5 5 3 2 2340 2265 3.2 2340 0

2-setA 5 5 3 2 4755 4215 11.35 4755 0

3-setA 20 7 3 2 11880 11310 4.79 11880 0

4-setA 20 7 4 3 13452 10995 18.26 13452 0

5-setA 50 10 3 2 28845 26055 9.67 28845 0

6-setA 50 10 5 4 18870 17775 5.8 18795 0.39

7-setA 100 20 5 4 30840 27405 11.13 30540 0.97

8-setA 100 20 5 4 17355 16166 6.85 16920 2.50

9-setA 100 20 5 4 27692 25618 7.48 27692 0

10-setA 100 15 5 4 40020 35405 11.53 38296 4.3

Average 9.01 0.81

1-setB 200 20 4 4 43860 38385 12.48 34395 21.58

2-setB 300 30 5 3 20655 16605 19.6 15870 23.16

3-setB 400 40 4 4 20565 17460 15.09 16020 22.1

4-setB 400 30 40 3 26025 19035 26.85 25305 2.76

5-setB 500 50 7 4 120840 106290 12.04 89700 25.76

6-setB 500 30 8 3 34215 24450 28.54 27615 19.28

7-setB 500 100 10 5 35640 28470 20.11 33300 6.56

8-setB 800 150 10 4 33030 32820 0.63 33030 0

9-setB 120 60 5 5 29550 26310 10.96 28200 4.56

10-setB 120 40 5 5 34920 32790 6.09 34680 0.68

Average 15.24 12.64

1-setX 600 60 15 4 181575 140025 22.88 151140 16.76

2-setX 800 100 6 6 7260 6840 5.78 7260 0

3-setX 300 50 20 3 52680 49650 5.75 50040 5.01

4-setX 800 70 15 7 72860 59560 18.25 65400 10.23

5-setX 600 60 15 4 172500 126465 26.68 147000 14.78

6-setX 200 20 6 6 9480 6180 34.81 9480 0

7-setX 300 50 20 3 46680 45000 3.59 33240 28.79

8-setX 100 30 15 7 29070 20590 29.17 23640 18.67

9-setX 500 50 15 4 168420 101985 39.44 134760 19.98

10-setX 500 40 15 4 178560 99705 44.16 137040 23.25

Average 23.05 13.74

gap: the gap in percentage between the lower bound and the objec-
tive value. The column Best objective has two values: value: The best
objective value found among all the challengers solutions and gap: the
gap in percentage between this best objective and our objective value.
Average: The average of the gaps.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.20

A GRASP-Based Approach for TIST 21

There was a total of 17 teams participating to the final stage of
the challenge and our algorithm was ranked to the fourth position. The
evaluation was based only on the data-setX. The ranking was made on
the average value of the gaps between our solution and the best solution
among all the challengers for each instance.

Table I shows that the gap between the upper bound provided by
the GRASP and the lower bound is quite constant for all the instances
except for some instances of the data-set X. The experimentations we
have made later showed us that our algorithm never reached the im-
proving phase embedding the local search for some of these instances.
This might be a good reason why the gap in this case is bigger than
the one for the others data sets.

A point that can be extracted from those experiments is that the
choice of the subcontracted interventions is not optimum. Indeed, some
values of our lower bounds of the remaining problem are under the
best solutions among all the challengers (upper bounds of the whole
problem). We made some new experiments which confirm this point of
view: for the instance 9 of the data-set B, we selected a different set of
subcontracted interventions and then we executed the same algorithm.
It appeared that it founds a lower bound of 25695 instead of 26310 and
an objective value of 27960 instead of 29550 whereas the best solution
found among all the challengers is 28200.

6. Conclusion

In this paper, we presented a Technician and Intervention Scheduling
Problem for Telecommunications and gave a mathematical formulation.

We proposed a heuristic algorithm based on three main stages:
(1) the fixing of some variables which is done by the ”knapsack ratio
heuristic” for subcontracted interventions, (2) the initializing of the
memory (weights allocated to the interventions) which is carried out
by the search of the best orders to insert interventions and (3) the
greedy randomized adaptive search procedure and the local search em-
bedded which seek to improve the initial solutions by updating the
initial weights of interventions.

We gave lower bounds which confirm the effectiveness of our ap-
proach. The experimentations have clearly showed that the choice of
the ”knapsack ratio heuristic” is the main weak spot of this approach.
Nevertheless, as we pointed out with the instance 9 of the data-set B,
a different fixing heuristics can provide better solutions.

Finally, the greedy adaptive memory algorithm shows to be a
promising tool for solving this problem especially if we improve the

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.21

22 Hideki Hashimoto, Sylvain Boussier, Michel Vasquez and Christophe Wilbaut

first step of our global approach. That is the aim of further work we
are planning to conduct.

References

1. J. B. Atkinson. A greedy randomised search heuristic for time-constrained
vehicle scheduling and the incorporation of a learning strategy. Journal of the
Operational Research Society, 49:700–708, 1998.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. The MIT Press, 2 edition, 2001.

3. P.-F. Dutot and A. Laugier. Technicians and interventions scheduling for
telecommunications(ROADEF challenge subject). Technical report, France
Telecom R&D, 2005.

4. T. A. Feo and M. G. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

5. P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In C. C.
Ribeiro and P. Hansen, editors, Essays and surveys in metaheuristics, pages
325–367. Kluwer Academic Publishers, 2002.

6. C. Fleurent and F. Glover. Improved constructive multistart strategies for the
quadratic assignment problem using adaptive memory. INFORMS Journal on
Computing, 11:198–204, 1999.

7. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
8. A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional

level packing problems. Journal of Combinatorial Optimization, 8:363–379,
2004.

9. M. G. C. Resende and C. C. Ribeiro. A GRASP for graph planarization.
Networks, 29:173–189, 1997.

10. M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search
procedures. In F. Glover and G. A. Kochenberger, editors, Handbook of
Metaheuristics, pages 219–249. Kluwer Academic Publishers, 2003.

11. É. D. Taillard, L. M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive
memory programming: A unified view of metaheuristics. European Journal of
Operational Research, 135:1–16, 2001.

12. J. Xu and S. Y. Chiu. Effective heuristic procedures for a field technician
scheduling problem. Journal of Heuristics, 7:495–509, 2001.

ftsched_07_10_26.tex; 8/07/2013; 13:20; p.22

